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1 Physical Arguments for Mathematical Truths

It is well-known that when it comes to solving physics problems mathematics can
be a big help. Maybe less well-known is that this goes both ways. Sometimes
reflecting on physical principles, or imagined physical set-ups, can lead to the dis-
covery of mathematical truths. Sometimes physical principles can even help justify
(provide a reason to believe, or evidence that favours) a mathematical truth. But
can they do more? Can physical principles also help explain mathematical truths?

To get the question in focus let’s look at an example: an argument for the
Pythagorean theorem that uses physics. Imagine a right-triangular prism filled with
gas and attached to a pole about which it can rotate. (Figure 1 depicts the prism from
above; the right angle is at X; the pole passes through Z.) Its sides have lengths a,b

and c. Imagine further that the prism is a closed system in equilibrium: the gas
inside is not all bunched up against one of the sides, there are no giant masses
nearby exerting gravitational forces on it, and so on. Since the prism is initially at
rest the law of conservation of energy says that it will not begin to rotate. So the net
torque on it must be zero.

Figure 1: The prism, from above

Z

a

c

b

Y

X

Let us find the individual torques that act on the prism. They come from
the outward pressure of the gas on the prism’s walls. (It may help to imagine that
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the prism exists in a vacuum, so we can ignore the inward-directed force of the
atmosphere.) Because the prism can only move by rotating about Z in the plane of
the diagram we just need to find the torques about Z for walls ZY, ZX, and XY.

Now the torque about Z for a force of magnitude F acting on a portion of a
wall is equal to ±Fs where s is the the distance from Z to the line along which the
force acts. The torque is positive if the force is trying to rotate the prism counter-
clockwise; otherwise negative.

The force acting on a small portion of wall ZY (the hypotenuse), a portion
of width ds, has magnitude Pds where P is the pressure of the gas, and acts at a
right-angle to the wall (see figure 2). So the torque about Z for this force is equal
to Psds. The total torque for ZY then is

∫ c
0 Psds = Pc2/2. A similar calculation

shows that the torque for ZX is −Pa2/2.

Figure 2: Calculating the torque for the hypotenuse
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It is in the calculation for the torque due to the force on wall XY that the fact
that the prism is right-triangular matters. The torque about Z for the force acting
on a portion of that wall of width ds is −Pds times the distance from Z to the line
along which the force acts. It is because the angle at X is a right angle and the force
is perpendicular to the wall that this distance is equal to the distance s from X to
that portion of the wall. So the torque for that portion is (again)−Psds and the total
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torque for XY is −Pb2/2. See figure 3.

Figure 3: Calculating the torque for side XY
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Since the torques add up to zero,

Pa2/2+Pb2/2 = Pc2/2,

Or
a2 +b2 = c2.

So there it is: an argument for the Pythagorean theorem that uses the law of conser-
vation of energy. (It does not just use conservation of energy, of course. It also uses
Newtonian mechanics and presupposes that space is Euclidean.)

Now: does the law of conservation of energy here help explain the Pythagorean
theorem? The suggestion may sound absurd. But it is not universally denied. There
are many books full of arguments for mathematical truths that are based on physi-
cal principles, and in at least one of those books — Mark Levi’s The Mathematical

Mechanic — the author repeatedly says that such arguments are explanatory, either
by writing things like ‘The Pythagorean theorem can be explained by the law of
conservation of energy’ (Levi [2009], p. 4) or by presenting a physical argument as
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an answer to a why-question.1 And I think Levi is on to something. When I myself
read arguments like this they do not feel like mere tricks. So I want to give the idea
that physical arguments can explain mathematical truths a run for its money.

2 Preview

For me this investigation starts from the fact that some physical arguments, like the
Pythagorean theorem example, seem explanatory. It seems to me that I better under-
stand why the theorems proved are true after reading those arguments. It would be
great if I could back this up by presenting a general theory of explanation, complete
with necessary and sufficient conditions for a body of fact to be an explanation, and
then show that these physical arguments meet those conditions. But I do not have a
general theory of explanation to defend.

Or, at least, I do not have one that can help with my project. It might well
be true that something is an explanation if and only if it produces understanding,
or that something is an explanation if and only if answers a why-question, though
these have been disputed. But even if these are true, by themselves they are neither
very illuminating nor very useful in this context. Someone who doubts that physical
arguments can explain mathematical truths will also doubt that they answer why-
questions or produce understanding.2

1The first person I know of to reason to mathematical conclusions using phys-
ical principles was Archimedes. His treatise Geometrical solutions derived from
mechanics was written in the third century BC (Archimedes [1909]). Later works
of this sort include (Uspenskii [1961]) and (Kogan [1974]). Other places where
Levi says things that entail that physical arguments can explain may be found on
pages 4, 29, and 60 of his book. The justification of the Pythagorean theorem I am
discussing appears in (Levi [2009], pp. 9-11) and in (Kogan [1974], p. 17).

2A referee said that if all I mean by ‘explanation’ is ‘answer to a why-question’
or ‘something that produces understanding’ then my thesis is not controversial, for
almost anything can be an answer to a why-question, and one can understand why
P is the case without knowing any reasons why P is the case. So, the referee con-
tinued, if I mean to be defending a controversial thesis (and I do) then I must mean
something else — something stronger — by ‘explanation’, and I should say what
that is. I have several things to say about this. First, by ‘why-question’ I mean
‘explanation-seeking why-question’, and I do not think that almost anything can
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Since I lack a general theory of explanation I will take a less direct approach.
I am going to begin by rebutting some arguments that physical principles cannot
help to explain mathematical truths. Then I will make a positive case that they can
explain. I will claim that at least some physical arguments that seem explanatory
resemble in their structure things that are certainly explanatory. Of course the fact
that X resembles an explanation in some respect or other is not much evidence
that X is itself an explanation. But the kind of resemblance I will focus on makes
the evidence stronger: the features that the physical arguments share with certain
explanations are the features in virtue of which those explanations are explanatory.

3 Mathematical Facts

My thesis, that physical principles can help explain mathematical truths, can use
some clarification. What distinguishes mathematical claims from physical ones,
and more generally from non-mathematical ones?

I do not have a general answer to this question. But I do not think I need
one, since I plan to stick to examples in which it is uncontroversial which claims
are mathematical and which are not. But the example I started with may seem
controversial, so let me say something about it.

The (alleged) mathematical truth derived in the example belongs to geome-
try. But understood one way geometrical claims are claims about space, a concrete,
physical thing. Someone might say that understood this way the Pythagorean theo-
rem is not a mathematical truth.

So far there is no problem; even if this is right there is surely also some way
to understand geometrical claims so they do belong to mathematics. That is how

be an answer to one of those (though some philosophers, notably Van Fraassen
[1980], think otherwise). Similarly, I do not agree that one can understand why
P while being ignorant of any reasons why P (though some philosophers, notably
Lipton [2009], have argued otherwise). These claims are worthy of defence, but this
is not the place to defend them. What I will do is avoid resting any argumentative
weight on the claims that something is an explanation if and only if it answers a
why-question or produces understanding. I cannot say more than this about what
I mean by ‘explanation’ since, as I said, I do not have a more substantive general
theory of explanation to defend.
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I want them to be understood in this paper. One way to do this is to interpret the
Pythagorean theorem as a claim about ‘ideal Euclidean right triangles’, which exist
in ‘the ideal three-dimensional Euclidean space’, an abstract object of some kind.3

(I do not say that this is the only way to understand the Pythagorean theorem so that
it is a mathematical claim, but it is a useful one for us to have in mind.)

I take it that the distinction between ‘concrete’ and ‘abstract’ interpretations
of the Pythagorean theorem is just common sense, but drawing it may just seem
to make it easier to raise doubts about my example. Maybe the example seems
explanatory only when we interpret the Pythagorean theorem concretely. Then if
the example is an explanation, it does not explain a mathematical truth.

I do not think this is right. But what I think is wrong with it is a bit of a
long story. I will tell it when I describe the structure I think the explanation has, in
sections 7 and 8.

4 Purity

A simple and appealing argument against the idea that physical principles can help
explain mathematical truths goes like this: a mathematical truth has only mathe-
matical explanations (if it has any). The reasons why a mathematical truth is true
are all mathematical. If this is so then no physical principle or law can help explain
any mathematical truth, including the Pythagorean theorem.

Call the general principle this argument uses Explanatory Purity:

(EP) Mathematical truths have only mathematical explanations.

Is EP true? What arguments might be given in its favour? While I do not think EP is
true I am going to postpone discussing these questions until the next section. Right

3Probably few platonists (believers in the existence of mathematical objects, and
abstract objects more generally) think that there is some single abstract object that
qualifies as the ‘ideal three-dimensional Euclidean space’, even though this seems
like the sort of thing Plato himself would have believed. Even a categorical set of
axioms for Euclidean geometry has infinitely many models. What could make one
of the models the ‘right’ model (and what could ‘right’ even mean)? I suspect these
questions can be answered, but if you like you can substitute ‘an’ for ‘the’ in the
text.
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now I want to explore what status physical arguments can have if EP is true. Even if
EP is true such arguments need not be merely tricks. EP is compatible with the idea
that physical arguments can be ‘illuminating’, indeed even with the idea that they
can be explanatory. EP just entails that the physical principles in those arguments
are not doing any of the explaining.

How can a physical argument be explanatory even if the physical principles in
the argument are not doing any explaining? Like this: the physical argument ‘con-
veys explanatory information’ about the Pythagorean theorem, but the explanatory
information it conveys is purely geometrical. The physical argument contains a
purely geometrical explanation of the Pythagorean theorem ‘dressed up’ in non-
geometrical garb.

There is precedent for this idea. Mathematics appears in many explanations
of physical phenomena. But this fact alone does not establish that the mathematics
is itself explanatory. In the course of giving an explanation there is often non-
explanatory work that needs to be done and sometimes it is more efficient to sub-
contract that work out to mathematics. The mathematics might be there so that the
explanatory facts can be expressed in fewer sentences of English. More generally,
it might be there to make it easier for for the listener to grasp the explanatory facts.
Either role is consistent with the claim that the explanatory facts themselves are
not mathematical.4 Maybe physical principles in physical arguments are similarly
there just to facilitate the union between the mind that seeks understanding and the
(purely mathematical) facts that confer that understanding.

How does one tell whether or not a physical principle is doing ‘real explana-
tory work’ in an explanation of a mathematical truth? The claim that the physical
principles in an apparently explanatory physical argument are not doing any of the
explaining is best justified by exhibiting the purely mathematical explanation that is
hiding in the physical argument. Of course this may be very difficult to do. Maybe
there are even cases in which it is impossible. Our inability to find such an explana-

4Field ([1980]) and Yablo ([2002]) emphasize these roles for mathematics. In a
much-discussed article Baker ([2005]) argues that in some explanations of physical
phenomena mathematics is not just doing some non-explanatory work but is also
helping explain.
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tion is not itself proof that the physical principles are explanatory. But it is at least
good evidence.

So one can accept EP without thinking that it is just an illusion that going
through a physical derivation of a mathematical truth sometimes improves one’s
understanding of that truth. EP need not be completely at odds with one’s initial
judgments about examples. But for me some conflict between EP and my judgments
about examples remains. The physical argument for the Pythagorean theorem is
explanatory. That’s how it seems to me anyway. (And I think this about other
physical arguments for other theorems that I have not discussed.) But I have not
found a translation of the physical argument for the Pythagorean theorem into a
purely geometrical proof.

You can strip away a lot of the physical principles from the argument. Once
they are stripped away the argument starts like this: associate with each point on
the triangle (except the vertices) an outward-pointing vector orthogonal to the side
containing that point. Make all these vectors the same length Pds. For each side
‘add up’ the quantities Psds (the length of the vector times the distance s from Z to
the line containing the vector); these are the integrals

∫
Psds. For each side make

the resulting number associated with that side positive (/negative) if the vectors
attached to that side point counterclockwise (/clockwise) relative to Z. You can get
that far. To complete the proof we need the claim that the three numbers associated
with the sides of the triangles sum to 0. The physical reasoning that give us that
claim is (i) a triangle at rest (in these circumstances) will not begin to move, so (ii)
the net torque on the triangle is zero, and (iii) the numbers we have associated with
the sides of the triangle represent the torques on those sides. What mathematical
principles can replace (i) through (iii)? I do not know.

5 Doubts about Purity, I

Of course it may be that the mathematical explanation is there but I have been
unable to find it. Or it may be that I am wrong to think that the physical argument
in my example is explanatory in the first place. None of what I just said is meant
to convince someone who is drawn to EP that EP is false and my thesis is true. I
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have only been exploring the extent to which physical arguments can be explanatory
even if EP is true. But now I want to raise some doubts about EP itself and thereby
clear the ground for the idea that the physical principles in a physical argument can
themselves help explain.

First I want to discuss an argument directly for the conclusion that no physical
fact can help explain a mathematical truth. This argument, even if sound, does not
establish EP. To do that we need to show that no non-mathematical fact can explain
a mathematical fact; and there are non-mathematical facts other than physical facts.
But this argument is clearly still relevant. (It is also connected to a more general
motivation for EP, as I will explain in the next section.)

The argument is simply this: (i) mathematical truths are necessary and phys-
ical facts are contingent. But obviously (ii) no contingent fact can help explain a
necessary one.

Why might one believe (ii)? One might defend it by asserting, in general, that

(A) If F helps explain G then necessarily if G obtains so does F.

But (A) is false for well-known reasons. In a standard case of causal preemption
Billy’s throw explains the breaking of the window, even though in nearby possible
worlds Billy does not throw but the window is still broken (because Suzy threw
instead). True, (A) is stronger than needed to get (ii); all we need is the weaker
claim

(B) If G is necessary and F helps explain G, then necessarily if G obtains so does
F.

The retreat from (A) to (B) strikes me as ad hoc, but never mind. There are coun-
terexamples to (B) too. A ‘grounding’ explanation explains why some fact F obtains
by citing the ‘more basic’ facts in virtue of which F obtains.5 Now a disjunction
is grounded in its true disjunct(s). So the fact (G) that either it is raining or it is
not raining is grounded in (and so explained by) the fact (F) that it is not raining
(supposing that this is a fact). But of course it is possible that G obtain while F does
not.

5A thorough discussion of grounding may be found in (Rosen [2010]).
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So I do not think (ii) has much going for it. But technically (ii) is also a
stronger premise than the argument needs. It can get by with the weaker

(iii) No contingent fact can help explain a mathematical fact.

Now is there any reason to accept the weaker (iii) and not the stronger (ii)? I actually
think that there is. It starts with the principle:

(C) If F helps explain G then in any world in which G obtains while F does not G
does not obtain for all the same reasons.

This conditional is not just true but analytic (factors that explain G just are reasons
why G obtains). From (C) it is easy to get to (iii): just use the premise that the
reasons why mathematical truths are true do not vary from world to world.6

The argument we are considering now is that (iii) contingencies cannot ex-
plain mathematical truths, but (i) physical principles are contingent. It is better than
the argument we started with but it still does not work. In sections 7 and 8 I will
suggest that it is not really the fact that the law of conservation of energy is true that
helps (or appears to help) explain why the Pythagorean theorem is true; it is the fact
that it is a law in the prism scenario. But this is just the fact that the law of conser-
vation of energy is consistent with Euclidean geometry, Newtonian mechanics, and
the behaviour of this prism. And this fact obtains of necessity.

If I am right about all this then maybe the problem with the argument from
(i) and (iii) is that (i) is false. Whether this is the right diagnosis depends on what
‘physical fact’ means as it occurs in (i). There are (at least) two things one might
mean by ‘physical fact’. According to the first,

(M1) A physical fact is a fact about the goings-on in the physical (concrete) world.

Facts about where hydrogen atoms are, facts about how massive the planets are:
these are paradigm physical facts in this sense. But in another sense physical facts
are not identified by their subject matter but by the vocabulary used to express them:

6Why accept this premise? One might defend it by appealing to EP, but that
would be question-begging in this context. Still, I accept the premise (even though
I reject EP), so will not challenge it.
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(M2) A physical fact is a fact statable in ‘physical vocabulary’.

This is not much help without a definition of ‘physical vocabulary’, but there is
surely some definition on which words like ‘energy’, ‘force’, ‘mass’, and so on
count as physical vocabulary.

Getting back to the argument from (i) and (iii), if we go with (M2) then the
fact that the law of conservation of energy is consistent with Euclidean geometry
(and so on) counts as a physical fact and (i) is false. If we go with (M1) then it is
unlikely that this fact counts as physical.7 If it does not then even if (i) and (iii) are
true the argument is irrelevant. It does not show that the example I started with is
not explanatory.

I do not think that one of (M1) and (M2) gives the correct sense of ‘phys-
ical fact’ in some absolute sense. But I do think that (M2) is more relevant for
our purposes. If it were to turn out that energy is not conserved in the concrete,
physical world, and moreover (for strange reasons we cannot now grasp) that it is
metaphysically impossible that energy be conserved in the concrete, physical world,
that would not show that the my example fails to be explanatory. All the explana-
tion really requires is the ‘formal consistency’ (or truth in some ‘abstract model’) of
energy conservation with Euclidean geometry, Newtonian mechanics, and the be-
haviour of the prism. Still, even though it is formal consistency that matters terms
like ‘energy’ and ‘force’ count as physical because the main interest we have in
them and the theories in which they appear is their usefulness in predicting and
explaining the behaviour of physical things.8

I should admit that my response to the argument from (i) and (iii) reveals my
thesis to be somewhat less radical than it may first appear. It is not the thesis that
the truth of the Pythagorean theorem (abstractly interpreted) depends in some way
on the actual behaviour of sofas, stars, and galaxies. Still, it remains the case that
the explanation of the Pythagorean theorem works by investigating how a possible
(or even a ‘merely formally possible’) right-triangular prism behaves, and also how

7It certainly does not seem to be about the goings-on in the physical world on
any ordinary sense of ‘about’. But some philosophical theories of aboutness, like
Lewis’s ([1998]), have it that a necessary truth is about every subject matter.

8I thank a referee for pressing me to clarify this.
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such a prism would behave under different conditions. (More on this in sections 7
and 8.) This certainly warrants calling it a physical explanation.

6 Doubts about Purity, II

The argument from (i) and (iii) focuses on the (apparent) ‘modal independence’ of
mathematical fact from physical fact. It relies on the idea that changing the physical
facts would not change the mathematical facts. The argument does not work, but
someone who opposes my thesis might try to employ the strategy behind the argu-
ment in a slightly different way. They might keep the idea of using independence

to argue for explanatory irrelevance but focus on a different kind of independence.
Even if some physical facts are necessary, so that the mathematical facts are not
modally independent of them, the mathematical facts are still conceptually inde-
pendent of them. No concepts from mechanics (like energy, force, torque, and so
on) are needed to state any mathematical facts. Mathematical facts can be expressed
using only mathematical concepts. That is conceptual independence.

One way to turn this into an argument for EP is to use the premise

(P1) If fact F is conceptually independent of fact G then G cannot help to explain
F.9

But this is false. The concept of gravity appears in an explanation of the fact that the
moon orbits the earth. But the fact that the moon orbits the earth can be expressed
without using the concept of gravity.

Maybe a better way to run the argument is to use a restricted version of
(P1), one that applies only to potential explainers of mathematical facts. This new
premise says

(P2) If a mathematical fact F is conceptually independent of fact G then G cannot
help to explain F.

9Conceptual independence is a symmetric relation, so if (P1) is true then F can-
not help to explain G either. (But not all kinds of independence are symmetric:
event E may counterfactually depend on event C while C is counterfactually inde-
pendent of E.)
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What might motivate accepting (P2) and not (P1)? One idea is that conceptual
independence is only a guide to explanatory relevance when the domain of fact
being explained consists entirely of necessary truths (as mathematics does).

I think that (P2) is also false. For it entails a thesis stronger than EP that I
will call ‘Strong Explanatory Purity’ (SEP). Let us say that an argument for a math-
ematical truth that uses only concepts that appear in the statement of that truth is
pure. Then SEP is the thesis that explanations of mathematical truths must be pure.
SEP is stronger than EP because not every mathematical proof of a mathematical
theorem is pure.10 It is compatible with EP that impure mathematical proofs are
explanatory; but SEP says they are not. I think that SEP is certainly not right.

There is a way of thinking about mathematical explanation that may validate
SEP. On this way of thinking, for every branch of mathematics there is an elite set
of propositions from that branch — the ‘fundamental’ propositions. And only a
proof that shows how a proposition is made true by the fundamental propositions
of the part of mathematics to which it belongs (or at least shows how it is made true

10Technically, SEP only entails EP in conjunction with the premise that mathe-
matical facts are conceptually independent of non-mathematical ones.

14



by propositions more fundamental than it) is an explanation of that proposition.11

Perhaps these proofs are all and only the pure proofs of that proposition.
But is this really how mathematical explanations work? This question has

two parts. First: is this really a way for a mathematical explanation to work? And
second: is this the only way? Let’s take the two parts in order.

Regarding the first part of the question. It takes only a passing familiarity
with the variety of ways a given part of mathematics can be axiomatized to come
to doubt that exactly one of those axiomatizations is getting the fundamental truths
right. (Are the fundamental topological propositions propositions about the be-
haviour of open sets or of closed sets?) The suspicion here is not that the best
axiomatization has yet to be written down; it is the suspicion that the idea that some
mathematical truths are fundamental is mistaken. And if there are no fundamen-
tal truths of topology then an explanation cannot show how any proposition about
topology is made true by them.

Still, I am partial to the idea that there are fundamental mathematical truths
and that proving P from the fundamental truths is a way to explain P. Is it the only
way? The answer to the analogous question about explanations of physical events

11The most well-known theory of mathematical explanation is perhaps Steiner’s.
He states his theory like this:

My proposal is that an explanatory proof makes reference to a char-
acterizing property of an entity or structure mentioned in the theorem,
such that from the proof it is evident that the result depends on the
property. (Steiner [1978], p. 143)

Does this theory entail SEP? That depends on what a characterizing property is.
Two of Steiner’s examples are: (i) the property of being a product of such-and-such
prime numbers is a characterizing property of a natural number; (ii) the property of
being decomposable into two triangles each similar to the whole is a characterizing
property of a right triangle. So the characterizing property of a natural number is
a number-theoretic property and the characterizing property of a right triangle is
a geometrical property. If all characterizing properties are like this then Steiner’s
view may entail SEP. Still, in his paper Steiner seems hostile to talk of essential
properties of mathematical objects. That hostility suggests to me that he would not
require that characterizing properties be expressible using only concepts used in the
statement of the theorem being proved.
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is clearly not true. Here are two answers to ‘Why is the stoplight red?’:

• Because it is emitting photons with frequencies near 450 THz.

• Because the car heading toward the light is speeding and the light is rigged to
turn red when people speed toward it.

The first answer is a ‘grounding’ explanation. It explains why the light is red by
citing the more fundamental facts in which its redness consists. The second answer
is not a grounding explanation. Instead it is a causal explanation. So here a physical
event has two explanations, one of which is not a grounding explanation, and the
explanations coexist without conflict. Why can’t mathematical propositions also
have non-grounding explanations? If they can, then even if all grounding explana-
tions of mathematical truths are pure, mathematical truths may also have impure
explanations.

Of course, an explanation of a mathematical proposition that is not a ground-
ing explanation cannot be a causal explanation. But it would be rash to assume
that since mathematical truths cannot have causal explanations they can have only
grounding explanations. Maybe there are yet other modes of explanation.

So far I have just been trying to undermine the appeal of SEP. Now for a
more direct line of attack. Here is a counterexample to the principle.12 If f is an
infinitely-differentiable real-valued function on the real line then it has an associated
power series f (0)+ f ′(0)x+ f ′(0)

2 x2+ . . .. This is the Taylor series for f . Obviously
f is equal to its Taylor series at x = 0. But how far out does this equality extend?

12Arana and Mancosu ([2012]) discuss another potential counterexample. Desar-
gues’ theorem says that if the lines through corresponding vertices of two triangles
(lying in the plane) meet in a point then the intersection points of lines along corre-
sponding sides lie on a single line (that is, if two triangles are in perspective from
a point then they are in perspective from a line). To prove this theorem one must
either use considerations from three-dimensional solid geometry or use metrical
considerations — yet the statement of the theorem makes no use of metrical no-
tions and is about plane figures. If any of these standard proofs are explanatory and
impure then they are also counterexamples. I prefer the example I give in the body
of this paper because I think it is easier to argue that that proof is impure.
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For every power series ∑cnxn there is some positive number R (possibly R =

∞) such that the series converges inside the interval (−R,R) and diverges when
|x|> R. So a function may fail to be equal to its Taylor series for large x because its
Taylor series is no longer defined (no longer converges). The explanation I want to
look at focuses on a particular example of this failure.

Let f be the infinitely-differentiable function on the real line defined by f (x)=
1

1+x2 . The Taylor series for f is

g(x) = 1− x2 + x4− x6 . . .

This series converges when |x|< 1 and does not converge when |x| ≥ 1. The func-
tion f , on the other hand, is perfectly well-defined for |x| ≥ 1. What we want
explained is: why does f fail to be equal to its Taylor series for |x| ≥ 1?

A contrast with another function makes this explanatory request more urgent.
The function h = 1

1−x2 has for its Taylor series the sum 1+x2+x4+ . . .. This series
also fails to converge for |x| ≥ 1, but here it is not surprising that h fails to equal its
Taylor series for |x| ≥ 1: the function h itself blows up to infinity at x =±1. Since
h is not well-behaved when |x|= 1, it is not surprising that its Taylor series cannot
be extended past those points. But nothing like this happens with f . The function
f is defined and well-behaved everywhere, including at |x|= 1. So what ‘prevents’
f from having a Taylor series that extends to larger values of |x|? That is what we
want to explain.

It is a commonplace in mathematics that we can only explain this if we use
facts from complex analysis.13

The explanation goes like this. Consider the function F(z) = 1
1+z2 , defined

on the complex plane. Just as in real analysis, in complex analysis for every power
series (in the variable z) there is an R > 0 such that the series converges for |z|< R

and diverges for |z| > R. That is, a complex power series converges everywhere
inside some circle and diverges outside the circle; R is the radius of this circle. The

13See for example (Needham [1997], pp. 64-5) and (Spivak [2008], pp. 516,
563). Long ago the mathematician Hadamard said ‘The shortest path between two
truths in the real domain often runs through the complex numbers’ (quoted in Wil-
son [2006], p. 314).
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theorem in complex analysis that has no counterpart in real analysis, the theorem
we are interested in, says that the radius R of this circle for the Taylor series of a
function h is equal to the distance from 0 to the nearest point at which h is undefined.

So to explain the relationship between f and its Taylor series we first apply
this theorem to F : the nearest point at which the function F is undefined is z = i,
so the radius of convergence for the Taylor series for F is 1; outside that radius
the Taylor series for F does not converge. It follows that this is true also for the
restrictions of F and G to the real line; f 6= g for |x|> 1.

What needed explanation was the fact that f ’s Taylor series stopped converg-
ing at ±1, even though f is well-behaved everywhere on the real line. We see now
that the reason the series stops converging there is that f , when regarded as a func-
tion on the complex plane, is not well-behaved everywhere; it blows up at i, a point
distance 1 from the origin.

This explanation is not pure.14 The original question was a question about the
behaviour of a real-valued function on the real line, and the answer looked at the
behaviour of another function, a complexed-valued function on the complex plane,
that happens to agree with the original function on the real line. And complex
analysis uses concepts (like the concept of an imaginary number) that are foreign
to real analysis. Of course real analysis is part of complex analysis. But it is only a
part, and the main theorem used in the explanation — that the radius of convergence
of a function’s Taylor series is the distance from the origin to the nearest singularity
— comes from the part of complex analysis that goes beyond real analysis. This
theorem cannot be ‘translated’ into statements of real analysis. Since the complex
analysis cannot be removed from the explanation it is playing a real explanatory
role. Strong Explanatory Purity is false.

One might respond to all this by looking for a principle weaker than SEP
that escapes this counterexample but still precludes physical facts from explaining
mathematical ones. Before looking at any weaker principles it is worth remem-
bering that SEP did not arrive out of thin air. It was motivated by the idea that

14Mathematicians (Spivak and Needham, cited above) and philosophers (Lange
[2010], p. 329 and Steiner [1978], pp. 18-9) agree that this example is explanatory.
Dawson ([2006], p. 280) agrees that it is impure.
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conceptual independence makes for explanatory irrelevance. This idea is not going
to motivate any weaker principle. So there is a worry that a weaker principle will
be ad hoc.

Some philosophers say that the complex numbers are the ‘natural setting’ for
investigating — and understanding — the behaviour of functions from R to R. One
might propose a cousin to SEP that uses this notion of a natural setting rather than
the notion of purity: an argument is explanatory only if it draws on ideas or premises
from the natural setting for the mathematical statement in question.15 This principle
does not look too ad hoc. And my counterexample to SEP is not a counterexample
to this principle. But physical facts do not seem to be part of the natural setting for
any mathematical truth.

I am not convinced. For one thing, I worry about how this notion of a natural
setting is to be understood. It may seem that what makes the complex numbers a
natural setting for investigating functions from R to R is that the complex numbers
contain the real numbers as a part. But I doubt that this definition will cover all uses
of the notion. Nor do I think it works for this case: the quaternions also contain the
real numbers as a part, and no one suggests that the quaternions are a natural setting
for investigating these functions.16 It seems to me that the most straightforward
reason for thinking that the complex numbers are the natural setting is this: it is only
from the perspective of complex analysis that the behaviour of certain functions
from R to R can be fully explained. This reason goes best with a definition of
‘natural setting’ in explanatory terms: the natural setting for investigating X just is

the body of fact which provides for explanations of X. But if this is the definition
then the cousin to SEP is of no dialectical use. It is begging the question to argue
that the law of conservation of energy does not belong to the natural setting for the
Pythagorean theorem.

15A referee pressed this response. Jamie Tappenden has discussed this notion
of a natural setting in, for example, (Tappenden [1995]). He explicitly connects
this notion to explanation, but does not there endorse any precise thesis about their
connection. See also (Wilson [2006], pp. 313-5).

16The complex numbers, like the real numbers, are a field, while the quaternions
are not. But then again the real numbers are an ordered field while the complex
numbers are not. There are similarities and differences in both cases.
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The cousin to SEP was offered as a thesis that avoided my counterexample to
SEP and could still be used to show that physical arguments do not explain. But my
case against SEP did not rest on that counterexample. Even if the cousin principle
can be stated so that it is not question-begging to use it, the first problem I discussed
for SEP is still a problem for it. It may be right that a grounding explanation of a
mathematical truth may draw only on facts from that truth’s natural setting. But I
see no reason to extend this restriction to non-grounding explanations.

Let me say a final thing about SEP. (Remarks similar to the following apply
to its cousin.) One thing that makes SEP appealing is that if true it would explain
why mathematicians continue to seek pure proofs of theorems that have already
been proved: they want an explanation, not just a proof.17 But there are a couple
of alternative theses about purity in mathematical explanation that are close to SEP
which, I think, might well be true and, if true, could also explain this fact about
mathematical practice.18 Perhaps those who find SEP appealing will be happy with
one of them instead. Here are the alternatives (one of which connects with what I
said earlier about grounding explanation):

• A pure proof of a theorem is more explanatory than any impure proof.

• The only grounding explanations of a theorem are pure proofs.

(These claims may be connected; one might think that the best explanations of
mathematical truths are grounding explanations.) If these claims are true then the
search for pure proofs is a search for more explanatory proofs, or for proofs that
explain in a distinctive kind of way. And those are certainly intelligible motives.
But these claims leave it open whether physical arguments can explain. They are
no threat to my thesis.

17Of course, there may be reasons for seeking pure proofs that have nothing to do
with explanation. Detlefsen and Arana ([2011]) argue that pure proofs better justify
their conclusions (in a sense of ‘justify’ that they describe). If they are right then
this is another reason to prefer pure proofs.

18I thank two anonymous referees for getting me to think about these alternatives.
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7 How Physical Arguments Might Explain, I

So far my arguments have been negative: I have tried to undermine some reasons
to doubt that physical arguments explain. But doubt that physical arguments can
explain will remain as long as we have no idea how they might go about doing it.
So now I want to look for some kind of ‘model’ of how physical arguments might
explain.

Let’s go back to the derivation of the Pythagorean theorem in the example.
What the calculation I went through establishes is this:

(1) Necessarily, if Euclidean geometry, Newtonian mechanics, and conservation
of energy are all true, and there is a prism filled with gas (and so on), then the
Pythagorean theorem is true.

But the conclusion we really want is this:

(5) Necessarily, if Euclidean geometry is true then the Pythagorean theorem is
true.

It is not, however, very hard to add premises that get us from (1) to (5). After doing
so the whole argument looks like this:

(1) Necessarily, if Euclidean geometry, Newtonian mechanics, and conservation
of energy are all true, and there is a prism filled with gas (and so on), then the
Pythagorean theorem is true.

(2) It is possible that Euclidean geometry, Newtonian mechanics, and the law of
conservation of energy all be true, and that there be a prism filled with gas
(and so on).

(3) Therefore, it is possible that Euclidean geometry and the Pythagorean theo-
rem be true.

(4) If it is possible that Euclidean geometry and the Pythagorean theorem be true
then necessarily, if Euclidean geometry is true then the Pythagorean theorem
is true.
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(5) Therefore, necessarily, if Euclidean geometry is true then the Pythagorean
theorem is true.

Earlier, in section 3, I raised the concern that all this argument really explains is
why the Pythagorean theorem is true when interpreted concretely. But (1) is true
whether we are interpreting (all) the relevant theories concretely or abstractly. And
I have said that even if (2) is (for some reason) false when interpreted concretely
it is certainly true when interpreted abstractly. Finally, the modalities in (4) are
intended to cover both kinds of interpretations (so its form is: if R is possible on
one kind of interpretation then S is necessary on both kinds of interpretation). The
conclusion (5), therefore, is about the Pythagorean theorem interpreted abstractly.

I think, however, that the structure of this argument is a poor guide to the
structure of the explanation the argument conveys. This is a familiar idea: although
Hempel ([1965]) claimed that explanations are arguments, many philosophers since
then have persuasively defended the claim that an explanation is, roughly speaking,
a body of fact about dependencies. An argument may contain a body of fact about
dependencies, but not all arguments do, and an argument is not the only way to
convey such a body of fact. A physical event, for example, may be explained by
information about its causes, and this information need not be packaged into an
argument.19

So what structure does the explanation of the Pythagorean theorem have? The
following is a bit speculative. My idea is that the explanation has two parts. I will
discuss the first part now and get to the second in a little while. The first part is a
counterfactual:

(E) If the Pythagorean theorem were not true in Euclidean geometry then, in the
prism situation, the net torque on the prism would not be zero, so the prism
would rotate.

(‘The prism situation’ includes not just the fact that there is a right-triangular prism
initially at rest, but also the fact that Euclidean geometry is true and the laws are the

19This point is prominent in (Lewis [1986b]) and (Woodward [2003]). Of course
all (deductive) arguments convey information about logical dependencies, but these
are not the kind relevant to explanation.
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laws of Newtonian mechanics and the law of conservation of energy.)
Why is this counterfactual true and a good thing to say? There is some pres-

sure to say that (E) is at best misleading. If the Pythagorean theorem were false
then the prism situation would be inconsistent. So why single out the torque on
the prism as the thing that would be different? In fact, shouldn’t we say that if the
Pythagorean theorem had been false then everything would have been true in the
prism situation? Newtonian mechanics would have been both true and false, the
prism both would and would not have been right-triangular, and so on.

There are two questions here. Why single out the torque, rather than some
other feature of the situation, as what would have been different? And why single
out any particular thing as what would have been different, rather than say that
everything would have been different (and also the same)? The second question is
easier. I deny that all counterfactuals with impossible antecedents are vacuously
true. It is, perhaps, impossible that I be a fried egg. But it is nevertheless false that
if I were a fried egg I would have one hundred legs.

I do not have a detailed theory of the workings of counterpossibles to give
in response to the first question.20 But this seems to be a relevant considera-
tion: in the derivation of the Pythagorean theorem (the defence of (1)) the quantity
that the Pythagorean theorem is most closely connected to is the net torque. The
Pythagorean theorem is deduced more or less immediately from the equation ex-
pressing the claim that the net torque is zero. I suspect that their proximity in the
derivation is one factor that makes (E) true (in a context in which that derivation is
salient, of course).

I have been arguing that (E) is true and interesting. But even if it is how can
it be part of an explanation of the Pythagorean theorem? Although it is generally
agreed that there is some connection between counterfactuals and explanation, (E)
looks like the wrong kind of counterfactual. Usually we explain X by citing factors

20Some philosophers hold that even if A is impossible we should still say that
‘If it had been that A it would have been that B’ is true if B is true at the nearest
A-world; we must just allow for impossible worlds in addition to possible worlds.
Then not all counterpossibles are vacuously true. This still leaves us with the task
of saying something informative about what makes one imposible world closer than
another. See for example (Nolan [1997]).
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on which X depends. But that is not what (E) does. It does not say: if such-
and-such had not obtained then the theorem would have been false (in Euclidean
geometry). Instead it tells us something about what depends on the theorem, namely
the behaviour of the prism.21

Can something be explained by citing factors that depend on it? There is
precedent for this idea. Teleological explanations (some of them anyway) work like
this. Why is this acorn sprouting this way? Because if it sprouted some other way it
would not be able to reach its end — to become a mighty oak. It is easy to see why
in some teleological explanations a fact or event is explained by saying something
about what depends on it. In a teleological explanation a behaviour is explained by
its end, its final cause. But the final cause is often an effect of that behaviour. And
effects depend on their causes.

Now maybe no teleological explanation like this is true.22 Maybe in fact no
teleological explanation like this could be true; maybe there is no way the world
could have been in which it is true. It does not follow from this that teleological
explanations exemplify a defective style of explanation.23 Maybe facts about what
depends on P can explain P (for some values of P); but the conditions under which
these kinds of facts get to be explanatory cannot be realized for plants.

I want to suggest that they can be realized for mathematical truths.

21The worry here is that (E) is the wrong kind of counterfactual because it has the
wrong kind of antecedent and consequent. There is another way a counterfactual
can be of the wrong kind for explanation: it might be true only in the wrong kind
of context. David Lewis ([1986a]) claimed that while counterfactuals like ‘If the
bomb had not gone off at 12, no one would have lit the fuse at 11’ are true in some
contexts, those contexts are not contexts in which there is a connection between
counterfactuals and causation, so we do not have to say that the explosion of the
bomb explains the lighting of the fuse. But I see no reason to suspect that (E) is true
only in the wrong kind of context.

22Some philosophers have attempted to show that some teleological explanations
are really just (efficient) causal explanations. On this view ends or final causes do
not play an irreducible explanatory role. By ‘true teleological explanation’ I mean
‘true, irreducible teleological explanation.’

23Hawthorne and Nolan ([2006]) try to describe what the laws would have to be
like for there to be teleological explanations of natural phenomena.
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But before I go on I should emphasize that teleological explanations are here
just an example of a style of explanation in which a fact is explained by citing
other facts that depend on it. I do not mean to say that the physical explanation
of the Pythagorean theorem is itself a teleological explanation. In a teleological
explanation something’s end plays an important role. The concept of an end plays
no role in the physical explanation of the Pythagorean theorem — though, as we
will see, there is something that does play a similar role.

Still, the analogy with teleological explanation is fruitful. Suppose that the
teleological explanation of the acorn’s sprouting is true (and irreducible). It seems
to explain the sprouting indirectly. It shows that the acorn has to sprout, if it is to
achieve its end. But it says nothing about the physical process that went on inside
the acorn and caused it to sprout that way. So the existence of this teleological
explanation is compatible with the existence of an ordinary (efficient) causal ex-
planation of the acorn’s sprouting. A causal explanation will explain the sprouting
more directly by saying something about that process.

The explanation of the Pythagorean theorem seems to be similar.24 It shows
that the Pythagorean theorem has to be true, if energy conservation is to be con-
sistent with Euclidean geometry, Newtonian mechanics, and the behaviour of the
prism. But it says nothing about the geometrical reasons why the Pythagorean the-

24Baker’s well-known example of an (alleged) mathematical explanation of a
physical phenomenon (Baker [2005]) also works by citing a factor that the event
being explained is a difference-maker for. Why do cicadas’ life-cycles have lengths
that, when measured in years, are prime numbers? Because if they did not the ci-
cadas would encounter predators more frequently. But I do not think this suggests
a deep similarity between mathematical explanations of physical phenomena and
physical explanations of mathematical phenomena. The quasi-teleological struc-
ture of the explanation Baker discusses is an instance of the form ‘organism X has
trait Y because that trait is the fittest.’ Explanations of this form do not need to
invoke mathematics. And, I think, the mathematics in Baker’s explanation does not
primary explain why cicadas have prime life-cycles. What explains that is the fit-
ness of those life-cycles. If the mathematics explains any physical fact (and whether
it does is in dispute — I myself do not think it does) it is the fact that life cycles
with prime lengths are the fittest. And the explanation of this fact does not have
a quasi-teleological structure. (Thanks to a referee for asking about this apparent
similarity between Baker’s example and the ones I discuss.)
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orem is true. A pure (geometrical) explanation will explain this more directly by
citing those geometrical reasons.

I am getting a little ahead of myself. I have said that the counterfactual (E)
is only part of the explanation of the Pythagorean theorem. All by itself it explains
nothing. What else is needed?

The analogy with teleological explanation suggests an answer. The counter-
factual ‘If the acorn had not sprouted like this, it would not have become a mighty
oak’ also explains nothing by itself. To get a teleological explanation we need to
add to this counterfactual the claim that becoming an oak is the acorn’s end. If there
is teleology in nature then a thing’s end acts as a constraint on how it may behave.
The acorn does not sprout in some other way because doing so would violate that
constraint. My hypothesis is that in the Pythagorean theorem example something
is acting as a constraint on the prism’s behaviour. And the Pythagorean theorem is
true because its being false would lead to behaviour (rotation) that would violate
that constraint. That constraint, I suggest, is the law of conservation of energy.

To flesh out and defend this idea I want to compare the physical argument
for the Pythagorean theorem with another physical argument that I think is not
explanatory.

8 How Physical Arguments Might Explain, II

Archimedes gave a derivation of the area under a parabola between x = 0 and x = 1
(the area of the shaded region in figure 4 — the curve is the graph of y = x2) that
used principles from mechanics.

Figure 4: The shaded region
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Imagine that the shaded region is a real physical thing, one with constant den-
sity. (If you find it difficult to imagine a real physical thing that is two-dimensional,
imagine it to be, say, 1 meter thick.) Now consider the triangle got by drawing a
diagonal across the unit square and imagine it too to be a real physical thing (again
with constant density). Let us compare the mass of these two things (show together
in figure 5).

Figure 5: The shaded region and the triangle

                                 

   

   

   

   

   

   

   

   

   

   

   

We will compare their mass using a lever (figure 6). The law of the lever says

• Bodies placed on opposite sides of the fulcrum (in a uniform-downward grav-
itational field) will balance just in case M1a = M2b, where M1 and M2 are the
bodies’ masses and a and b are the distances from the fulcrum to their centres
of mass.

Figure 6: A balance

Now divide the triangle and the region under the parabola into thin vertical segments
of width δ , where δ is very small. Consider the segment of the triangle and the
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segment of the parabola that sit above some point x on the horizontal axis (shown
blown-up in figure 7). The height of the short side of the segment of the triangle is

Figure 7: Segments of the triangle and shaded region over point x

x

x

d

x meters (in this derivation all distances are measured in meters) and so it’s mass
is approximately25 xδ kg (I am assuming that the density is 1 kg/m3). The height
of the short side of the segment of the parabola is x2 meters and so that segment’s
mass is approximately x2δ kg. By the law of the lever, then, if the segment of the
parabola is placed at a distance 1 from the fulcrum and the segment of the triangle
is placed at a distance x on the opposite side of the fulcrum they will balance. But
this is true for every segment. ‘Add’ these results and replace the segments of the
parabola piled on top of each other with a point mass (see figure 8); it follows that

• A point-mass with the same mass as the shaded region, placed at distance 1
from the fulcrum, balances the triangle placed with its tip is over the fulcrum.

The mass of the triangle is 1/2, and the effect of the triangle on its side of the
lever is identical to the effect of an equally massive point particle sitting below the
triangle’s centre of mass. Again using the law of the lever we see that

• (Mass of the shaded region) = 1
2 (horizontal distance from the fulcrum to the

triangle’s centre of mass).
25Really the mass is xδ +δ 2/2. But δ is small so δ 2 is extremely small and we

can neglect it. Similar remarks apply to the calculation of the mass of the segment
of the parabola.
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Figure 8: The point-mass balances the triangle

Now the triangle’s centre of mass is located above x = 2/3.26 So the mass of the
shaded region is 1/2× 2/3 = 1/3. Since its density is 1 kg/m3, the area of the
shaded region is 1/3 of a square meter.

This is a brilliant piece of reasoning that uses mechanical principles to derive
a result that usually requires calculus27 (which was unavailable to Archimedes).
But I do not think it explains why the area under the parabola is 1/3. Why not?
How is it different from the physical argument for the Pythagorean theorem? Here
is a stab at an answer.

Focus on the situation depicted in figure 8. We have a lever with a point-mass
on one side and a triangle on the other. And we know that the mass balances the
triangle. So far there are close parallels with the prism situation. We have a physical
set-up (a balance, a prism) and know enough about the laws and the set-up to know
how it will behave (it will balance, it will remain at rest).

The parallels continue: just as we have the counterfactual (E) about the prism
situation, we seem to have this counterfactual about the balance situation:

26The centre of mass of a triangle is the point at which its medians intersect (a
median is a line from a vertex to the midpoint of the opposite side). It is a standard
theorem of Euclidean geometry that this intersection point is 2/3 of the way along
a median from any vertex.

27Some calculus is still needed: the derivation needs to be supplemented with
an argument that the differences between the true areas of the segments and the
approximate areas used in the calculation go to zero sufficiently fast as δ → 0.
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(N) If the area of the shaded (parabolic) region were not 1/3, then (since the point-
mass has the same mass as that region) the point mass would not balance the
triangle.

Like (E) this counterfactual tells us something about what depends on the fact we
want explained: the fact that the area of the shaded region is 1/3.

It is here that there begin to be differences between the two examples. I
contend that there is nothing in the balance situation that ‘constrains’ the point-
mass to balance the triangle. But (N) can only explain why the area is 1/3 in the
presence of some such constraint (if, that is, Archimedes’ argument is to explain in
the same way that I think the argument for the Pythagorean theorem does).

Of course Archimedes did provide an argument that the point-mass balances
the triangle. The argument was that the segment of the shaded region over a point x

will balance the segment of the triangle over x if the segment of the shaded region
is moved to a point one meter away from the fulcrum (and opposite the triangle
segment). The point-mass then replaces the piled-up segments of shaded regions:
it is located in the same place and its mass is the sum of their masses. Why is this
not enough to constrain the point-mass to balance the triangle?

Because this argument does not ground the balancing independently of the
fact being explained. I said that in the style of explanation I think the Pythagorean
theorem example exhibits X is explained by the fact that the failure of X would
lead to something Y that violates some ‘constraint’. What I intend by this is that
Y is independently forbidden. For nothing can help explain itself;28 but X would
be doing just that if it played a part in forbidding Y. That is what is happening in
the Archimedean example. The argument that the point-mass balances the triangle
uses facts about the areas of segments of the shaded region. But those are just the
facts that are called into question when we consider what would be the case if the
area of the shaded region were not 1/3.

The fact that the prism will not rotate, by contrast, is grounded independently
of the fact being explained. It is grounded in the law of conservation of energy. And

28Except in very strange situations, like time travel scenarios containing causal
loops.
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this law is not immediately called into question when we consider what would be
the case if the Pythagorean theorem were false.

9 Conclusion

My claim has been that the physical argument for the Pythagorean theorem has
within it a structure that resembles the structure of teleological explanations. This
resemblance is the main positive reason I have to offer in favor of that argument’s
constituting an explanation. My description of that structure uses the notion of
a constraint, and of a fact being ‘independently grounded’. I recognize that these
notions could use further clarification and analysis, especially when they are applied
to necessary facts. But I have tried to give us some handle on them by using them to
describe the two contrasting examples. My hope is that I have made these notions
clear enough to tell whether my thesis is on the right track. If it is then there are
lots of interesting questions, about these notions, about explanation in mathematics,
and about explanation more generally, waiting up ahead.

Appendix A: Extracting an ‘Underlying’ Explanation

I said in section 4 that a physical argument might ‘hide’ a purely mathematical
explanation. Here is an example to illustrate this kind of phenomenon. It is not
an example in which a mathematical explanation is hiding in a physical argument.
Instead it is an example in which a purely algebraic proof (of an algebraic fact) is
hiding in a geometrical proof. That should be close enough to make the idea clear.

For any two positive real numbers a and b, (a+b)/2 is their arithmetic mean
(what we ordinarily call their average) and

√
ab is their geometric mean. The arith-

metic mean-geometrical mean (am-gm) inequality says that the geometric mean is
never greater than the arithmetic mean:

√
ab≤ a+b

2
. (1)

Here is a geometrical proof of the inequality, a proof that looks explanatory.
To start we need a geometrical representation of the arithmetic mean. Inter-
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Figure 9:

X YW
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O

U

pret a and b to be the lengths of two line segments. Then lay those line segments
end to end along the diameter XY of a circle, as in figure 9. Since a+b is the length
of the diameter, the arithmetic mean (a+ b)/2 is the length of the circle’s radius,
and so is the length of OU .

Figure 10:

X Y
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W
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O

We also need a geometrical representation of the geometrical mean. It may
be seen in figure 10. Erect a perpendicular at W and consider the right triangle that
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has XY as its hypotenuse and its right-angled vertex Z on that perpendicular. Then
triangles XWZ and ZWY are both similar to XZY and hence to each other. Thus
the ratios of lengths of corresponding sides are the same: XW/WZ =WZ/YW . So
(WZ)2 = (XW )(YW ) = ab. Conclusion: the length of segment WZ is

√
ab, the

geometrical mean.
To complete the proof of the am-gm inequality just note that Z lies on the

circle from figure 9 (see figure 11). (A standard theorem of Euclidean geometry
says that this is true for any right triangle that has XY as its hypotenuse.) Since WZ

is clearly no longer than OU (and is shorter iff a 6= b),
√

ab≤ (a+b)/2.

Figure 11:
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This proof is explanatory. And it uses geometry to prove an algebraic state-
ment. But one might say that the geometry is not itself doing any of the explaining,
and try to back up this claim by translating the proof into a purely algebraic proof.
If the proof loses no explanatory power in translation that is good evidence that the
geometrical facts are not doing any explaining.

Here’s one translation. Consider the function f (x) =
√

(a+b
2 )2− x2, defined

on the interval (−a+b
2 , a+b

2 ). (The graph of f is a semi-circle centred at the origin
with radius (a+ b)/2.) It is easy to see (even without picturing the graph of f )
that f has a single maximum, at x = 0; there its value is f (0) = (a+ b)/2. But
f ((a−b)/2) =

√
ab, so

√
ab≤ (a+b)/2 with equality if a = b.
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If one thought that this algebraic proof was also explanatory then one could
maintain that the real explainers in the geometrical proof are certain algebraic facts.
One could say that the geometry is there just to make it easier for us to grasp those
algebraic facts and to make it easier for us to see which algebraic statements imply
which others. The one proof uses a circle, the other a function whose graph is
(half of) that circle. In some contexts a function is easier to grasp by looking at its
graph than by looking at an algebraic definition. Maybe that is all that is going on
here. (I myself am not sure whether the algebraic proof is, considered on its own,
explanatory.)

Appendix B: Another Example of an Explanatory Physical Argument

Inside every ellipse are two points F and G, the foci, with the property that for
any point P on the ellipse the sum of the lengths of the segments FP and GP is
the same. Now ellipses have the following interesting property: for any point P

on the ellipse, the angle that FP makes with the tangent at P is equal to the angle
GP makes with the tangent at P (see figure 12). This is the ‘reflective’ property
of ellipses. (Light reflects from mirrors so that the angle of incidence is equal to
the angle of reflection. So If you and I stand at the two foci of an ellipse made
of mirrors and I aim a flashlight in any direction (in the plane of the ellipse), the
light will (after one reflection) shine on you.) Why do ellipses have this reflective
property?

Here is an argument that relies on physical principles. Hammer two nails
straight into a piece of wood and tie a string of length l between them. Orient the
wood so that the nails lie in the horizontal plane. Put a frictionless pulley on the
string and hang a mass from the pulley. If we keep the string taut while moving the
pulley the pulley will trace out an ellipse. The lowest point on that ellipse is the
point where the pulley will hang at rest (see figure 13). (The pulley can be made
to rest on any point of the ellipse just by rotating the board so that that point is the
lowest point of the ellipse.) The tangent to the point P where the pulley rests is the
horizontal line through P.

Since the pulley is at rest the net force on it is zero. The two string segments
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Figure 12: Reflective property of the ellipse.
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Figure 13: Diagram for the mechanical argument

a b
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pull on the pulley with forces of the same magnitude T . (The magnitudes must be
the same: otherwise, since the pulley is frictionless, it would spin until they were
equal.) The horizontal components of these forces are the only horizontal forces
acting on the pulley. So they must be equal in magnitude. That is, T cosa = T cosb,
where a and b are the angles the string segments make with the horizontal. Since
both angles must be less than 180◦, it follows that a = b, which is what was to be
shown.

Levi ([2009], p. 30) contrasts this physical argument with a purely math-
ematical proof that requires ‘finger-breaking calculation.’ He says that ‘little un-
derstanding would be gained’ by performing the calculation but the physical argu-
ment shows ‘what’s going on.’ I agree: this argument, like the argument for the
Pythagorean theorem, is explanatory.29 And I think the explanations have the same
kind of structure. We have a counterfactual: if ellipses did not have the reflective
property then the pulley would not hang at rest. And the fact that the pulley does
hang at rest is independently grounded, in the physical laws true of the situation.
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77 Massachusetts Ave., 32-D808
Cambridge, MA 02139 USA
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