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The Topological Realization 
 

Abstract  

In this paper, I argue that the newly developed network approach in neuroscience 
and biology provides a basis for formulating a unique type of realization, which I call 
topological realization. Some of its features and its relation to one of the dominant para-
digms of realization and explanation in sciences, i.e. the mechanistic one, are already 
being discussed in the literature. But the detailed features of topological realization, its 
explanatory power and its relation to another prominent view of realization, namely the 
semantic one, have not yet been discussed. I argue that topological realization is distinct 
from mechanistic and semantic ones because the realization base in this framework is not 
based on local realisers, regardless of the scale (because the local vs global distinction 
can be applied at any scale) but on global realizers. In mechanistic approach, the realiza-
tion base is always at the local level, in both ontic (Craver 2007, 2013) and representa-
tional accounts (Bechtel and Richardson 2010). The explanatory power of realization 
relation in mechanistic approach comes directly from the realization relation-either by 
showing how a model is mapped onto a mechanism, or by describing some ontic rela-
tions that are explanatory in themselves. Similarly, the semantic approach requires that 
concepts at different scales logically satisfy microphysical descriptions, which are at the 
local level. In topological framework the realization base can be found at different 
scales, but whatever the scale the realization base is global, within that scale, and not 
local. Furthermore, topological realization enables us to answer the “why” questions, 
which according to Polger (2010) make it explanatory. The explanatoriness of topologi-
cal realization stems from understanding mathematical consequences of different topolo-
gies, not from the mere fact that a system realizes them.   

1. Introduction 

The last two decades in neuroscience and biology we have witnessed a very rapid 
development and overwhelming spread of a network analysis. Network analysis is used 
to explain behaviours and properties of a variety of systems. Those systems are called 
real networks (Newman 2010). Such real networks are for example brains, the World 
Wide Web, the Internet, transportation systems, social groups and many others. In net-
work analysis elements of a system are represented as nodes or vertices of a network and 
their interactions or connections are represented as edges or links. A network is defined 
simply as a set of nodes (vertices) linked by connections (edges) (Barabasi 2002; Bull-
more and Sporns 2009; Newman 2010; Sporns 2012; Fortunato 2010).  

A classical example of topological explanation is the Watts and Strogatz (1998) 
small-world graph model. This model was built in such a way that starting from a ring 
lattice it has n vertices and k edges. The structural properties of such a graph are quanti-
fied by using its characteristic path length, which measures a typical separation between 
two nodes in the graph, which is expressed as L(p), and the clustering coefficient C(p), 
which measures the cliquishness of a typical neighbourhood of nodes. The small-world 
networks are characterized by low L(p) values, due to a few long-range links, together 
with a high C (p). Such ‘short-paths’ connect nodes that would otherwise be much far-
ther apart and in effect would shorten the path lengths between the whole neighbour-
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hoods, and neighbourhoods of neighbourhoods. For example, an explanation of why in-
fectious disease will spread more rapidly through a population which instantiates a 
small-world topology, refers to these structural features: pathogens can reach a greater 
number of nodes more rapidly if the L(p) is low and the C(p) is high. More specifically, 
the small-world topology tells us what portion of the population will be infected or, in 
the case when the pathogen is so infectious that it affects the whole population regardless 
of its structure, the small-world topology tells us that the time in which it is done is a 
function of L(p) and C(p), i.e. the lower the L(p) and the higher the C(p), the faster it 
would spread. Or, as Watts and Strogatz put it: “…(small-world topological) model illu-
minates the dynamics as an explicit function of structure…” (Watts and Strogatz 1998, 
442). This pattern of explanation will work for many types of real systems and for a va-
riety of different explananda. For example, it will explain computational or metabolic 
economy: in small-world networks the energy required to send a signal across network is 
lower because small-world topology enables the signal to be transmitted much more effi-
ciently because it connects distant groups of nodes as if they were in the same group. It is 
also used to explain synchronicity, stability, robustness, resilience and many others. The 
small-world topology is just one such graph-theoretical example. 

In topological explanation, the explanatory relation (the relation between the ex-
planans and explanandum) stands between a physical fact or a property and a topological 
property. In the Watts and Strogatz (1998) example, we have seen that the explanation of 
the physical fact is a function of the system topology, i.e. in this example, small-world 
topology shortens the path lengths between the whole neighbourhoods, and neighbour-
hoods of neighbourhoods and in that way the infectious disease can spread much more 
rapidly.  

The topological approach should be sharply distinguished from the neural nets 
approach from the ’80 that is most famously represented in the Connectionism (McClel-
land 1988). Neural nets are used to study behaviours of systems, in economics, decision 
theory, AI, cognitive science and philosophy of mind. This approach is by and large 
mechanistic and functionalist in nature because it postulates networks as elements of a 
mechanism, each network is a unit, and they may be arranged and connected in different 
ways that produces different outcomes. The neural nets approach doesn’t study the fea-
tures of connectedness within the networks, but rather their causal and functional ar-
rangements that can give different outcomes. Whereas in topological approach a descrip-
tion of network properties and certain consequences of topology is what is doing the ex-
planatory work.  

When it comes to the research on brain, its functions and capacities a systematic 
discussion of the features of topological explanations in philosophy of neuroscience is 
lacking so far. Furthermore, even though the discussions on the distinctness of topologi-
cal explanations in relation to mechanisms is developing rapidly, its relation to one of the 
very popular approaches in the debates on metaphysics of realization and explanations, 
namely the semantic one (Endiccott 2005), still has not been discussed in the literature.  

My aim in this paper is to further discuss explanatory features of topological ap-
proach in terms of realization relation and its key distinctions, especially in cognitive 
neuroscience, and the relation between topological and semantic realizations as another 
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pervasive explanatory strategy in philosophy. This will allow for a much more compre-
hensive and fine grained understanding of the topological approach. In order to do so, in 
the next section I discuss in detail how this approach is used in cognitive neuroscience. I 
will first introduce some basic topological notions in neuroscience and then present a 
case of the brain controllability.  

2. The topological approach in cognitive neuroscience 

  
 2.1. Basics of topological approach in cognitive neuroscience 
 
 Although philosophical discussions about this approach have already started (Hun-
eman 2010, 2015; Craver 2016; Bechtel and Levy 2013; Silberstein and Chemero 2013; 
Woodward 2013) many of its aspects still require more philosophical foundation. The 
first contribution to this debate is Huneman’s (2010) paper on topological explanations 
in biology in which he introduced this approach as distinct from mechanisms. His dis-
cussion draws on research in evolutionary biology and ecology. He has shown not only 
that topological explanations are ubiquitous in the sciences but also that they are differ-
ent from mechanisms in a number of ways, most notably in that they don’t use heuristics 
such as decomposition and localization, and they don’t describe a mechanism in the ex-
planans. They explain by identifying a topological property and its consequences. Fur-
thermore, he argues that sometimes even the explanandum of topological explanation is 
different from mechanistic ones. It is typically some trait or the outcome of a system that 
is explained, but not an activity, which is a typical explanandum in the mechanistic 
framework. Much of these claims are true not only in ecology and evolutionary biology 
but in cognitive neuroscience as well. However, topological explanations can be used to 
understand even dynamics in some cases. For example, in cognitive neuroscience, they 
use network control theory to understand how structural features of the brain networks 
determine features of its cognitive dynamics (Gu et al 2015). On this approach, various 
brain states are represented as nodes, “a state is defined as the magnitude of neurophys-
iological activity across brain regions at a single time point.” (Gu et al 2015, p. 2)1. The 
idea is to find out the topological constraints on the brain network dynamics (e.g. cogni-
tive control) and thereby answer whether the brain is topologically controllable and to 
what extent. This example will show that in some cases even the explanandum of topo-
logical explanation can be the same as in mechanistic one, i.e. the system dynamics. 
However, before a detailed discussion of this example, some preliminary clarifications 
and introductory notes are required so that the example and the argument would be easier 
to follow.  
 It is very important to note that although networks are by definition structures that 
are static and have no moving parts or dynamics, they sometimes can still explain tem-
poral dynamics or dynamics in general as a function of topological structure. In those 
cases, the system’s topology allows us to understand the system dynamics as a function 
of its structure. The system’s dynamics here appears as a consequence of the system’s 
topology through which some activity drives the system towards diverse states, and the 
brain controllability case exemplifies this idea. 
                                                
1 The nodes in this case are the states, not what is in a state.  
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Topological properties can be realized at different scales even in the same sys-
tem. For example, the brain can be represented as a network of brain regions (macro-
scale), the network of “voxels” (meso-scale), which are three-dimensional units of the 
data sets obtained through various neuroimaging techniques. Voxel is commonly used to 
describe the resolution of a CT or MRI scan of the brain. The smaller the voxel, the 
higher the resolution scan. Or as in the Connectome project, the network of all neurons 
and their connections (micro-scale) (Sporns 2012; Seung 2012). The key here is to un-
derstand that the realisation is not based on local realisers, which may be different at 
different scales. The realization base is at the global level of network topology. So it’s 
not really the case that the micro-structure determines the realized properties, it’s rather 
the global topology of the system. For example, at different scales the brain networks 
represent different elements and their connections, i.e. at the micro-scale they might rep-
resent molecules and their interactions, or neurons (cellular scale) and the anatomical 
connections among them, whereas at the macro-scale a network may represent brain re-
gions and their inter-connections. However, a property of stability or robustness, or even 
a function (e.g. infectiousness in Watts and Strogatz’s example) are realized by the glob-
al network topology at a given scale, and not by the local elements that are found at a 
given scale. 

This in effect means that if we understand that certain functions are results of par-
ticular network topology we can also infer required anatomical features from that topol-
ogy, we can infer from it even the number of neurons or the number of edges (connec-
tions) (Alexander-Bloch et al 2012; Bressler 1995; Honey et al 2010; Hutchison et al 
2013; Ponten et al 2010; Sporns, Honey and Kötter 2007). But as opposed to mechanistic 
and semantic approaches the topological properties that are the realization base are not 
defined at the local level, as we have seen in the example of small-world topology and 
the spread of infectious disease in the Watts and Strogatz (1998) model: the topology 
that realizes the faster spread stands at the global level.    

The best way to understand these claims is to first give a general introduction of 
topological approach in neuroscience and then to focus in detail on one example that 
illustrates these claims.  

In network neuroscience the brain is represented as a system of interacting net-
works at different scales (Bassett and Bullmore 2009; Bassett and Siebenhühner 2013; 
Sporns 2010, 2012; Seung, 2012). At the micro-scale individual neurons are connected 
to one another through synapses and they form networks in which information flows as 
electrical impulses which are called action potentials (Bassett and Muldoon 2016, p. 1). 
In such networks the individual neurons are represented as nodes and their connections 
as edges. At a larger scale, the synchronous activity of groups of neurons produces oscil-
latory signals and in that way form brain regions that are connected by bundles of axons 
(extended parts of neural cells through which a neuron establishes connections with other 
neurons) which are called white matter tracts. On this view, the brain is organized into 
both structural and functional networks (Bullmore and Basset, 2006). Structural net-
works are constructed from actual physical connections between individual neurons or 
brain regions, whereas functional networks are “constructed from functional connections 
that quantify statistical similarities in activity” (Bassett and Muldoon 2016, p. 2). Of 
course, structural and functional networks are deeply intertwined (Sporns 2013) and so 
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can be changed by modulating cognitive states, disease or injury (Basset and Bullmore, 
2009). In representing the brain as networks, the choice of nodes and edges depends on 
the type of data, e.g. if one uses EEG data then nodes may represent surface sensors, or 
for fMRI data nodes can represent single voxels or aggregates of voxels that in effect 
represent anatomical or functional areas in the brain (Achard et al. 2006; Power et al. 
2011). Choosing the edges also relies on the type of data and thus the edges can be rough 
edges, or depending on the strength of a connection can be weighted, i.e. weight repre-
sents the number of tracts connecting a node. Brain networks, especially the functional 
networks, can also be directed or undirected, i.e. in directed networks the connection 
from A to B is stronger whereas a connection from B to A is weaker. In undirected net-
works the connection between A to B and vice versa the strength of the connection is 
equal.   

2.2. Brain controllability: the topological constraints on the cognitive dy-
namics 

 Topology plays a central role in understanding cognitive dynamics of the brain. It 
also embodies the Watts and Strogatz motto that the dynamics is the function of the 
structure, i.e. it helps us understand how the topology enables that some activity drives 
the system to diverse states. The topological approach in network neuroscience is able to 
catch the dynamics by using network control theory (Gu et al 2015). In network control 
theory various systems (that have components that are interconnected) are represented as 
graphs which consist of vertex and edge sets. The network control theory is used to an-
swer questions such as “how to control such an interconnected and complex system”? To 
this effect the notion of cognitive control is analogous to a mathematical notion of con-
trol used in engineering and mathematics (Blondel et al. 2012; Leith et al. 2000; 
Pasqualetti et al. 2014). The control in this context means to perturb the system in order 
to reach a desired state.  To be clear, there are two notions of controllability here. One is 
the notion of cognitive control, which should be understood as the system function or its 
dynamics, that can be embodied in changes in regional activity that is a result of neu-
rofeedback in real-time fMRI, or elicited by external stimuli, or changes in regional ac-
tivity provoked by non-invasive brain stimulation. The other sense of control here that 
we want to understand is a mathematical notion of network controllability, that in vari-
ous ways constrains the types of control that can be exerted on the distributed brain net-
works, and to that effect it is used to understand brain’s cognitive control. It is however, 
crucial to distinguish these two senses of control in this context, and to understand that 
one is called the network controllability, and it’s a highly mathematical notion, and the 
other is called the brain controllability and it’s about various functions, dynamics or the 
brain activities. Gu and colleagues say it explicitly in the following passage: 

“Importantly, this notion of control is based on a very detailed mathematical construct 
and is therefore necessarily quite distinct from the cognitive neuroscientist’s common 
notion of ‘cognitive control’ and the distributed sets of brain regions implicated in its 
performance. To minimize obfuscation, we henceforth refer to these two notions as 
‘network control’ and ‘cognitive control’, respectively.” (Gu et al 2015, p. 8)  

To answer such questions we must know what is a network connectivity of the 
interconnected components and also how the components act, which taken together pro-
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vide predictors about the system function (Gu et al, 2016: 8). This allows to answer 
questions about system’s dynamics and to have predictions about its functions. The dif-
ference between network control theory and the more traditional graph theory is that 
network control theory provides predictors about network dynamics, whereas traditional 
graph theory offers descriptive statistics of network structure.  

In this view, some brain activity has a trajectory, which represents dynamics as a 
path in the state space of the brain, “…where a state is defined as the magnitude of neu-
rophysiological activity across brain regions at a single time point.” (Gu et al, p. 2). 

 In this way the topology, enables some cognitive functions by connecting nodes to 
some difficult to reach nodes and in that way enables the brain to move into difficult to 
reach states, for example moving the brain from a resting state into the state of doing a 
mathematical calculation. The same principle applies in inhibiting inappropriate behav-
ioural responses or linking multiple sources of information to solve problems.  Gu and 
colleagues use the mathematical notion of control in which the topological structure pre-
disposes certain elements of the structure to specific control actions (Gu et al 2015, 2).  

 Based on network control theory, we can “quantitatively examine how the network 
structure constrains the types of control that nodes can exert” (Gu et al, 2016: 8). In such 
a graph the edges have weights (some numerical value that represents the strength of 
connections) out of which we define a weighted adjacency matrix. In such a graph a real 
value is associated with each node (given that nodes represent brain states that are de-
fined as magnitudes of neurophysiological activity) and the nodes are collected into a 
vector of network states. Thereafter we define a map to describe an evolution of a net-
work state over time, thus describing the network dynamics.  Based on the network 
structure and its dynamics we can understand ways in which network structure constrains 
the types of control that nodes might have.  

 Like in Watts and Strogatz (1998), the idea here is to understand “…how struc-
tural features of a brain network determine temporal features of cognitive dynamics” (Gu 
et al 2015, 2). More specifically, Gu and colleagues addressed two questions: 1) is the 
brain topologically controllable, i.e. is it possible to manipulate the properties of its to-
pology through which some activity drives the system to diverse states in the brain; and 
2) if it is, which nodes in the brain network topology are most influential in driving the 
changes in trajectories of brain states merely by their position in network topology (Gu et 
al 2015, 2).  

They used data from the diffusion spectrum imaging (DSI) to build structural 
brain networks (Gu et al 2015, 3) and to answer these questions they used measures of 
average controllability, modal controllability and boundary controllability (Gu et al 
2015, 9).  

The measure of average controllability quantifies a node’s impact in moving the 
system in many easily reachable states. The average controllability measure shows that 
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the easy to reach states are facilitated by the “rich club” topology2, in which the hubs 
(nodes that maintain much higher number of edges statistically compared to normal 
nodes) facilitate controllability of easy to reach states. This is expected because the rich 
club topology is characteristic of densely connected areas, which then facilitate the 
movement of the brain to many easily reachable states, e.g. from one resting state to an-
other resting state. The “rich club” topology is mathematically characterized by the pres-
ence of hubs that are densely interconnected among each other. Thus it is not surprizing 
that areas that are involved in the easy to reach states have hubs that are well connected 
among each other. The high connectivity between the hubs is actually why the brain 
states are easy to reach. The brain areas with highest measure of average controllability 
are: precuneus, posterior cingulate, posterior frontal, paracentral, precentral and subcor-
tical  structures. These regions seem to be hubs, i.e. they have high network degrees 
(which is actually defined as average weight of edges that go out of a region in question). 

 Modal controllability measures node’s ability to control each evolutionary mode of 
a dynamical network, and it is used to identify states that are not so easily controllable 
from a set of control nodes. It helps us find areas in the brain that can drive it to difficult 
to reach states.  In this sense, to control means to be able to reach target states whatever 
the actual activity is in question. The measures showed that the modal controllability is 
highest in postcentral, supramarginal, inferior parietal, pars orbitals, medial orbitofrontal 
and rostral middle frontal cortices (Gu et al, 3). The measure of modal controllability has 
shown that areas with high modal controllability have a low degree of connectivity i.e. 
they do not have very many links or edges, which means that they don’t include hubs. 
This indicates that “difficult-to-reach states require the control of sparsely connected 
areas” (Gu et al 2015, 3). That is to say moving the brain from a resting state into a state 
of doing some mathematical calculation or retrieving information from memory requires 
engagement of sparsely interconnected brain regions that are normally not reachable 
from densely connected areas.  

Boundary controllability is used to measure ability of a set of nodes to decouple 
trajectories of disjoint brain regions, which means that it identifies brain areas that can 
steer the system into states where different cognitive systems are either coupled or de-
coupled. Boundary controllability is computed from a robust partition of a brain network  
by identifying a set of boundary nodes. The boundary nodes are then assigned controlla-
bility values until all nodes have a boundary controllability value.  

Average, modal and boundary controllability are used jointly to provide a scalar 
value for each brain region, and this is further used to answer if the brain is controllable 
and to what degree. The answer to these questions is actually based on understanding the 
constraints that the topology exerts on types of control, in our case it is the cognitive 
control.   

 In all controllability measures, i.e. in case of average controllability where the con-
trol is facilitated by a rich-club topology and in the case of modal controllability which is 
facilitated by sparsely connected areas, the way in which topology facilitates control is 
                                                
2 The rich-club organization is characterized by the fact that network hubs are densely interconnected to 
one another. 
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that it tells us what are the mathematical constraints of the topological structure, through 
which some activity drives the system to diverse states in the brain. 

In this example, even though the network is constructed from anatomical struc-
tures in the brain, i.e. from brain regions and their connections the explanation of brain’s 
controllability only tracked different topological properties, but not the anatomical struc-
tures. Different scales at which we decide to construct a network from the same anatomi-
cal structure give us different topologies and the topological explanation only tracks top-
ological dependencies in the model, not the ontic anatomical dependencies.  

 Having discussed the basics of topological approach, and one of its most prominent 
features that the realization base is not tied to the local level, in the next section I turn to 
discussing the features of topological realization. I will first give a definition of the topo-
logical realization and then discuss where it stands regarding some of the key distinc-
tions about realization relation in the literature.  

 

3. Topological realization 

In this paper I argue that there is a distinctly new type of realization, which I call 
topological realization, because the realizers in this framework are topological properties 
at different scales. Topological properties are actually properties of connectedness in 
various systems that remain invariant under continuous transformations. For example, 
the stability of an ecological community can sometimes be explained as a consequence 
of the network of predation relations having a scale-free topology. This means that the 
interactions among species in a community, or at least the predation relations, instantiate 
scale-free topology, which enables the ecological community to remain stable regardless 
of the introduction or extinction of some species in it (Huneman 2010). The notion of 
stability is tightly connected to the notion of invariance in this case, i.e. mathematically 
speaking: the more invariance, the more stability.  

An example in which the explanandum is not so directly tied to some topological 
notion such as invariance is an explanation of synchronicity of fireflies flashing or neu-
ronal firing (Buchanan 2003; Mirollo and Strogatz 1990; Strogatz 2003). Small-world 
topology embedded in the network of their communication enables groups as well as 
distant and sparsely connected nodes (i.e. fireflies or neurons/brain regions, depending 
on the system) to interact as if they were the first neighbours. In this way the signal 
(flashing of the fireflies or synaptic connections) can traverse globally across the entire 
network in a way as it would have traversed locally. This further enables even the most 
distant individuals in the network to communicate as if they were first neighbours and 
thus to establish and maintain synchronicity (Buchanan 2003, p. 47; Strogatz 2003, pp. 
11-40; Watts and Strogatz 1998).   

The topological realization can be formulated as follows:  

(TR): The realization relation stands between a topology T and a system S, such 
that the system S realizes topology T when the elements of S are interconnected in ways 
that display the pattern of connectivity characteristic of T.  



 

9	

Elements in this definition can refer to some spatial objects (such as single neu-
rons, species or brain regions) in spatially embedded networks, but as it is more often the 
case, it refers to some abstract representation of data, e.g. the voxels or brain states that 
are defined as magnitudes of neurophysiological activity or even points in a state space.  

It’s important to understand that as opposed to mechanistic approach, wherein the 
realization relation itself is explanatory, e.g. the mapping a model onto a mechanism or 
showing how the mechanism is embedded into a causal structure, in topological explana-
tion realization relation is not explanatory in itself. In the topological explanation the 
explanatory relation stands between the topology and its mathematical consequences. 
Think for example of Watts and Strogatz (1998) model where the explanation of the 
speed and spread of infectious disease is not due to a fact that a population instantiates a 
small-world topology, but it is due the fact that in small-world topologies the fewer long 
range connections and high clustering enable distant neighbourhoods of nodes to be con-
nected as if they were the first neighbours. This feature is a mathematical consequence of 
topology, not a fact about realization.  

I argue that topological realization provides a unique perspective for understand-
ing the recently developed way of doing science.  My argument is based on the distinc-
tion between local and global realizers, i.e. that the realization base on this view is at the 
global level of system’s topology, and not at the local level of micro-scale descriptions 
of functional or causal roles, which is prominent in the metaphysics of semantic realiza-
tion where the realization relation is explanatory only when the realized properties can 
satisfy some set of microphysical descriptions, e.g. watery properties are realized by sat-
isfying a microphysical description H2O (Levine 2001, Chalmers 2010). And it is not a 
matter of finding and describing a mechanism and then embedding it into the causal 
structure also at the micro-scale like in the mechanist approach (MDC 2000; Craver 
2007, 2013) where the explanation is based on the model-mechanism-mapping explana-
tory constraint where variables in a model correspond to components, activities or organ-
izational features of the target mechanism and the dependencies between variables “in 
the model correspond to causal relations among the components of the target mecha-
nism” (Kaplan 2011: 347). In topological realization, the same topology can be realized 
at different scales depending on the choice of what nodes and edges stand for. For exam-
ple, at the macro-scale the brain can be represented as a network of interacting brain re-
gions, or at the meso-scale, the network of voxels, and finally at the micro-scale each 
individual neuron can be represented as a node and each synaptic and dendritic connec-
tion as an edge (which is the leading idea in the Connectome project). However, in topo-
logical realization the realization base stands at the global level. Even though it is true 
that the local relations in a system in a seemingly obvious sense determine or fix the to-
pology (because the nodes and edges represent some things in the world), the topological 
realization is not tied to local levels whatever the scale. It is not the neurons, brain re-
gions, or species in an ecological community, which are particular to any of these diverse 
systems or scales, that realize topology. Topology is realized at the global level of pat-
terns of connectivity. 

After having laid out the fundamentals of topological realization in this section I 
turn now to discussing its explanatory power in the next section 4. In section 5 and lay 
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out in detail the relation between the topological and semantic realizations, and finally in 
section 6 I discuss the multiple realizability in the topological framework.  

4. Explanatory role of topological realization 

4.1. Taxonomies of realization relation  

In topological approach an explanation is a function of topology, according to 
which an explanatory relation stands between some behaviour, function, or dynamics, 
e.g. robustness, stability, synchronicity, controllability, and topological properties. The 
realization relation in topological framework is not explanatory in itself, i.e. the fact that 
a system instantiates certain topology doesn’t explain anything. The explanation here is 
based on the understanding of mathematical consequences of topologies, not on the fact 
that the topology is realized.  The fact that various systems have equivalent topologies, 
and that the explanatory relation between these topological properties and various ex-
plananda are equivalent across various systems tell us that topologies are multiply real-
ized, and furthermore that their multiple realizability can be understood as equivalence 
between different classes of topologies, and not as equivalence between local elements in 
each of these systems. Since the topological explanation explains by describing a topo-
logical property and its consequences, explanatory power of topological realization 
stems from topology that is realized in the system. The explanation doesn’t track the 
objective dependencies that vary across system (e.g. nodes may represent different things 
even in the same system as we have seen in the case of brain), but it only tracks the topo-
logical properties and their mathematical consequences (e.g. the more invariance the 
more stability, or the higher the small-worldness the more efficient computational econ-
omy, or faster the spread of infectious disease).  There can be indeed many different 
types of topological explananda. In this case, once we understand what stability or ro-
bustness mathematically mean we also understand that they are mathematically depend-
ent on the notion of invariance. But in cases where the explanandum is a physical fact, 
such as for example controllability of the brain (e.g. it’s ability to retrieve information 
from memory), where the mathematical dependence between the topology and the physi-
cal fact is not immediately obvious, we also don’t need any additional or extra-
topological devices, it does suffice to understand that certain topologies constrain types 
of control that nodes may have in a network.   

To better understand what topological realization brings to the table it is im-
portant to make several distinctions that would situate topological realization within the 
various accounts of realisation that have been proposed in the literature.  
 There are several, somewhat overlapping, taxonomies of the realization relations. 
For example, Endicott (2005) argues that there are three basic views of realization: a 
mathematical, wherein realization is thought of as a form of mapping between objects or 
domains; a logico-semantic in which properties are realized if realized properties can be 
interpreted to satisfy some predicates or conditions relevant for the realizing properties; 
and finally the most common view of realization holds that realizing properties deter-
mine the realized properties in a metaphysical way. On the other hand Carl Gillett (2010) 
distinguishes between M, L and A realizations. M realization could roughly be under-
stood as a metaphysical and mechanistic view but it has at least three varieties (subset, 
flat and dimensioned). Linguistic or L-realization is a version of logico-semantic realiza-
tion. But most importantly there is the A realization which can be thought of as an ab-
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stract mathematical realization. Due to its abstract and mathematical features topological 
realization seems to belong to the A type relation according to Gillett’s taxonomy.  
   
 Perhaps, more conducive distinction for understanding the topological realization 
is the epistemological one introduced by Wilson and Craver (2007) according to which, 
on the one hand, the realization relation studies logical, and nomological relations be-
tween target concepts or on the other hand, it is in the business of finding an empirical 
substrate of certain capacities, functions or behaviours. The starting distinction here is 
methodological, and it concerns what we want to know about the realization relation. 
Wilson and Craver argue that the realization relation serves two masters, one is a meta-
physician and the other is a cognitive scientist. In serving the metaphysician the realiza-
tion is formulated in terms of logical dependency relations, such as supervenience, meta-
physical sufficiency and nomic necessity in which normally changes at one level logical-
ly determine the changes at another. This view is very nicely encapsulated in the super-
venience slogan: “there cannot be an A-difference without a B-difference”. Prominent 
tool in this kind of setting is conceptual analysis which is used to probe various positions 
regarding these dependency relations.  

On the other hand, in serving the cognitive scientist the realization is framed in 
terms of how specific functions and capacities are realized by “particular psychological 
and neurological structures and mechanisms” (Wilson and Craver, 2007, p. 82). On this 
account, instead of conceptual analysis the major tools are models and mechanisms in 
their view.  

Given the way in which the topological approach is used in neuroscience, it 
seems that topological realization can well serve the cognitive scientist. But instead of 
finding and describing a mechanism, in topological approach, describing a connectivity 
property in a network explains some macro-scale behaviour or property. As we have 
seen, robustness, stability, and even temporal dynamics, such as brain controllability, can 
sometimes be explained as consequences of certain brain topologies.  

To that effect, the most prominent feature of topological explanation, compared 
to other types of explanation, is that it is not delimiting of the different realization bases 
at local levels within or even across different scales that is explanatory, it’s the under-
standing of what topologies at global levels of systems mathematically mean that does 
the explanatory work. At the global level of system’s topology all the local details are 
highly idealized, i.e. regardless of the actual system, its elements and scales, the topolog-
ical models represent the elements merely as nodes in a network and their relations as 
edges, which in effect is intentionally misrepresenting the system. Showing how the top-
ological model latches onto the world or how we build the model based on the infor-
mation about the local level doesn’t seem to add anything to our understanding of a phe-
nomenon. We can’t understand it without understanding the topology and its mathemati-
cal consequences in these cases.  

To put it more explicitly: the concrete real system has parts that are interconnect-
ed at different scales (think of the brain at the brain-region scale, the scale of voxels, 
cellular scale or even molecular scale), but regardless of the scale, the topological prop-
erties are realized globally, i.e. regardless of what are the local elements that are inter-
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connected at each scale, the topology is a global mathematical property of a network at 
each scale.  

4.2. Descriptive vs explanatory accounts of realization relation 

 Further epistemological distinction that can help us better understand topological 
realization and its explanatory power is between descriptive and explanatory theories of 
realization relation (Polger 2010).  
 Polger claims that the descriptive theories of realization simply tell us “when” 
and “that” the realization relation holds, whereas explanatory theories of realization tell 
us “why” and “how” it holds (Polger 2010, p. 200). He postulates the distinction between 
them thusly: 
 “The key difference between descriptive and explanatory approaches to realiza-
tion is that explanatory approaches can be discriminate with respect to whether the ob-
jects that instantiate the properties are in mereological relations, constitution relations, 
identity relations, and so forth. Only in some cases is it correct to say that the properties 
of one thing are realized by the properties of another.” (ibid) 
 For example, synchronicity plays a very important role in understanding certain 
behaviours of very diverse systems, e.g. synchronous flashing of fireflies plays a key role 
in their sexual selection, synchronous firing of neurons enables information to be pro-
cessed at all in the brain, or synchrony of heart pace cells enables heart to pump blood 
(Strogatz 2003, pp. 11-40). Different mechanisms facilitate execution of all these func-
tions depending on the target system, e.g. flashing of the fireflies, action potential build-
ing in neuron membrane, etc. But regardless of a particular system, their synchronicity is 
explained as a function of the topology that is realized in all of these diverse systems. 
Just to be clear, in all these cases we want to understand how the synchronicity is 
achieved and maintained, not the role of synchronicity in evolutionary functions (sexual 
selection) or physiological processes (contractions of a heart muscle or information pro-
cessing in the brain). In all these examples the elements represented as nodes in a net-
work are taken to be coupled oscillators, and just as in the case of the Watts and Strogatz 
model (Watts and Strogatz 1998) it is the (small-world) topology, mathematically char-
acterized by the fewer long range connections and high clustering that explains the syn-
chronization. In their seminal work, Mirollo and Strogatz (1990) discovered that in the 
case of fireflies mutual synchronization occurs only when a firefly actually sees the 
flashing of another firefly and then shifts its flashing rhythm accordingly (Mirollo and 
Strogatz 1990, p. 1646). They considered the population of fireflies as a network of 
pulse-coupled oscillators which interact through a variety of pulse coupling, i.e. when an 
oscillator fires it pulls all the other oscillators up by an amount or pulls them to fire 
(Ibid.). In order for them to synchronize, apart from these non-linear dynamics con-
straints, they have to be able to see all the other fireflies and adjust their flashing rhythm 
accordingly. Adjusting the flashing rhythm according to the flashing of others, even the 
most distant fireflies in the swarm, can only be achieved if they can see the flashing of 
the distant fireflies as if they were the first neighbours. Small-world topology that is real-
ized as a pattern of their interaction is what enables or constrains the synchronous adjust-
ing of the flashing rhythm. Here again, just as in the case of infectious disease, the key is 
to understand that the topological structure enables some activity or dynamics to go 
through. And here again as well it is the small-world topology which is realized as a pat-
tern of their interaction.  
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 To explain the phenomenon we need to distinguish the realization base from oth-
er possible realization bases, i.e. we want to know why something is the case or why 
something is happening given the realizer story. Understanding the network topology 
helps a great deal to distinguish the realization base from other possible realization bases, 
and to precisely delimit topologies that are explanatory of certain physical facts, proper-
ties or behaviours from those which are not, effectively answering the “why” question. 
In our example with synchronization it is the understanding that the firefly interaction 
realizes a small-world topology that is the key for fully understanding why and how they 
synchronize. It is because without them being able to see every other firefly as if they 
were the first neighbours and adjust their rate of firing accordingly, they would have 
never been able to synchronize. As opposed to Polger’s claim that distinguishing the 
exact types of realization relations is what makes different accounts of realization ex-
planatory, in topological framework it is distinguishing between different realization 
bases (i.e. understanding what different topologies mathematically imply) that is explan-
atory.  

Admittedly, this applies only to topological realization, and probably cannot be 
used as a general objection to Polger’s distinction.   

  Now that I have situated topological realization within various views of realiza-
tion relation proposed in the philosophy of science, in the next section I’ll turn to the 
more general framework of realization relation in the philosophy of mind. A comparison 
between these two very different approaches to realization relation will help us to better 
understand the account of topological realization developed in this paper. As opposed to 
the topological realization, in philosophy of mind the realization relation is predominant-
ly understood in metaphysical terms, as a semantic and logical relation between various 
concepts. My discussion in the next section will not only highlight the key features of 
topological realization, it will also point out some of the major shortcomings of the se-
mantic realization.  
 
5. Topological versus semantic realization: global base of topology vs the micro-
physical descriptions 
  

A prominent view in philosophy of mind is that a complete explanation of the 
mind-brain relation has to be epistemically transparent. The issue of transparency of ex-
planations in the philosophy of mind is framed in such a way that in order for an expla-
nation to be transparent all non-basic truths, such as phenomenal truths, i.e. truths about 
conscious experience from the first person perspective, must be a priori entailed by the 
basic physical, or rather microphysical truths (Dowell, 2008, p. 93). However, this is just 
another way of saying that all the macro-physical truths are logically dependent on the 
micro-physical ones. To situate it in the already made distinctions, this view of explana-
tion according to Endicott (2005) taxonomy implies a logico-semantic type of realization 
relation in which properties are realized if they satisfy certain predicates associated with 
the realizing properties. This approach to realization relation also fits nicely the meta-
physical view according to Wilson and Craver (2008) because it is concerned with vari-
ous dependencies regarding conceptual semantics and furthermore it seems to fit the 
Polger’s (2010) distinction of being a descriptive view of realization, rather than explan-
atory because it is indiscriminate about the exact relation between realized and realizing 
properties.  
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 The realization relation on this view could be defined in the following way:  

(SR): A property X is semantically realized iff the predicates or descriptions of causal or 
functional roles associated with X logically satisfy predicates associated with a micro-
physical description Y.  

An abundantly used example in the literature goes something like this:  

1) Water plays the watery role, i.e. the macro-physical predicates or descriptions of 
causal or functional roles of water are for example odourless, colourless liquid 
that we find lakes, river and oceans, that quenches thirst, boils at 100 C° freezes 
at 0 C° and so on.  

2) (micro-physical description) H2O plays the watery role, i.e. it satisfies the macro-
physical predicates. 

3)  Water and H2O satisfy the same micro-physical descriptions.  

4) Water is H2O.  

It is often argued, in philosophy of mind in particular, that this kind of analysis 
purportedly shows that in the case of consciousness or qualia3, this pattern of explanation 
would not work because, as the analogy goes, a concept, say pain is not conceptually 
analysable in terms of the causal roles of C-fibre firing (“C-fibre firing” is a philosophi-
cal abstraction which stands for the actual empirical description of what is going on in 
the nervous system when someone is in pain). And this is what opens up the so-called 
explanatory gap (Levine 2001).  

It is important for understanding the semantic realization to note that the “watery 
stuff” is actually a conjunction of descriptions which constitute the (primary) intension 
of the concepts “water”, which ought to be satisfied in order for something to be realized 
via that set of descriptions.  

A secondary intension is a function that reflects how the reference is fixed in a coun-
terfactual world, given that the actual world is fixed. We know it from the Kripkean cas-
es: a secondary intension of “water” is “H2O”, because in the actual world it is discov-
ered that water is H2O. However, primary intension of "water" is "the watery stuff" (the 
liquid with such-and -such properties), and there is a possible world, considered as actu-
al, in which the watery stuff is not H2O (but XYZ instead), and in which water is not 
H2O.  

Primary intension is a function that is determined by how the reference would have 
been fixed in a given world considered as actual (Block and Stalnaker 1999, p. 33). One 
can know the primary intension of a given concept and still be ignorant of the secondary 
intension, because the secondary intension is related to worlds considered as counterfac-
tual, given that the actual world is fixed. In this sense then, the primary intensions should 

                                                
3 This is a technical term that denotes the subjective qualities of conscoius experience, or 
the properties of what it is like to be in some conscious states. 
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represent the a priori part of the concept’s content that remains unchanged when consid-
ered through possible worlds.  

The primary intension understood in this way represents the description of the causal 
roles, and thus can be understood as representing the a priori part of the two-dimensional 
analysis.  

To put it differently, a world verifies S iff its primary intension is true at that world, 
and a world satisfies S iff its secondary intension is true there considered from the actual 
world.  

The main thing is that the semantic views of realization assume that the realiza-
tion base concerns only the micro-scale properties at a local level, i.e. the watery proper-
ties are realized if they satisfy a microphysical description H2O. Satisfying here means 
playing the same causal roles. Topological realization on the other hand assumes that the 
realization base is not at the micro-scale and local level. It’s on the global network level 
where the realization base is some pattern of connectivity, which is individuated non-
causally, for example a hub is characterized by its degree value, i.e. the number of con-
nections it has relative to average number of connections other nodes in the network 
have, and not by what it does locally. To put it another way, the property of having a hub 
(s) cannot be local because it is determined relative to average degree values of all other 
nodes in the network, thus it is a global property.  

The explanatory relation in the semantic framework of realization is twofold:  

a) The realization relation is a truth function from concepts to possible worlds, and that 
function is established according to some theory of meaning (causal, referential, two-
dimensional and others). Recall the aforementioned example: 1) water plays the watery 
role, 2) H2O plays the watery role, 3) that’s why the water is H2O. But as it is pointed 
out, in different possible words some other substance with different microphysical de-
scription can play a watery role, and that all depends on what we postulate to be the way 
in which concepts get their meanings in different possible worlds.  

b) The explanations are a priori derivable from the structure of realization relations. 

Understood in this way the semantic realization doesn’t really tell us much about the 
phenomenon we want to explain it only tells us about how truth functions of concepts 
behave in different modal semantics. But the major problem with this view is that appar-
ently every other kind of realization and explanation can be translated into this pattern. 
In such translation one would only have to substitute “the description of causal or func-
tional roles” with the “description of topological roles” and the explanation would yield 
the same result, and once again prove the existence of the explanatory gaps, as we have 
seen in the above case with water and qualia.  

For example, the argument pattern in this scenario might go something like this: 

5) Topology X plays the macro-physical role R, i.e. the topological predicates play a 
certain role in describing macro-physical behaviour or properties of a system.  



 

16	

6) Micro-physical description Y of a system plays the same topological role R, i.e. it 
satisfies the macro-physical topological predicates of X. 

7)  X and Y satisfy the same topological descriptions.  

8) X is Y.  

But this pattern of explanation is concerned only with different scales of realization, 
and it is insensitive to understanding of what certain topologies mathematically imply. 
That’s why it is not really explanatory, it doesn’t enable us to distinguish different reali-
zation bases within the system in question or even within the same domain of phenome-
na, because the distinction between different realization bases in the semantic framework 
is made based on theories of meaning (e.g. descriptive, causal, two-dimensional). In a 
way, it provides an explanation assuming the distinction between different realization 
bases within the system or a domain of phenomena is already established.   

In other words, even if we translated topological explanation into the semantic reali-
zation, the semantic realization is indiscriminate towards specific topological explanan-
tia, i.e. any description of “topological roles” would suffice for the semantic realization 
to work. Different topologies on this approach wouldn’t yield different conceptual se-
mantics, only different modal semantics give different conceptual semantics. Given that 
it is indiscriminate regarding the exact relations between the realized and realizing prop-
erties, the semantic realization then seems rather descriptive than explanatory, because it 
cannot really answer the “why” questions in Polger (2010) sense nor in my sense of be-
ing able to distinguish different realization bases.  

This becomes clearer if we recall the original definition of topological realization:  

(TR): The realization relation stands between a topology T and a system S, such 
that the system S realizes topology T when the elements of S are interconnected in ways 
that display the pattern of connectivity characteristic of T.  

Here, the realization relation is not explanatory in itself, the fact that a system realiz-
es some pattern of connectivity means nothing unless we understand what that pattern 
mathematically means and what are its mathematical consequences, e.g. small-world 
topology is defined through fewer L(p) connections and high cliquishness, which in ef-
fect enables that distant neighbourhoods of nodes be connected as if they were in the 
same neighbourhood. Understanding that different patterns of connectivity constitute 
different topologies is in effect distinguishing different realization bases, which is actual-
ly explanatory. Whereas in semantic approach the realization relation is a logical func-
tion that stands between a concept and a micro-physical description of causal or func-
tional roles, whatever those roles may be. In semantic framework it is presupposed that 
distinction between the actual realization bases (e.g. between different topologies) is 
already made. The only realization bases it can distinguish is between bases in different 
theories of meaning, which although explanatory in regard to different concepts, it is not 
really explanatory in regard to the phenomenon in question, because any distinction 
about the realization bases will stem from the theory of meaning one adopts.   
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Having laid out the basic network notions in the introduction, discussed its use in 
neuroscience (section 2), and discussed the definition and general features of topological 
realization (section 3), its explanatory power in section 4 and its relation to semantic 
realization in this section, in the last section I discuss how to understand multiple real-
izability in topological realization, which is one of the key issues of any account of reali-
zation relation.  

6. Multiple realizability in topological realization 

The key to understanding multiple realizability in topological realization is in un-
derstanding that it is a highly idealized mathematical realization relation. Even though 
many systems may realize the same topologies, it would be misguided to think about 
topological multiple realizability as an empirical fact. It would be misguided to think that 
there is something intrinsically topological in the world, just because the variety of real 
systems (the logistic networks, friendships, the brain, ecological communities, monetary 
systems) all can realize the same topology, for example the small-world topology, and 
some of their behaviours, properties or dynamics can be explained as a consequence of 
the realized topology. The topological realization and its multiple realizability are more 
about how we represent and explain the world by using highly idealized network models. 
The emphasis in multiple realizability of topological properties should rather be on the 
explanatory power of the realization relation than on finding out why so many systems 
realize the same topologies. The latter could even be a wrong question in this context, or 
perhaps impossible to answer. The key lies in understanding topological realization and 
its mathematical consequences. Topological properties are multiply realized, but what is 
interesting about it is that the explanation tracks mathematical dependencies of topolo-
gies rather than actual ontic details of various systems.  

 To illustrate this point, consider two topological systems S1 and S2 that instantiate 
small-world topology. In this sense the S1 and S2 are topologically equivalent, despite 
the fact that causally they are completely different, i.e. despite the fact that in S1 and S2 
the nodes and edges may stand for different things, their topologies are equivalent, i.e. 
isomorphic and so S1 and S2 have the same topology B1, e.g. a small-world topology. 
For example, S1 and S2 can be very different in their causal details, e.g. S1 may repre-
sent a financial market, and S2 may topologically represent relations of predation in an 
ecological community or the connections in the brain. But an explanation of any system 
or set of elements will be a function of topological properties, that are the same, in vari-
ous systems. It is the topology B1 and its consequences that are equivalent across diverse 
systems that is explanatory, and not the various ways in which the same topology (B1) is 
instantiated in those systems.    

 In summary, what makes topological realization and explanation based upon it 
unique is the global level of the realization base, or the fact that the realizers are not lo-
cal, but global, which contrary to semantic and mechanistic realization doesn’t bound the 
realization base to the local level of any scales; and the explanatory power of topological 
realization doesn’t stem from its ability to distinguish the exact type of realization rela-
tion between the realized and realizing properties, but from the fact that the physical fact 
or property is a mathematical consequence or a function of the realized topology.  
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