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Abstract: The no free lunch theorem (Wolpert 1996) is a radicalized version of Hume's
induction skepticism. It asserts that relative to a uniform probability distribution over all
possible worlds, all computable prediction algorithms — whether ‘clever' inductive or 'stu-
pid' guessing methods (etc.) — have the same expected predictive success. This theorem
seems to be in conflict with results about meta-induction (Schurz 2008). According to the-
se results, certain meta-inductive prediction strategies may dominate other (non-meta-
inductive) methods in their predictive success (in the long run). In this paper this conflict is

analyzed and dissolved, by means of probabilistic analysis and computer simulation.

1. The Optimality of Meta-Induction: A Solution to the Problem of Induction?

In Schurz (2008) a new account to the problem of induction has been developed that is
based on the optimality of meta-induction. The account agrees with Hume's skeptical in-
sight that it is impossible to demonstrate a priori that induction is reliable in the sense that
it is predictively more successful than random guessing. Such a demonstration is impossi-
ble without assuming that the actual world possesses a certain amount of regularity. Reich-

enbach (1949, §891) argued that it is at least possible to demonstrate a priori that induction



is optimal, i.e., is the best what we can do for the purpose of predictive success. Results in
formal learning show, however, that it is not possible to demonstrate optimality at the level
of object-induction, that is, of induction applied to the task of predicting events in arbitrary
possible worlds (cf. Skyrms 1975, ch. 111.4). In contrast, what the account of meta-
induction attempts to show is that induction is optimal if it is applied at the meta-level of
competing prediction methods. The meta-inductive strategy tracks the success rate of all
prediction methods whose predictions are accessible and predicts an optimal weighted av-
erage of the predictions of those methods that were most successful so far. Based on results
in mathematical learning theory (Cesa-Bianchi 2006), Schurz (2008) proved that there ex-
ists a particular weighting method, called attractivity-weighting, which grants the meta-
inductivist a predictive success rate that is in the long run at least as high as that of every
other prediction method that is accessible to the meta-inductivist, even if their success rates
are permanently changing in an irregular way. Since the restriction to accessible methods is
crucial for the optimality theorem, Schurz and Thorn (2016) call this kind of optimality
access-optimality. Remarkably, the access-optimality of meta-induction holds in all possi-
ble worlds, even in ‘chaotic’ ones in which event frequencies do not converge against limits
or in ‘paranormal’ worlds which host clairvoyants.

Technically the account of meta-induction is based on the notion of a prediction game:

Definition 1. A prediction game is a pair ((¢),IT) consisting of:
(1.) An infinite sequence (e) := (e1,€e2,...) of events ey, coded by real numbers between 0

and 1, possibly rounded according to a finite accuracy. For example, (e) may be a sequence



of daily weather conditions, football game results, or stock values. In what follows Val
[0,1] denotes the value space of possible events e, € Val. Each time n corresponds to one
round of the game.

(2.) A finite set of prediction methods or 'players’ IT = {P4,...,Pm,MI} (in what follows
we identify 'methods' with 'players'). In each round it is the task of each player to predict
the next event of the event sequence. "MI" signifies the meta-inductivist and the other
players are the 'non-Ml-players' or ‘candidate methods'. They may be real-life experts, vir-
tual players implemented by computational algorithms, or even 'clairvoyants' who can see
the future in 'para-normal’ possible worlds. It is assumed that the predictions of the non-Ml

players are accessible to the meta-inductivist. Moreover, they are elements of Val — [0,1].

The predictive success rate of a method P is defined by means of the following chain of
definitions:
— pred,(P) is the prediction of player P for time n delivered at time n-1,
— the deviation of the prediction pred, from the event e, is measured by a normalized loss
function, loss(predn,en) € [0,1],
— score(predn,en) =¢er 1-l0ss(predy,en) is the score obtained by prediction pred, of event ey,
— absn(P) =ger Z1<i<n SCOre(pred;(P),e;) is the absolute success achieved by player P until
time n, and

— sucn(P) =qer an(P)/n is the success rate of player P at time n.

The natural loss-function is defined as |pred,—ey|. The optimality theorem holds below for



all convex loss functions, which means that the loss of a weighted average of two predic-
tions is not greater than the weighted average of the losses of two predictions. In what fol-
lows we assume convex loss functions; they comprise a large variety of loss functions in-
cluding all linear, polynomial, or exponential functions of the natural loss function.
'Possible worlds' are identified with prediction games. A special case are binary games
whose events and predictions are elements of {0,1}. For binary games the natural loss
function coincides with the zero-one loss: loss;-o(pred,e) = 0 if pred = e, and otherwise = 1.
The simplest meta-inductive strategy is called "Imitate-the-best" and predicts what the
presently best non-MI player predicts. It is easy to see that this meta-inductive method
cannot be universally access optimal: Its success rate breaks down when it plays against
non-MI methods that are deceivers, which means that they lower their success rate as soon
as their predictions are imitated by the meta-inductivist (cf. Schurz 2008, sec. 4). A realis-
tic example is the prediction of stock values in a 'bubble economy': Here the prediction that
a given stock will yield a high rate of return leads many investors to put their money on
this stock and by doing so they cause it to crash. Nevertheless there exists a meta-inductive
strategy that is provably universally optimal. This strategy is called attractivity-weighted

meta-induction, abbreviated as wMI, and is defined as follows:

Definition 2. The predictions of wMI (attractivity-weighted meta-induction) are defined as

> atn(Py)- predna (P)
D o At (P)

predn 1 (WMI) =ger , Where

— aty(P;) is the attractivity of a player P; for wMI at a given time n, defined as



atn(Pi) =ger SUCH(Pi)-sucn(wMI), if this expression is positive; else at,(P;)=0, and

— if n=1 or the denominator is zero, wMI's prediction is a random guess.

Let "maxsuc,” denote the non-Ml-players' maximal success rate at time n. Then the opti-

mality theorem for wMI (proved in Schurz 2008, sec. 7, theorem 4) asserts:

Theorem 1. (Universal access-optimality for wMl):

For every prediction game ((e), {P1,...,Pm,wMI}) the following holds:
(1.1) (Short run:) (Vn>1:) suc,(wMI) > maxsuc, — v¥m/n.

(1.2) (Long-run:) sucn,(wMI) (strictly) converges to the non-MI-players' maximal success

for n—oo.

According to theorem (1.2) attractivity-weighted meta-induction is long-run optimal for all
possible event sequences and sets of accessible prediction methods. The only proviso is
that the set of accessible methods is finite, which is a realistic assumption for cognitively
finite beings. In the short run, weighted meta-induction may suffer from a possible loss,
compared to the leading player. This loss (which is also called wMI's ‘regret’) is caused by
the fact that wMI must base her prediction of the next event on the past success rates of the
candidate methods, and the hitherto most attractive methods may perform badly in the pre-
diction of the next event. Fortunately theorem (1.1) states a worst-case upper bound for
this loss, which is small if the number of competing methods, m, is small compared to the

number of rounds, n, and which converges quickly to zero when n grows large.



Theorem 1 applies to prediction games with real-valued as well as binary (or discrete)
events. Even if the events are binary wMI's predictions are real-valued (because proper
weighted averages of Os and 1s are real-valued). How can the optimality result of theorem
1 be transferred to binary games whose predictions must be binary? There are two methods
by which this can be done:

(1.) Randomization, rwMI (cf. Cesa-Bianchi and Lugosi 2006, sec. 4.1): Here one as-
sumes that rwMI predicts e,=1 with a probability (P) that equals the optimal real-valued
prediction of wMlI, i.e., P(predn(rwMIl) =1) = pred,(wMI). This method is not entirely gen-
eral since it presupposes that the events are probabilistically independent from rwMI'’s
choice of prediction.

(2.) Collective meta-induction, cwMI (Schurz 2008, sec. 8): Here a collective of meta-
inductivists approximates real-valued predictions by the mean value of their binary predic-
tions. Their mean predictive success rate approximates provably the success rate of the
optimal method wMI. Assuming that the cwMIs are cooperators and share their success,
every individual member of the collective is predictively optimal.

Theorem 1 establishes the following a priori justification of attractivity-weighted meta-
induction: In all environments it is reasonable — in addition to searching for good object-
level methods — to apply the strategy wMI, as this can only improve but not worsen one's
success in the long run. Note that by itself this justification does not entail anything about
the rationality of object-level induction: it may well be that we live in a world in which a
method different from object-induction is predictively superior. However, it seems that the

a priori justification of meta-induction give us the following a posteriori justification of



object-induction: to the extent that (a particular version of) object-induction was so far the
most successful prediction strategy, it is meta-inductively reasonable to continue favoring
(this particular version of) object-induction.

Theorem 1 asserts the optimality but not the dominance (in the long run) of attractivi-
ty-based meta-induction. Thus there may exists other methods, different from wMI, that
are likewise long-run optimal. In fact one can prove that there are certain variants of wMI
that are long-run optimal and have short-run advantages in certain and disadvantages in
other environments. So wMI is cannot be universally long-run dominant. Nevertheless, the

following restricted dominance result for wMI follows from theorem 1:

Theorem 2. (Dominance for wMI):

(2.1) wMI dominates every prediction method that is not universally long-run optimal. In
other words, for every such method M there is a prediction game containing wMI and M in
which wMI's long-run success rate exceeds that of M.

(2.2) Not universally long-run optimal are, for example, all independent non-clairvoyant
methods, that is, methods that can learn only from observations of past events, but not from

the predictions of other methods.

Proof of theorem 2: Theorem (2.1) is an immediate consequence of theorem 1 and the def-
inition of "optimality". The proof of theorem (2.2) goes as follows: Let M be an independ-

ent method based on a function f that maps each n-tuple of past events (ey,...,e,) € Val"



into a prediction pred,.;Val. We define an M-adversarial event sequence (e") as follows:
e'1=0.5 and e’y = 1 if f(e's,...,€") < 0.5; else e'y+1 = 0. Moreover we identify the predic-
tions of the perfect (e')-forecaster M' with the so-defined sequence, i.e., pred,(M’) = ¢',

(note that if f is computable, M' is so, too). In the prediction game ((e'),{M,M',wMI1}) the
success rate of M can never exceed 1/2, that of M' is always 1 and that of wMI converges

to 1 (by theorem 1). This proves theorem 2. Q.E.D.

Theorem 2 is crucial for the next sections in which we confront the optimality of meta-

induction with the no free lunch theorem.

2. Radical Inductive Skepticism: The No Free Lunch Theorem

Wolpert's (in)famous no free lunch theorem (Wolpert 1996) is a radicalized version of
Hume's inductive skepticism for theoretical computer science. The theorem applies to pre-
diction methods that can be represented as computable functions from past observations to
predictions, so called learning algorithms (thus, clairvoyance is excluded). The theorem is
often expressed by the assertion that for each pair of prediction methods, the number — or
in the infinite case the probability — of possible worlds (event sequences) in which the first
method outperforms the second is precisely equal to the number (or probability) of worlds
in which the second method outperforms the first. We call this assertion the strong version

of Wolpert's theorem, because it presupposes a ‘'homogeneous' loss function:



Theorem 3. Strong no free lunch theorem (Wolpert 1996, 1354f, theorems 1, 3):

For every possible loss value c, the probability of worlds in a which prediction method
leads to a loss of ¢ is the same for all possible prediction methods, provided one assumes
— (@) a state-uniform prior probability distribution, that is, a uniform distribution over all
possible event sequences (or states of the world), and

— (b) a homogeneous loss function, in the sense that for all possible loss values ¢, the num-
ber of possible events e e Val for which a prediction predeVal leads to a loss of c is the

same for all possible predictions predeVal.

The requirement of a homogeneous loss function very strong: It is only satisfied if events
and predictions are binary, or more generally, if they are discrete with a zero-one loss
function. Under this assumption homogeneity is obvious: If the value space has k elements,
then for every predeVal the number of possible events ecVal that lead to a loss of 1 is
obviously k-1, and the number of events that lead to a loss of 0 is one. In contrast, in pre-
diction games with real-valued predictions the homogeneity requirement fails. In the bina-
ry case, for example, the number of events which lead to a loss of 1 is one for the two pre-
dictions pred =1 and pred = 0, but zero for the prediction pred = 0.5.

Homogeneous loss functions are a clear restriction of the strong no free lunch theorem,
since, as we have seen, real-valued predictions can be implemented even in binary games,
either by randomized binary predictions or by a cooperative collective of binary forecast-

ers. There is, however, a weak version of the no free lunch theorem (mentioned by Wolpert
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1996 on p. 1354 ) which applies to real-valued predictions over binary or discrete events

and assumes what we call a "weakly homogeneous™ loss function:

Theorem 4. Weak no free lunch theorem (Wolpert 1996, 1354):

The probabilistically expected success of every possible prediction method is equal to the
expected success of random guessing or of every other prediction method, provided one
assumes

— (@) a state-uniform prior probability distribution, and

— (b) a weakly homogeneous loss function, in the sense that for every possible prediction
pred € Val the sum of pred's losses over all possible events eeVal is the same

(VpredeVal: Zccvaloss(pred,e) = a constant c*).

For binary events with real-valued predictions and a natural loss function weak homo-
geneity is satisfied, since for every prediction prede[0,1], loss(pred,1) + loss(pred,0) =
1-pred + pred = 1.

For prediction games with real-valued events, most loss functions (including all convex
ones) are not even weakly homogeneous. Here "free lunches™ are possible in the sense that
not all prediction methods have the same expected success, relative to a state-uniform
probability distribution.

In this paper we focus on prediction games with discrete events and real-valued predic-
tions, to which the weak no free lunch theorem applies. The framework in which Wolpert

proves his theorems are not prediction games, but learning algorithms that map training
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sets into predictions of test items. But since a prediction game can be considered as an iter-
ated procedure of selecting a training set of n events and predicting the event at test item
n+1, Wolpert's result applies straightforwardly to prediction games.

Theorem 4 asserts that every possible prediction method — be it an intelligent inductive
one, a crazy anti-inductive one, or a stupid one that always predicts the same value — has
the same expected predictive success relative to a state-uniform prior distribution. For all
induction-friendly philosophical programs, including the program of meta-induction, this
result seems to be devastating. How is it possible? In what follows we give a brief explana-
tion of Wolpert's theorem in terms that are philosophically more familiar than his own "ex-
tended Bayesian framework".

Wolpert's theorem is a far-reaching generalization of a straightforward result about the
prediction of binary sequences. For this application the strong no free lunch theorem
amounts to the following: However a prediction function f, with predn.; = f((e,...,en))

e {0,1}, is defined, there are as many sequences of a given length k>n extending (es,...,en)
that verify f's prediction pred,.1 as there are sequences that falsify it. Thus by attaching an
equal probability to every possible sequence the expected score of each prediction function
will be 1/2. More generally speaking, this result is an immediate consequence of an
(in)famous result in probability theory which can be found (among other authors) in Car-
nap (1950, 564-566) or Howson and Urbach (1996, 64-66). The result can be expressed as

follows:

Theorem 5. (Carnap 1950, 564-566):
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Let P be a state-uniform prior probability (density) distribution over (the Borel algebra
over)1 the set of all infinite binary sequences, {0,1}*. Then P has the following two 'radi-
cally non-inductive' properties:

(a) P assigns the same conditional probability to each event e, € {0,1} independently of
the preceding events (ey,...,en-1) of the sequence. Thus, P is an IID (independent identical
distribution) with P(1) = P(0) = 1/2.

(b) P assigns a probability of one to the class of sequences with a limiting frequency of
1/2 and a probability of zero to all other possible limiting frequencies; this follows from (a)

by the strong law of large numbers.

3. No Free Lunch and Meta-induction — a Conflict?

We now turn to the relation between the weak no free lunch theorem and theorem 2
about meta-induction. The no free lunch theorem applies not only to object-level prediction
methods, but also to all meta-strategies, given that they are applied to a fixed set of inde-
pendent prediction methods — for the reason that every combination of a finite number of

prediction algorithms is itself a prediction algorithm. So the puzzling question arises: If the

P yields Carnap's confirmation function c'. Technically, {0,1}° is represented by the
interval [0,1] of real numbers in binary representation (see fig. 1 below). P over the
Borel algebra Bo([0,1]) is defined by the integrals of an assumed density function Dp

over [0,1].
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no free lunch theorem is true, how can it be that attractivity-weighted meta-induction,
when applied to a fixed set of independent prediction algorithms, is dominant in compari-
son to certain other methods, as stated in theorem 2? Is this a contradiction?

Our answer to this question in regard to the long run perspective can be summarized as
follows: No, the contradiction is only apparent. It is indeed true that there exist many wMI-

accessible methods whose predictive success rate is (in the long run) strictly smaller than

that of wMI in some worlds (event sequences)2 and never greater than that of wMI in any
world — let us call these methods M (for "inferior™). Nevertheless the state-uniform ex-
pectation values of the success rates of wMI and M, are equal, because the state-uniform
distribution that Wolpert assumes assigns a probability of zero to all worlds in which wMI
dominates Miqs; so these worlds do not affect the probabilistic expectation value.

Let us elaborate on this connection. The major difference between the account of meta-
induction and Wolpert's extended Bayesian account is this: While the former account is
independent from any assumed prior distribution over possible event sequences, Wolpert's
result depends on a particular prior distribution, the state-uniform distribution. Wolpert
seems to assume that this distribution is epistemically privileged. Reasonable doubts can
be raised here, because the state-uniform distribution is induction-hostile. A proponent of

this distribution believes with probability 1 a priori that the binary event sequence she is

Generally speaking possible worlds are identified prediction games. But in the given
context we assume a fixed set of prediction methods, whence possible worlds can be

identified with event sequences.
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going to predict (a) has a limiting frequency of 1/2 and (b) is non-computable. Fact (a)
follows from theorem 5, and (b) from the fact that there are uncountably many sequences,
but only countably many computable ones. However, the event sequences for which an
intelligent prediction method can be better than random guessing or any other stupid meth-
od are precisely those event sequences that do not fall into the intersection of classes (a) or
(b). To make this point explicit: For random sequences with a limiting frequency of 1/2, all
combinations of independent methods must have the same success rate as random guess-
ing, i.e. 1/2. The only possibility for these sequences to be predictable is that they are com-
putable by an internal regularity, but this possibility has probability zero, too.

In conclusion, proponents of a state-uniform prior distribution are strongly biased: they
are a priori certain that the world is irregular so that induction cannot have any chance. We
suppose that adherents of a more induction-friendly view, for example Bayesians in the
ordinary (not Wolpertian) sense, will regard a state-uniform prior distribution as highly
"unnatural”. Instead of a state-uniform distribution they typically prefer a uniform distribu-
tion over all possible limiting frequencies; we call such a distribution a frequency-uniform

distribution. It is well known that frequency-uniform distributions are highly induction-

friendly: from them on can derive Laplace's rule of induction, P(en« =1 (1) :%) =

k +i , Where "f,(1)" denotes the frequency of 1's among the first n events (cf. Carnap

1950, 568). In computer science, Laplace's rule has been generalized by Solomonoff (1964,
sec. 4.1), who proved that if the prior probability of a sequence is inversely proportional to

its algorithmic complexity, then Laplace's rule of induction is valid.
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The precise relation between prior distributions over the space of possible infinite se-
quences and corresponding distributions over the space of possible limiting frequencies (or
classes of sequences with the same frequency) is displayed in figures 1 and 2 below. As
usual, infinite 0-1-sequences are represented as real numbers between 0 and 1 in binary
representation (e.g., 0.0110...) and ordered according to their numerical size. In this way,
the state-uniform distribution over possible sequences is represented as a uniform density
over the interval [0,1]. Fig. 1 presents the transformation of this distribution into the corre-
sponding distribution over possible limiting frequencies, with the result that a uniform dis-
tribution over [0,1] viewed as space of sequences is transformed into a maximally dogmat-

ic distribution (an infinite density peak) over [0,1] viewed as space of frequency limits.

Uniform density over possible Corresponding 'maximally dogmatic'
sequences (binary coding) density over possible frequency limits
A
A .
A
1 1
0 1 0 1/2 1

Figure 1. Transformation of a state-uniform into a frequency-uniform distribution.

Fig. 2 (below) illustrates the inverse transformation. The upper part of fig. 2 shows what
happens to a frequency-uniform distribution over [0,1], if it is transformed into a distribu-

tion over [0,1] viewed as space of possible sequences. The resulting distribution becomes
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non-continuous and entirely disrupted: in every finite interval | c [0,1] it increases infinite-

ly often to a positive value and falls back to zero.3 It follows that a state-uniform prior dis-
tribution makes Bayesian converge results impossible, because all these results presuppose
a (not necessarily uniform but) continuous prior distribution over the possible frequencies
(cf. Earman 1992, 141ff). Thus "outwashing of priors™ is impossible for state-uniform prior
distributions. The lower part of fig. 2 displays Solomonoff's result (1964) which states that
the frequency-uniform probability of a (finite or infinite) sequence decreases exponentially
with its algorithmic complexity c(s): P(s) ~ 2°®). Thus sequences with lower complexity
have a higher frequency-uniform probability than those with high complexity. In conclu-
sion, a frequency-uniform distribution is strongly biased in regard to less complex (more
regular) sequences.

So which prior distributions are more natural, state-uniform ones or frequency-uniform
ones? In our eyes, this question has no reasonable answer because all prior distributions are
subjective and biased in some respect. We regard it as a great advantage of the optimality
of meta-induction that it holds regardless of any assumed prior probability distribution. For
a frequency-uniform prior distribution the probability of worlds in which meta-induction

dominates random guessing is close to one. For a state-uniform prior the probability of

To see this, let r; and r, (r2 > r1) be two infinite sequences represented as binary real
numbers r; = "0.00...(n times zero)11...(one forever)" and r, = "0.00...(n—1 times ze-
ro)11...(one forever)". Their complexity is minimal. The class of sequences lying be-
tween r; and r, contains sequences with all complexities between the minimal one and
the maximal one, which is possessed by sequences with frequency limit 1/2. So the
density climbs up and down between minimal and maximal complexity in the interval
[r1,r2]. Since this holds for every arbitrary small interval, the claim follows.
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Corresponding 'disrupted’ density over
possible sequences in binary representation

il |

Corresponding ‘inductive' density over
algorithmic complexity of sequences

A

0 cfs)

Figure 2. Transformation of a frequency-uniform into —
upper part: — a state-uniform density distribution.

lower part: — a distribution over the algorithmic complexity.

worlds in which meta-induction dominates random guessing is zero. Nevertheless many
such worlds exist and it is precisely in these worlds that intelligent prediction methods can
have chance at all. We should certainly not exclude these induction-friendly worlds from
the start by assigning a probability of zero to them. This concludes my discussion of the
relation between meta-induction and the no free lunch theorem within the perspective of

the long run.
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4. No Free Lunch and Meta-induction in the Short Run Perspective

The discussion of Wolpert's theorem within the perspective of the short run is more
intricate. Recall that for finite sequences the advantage of meta-induction comes at a cer-
tain cost, that vanishes in the long run but is non-negligible for short sequences. Table 1

presents the result of a computer simulation of all possible prediction games with a length

of 20 rounds, with binary events, three independent prediction methods and WMI.4 The
considered independent methods were

— majority induction, M-I, which always predicts the event that so far has been in the
majority, and 0.5 in the case of ties (i.e.,predn+1 = 1/0.5/0 iff f,(1) >/=/< 0.5, respectively),

— majority anti-induction, M-Al, which predicts the opposite of M-I (i.e., pred,+; =
0/0.5/1 iff f,(1) >/=/< 0.5, respectively),

— averaging, Av, which always predicts 0.5.

Table 1 displays the frequencies of sequences for which the absolute success of a pre-
diction method lies in a certain interval that is specified at the left margin, with [0,1) being
the lowest and [19,20] the highest possible success interval. In accordance with the weak
no free lunch theorem one sees in the bottom line that the average success is the same for
all four methods. Nevertheless the frequency distributions over classes of sequences in
which these methods reach certain success levels is remarkably different. The averaging
method predicts always 0.5 and earns a sum-of-scores of 10 in all possible sequences. The

object-inductive method M-I reaches a high success level in more worlds than the anti-
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inductive method M-AlI (symmetrically, Av-Al attains a low success level in more worlds

than Av-1). In compensation, the number of worlds in which the anti-inductive method

does just a little better than averaging is significantly higher than the corresponding num-

ber of worlds for the inductive method.

M-l M-Al AV wMI
[01) 0 0000 O 0
[12) 0 0003 O 0
[23) 0 0029 0 0
[34) 0 0159 0 0
[45) 0 0618 0 0

» [56) 0537 1824 0 0

S [67) 3540 4254 0 0

S [78) 9579 803 0 0

S [89) 15622 12476 0  36.491

@ [9,10) 18.346 16.065 0  23.472

S [10,11) 17.915 18.157 100.000 14.835

& [1,12) 15.046 17510 0  11.880

© [12,13) 10.266 12.854 0  7.469

£ [1314) 5635 6305 0 3595

?  [14,15) 2.448 1611 0 1513
[15,16) 0.821 0.098 0  0.560
[16,17) 0204 O 0 0153
[17,18) 0.035 0 0  0.029
[18,19) 0.004 O 0  0.003
[19,20) © 0 0 0

State-uniform 10 10 10 10

average

Table 1. Computer simulation of M-1, M-Al, Av and wMI in all (2%°) binary sequences
with 20 rounds. Cells show percentage of sequences in which certain levels of absolute
success (left margin) have been reached.

Based on these results we obtain a justification of object-induction and of meta-

Computer simulations were performed by Paul Thorn.
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induction even within the induction-hostile perspective of a state-uniform prior distribution
for short-run sequences. One can reasonably argue that what counts is to reach high suc-
cess in those environments which allow for high success. This is what independent induc-
tive methods do. At the same time one should protect oneself against low successes — this
is what cautious methods of the type "averaging" do. The advantage of wMI meta-
induction is that it combines both — reaching high successes where it is possible (inspect
the intervals [12,13)—[19,20]) and at the same time avoiding low successes (inspect the
intervals [8,9) and [9,10)). Thus wMI achieves "the best of both worlds". This, however,

goes on the cost of a certain short-run loss (inspect the intervals [10,11) and [11,12)).

5. Conclusion

In this paper we confronted the optimality of meta-induction with the no free lunch
theorem. We demonstrated that the apparent conflict between these two results disappears
when one considers that the no free lunch theorem assumes a state-uniform prior distribu-
tion over the set of all (binary) event sequences. This distribution assigns a probability of
zero to all infinite sequences that exhibit some sort of regularity which an intelligent pre-
diction method could exploit. Short sequences were investigated by means of a computer
simulation of all possible sequences of length 20. The result shows that in spite of having
an equal expected predictive success, different prediction methods differ significantly in
the frequency with which they reach certain success levels. Meta-induction turns out to

offer the best combination of two abilities: exploiting regular sequences and avoiding loss-
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es in irregular sequences.

We emphasize that this characterization of the advantage of meta-induction holds for
the induction-hostile state-uniform prior distribution. If one switches to a frequency-
uniform prior distribution, the computer simulation produces rather different results: Now
M-1 and wMI have highest predictive success in all classes of sequences whose frequencies
are in the intervals [0,0.1), ..., [0.3,0.4) and [0.6,0.7), ..., [0.9,1]. wMI suffers from a
small loss compared to M-I in these frequency intervals. In the frequency intervals
[0.4,0.5) and [0.5,0.6) the picture is reversed: Here M-Al and Av are more successful than
M-I; wMI suffers from a small loss compared to M-Al and Av, but is more successful than

M-1. Because of space limitations we abstain from presenting the details.
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