
Abstract

Experiments demonstrating entanglement swapping have been alleged to

challenge realism about entanglement. Seevinck (2006) claims that entangle-

ment “cannot be considered ontologically robust” while Healey (2012) claims

that entanglement swapping “undermines the idea that ascribing an entangled

state to quantum systems is a way of representing some new, non-classical,

physical relation between them.” My aim in this paper is to show that realism

is not threatened by the possibility of entanglement swapping, but rather, it

should be informed by the phenomenon. I argue—expanding the argument

of Timpson and Brown (2010)—that ordinary entanglement swapping cases

present no new challenges for the realist. With respect to the delayed-choice

variant discussed by Healey, I claim that there are two options available to the

realist: (a) deny these are cases of genuine swapping (following Egg (2013))

or (b) allow for existence of entanglement between timelike separated regions.

This latter option, while radical, is not incoherent and has been suggested in

quite different contexts. While I stop short of claiming that the realist must

take this option, doing so allows one to avoid certain costs associated with

Egg’s “orthodox” account. I conclude by noting several important implication

of entanglement swapping for how one thinks of entanglement generally.
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1 Introduction

The phenomenon of quantum entanglement has been taken to have broad

metaphysical implications.1 Such implications presuppose a broadly realist

view of entanglement, one that recognizes a genuine physical relation between

the subsystems that compose an entangled system. This entanglement relation,

in turn, is used to explain the sorts of non-local correlations found in the

measurement results of EPR-B2 and related experiments. These correlations

are “non-local” in that they hold between distant measurement events that

occur at the same time—i.e., at spacelike separation.

Recent experiments involving “entanglement swapping,” threaten to com-

plicate our typical understanding of entanglement. Some have even suggested

that these experiments threaten to undermine the realist position altogether.

Below I will argue that this isn’t the case. However, entanglement swapping

is not without important implications for the realist. Indeed, I claim that

delayed-choice entanglement swapping gives us reason to consider extending

1Ladyman and Ross claim that “entanglement as described by QM teaches us that Humean
supervenience is false, and that all the properties of fundamental physics seem to be extrinsic
to individual objects” (2007, 151). A similar claim is made by Esfeld (2004), who claims that
entanglement recommends a “metaphysics of relations.” Quantum entanglement also pays a critical
role in Schaffer’s (2010) defense of monism, the view that there is ultimately only one object: the
entire universe.

2I use “EPR-B” to refer to variations of the experimental arrangement due to Einstein et al.
(1935) and extended by Bohm (1951). The variations most relevant in what follows will be those
involving photon pairs with entangled polarizations.
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entanglement into the temporal dimension. By allowing for timelike entangle-

ment, the realist is able provide a unified account of a variety of experimental

results. Even if one rejects this radical suggestion, ordinary cases of entangle-

ment swapping alone require revising widely-held views about the nature of

entanglement.

2 Preliminaries

Quantum theory doesn’t wear its metaphysics on its sleeve. Different inter-

pretations of quantum theory radically diverge on what (if anything) it tells

us about the world. Accordingly, it is impossible to undertake our investi-

gation without making some interpretative assumptions. That said, many of

the issues here cross-cut interpretations and I hope to remain as neutral as

possible between the various realist interpretations. I begin with the orthodox

view of how entanglement arises in the formalism of (ordinary, non-relativistic)

quantum mechanics.

2.1 Nonseperable quantum states

Quantum mechanics allows for nonseparable quantum states. To keep matters

as simple as possible, consider two particles, 1 and 2, each of which can be as-

signed a pure quantum state. The standard approach represents the quantum

state of each particle with a vector (ray) |ψ〉 in a Hilbert space H. The quan-

tum states of two systems 1,2, then, correspond to vectors |ψ〉, |φ〉 in Hilbert

spaces H1,H2, respectively. The joint state of the system they compose is rep-

resented by the vector |Ψ〉 in the tensor product Hilbert space H12 = H1⊗H2.

If the state vector |Ψ〉 in H12 can be expressed as a product of vectors |ψ〉, |φ〉
in Hilbert spaces H1,H2, then |Ψ〉 is separable. But, in general, a vector in H12

cannot be expressed in the form |Ψ〉 = |ψ〉 ⊗ |φ〉, with |ψ〉 ∈ H1 and |φ〉 ∈ H2.

Such states are called nonseparable quantum states.

On the standard view, entanglement occurs when distinct physical systems

are attributed nonseparable quantum states. Thus, if two photons 1,2 are

prepared in the nonseperable joint polarization state |Ψ−〉 = 1√
2(|HV 〉−|V H〉),
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they (or their quantum states) are mutually entangled. While this standard

view of entanglement has been criticized (Ghirardi et al. 2002; Ladyman et al.

2013), all of the cases considered below will count as entangled on any suitable

definition. Accordingly, I will bracket worries about the precise formulation

of entanglement in the quantum formalism and simply assume the standard

account for ease of exposition.

2.2 Entanglement realism

In order to say more about entangled systems, we must go beyond the formal-

ism of quantum theory. What is the significance of ascribing entangled states

to a set of physical systems?

In what follows, I will be concerned with views that accord the quantum

state a descriptive role. Thus, when we attribute entangled states to compos-

ite systems, that tells us something about the relation between the physical

subsystems in question. I will aim to remain as neutral as possible about the

nature of this relation. The following are two possible views about the nature

of this relation:

Action at a Distance: On this view, distant entangled subsystems are ca-

pable of having an immediate and unmediated causal influence on each

other.

Ontological Holism: On this view, a compound entangled system is viewed

as a nonseparable whole, which is irreducible to the subsystems it com-

prises.

Other variations of these views are possible as well. Some maintain that

entangled systems are connected by a new non-supervenient relation while

others speak of non-local influence that fails to be genuinely causal. It is not my

aim here to adopt any particular approach to the metaphysics of entanglement.

Rather, what will be at issue is the following thesis:

Entanglement Realism: Entangled systems bear a genuine physical rela-

tion to one another—one that is constitutive of their mutual entangle-

ment.
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Entanglement realism cross-cuts interpretations of quantum theory. Broadly

“anti-realist” interpretations such as instrumentalism and other epistemic views

will deny the thesis, but so will some characteristically “realist” views as well.

First, consider an instrumentalist that views the quantum state epistemically.

On this view, the assignment of a non-separable quantum state is a way of

summarizing our information about the system. While ascribing such a quan-

tum state allows us to predict non-local correlations, this view stops short of

recognizing a physical entanglement relation between the particles themselves

(if there are such things). Second, consider a Bohmian who takes the motion

of particles to be fundamental and understands the wavefunction as a law-like

feature of how particles move. On such a view, an entangled quantum state

does not support the existence of a new physical relation between particles,

but only describes/guides the motion of the particles so as to generate non-

local correlations. There is not space to discuss all possible interpretations

of quantum theory and their relation to entanglement realism, nor is this the

appropriate place to debate the merits of the view. Instead, I’ll conclude this

section with two remarks intended to clarify the position.

First, whether an interpretation endorses entanglement realism depends

solely on whether there is a physical relation R that can be attributed to

a compound physical system in virtue of it being ascribed a nonseparable

quantum state; being a “realist” interpretation isn’t sufficient (though it may

be necessary). Second, as with other forms of realism, the primary motivation

for entanglement realism is explanatory. However the entanglement relation is

understood, it should enable robust explanations of non-local correlations in

measurement results. Relatedly, views the deny entanglement realism do so at

the potential cost of being unable to adequately explain non-local correlations.

Thus, there is at least some reason (ceteris paribus) to prefer interpretations

of quantum theory that countenance entanglement realism.

3 Entanglement swapping

The experiments that motivate entanglement across time make use of the

technique of entanglement swapping. Entanglement swapping is a relatively
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recent phenomena, and as a result has received relatively little consideration

by philosophers. A simple experimental arrangement is depicted below (fig-

ure 1). Consider two sources that each produce a pair of photons in the state

|ψ−〉 = 1√
2(|HV 〉 − |V H〉). One source produces the entangled pair (1,2) and

the other produces (3,4). Initially, the quantum state of the four-particle sys-

tem is simply the product of two pair states |Ψ〉 = |ψ−〉12⊗|ψ−〉34. This state

is separable into the states |ψ−〉12 and |ψ−〉34, each of which is an entangled

two-photon state. Accordingly, entanglement realist would initially recognize

two distinct entanglement relations—R12 and R34—but no such relations be-

tween the pairs or between photons from different pairs.

Figure 1: Entanglement Swapping Configuration

The outermost particles are sent off to polarization detectors at Alice and

Bob. The inner particles are sent to a common location, Victor, which contains

a switchable Bell-state analyzer. When switched on, a Bell-state measurement

(BSM) is performed, which has the effect of projecting the indent particles into
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one of the four entangled Bell-states.3 Otherwise, a separate state measure-

ment (SSM) is performed. If the analyzer is off and the particles are measured

separately, then, as expected, correlations are found between (1,2)and (3,4) as

in an ordinary EPR-B experiment.

If the analyzer is on, however, particles 2 and 3 are projected into one of

the entangled Bell-states and, as a result, the remaining particles 1 and 4 are

projected into an entangled Bell-state as well. This can be seen by writing the

initial four-particle state in the basis given by the Bell-states of (1,4):

|Ψ〉 =
1

2
[|ψ+〉14|ψ+〉23 − |ψ−〉14|ψ−〉23 − |φ+〉14|φ+〉23 − |φ−〉14|φ−〉23]. (1)

Given this expression of |Ψ〉, we can see that if a BSM is performed at

Victor with the result |ψ+〉23, then the remaining particles are projected into

the state |ψ+〉14, and similarly for the other Bell states. Crucially, regardless

of the outcome of the BSM at Victor, photons 1 and 4 become entangled as a

result. This is the case despite the fact that they have never interacted.

At least some have taken this case to problematize entanglement realism:

that one cannot think of entanglement as a property [which] has

some ontological robustness can already be seen using the follow-

ing weaker requirement: anything which is ontologically robust can,

without interaction, not be mixed away, nor swapped to another

object, nor flowed irretrievably away into some environment. Pre-

cisely these features are possible in the case of entanglement and

thus even the weaker requirement for ontological robustness does

not hold. (Seevinck 2006, 1582)

The intuition underlying this challenge is that something real would re-

quire a genuine “interaction” to be altered, but entanglement swapping allows

us to move the entanglement around without such an interaction. But is it

3For polarization measured along the H/V axis these are:

|ψ±〉 =
1√
2

[|H〉|V 〉 ± |V 〉|H〉], |φ±〉 =
1√
2

[|H〉|H〉 ± |V 〉|V 〉].
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really the case that there is no interaction responsible for the swapping? After

all, particles 2 and 3 are directly affected by the BSM performed at Victor.

However, nothing is done directly to the remaining particles 1 and 4, and it is

these that become entangled, so perhaps there is something amiss. Indeed, it is

puzzling how exactly 1 and 4 become entangled remotely and instantaneously,

but this is simply the original problem of entanglement in another form.

According to the realist who posits non-local influence, the ordinary EPR

case is already one in which the measurement of a spacelike separated sys-

tem affects the properties of a system entangled with it. If, however, we have

some way of understanding such influence in terms of a physical entanglement

relation, then presumably that relation can do the necessary work needed to

account for entanglement swapping. In the case of a SSM at Victor, measure-

ments of 1 and 4 will display correlations with the results obtained at Victor.

In the case of a BSM, there are not simple correlations between the measure-

ment at Victor and those at Alice and Bob, but rather, a more complex pattern

of relations best accounted for by attributing an entangled Bell-state to the

joint (1,4) system.

Timpson and Brown (2010) agree that entanglement swapping fails to pro-

vide a convincing case against entanglement realism. They suggest an analogy

with gravity in Newtonian physics to illustrate:

We do not think that the relative distance between two planets in

Newtonian physics is not a genuine feature of reality because of the

action-at-a-distance of the gravitational interaction. (Timpson and

Brown 2010, 317)

I take the suggestion to be the following. Just as the Newtonian might seek

to explain a pattern in the motion of two planets by appeal to a pattern in

the motion of two other planets connected to them by an instantaneous grav-

itational influence, entanglement relations could provide a similar connection

between the pairs of particles between which entanglement is swapped. Note,

however, that adopting such a view requires a somewhat broader understand-

ing of action at a distance than is ordinary supposed. Standard formulations

focus on the intrinsic properties of systems. For instance, in his Stanford
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Encyclopedia article on the topic, Berkovitz defines action at a distance as:

a phenomenon in which a change in intrinsic properties of one sys-

tem induces a change in the intrinsic properties of a distant system

without there being a process that carries this influence contigu-

ously in space and time. (Berkovitz 2016).4

To account for entanglement swapping in the manner above, the proponent

of action at a distance must allow that the relational properties of particles

(i.e., their entanglement relations) can influence the relational properties of

the particles with which they are entangled.

How significant of a revision is this? One could claim, along holist lines,

that entanglement is an intrinsic property of the compound system, in which

case the ordinary version of action at a distance perhaps could be preserved. At

least on the “orthodox” understanding of quantum mechanics, however, there

is no clear basis for attributing an intrinsic property to a bipartite system on

the basis of entanglement between its constituents. The extension from intrin-

sic properties to relations is certainly in keeping with the spirit of action at a

distance, as the analogy with Newtonian gravity suggests, but it is a significant

change none the less. Entanglement must now be understood as capable of

spreading new entanglement relations, which is no doubt an interesting result.

Similar revisions are required for the holist to account for entanglement

swapping. When the photons are created there are two pairs of mutually

entangled particles. Hence, the holist would recognize (fundamentally) two

two-photon wholes, (1,2) and (3,4), that are spreading out spatially with time.

Victor’s measurement is performed on both wholes and immediately alters

both. If a SSM is performed, each two-photon system dissolves leaving photons

1 and 4 to be detected later. If a BSM is performed, again each two-photon

system is changed, but in a way that the new wholes (2,3) and (1,4) are

formed. Thus, the holist must allow that certain measurements are capable of

generating new wholes out the parts of the original ones. Again this is does

seem to mark an important revision in the view, but not one that creates any

4This is the broader of two definitions given by Berkovitz, both of which contain a reference to
intrinsic properties.
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obvious problems.

Before moving to the next section, it is worth noting that entanglement

swapping is not a mere philosophical curiosity, but is part of an active research

program in physics with numerous practical applications, including: construct-

ing a quantum telephone exchange, speeding up the distribution of entangle-

ment, correcting errors in Bell states, preparing entangled states of a higher

number of particles, and secret sharing of classical information (Bouwmeester

et al. 2000). This makes its dismissal or reinterpretation difficult to motivate

from a realist perspective. A key tenant in realist thinking recommends endors-

ing those parts of scientific theory that facilitate predictive and technological

successes such as these.

4 Delayed-choice entanglement swapping

The revision to our understanding of entanglement required by entanglement

swapping cases like that depicted in figure 1 is consistent with the central ideas

of action at a distance or ontological holism. Entanglement swapping with

delayed-choice, by contrast, threatens to undermine such notions completely.

The delayed-choice entanglement-swapping experiment reinforces

the lesson that quantum states are neither descriptions nor rep-

resentations of physical reality. In particular, it undermines the

idea that ascribing an entangled state to quantum systems is a way

of representing some new, non-classical, physical relation between

them. (Healey 2012, 31)

The idea of delayed-choice entanglement swapping was first proposed by

Peres (2000). We begin with two entangled systems as in the ordinary case,

but rather than have Victor preform his measurement prior to Alice and Bob,

we delay particles 2 and 3 so that Victor can perform his measurement after

his colleagues. Because the explanation of the collapse of equation 1 into

entangled Bell-states of (2,3) and (1,4) didn’t specify any times, quantum

mechanics suggests that the same results would obtain. In particular, when
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Victor successfully performs a BSM, entanglement will be swapped to 1 and

4.

And, in fact, these results seem to have been confirmed by an experiment

conducted by Ma et al. (2012) depicted below (Figure 2). We begin as be-

fore: two pairs of entangled photons (1,2) and (3,4) are produced by two EPR

sources in the state |ψ−〉12 ⊗ |ψ−〉34. At this point the photons 1 and 2 are

mutually entangled, as are 3 and 4, but the 4-particle state is separable, and

hence there is no entanglement across the two pairs. Alice and Bob each per-

form a polarization measurement of their photon (1 and 4, respectively) along

one of three freely-chosen axes (|H〉/|V 〉, |R〉/|L〉, |+〉/|−〉) and the data from

these measurements are saved for later analysis. Particles 2 and 3, meanwhile,

enter an optical delay, and only reach Victor at time MV , nearly 500ns after

MA and MB, the times at which Alice and Bob perform their measurements.

As before, Victor “chooses” between performing a Bell-state measurement

(BSM) or separate state measurement (SSM) on (2,3). In the actual exper-

iment, the switchable Bell-state analyzer was linked to a quantum random

number generator which determined the measurement (BSM or SSM) to be

performed. The photons 2 and 3 are projected into either an entangled state

(|φ+〉23 or |φ−〉23) if BSM is performed or a separable state in the case of SSM.

When Victor’s results are compared with those of Alice and Bob, they are

found to be consistent with ascribing an entangled state to photons 1 and 4

(|φ+〉14 or |φ−〉14) when BSM is performed and a separable state otherwise.

Thus, it seems that entanglement has been swapped to particles (1,4) after

they have already been detected (at MV )!

This is puzzling to the entanglement realist. It seems that Victor’s later

measurement has an effect on the earlier state of particles 1 and 4. This is

would seem to saddle the realist with a commitment to backward causation,

which many would find beyond the pale. Indeed, the authors themselves seem

to take the experiment to show the inadequacy of the realist approach.

If one views the quantum state as a real physical object, one could

get the seemingly paradoxical situation that future actions appear

as having an influence on past and already irrevocably recorded
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Figure 2: Delayed-choice entanglement swapping arrangement of Ma et al. (2012)

events. However, there is never a paradox if the quantum state is

viewed as to be no more than a “catalogue of our knowledge.” (Ma

et al. 2012, 483)

The committed realist must either deny that entanglement can be swapped

from (2,3) to (1,4) in this case, or else provide some account of how it can

occur. If one seeks to give the same explanation as in the case of entanglement

swapping without delayed-choice, then they must allow that entanglement can

obtain between (1,2) and (3,4) at the time of Victor’s measurement. Of course,

1 and 4 do not exist at the time of Victor’s measurement, so the entanglement

relation must obtain between events at different times. We will return to this
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idea below, but first, it’s worth considering a way the realist may avoid this

consequence.

4.1 Avoidance maneuvers

Matthias Egg (2013) offers a reply on behalf of the entanglement realist. He

urges that to describe the foregoing as a genuine case of entanglement swapping

is to beg the question against the realist. According to Egg’s realist, the parti-

cles (1,4) are either entangled or not at the time of their detection (MA,MB),

and later measurements cannot change this fact. In the case of entanglement

swapping without delayed-choice, entanglement has been “swapped” to (1,4)

as their quantum state has changed to become non-separable as a result of the

measurement taken at Victor. Yet, according to Egg, the quantum state of

(1,4) was separable when measured (MA,MB) in Ma’s experiment and hence

there was never a physical entanglement relation between (1,4) regardless of

which later measurement Victor performs on (2,3).

So what should we make of the experimental evidence in favor of entangle-

ment swapping to (1,4) after their detection?

The Bell measurement on the [2,3] pair allows us to sort the [1,4]

pairs into four subensembles corresponding to the four Bell states.

Without delayed choice, this has physical significance, because each

[1,4] pair really is in such a state after the [2,3] measurement. But

if the [1,4] measurements precede the [2,3] measurement, the [1,4]

pair never is in any of these states. This is entirely compatible with

the fact that evaluating the [1,4] measurements within a certain

subensemble shows Bell-type correlations. (Egg 2013, 1133)

Egg’s reply focuses on an aspect of Ma’s experiment that was omitted from

the initial presentation. Unlike a simple EPR-B experiment, the correlations in

the data recorded by Alice and Bob are only apparent once that data has been

sorted into subsets (“subsenembles”) according to the measurement performed

and results obtained by Victor. Once we sort the results obtained by Alice

and Bob in this way, we find that the subsets of data associated with Victor

performing a BSM exhibit correlations indicative of entanglement.

13



Egg’s point is that these correlations only appear once we sort the results

in this manner, and such sorting needn’t have any physical significance. It’s

unsurprising that correlations of some kind can be found when we conditional-

ize on the results obtained by Victor; after all, the photons measured by Victor

were entangled with photons 1 and 4 until the latter were detected. Only when

Victor’s measurement actually causes a change in particles 1 and 4 are we jus-

tified in taking this process of sorting to have physical significance. Here we, as

realists, should not allow that Victor’s measurement has an effect on particles

1 and 4—doing so would require us to countenance backward causation—and

hence the correlations obtained after sorting should not be taken to provide

evidence for a genuine entanglement relation between particles 1 and 4.

4.1.1 Conflict with special relativity

Egg’s reply requires that the entanglement realist make an important distinc-

tion between cases in which Victor’s measurement occurs before Alice and

Bob’s measurements and those in which the time-order is reversed. Only the

former, says Egg, are cases in which (1,4) are genuinely entangled. Yet, spe-

cial relativity teaches that time-order is not an objective, frame-independent

notion. If, for example, Victor’s measurement (MV ) were spacelike separated

from Alice and Bob’s (MA,MB), then there would be no (frame-independent)

fact of the matter about the time-order of the events. This scenario is not a

mere hypothetical possibility either. In the much-publicized recent experiment

of Hensen et al. (2015), entangled photon pairs are created via entanglement

swapping from a location C that is spacelike separated from the measurement

locations A and B (see Hensen et al. 2015, fig. 1e and 2a). Given such cases

exist, adopting Egg’s response would commit the realist to the claim that there

is no (frame-independent) fact of the matter about whether the entanglement

relation obtains. This would saddle the realist with a problematic sort of

metaphysical indeterminacy.

In a footnote earlier in the paper, Egg offers the following rejoinder:

Some of the most widely discussed realistic versions of quantum

theory (e.g., Bohmian mechanics and the matter-density version of
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GRW) involve a commitment to a preferred foliation of spacetime. If

these proposals are reasonable, then so is the assumption that there

is a definite (although undetectable) temporal ordering between any

two events. (2013, 1130, n.7)

It is of course true that a preferred foliation of space-time would solve

the problem, and, indeed, this has been invoked in the service of some in-

terpretations of quantum mechanics, but no such foliation (or a determinate

time-ordering of spacelike separated events) is provided by our best theory of

spacetime.5 In order to take this option, the entanglement realist would be

forced to claim that special relativity must be amended or at least, supple-

mented. This is a significant cost.

4.1.2 Parity of reasoning

Even if we ignore the conflict with relativity, there is a further worry with

Egg’s proposal.

The realist who would deny the reality of entanglement between (1,4) in the

delayed-choice setup must claim that the standard argument for entanglement

realism fails in this case purely because doing so leads to the undesirable

result of backward causation. The argument for attributing entanglement in

the ordinary swapping case relies only on the four-photon state (1) and the

result obtained by Victor, without any mention of time. That same argument

applied to the delayed-choice case delivers the same result, namely, that 1 and

4 are entangled. This result is confirmed by analyzing the data obtained by

Victor, Alice, and Bob. Thus, there seems to be a tension in entanglement

realism (so construed): on the one hand, it recommends recognizing a physical

entanglement relation when it is instrumentally successful to do so, but, on the

other hand, we should not posit such a relation in this case despite meeting the

very same conditions that typically merit such an attribution. The failure to

5Of course, general relativity is our best theory of spacetime, and the situation there is more
complicated. There are several candidates for a preferred foliation in general relativity, such as
the “cosmological time” of relativistic cosmology. However, it is far from clear that any of these
candidates should be taken to provide the metaphysically privileged way of carving up spacetime.
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recognize entanglement in this case is an ad hoc measure to avoid the perceived

alternatives of antirealism or backwards causation.6

5 Entanglement across time

If we reject Egg’s attempt to reinterpret the outcome of these experiments,

we are forced to consider whether the entanglement realism is consistent with

genuine delayed-choice entanglement swapping. In particular, can the account

of ordinary entanglement swapping be extended to cover the delayed-choice

case? Because swapping is facilitated by entanglement relations, the answer

to this question will depend on one’s preferred metaphysics of entanglement.

Suppose we adopt the action at a distance view. This would seem to saddle

the realist with backward causal influence form Victor’s measurement of (2,3)

to particles 1 and 4 prior to their measurements by Alice and Bob.

But not so fast! First, we might question whether the influence is really

backward in time. It is tempting to assume that Victor’s measurement must

bring about the earlier entanglement of 1 and 4, but the dependence between

these events has a certain symmetry. Just as in the ordinary EPR-B case, it’s

hard to know which direction we should take the causal influence to go. Per-

haps we should regard the earlier entanglement of (1,4) to cause the later BSM

of (2,3). This might create worries about Victor’s free will (or the randomness

of the quantum random number generator), but these may not be decisive (see

Evans et al. 2012, §7.1). Second, we might wonder whether entanglement-

mediate influence should be understood as causal. It differs from paradigm

instances of causation in many respects, including: (a) it fails to diminish with

distance; (b) it cannot be shielded; (c) it doesn’t involve a transfer of energy

and; (d) it cannot be used to send signals. The last two conditions are of spe-

cial importance as most paradoxes associated with backward causation seem

to require them. In addition to these differences, action at distance must allow

6The sort of “instrumental success” I have in mind here is primarily the successful prediction
of correlations in measurement results. We may also recall that in cases of entanglement swapping
without delayed-choice, the attribution of an entangled state has important applications in quantum
information theory. It is not unreasonable to suppose that related applications might be found for
the attribution of an entangled state in the delayed-choice case as well.
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for instantaneous influence to account for standard EPR-B experiments and,

as a result, requires the rejection of the ordinary temporal asymmetry of cause

and effect.

So, the action at a distance view can be extended to the timelike case with-

out being committed to “backwards causation” by denying that either of the

terms apply. Alternatively, one may countenance limited backward causation,

but seek to downplay its significance for the reasons above (especially, the

inability to use it for signaling).

Adapting the holist approach to allow for timelike entanglement is less

straightforward. Part of the difficulty is due to the lack of clarity in the view

generally. Many philosophers have advocated understanding entanglement in

terms of a non-supervenient relation (e.g., Teller 1986; Howard 1985, 1989;

Esfeld 2004); the entangled state of the joint system merits the attribution of

a relation between its subsystems that fails to supervene on their individual

intrinsic properties. This is sometimes paired with a claim that the compound

system is more real or fundamental than the subsystems it comprises. One

version may regard the joint system as a single object spread, smeared, or

scattered across space. Another might take the distinct locations inhabited by

the object to be unified in a more fundamental space of higher dimensionality.

The former case, in which joint systems are thought of as wholes scat-

tered in space, seems to allow for extension to timelike separation without

major problems. Temporally-scattered objects are not hard to imagine—a

play with an intermission exists in two discontinuous timelike separated re-

gions of spacetime—but, it’s not obvious how such an approach is capable

(on its own) of accounting for Bell-type non-local correlations. Indeed, Hen-

son (2013) shows that the non-locality resulting from Bell’s theorem is not

avoided by denying separability. In some ways, this result is unsurprising.

Merely redescribing the two photons in an EPR-B scenario as parts of a non-

separable 2-photon whole does little to explain the correlations revealed by

their measurement. This is not to say such an approach is hopeless, but it’s

unclear how it avoids the necessity of non-local influence.7

7It’s possible that the advocate of this version of holism may wish to endorse action at a distance
as well. Perhaps the reason why non-local influence is possible is that entangled systems form a

17



The other version of holism, in which joint systems are located at a single

location in some higher-dimensional reality, promises to offer a more satisfying

account of Bell-type correlations. The rough idea is to grant that the world

is non-local in four-dimensional spacetime, but regard this as a reflection of a

more fundamental space of higher-dimensionality which is entirely local (see

Ismael 2012).

Yet, even if the higher dimensionality approach offers a promising alter-

native to action at a distance, it’s not easy to see how the picture would be

adapted to the case of timelike entanglement. The best known higher dimen-

sionality view, wavefunction realism (Albert 1996; Lewis 2004; Ney 2013; Ney

and Albert 2013), posits a fundamental ontology that includes the quantum

wavefunction in a very high-dimensional configuration space. While such view

may have the desired effect of eliminating spatial non-locality, time is left un-

touched.8 The wavefunction evolves in configuration space with time. Thus,

non-local influence among timelike separated regions would remain.

Could it be possible that timelike separated systems are reduced to a single

object in a higher-dimensional space? Certainly. But, there are no known

candidates for such a view. While there is talk of the emergence of space-time

in some theories of quantum gravity, these ideas remain highly speculative.

Furthermore, there is no reason to think that such theories will have the right

features to provide a satisfactory account of entangled systems, much less those

that are timelike separated.

6 Lessons for the metaphysics of entangle-

ment

There are several lessons to be drawn. Most importantly, entanglement swap-

ping doesn’t undermine realism, but rather provides important insight into the

non-separable whole.
8It’s unclear that wavefunction realism is able to account for entanglement in the manner sug-

gested by Ismael. If everything is reduced to the wavefunction in high-dimensional configuration
space, it doesn’t seem able to account for what makes entangled systems special (c.f., Ismael and
Schaffer 2013, 15).
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nature of the entanglement relation. In particular, it compels the realist to

revise certain aspects of their understanding of entanglement:

• Contrary to many presentations of the topic, entanglement does not re-

quire common preparation or previous interaction between entangled sub-

systems.

• Entanglement can account for changes in not just intrinsic (monadic)

properties, but also the relations of entangled subsystems. Indeed, en-

tanglement relations can beget new entanglement relations.

• Delayed-choice entanglement swapping can be accounted for in at least

two ways:

1. Following Egg, the realist can deny that genuine swapping occurs in

delayed-choice setups.

2. The realist can endorse the possibility of timelike entanglement.

By taking the first option, the realist highlights their commitment to

a time-ordering of spacelike events. Taking the latter option requires

modifying the action at a distance or ontological holist views along the

lines explored in the previous section.

I conclude by noting two very different potential sources support for time-

like entanglement: (a) massless quantum fields in the Minkowski vacuum state

(Olson and Ralph 2011, 2012) and (b) temporal analogues of Bell’s theorem

(Brukner et al. 2004; Fritz 2010). The import of these issues for a realist

understanding of timelike entanglement remains to be seen.

References

Albert, D. Z. 1996. Elementary quantum metaphysics. In Bohmian mechanics
and quantum theory: An appraisal, 277–284. Springer.

Berkovitz, J. 2016. Action at a distance in quantum mechanics. In The Stanford
Encyclopedia of Philosophy (Spring 2016 ed.)., ed. E. N. Zalta.

Bohm, D. 1951. Quantum Theory. Dover Books on Physics. Dover Publica-
tions.

19



Bouwmeester, D., A. K. Ekert, A. Zeilinger, et al. 2000. The Physics of Quan-
tum Information, Volume 38. Springer Berlin.

Brukner, C., S. Taylor, S. Cheung, and V. Vedral. 2004. Quantum entangle-
ment in time. arXiv preprint quant-ph/0402127 .

Egg, M. 2013. Delayed-choice experiments and the metaphysics of entangle-
ment. Foundations of Physics 43 (9): 1124–1135.

Einstein, A., B. Podolsky, and N. Rosen. 1935. Can quantum-mechanical de-
scription of physical reality be considered complete? Physical review 47 (10):
777.

Esfeld, M. 2004. Quantum entanglement and a metaphysics of relations. Stud-
ies in History and Philosophy of Science Part B: Studies in History and
Philosophy of Modern Physics 35 (4): 601–617.

Evans, P. W., H. Price, and K. B. Wharton. 2012. New slant on the epr-bell
experiment. The British Journal for the Philosophy of Science: axr052.

Fritz, T. 2010. Quantum correlations in the temporal clauser–horne–shimony–
holt (chsh) scenario. New Journal of Physics 12 (8): 083055.

Ghirardi, G., L. Marinatto, and T. Weber. 2002. Entanglement and properties
of composite quantum systems: A conceptual and mathematical analysis.
Journal of Statistical Physics 108 (1-2): 49–122.

Healey, R. 2012. Quantum theory: A pragmatist approach. The British Jour-
nal for the Philosophy of Science 63 (4): 729–771.

Hensen, B., H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok,
J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya,
V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss,
S. Wehner, T. H. Taminiau, and R. Hanson. 2015, 10). Loophole-free bell
inequality violation using electron spins separated by 1.3 kilometres. Na-
ture 526 (7575): 682–686.

Henson, J. 2013. Non-separability does not relieve the problem of bell’s theo-
rem. Foundations of Physics 43 (8): 1008–1038.

Howard, D. 1985. Einstein on locality and separability. Studies in History and
Philosophy of Science Part A 16 (3): 171–201.

Howard, D. 1989. Holism, separability, and the metaphysical implications of
the bell experiments.

20



Ismael, J. 2012. What entanglement might be telling us. Unpublished draft,
available online at http://www.jenanni.com/papers/quantumholism-1.

pdf.

Ismael, J. and J. Schaffer. 2013. Quantum holism: Nonseparability as common
ground. Unpublished draft, available online at http://www.jenanni.com/

papers/quantumholism-1.pdf.

Ladyman, J., Ø. Linnebo, and T. Bigaj. 2013. Entanglement and non-
factorizability. Studies in History and Philosophy of Science Part B: Studies
in History and Philosophy of Modern Physics 44 (3): 215–221.

Ladyman, J. and D. Ross. 2007. Every Thing Must Go: Metaphysics Natural-
ized. Oxford: Oxford University Press.

Lewis, P. J. 2004. Life in configuration space. The British journal for the
philosophy of science 55 (4): 713–729.

Ma, X.-s., S. Zotter, J. Kofler, R. Ursin, T. Jennewein, Č. Brukner, and
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