
On The Hourglass Model, The End-to-End Principle and
Deployment Scalability

Micah Beck
University of Tennessee

Knoxville, TN 37996
mbeck@utk.edu

ABSTRACT
The hourglass model is widely used as a means of describing
the design of the Internet, and can be found in the intro-
duction of many modern textbooks. We argue that it also
applies to the design of other successful shared interfaces,
notably the Unix operating system kernel interface. The
impressive success of the Internet has led to a wider interest
in applying the hourglass design in other layered systems,
with the goal of achieving similar results. However, appli-
cation of the hourglass model has often led to controversy,
perhaps in part because the language in which it has been
expressed has been informal, and arguments for its validity
have not been precise. Formalizing such an argument1 is the
goal of this paper.

CCS Concepts
•Networks → Layering; •Software and its engineer-
ing → Layered systems;

Keywords
ACM proceedings; LATEX; text tagging

1. INTRODUCTION
The hourglass model of layered systems architecture is a

visual and conceptual representation of an approach to de-
sign in layered systems that seek to support a great diversity
of applications and to admit a great diversity of implementa-
tions. At the center of the hourglass model is a distinguished
layer in a stack of abstractions that is chosen as the sole
means of accessing the lower level resources of the system.
This distinguished layer can be given implementations us-
ing abstractions that are thought of as lying below it in the
stack. The distinguished layer can be used to implement
other services and applications that are thought of as lying

1An undertaking that was suggested to me many years ago
by Alan Demers.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Figure 1: The hourglass model

above it. However, the components that lie above the distin-
guished layer cannot make direct access to the services that
lie below it. The distinguished layer was called the “span-
ning layer” by Clark because in the Internet architecture
it bridges the multiple local area network implementations
that lie below it in the stack (see Figure 1) [5].

The shape suggested by the hourglass model expresses the
goal that the spanning layer should support many diverse
applications and have many possible implementations. Re-
ferring to the hourglass as a design tool also expresses the
intuition that restricting the functionality of the spanning
layer is instrumental in achieving these goals. These ele-
ments of the model are combined visually in the form of an
hourglass shape, with the “thin waist” of the hourglass rep-
resenting the restricted spanning layer, and its large upper
and lower bells representing the multiplicity of applications
and implementations, respectively (see Figure 1).

The hourglass model is widely used in describing the de-
sign of the Internet, and can be found in the introduction of
many modern networking textbooks. A similar principle has
also been applied to the design of other successful spanning
layers, notably the Unix operating system kernel interface,
by which we mean the primitive system calls and the in-
teractions between user processes and the kernel prescribed
by standard manual pages [9]. The impressive success of the
Internet has led to a wider interest in applying the hourglass
model in other layered systems, with the goal of achieving
similar results [8]. However, application of the hourglass
model has often led to controversy, perhaps in part because
the language in which it has been expressed has been in-
formal. The purpose of this paper is to present a formal
model of layering and to use this model to prove some prop-



Figure 2: The Internet hourglass

erties relevant to the hourglass model. We will then use this
model to explain the application of the hourglass model in
the design of the Internet, and to show how it relates to
other concepts in the design of layered systems, notably the
End-to-End Principle.

2. OVERVIEW
We begin by presenting an abstract framework for rea-

soning about layered architectures and spanning layers in
particular. We assume the existence of a certain relation-
ship between layers, namely that one layer specification can
implement another. We do not give a formal definitions
for layer specifications or the implements relation here, as
the complete formalization is somewhat complex and not,
we believe, necessary to a satisfactory understanding of the
argument. A more complete account of the formal frame-
work is available elsewhere [1]. Given the existence of the
implements relation, we then give definitions of possible im-
plementations and possible applications of a layer in terms of
it. Our account of the hourglass rests on two simple prop-
erties that can be derived from these definitions, and refer
the interested reader elsewhere for formal proofs [1].

These definitions and the properties that we derive from
them create a framework for characterizing a spanning layer
in terms of the multiplicity of its possible applications and
implementations. We explore the relationship between the
multiplicity of possible applications and implementations
and the logical strength or weakness of the spanning layer.
We then use this framework to state and argue for the va-
lidity of The Deployment Scalability Tradeoff (DST).

The Deployment Scalability Tradeoff
There is an inherent tradeoff between the deploy-
ment scalability of a specification and the degree
to which that specification is weak, simple, gen-
eral and resource limited. n

The DST is intended to more formally account for the ar-
guments made in classical papers that relate the hourglass
design in layered architectures to the scalability of systems
that they describe [10].

3. THE HOURGLASS

Definition 1. A service specification is a formal descrip-
tion of the syntax and necessary properties of a program-
ming interface (API).

A service specification S describes an API: it specifies
the behavior of certain program elements (functions or sub-
programs) through statements expressed in a programming
logic. For instance, these might be such statements:

1. ∀A,B ∈ Z [(A + 1) + B = (A + B) + 1]

2. ∀x, y ∈ N [{x > 0} y := x ∗ x {y > x}]

In formal terms a service specification is a theory of the
programming logic. We denote by Σ the set of all such spec-
ifications expressed in the language of the specific logic. In
practical terms, a service specification describes the opera-
tions of a protocol suite an or a programming interface such
as operating system calls.

Definition 2. A specification S1 is weaker than another
specification S2 iff S2 ` S1. S1 is strictly weaker than S2
iff S2 ` S1 but S1 6` S2.

Definition 3. An implements relation S ≺p T between
two service specifications S and T and a program p expresses
that in a model where API S is correctly instantiated, the
program p correctly implements API T using the instantia-
tion of S.

The implements relation is intended to be analogous to
the “reduces to” relation of structural complexity theory.

3.1 The Hourglass Lemma
While we have omitted the detailed definitions of service

specifications and the implements relation, we call upon the
intuition of the reader to justify the following lemma which
we present without proof. This lemma is the only place
where the omitted basic definitions are used, and the re-
mainder of our discussion is based upon the lemma.

Lemma 1. If S1 is weaker than S2, then

1. S1 ≺p T ⇒ S2 ≺p T .

2. T ≺p S2⇒ T ≺p S1.

Proof omitted.

Both of these properites follow directly from fundamental
definitions in program logic, and they also correspond very
closely to covariance of return types and contravariance of
argument types in object oriented inheritance [3].

3.2 Pre- and Postimages
We will express our formal analogs to scalability in terms

of how large the sets of models are that can implement or
can be implemented using a specification. To this end, we
define the pre- and post-images of a specification under im-
plementation.

These definitions are given relative to the set Π of pro-
grams that are considered as possible implementations of
one layer in terms of another. We do not specify Π because
we know of no accepted characterization of all “acceptable
implementations” of one layer in terms of another. This is
certainly a limited class, and is in fact finite since programs
that are too large are considered unwieldy from a software
engineering point of view. This class also changes over time,
as hardware and software technology changes the set of ca-
pabilities that are available as implementation tools.



Figure 3: Pre- and postimages

Definition 4.

preΠ(S) = {T | ∃p ∈ Π [T ≺p S]}

Definition 5.

postΠ(S) = {T | ∃p ∈ Π [S ≺p T ]}

We acknowledge that in representing the set Π in our
model as an external parameter we are not accounting for
this aspect of the application of layered systems.

3.3 Using the hourglass as an analytical tool
Reference to the hourglass model is sometimes conflated

with the idea of the spanning layer as a standard that is
enforced by some external means such as legal regulation or
as a condition of voluntary membership in some community.
However, we can use our analysis of pre- and postimages of
the implements relation as tools to analyze a layered system
without necessarily relating it to any standards process.

If we select any set of services at one level of a layered
system, we can ask what the design consequences would be
if it were adopted as the spanning layer of a hypothetical
system. Adoption as a spanning layer means that no other
services would be available at that layer. Any participant in
the system would have to use it as the sole means of accessing
the services and resources of lower layers. Viewed in this
way, the preimage of the implements relation denotes all
possible implementations of the prospective spanning layer
and the post image denotes all of its possible applications.

I use the term “denotes” because the pre- and post-image
are not necessarily useful in actually enumerating these sets
of specifications, since we have given neighter a formal speci-
fication for the value of Π, nor a way of determining whether
a particular program p is in Π.

Taking a “descriptive” view of the hourglass allows us to
use it as an analytical or predictive tool to understand the
impact of a community’s adopting a particular interface as
a standard, be it de facto or de juris. Making the distinction
between the use of the hourglass as a descriptive tool or as
a means of justifying a standard also explains how different
hourglasses can be examined and compared within the dis-
cussion of the same layered system. Every prospective span-
ning layer has an associated pre- and post-image, regardless
of whether it is considered for any kind of standardization.

4. THE HOURGLASS THEOREM
This theorem is central to our understanding of the hour-

glass model.

Figure 4: The Hourglass properties

Theorem 1. If a specification S1 is weaker than another
specification S2, then

1. postΠ(S1) ⊆ postΠ(S2)

2. preΠ(S1) ⊇ preΠ(S2)

Proof:

1. By definition, T ∈ postΠ(S1) iff

• ∃p ∈ Π [S1 ≺p T ], so by Lemma 1

• S2 ≺p T , thus

• T ∈ post(S2)

2. By definition, T ∈ preΠ(S2), iff

• ∃p ∈ Π [T ≺p S2 ], so by Lemma 1

• T ≺p S1, thus

• T ∈ pre(S1)

The Hourglass Theorem tells us (roughly) that a weaker
layer specification has fewer applications but more imple-
mentations than a stronger one.

5. MINIMAL SUFFICIENCY
In terms of the hourglass shape, we can say that the “thin

waist” (weak spanning layer) naturally tends to give rise to
the “large lower bell” of the hourglass (many implementa-
tions). However a weaker spanning layer also tends to give
rise to a “smaller upper bell” (fewer applications). Thus we
must introduce some countervailing element into the model
to ensure that it is in fact possible to implement all necessary
applications.

We model, as a design goal, the necessity of implement-
ing certain applications by introducing the set of necessary
applications as another external parameter N ⊆ Σ.

Definition 6. A specification S is sufficient to implement
a set of specifications N iff N ⊆ postΠ(S).

A spanning layer must be strong enough to implement
all necessary applications but the stronger it is the fewer
implementations are possible. We introduce the notion of
minimal sufficiency as a means to balance these two design
requirements:

Definition 7. A specification is minimally sufficient for N
iff it is sufficient for N but there is no strictly weaker S′

which is sufficient for N .



Figure 5: A minimally sufficient spanning layer

The balance between more applications and more imple-
mentations is achieved by specifying the set of necessary
applications N and then seeking a spanning layer sufficient
for N that is as weak as possible. This makes the choice
of necessary applications N is the most directly consequen-
tial element in the process of defining a spanning layer that
meets the goals of the hourglass model.

Note the implication that the trade-off between the weak-
ness of the spanning layer and its sufficiency for a particular
set of applications N is unavoidable. This suggests that at-
tempts to design a spanning layer that both 1) achieves a
high degree of weakness and also 2) is sufficient for a large
set of necessary applications may have a tendency to fail.

6. THE END-TO-END PRINCIPLE
The End-to-End Principle is an idea that influenced the

design of many layered systems, most famously the Inter-
net. There has been much controversy associated with the
End-to-End Principle, at least in part because it has often
been cited as a fundamental reason for the success of the
Internet, and so has aroused great passions in the network
architecture community. In particular, this principle has
been linked rhetorically to the “scalability” of the Internet,
which is a somewhat ill-defined term we interpret in this
paper as “having many implementations and many applica-
tions.” We will now characterize the End-to-End Principle
in terms of our model of layered systems, and explain how it
may interact with the hourglass theorem while being quite
distinct from it conceptually.

The End-to-End Principle as presented in the classic pa-
per “End-to-End Arguments in System Design” by Saltzer,
Reed and Clark [10] can be paraphrased as follows:

In a layered architecture, any function should be
located at the highest layer at which it can be
correctly and completely implemented.”

This principle is often justified by pointing out that dif-
ferent application communities, as represented in the layers
of the stack that implement the functions they share, have
different requirements, and these change over time. If we
consider each layer of the stack to be the spanning layer of
some community of interoperation then the lower the layer
of implementation, the larger the community. If the inter-
face to a given layer defines interoperability for a large com-
munity, it is difficult to address the various needs of that
community, especially when it changes over time. Locating
the function at a higher layer enables it to be specialized to
the needs of a smaller community, and reduces the cost of
changes to or replacement of its interface over time.

Viewed in this way, the End-to-End Principle is an exhor-
tation to maintain abstraction and generality in the lower

layers of the network, much as we do in the lower layers of
any well designed object hierarchy. In any given example,
this may result in more possible applications, not due to
a lower layer having been strengthened but due to better
maintenance of abstraction at the lower layers.

According to this analysis, the End-to-End Principle has
no necessary relationship to the hourglass model.2 If we
compare a given specification S that implements a specific
function to another layer S′ that supports that function in
a higher layer but does not implement it, S′ may be weaker
than S, it may be stronger, or the two may be incomparable.
Illustrative examples given in Section 6.1.

However, in those cases where S′ is weaker than S, the
Hourglass Theorem tells us that S′ may have more imple-
mentations. Thus, an application of the End-to-End Princi-
ple may (or may not) coincidentally result in greater scala-
bility due to the effect described by the Hourglass Theorem.
However, in those cases where the spanning layer can be
substantially weakened in the process of moving a function
to a higher layer, its impact can be two-fold:

1. the set of possible implementations may be increased
due to weakening of the spanning layer, and simulta-
neously

2. the set of possible applications may be increased due
to greater abstraction being maintained in the lower
layers of the stack.

Such “heroic” applications of the End-to-End Principle in
the design of the Internet may have given rise to a belief that
it was the driving force behind the the hourglass model, lead-
ing to designs that maximize implementations. Our analysis
suggests that this is only sometimes true, and that in some
cases application of the End-to-End Principle may even lead
to the strengthening of the spanning layer, and perhaps a re-
duction in the scalability attributable to the Hourglass The-
orem! However, even in cases where weakening of the span-
ning layer is not possible, if the End-to-End principle can
be applied while avoiding strengthening the spanning layer
or while strengthening it only minimally, it may be possible
to achieve both goals of the hourglass model (more applica-
tions and more implementations due to greater abstraction
in the lower layers of the stack without strengthening the
spanning layer).

6.1 End-to-End and Logical Weakness
Our analysis tells us that the End-to-End Principle has no

necessary correlation with the logical strength of the span-
ning layer. To illustrate this point, we give one example
where application of the End-to-End Principle results in a
weakening of the spanning layer, and one in which its results
in a strengthening.

6.1.1 Example: Reliable packet delivery
Consider a network layer that delivers packets from sender

to receiver, and which requires that the sender annotate each
flow of packets with a unique flow identifier and each packet
with a unique packet sequence number. The network layer
guarantees that packets in each flow are delivered in order
and without missing sequence numbers. If such reliable de-
livery is not possible, the flow is terminated.

2This point was impressed upon me by Gerald Saltzer in his
generous comments on an earlier version of this paper.



We can weaken this definition of the network layer by elim-
inating the significance of the flow identifier and sequence
number, and allowing packets to be delivered in any order
or to be dropped (as in IP). Flow identifiers and sequence
numbers can be implemented at a higher layer (as in TCP).
The weakened network layer will have more implementa-
tions, and reliability as implemented at the higher layer can
be adapted to the needs of each application community.

6.1.2 Example: Datagram timeouts
Consider a best effort network layer that delivers data-

grams from sender to receiver. Suppose we strengthen this
network layer by adding an optional timeout field to the sig-
nature of the send function. The meaning of this field is that
a datagram should not persist in the network for longer than
the value of this field.

This would enable an application with hard real-time la-
tency bounds to see only datagrams that are delivered within
those bounds and to not waste network and endpoint re-
sources on tardy ones. However, the strengthened network
layer would have significantly fewer implementations, as it
would require the use of accurate timers throughout the net-
work layer.

7. OTHER ASPECTS OF THE THIN WAIST
Our analysis of the impact of the design of the spanning

layer to application and implementation richness gives us a
tool for making such a choice when considering the design
of a layered system. If we agree on the limits of possible
implementations (parameter Π) and the set of necessary ap-
plications (parameter N) we can then maximize the possible
implementations of our spanning layer by choosing one that
is minimally sufficient for N .

This analysis does not tell us how to design such a span-
ning layer, but it does give us an account of how certain
choices may affect the adoption of any design. This model
is however incomplete in that it leaves out many factors
that have been considered important in the design of span-
ning layers. In an attempt to more fully account for prior
discussions I will now relate some of those additional con-
siderations to the formal model we have developed so far.

The logical strength or weakness of the spanning layer may
be an appealing interpretation of the “thinness” of the span-
ning layer at the waist of the hourglass model largely because
it yields to formalization using the tools of program logic.
While this may account for some of the intention of prior
references to the hourglass, it clearly does not capture those
authors’ intent entirely, since other factors have an impact
on the value of a service definition as a potential community
standard: simplicity, generality and resource limitation [10].

7.1 Simplicity
A requirement that is commonly given for the thin waist

of the hourglass is that it should be simple. While logical
weakness may be thought of as one aspect of simplicity, it
clearly does not capture the entire concept. For example,
one important aspect of simplicity that is not captured by
logical weakness is orthogonality. In a service interface, or-
thogonality means that there is one way of gaining access
to any fundamental underlying service or resource. Redun-
dant features do not increase the strength of an interface but
they do make it more complex. Software engineers under-
stand the value of orthogonality in the design of interfaces

Figure 6: Generality

and are more likely to accept a design that has this form of
simplicity as a community standard, but it is not accounted
for in our formal discussion.

We understand simplicity as an important aspect of the
acceptability of the spanning layer as a tool to be used by
humans and in other contexts where resources may be lim-
ited or other factors may affect its adoption. If there are
software engineering metrics or other formalisms that can
capture these aspects of the design, then they could be in-
corporated into a more complete version of our model.

7.2 Generality
One unsatisfying aspect of our account of the “thinness”

of the spanning layer as logical strength is that it does not
account for the incredible diversity of applications that are
supported by our two primary examples: the Internet and
the Unix kernel interface. Our analysis implies that logical
weakness of the spanning layer does not contribute to the
diversity of applications, and in fact acts against it. So what
accounts for the diversity we see in practice?

It is often observed that the diversity of applications sup-
ported by the Internet far outstrips those foreseen by its
original designers. Thus we cannot say that the choice of
necessary applications that went into the design directly de-
termined the necessary strength of the spanning layer. (Per-
haps the original designers are being modest, or had an im-
plicit understanding of the eventual destiny of the network
they were designing, but for the purposes of this discussion
we will take them at their word.)

The power of both of these systems is related to orthogo-
nality. Rather than crafting a spanning layer to directly sup-
port the functionality of the target applications they were
considering, the designers crafted a set of orthogonal prim-
itives such that all the target applications lay within the
space of applications generated by them. Defining a set of
orthogonal primitives is both an efficient strategy for imple-
menting the set of target applications and also enables the
implementation a highly diverse set of applications that are
as yet unforeseen.

In terms of our model, the design of the spanning layer
S yielded a very rich set of possible applications postΠ(S).
While the condition of sufficiency for a set of necessary appli-
cations is a more-or-less verifiable condition N ⊆ postΠ(S),
the set of all possible applications of a given spanning layer is
much harder to evaluate, and designing a layer which tends
to maximize it is an art.

Neither the Internet nor Unix would have had the impact
they have achieved without simplicity and generality. One
clue as to the origin of these imperatives within both the de-



signers of the Internet Protocol and the Unix kernel interface
may lie in a historical fact: Ken Thompson, Dennis Richie,
Gerald Saltzer, David Clark and David Reed all participated
in the Multics project, as did many of the prominent systems
researchers of their generation [6].

Multics was an operating system project known for its
many innovative features which had substantial success in
reaching many of its technical goals, but which was also
known for a high degree of complexity and lack of orthogo-
nality. Multics is a classic example of a system that achieved
its functionality goals but did not scale well. It is at least a
reasonable hypothesis that these design imperatives, which
have given us the most successful and scalable infrastructure
interfaces in the history of computer systems — the Inter-
net and the Unix operating system — were at least in part
informed by the negative example of Multics in the areas of
simplicity and generality.

7.3 Resource Limitation
The spanning layer provides an abstraction of the resources

used in its implementation, preventing them from being ac-
cessed directly by applications. A such, it also defines the
mechanism by which those resources are shared by applica-
tions and among users. In some communities, the modes of
sharing are open, with few restrictions (e.g. resource quota)
intended to ensure fairness among users. Such openness is
one way of enabling the spanning layer to be logically weak
(e.g. not implementing authorization of each user request).
One way of managing more open modes of resource sharing is
to limit the resources used by any individual service request,
requiring large allocations of resources to be fragmented [7].

Such fragmentation allows for more fluidity in the alloca-
tion of resources (e.g. storage allocations), with competition
between users occurring on a finer scale. Resource limita-
tion means that use of the specification by an acceptable
program will not result in overtaxing the resources of the
platform on which it is implemented.

In other words, the thin waist of the hourglass is also a
thin straw through which applications can draw upon the
unprotected resources that are available in the lower layers
of the stack. Resource limitation does not have a direct
impact on the logical strength or weakness of the spanning
layer, but it can affect the ability of the system to function in
environments where there the demand for resources locally
or transiently exceeds the capacity of the system.

8. DEPLOYMENT SCALABILITY
We have defined a model of a layered system of spec-

ifications and proved some properties relating the logical
strength or weakness of one layer to the sets of possible
applications and implementations. We then introduced the
notion of a set of necessary applications as a design require-
ment of a spanning layer and defined some characteristics
that seek to characterize the fitness of a specification in
meeting that requirement. To augment this formal develop-
ment, we have introduced three other ways of characterizing
the “thinness” of a spanning layer: simplicity, generality and
resource limitation.

We now seek to account for the idea that a system built on
the a “thin” spanning layer is well adapted to finding success
in the form of widespread adoption. We begin by giving a
definition to this admittedly imprecise notion of success.

8.1 Deployment Scalability

Definition 8. We define deployment scalability as widespread
acceptance, implementation and use of a service specifica-
tion.

Deployment scalability is a problematic choice of goal be-
cause we have no clear way to specify whether or not it has
been achieved. But as we are attempting to account for
informal arguments, we may have to live with that. Our
formal model depends on the parameters that a community
may have trouble agreeing on: acceptable programs Π and a
set of goal applications N . Then we have added three unfor-
malized notions that we believe also influence the fitness of a
spanning layer to achieve deployment scalability: simplicity,
generality and resource limitation. Undaunted, we now offer
a characterization of the tradeoff between these problematic
elements.

8.2 The Deployment Scalability Tradeoff (DST)

There is an inherent tradeoff between deploy-
ment scalability of a system with a given span-
ning layer and the weakness, simplicity, general-
ity and resource limitation of that layer’s speci-
fication.

The heart of the argument for the DST lies in the Hour-
glass Theorem, which explains why a layer that is minimally
sufficient for N will maximize the possible implementations
of that layer. Having the maximum possible choice of imple-
mentations is thus a key element of deployment scalability.

9. EXAMPLES AND APPLICATIONS
Giving full accounts of applications of the Deployment

Scalability Tradeoff is a non-trivial matter, as the antecedents
of the Hourglass Theorem require the definition of the spec-
ification language, a program logic, all acceptable programs
Π and the set of necessary applications N . I will restrict my
self to sketching some applications and giving a less formal
account of the implications of the DST here.

9.1 Fault Detection in TCP/IP
The classic example of the application of the End-to-End

Principle, from which its name is derived, is the location of
the detection of data corruption or packet loss or reordering
in the TCP/IP stack [10]. One argument for the location
of the detection of such faults at the endpoints of commu-
nication (historically perhaps the original argument) is that
it cannot be completely accomplished hop-by-hop because
this does not account for errors that occur between hops, in
the mechanisms and functioning of the intermediate nodes
(routers). Our account of the hourglass model does not ac-
count for this argument, but models a different one.

The scalability argument for end-to-end detection of faults
is that removing such functions from the spanning layer
makes it weaker, and therefore potentially admits more pos-
sible implementations. Because fault detection can be im-
plemented above the spanning layer, the set of applications
supported is not reduced. So one point about referring to
our model is that it enables a clear separation of the basis
for two quite different arguments regarding the placement of
fault detection, which might have otherwise been conflated



because both are elements of the“thinness”of IP as the waist
of the Internet hourglass.

Returning briefly to the argument that fault detection
cannot be fully implemented hop-by-hop but can be imple-
mented end-to-end, it is worth noting that it is less precise
than the above argument based on logical weakness. In an
end-to-end implementation of fault detection, there is still
the possibility of error occurring within the implementation
of TCP but outside the boundaries of the end-to-end check
for errors. That is because sequence number and checksum
verification occur within the mechanism of TCP, and there
is some processing that occurs between those checks and the
delivery of data to the application layer. Thus, while end-
to-end checks reduce the locus of possible error from IP pro-
cessing at every intermediate node plus all TCP processing
to just a portion of the TCP processing at the endpoints, it
does not in fact solve the problem completely in any formal
or logical sense. I mention this difference not to disparage
the effectiveness of TCP error detection, but simply to illus-
trate the difference between the application of the Hourglass
Theorem, which is based on formal logic, and the argument
regarding the incompleteness of hop-by-hop checking, which
is a matter of reducing the opportunities for error.

9.2 Process Creation in Unix
In early operating systems it was common for the creation

of a new process to be a privileged operation that could be
invoked only from code running with supervisory privileges.
There were multiple reasons for such caution, but one was
that the power to allocate operating system resources that
comprisee a new process was seen as too great to be dele-
gated to the application level. Another reason was that the
power of process creation (for example changing the iden-
tity under which the newly created process would run) was
seen as too dangerous. This led to a situation in which com-
mand line interpretation was a near-immutable function of
the operating system that could only be changed by the in-
stallation of new supervisory code modules, often a privilege
open only to the vendor or system administrator.

In Unix, process creation was reduced to the fork() oper-
ation, a logically much weaker operation that did not allow
any of the attributes of the child process to be determined by
the parent, but instead required that the child inherit such
attributes from the parent [9]. Operations that changed sen-
sitive properties of a process were factored out into orthog-
onal calls such as chown() and nice(), which were fully or
partially restricted to operating in supervisory mode; and
exec() which was not so restricted but which was later ex-
tended with properties such as the setuid bit that were im-
plemented as authenticated or protected features of the file
system. The decision was made to allow the allocation of
kernel resources by applications, leaving open the possibil-
ity of dynamic management of such allocation by the kernel
at runtime, and creating the possibility of“Denial of Service”
type attacks that persists to this day.

The result of this design was not only the ability to im-
plement a variety of different command line interpreters as
non-privileged user processes, leading to innovations and the
introduction of powerful new language features, but also the
flexible use of fork() as a tool in the design of multitasking
applications. This design approach has led to the adaptation
of Unix-like kernels to highly varied user interfaces (such as
mobile devices) that were not within the original Unix de-

sign space.
As with the above example, reducing general process cre-

ation with fork() and nice() system calls can be seen as an
application of the End-to-End Principle that also weakens
the spanning layer (in this case the kernel system call inter-
face). However, it should be noted that in some other ways
the Unix kernel interface did strengthen the interface to the
application layer, for instance by enforcing a strictly deter-
ministic algorithm for allocation of file descriptors that en-
abled a careful calling sequence to be implemented between
the command line interpreter and newly created processes.
Thus, a simple application of the Hourglass Theorem may
be instuctive, but the reality is somewhat more complex.

9.3 Replica Placement in Logistical Network-
ing

Network storage virtualization has become an important
component of distributed information technology resource
management systems. Data replication and placement is
often incorporated as a feature of the storage spanning layer
that defines community interoperability in such systems but
which is not under the explicit management of clients of that
layer, accessible only through higher level abstractions. As
a result, the policies that control such low level functions are
either fixed or must be determined by clients through some
policy interface of the virtualization layer.

The design of the Internet Backplane Protocol as the span-
ning layer of the Logistical Networking storage paradigm
leaves the replication and placement of data to clients im-
plementing higher layer functionality, such as distributed file
systems or content distribution networks [2]. Operations
that allocate storage and store data to or move data be-
tween storage intermediate nodes (sometimes called a Stor-
age Object Target but referred to in Logistical Networking
parlance as a “depot”) are local to the depot to which they
are directed. To facilitate the implementation of dynamic
data movement, direct third party transfer between depots
is supported.

This design enables diverse policy mechanisms to be con-
veniently implemented by clients of the storage virtualiza-
tion service without interference from possibly inappropriate
policies (e.g. cache coherence) being imposed in the imple-
mentation of the spanning layer. Clients that implement
highly transient functions such as data streaming may decide
to forgo replication, or to introduce it dynamically as a form
of forward error correction only if network failure conditions
are detected indicating that it would be efficacious. Clients
implementing more persistent functions such as content de-
livery might use replication and data distribution much more
aggressively in order to localize data throughout the network
and to maximize the profitability of diverse multipath data
downloading algorithms by end users.

This is another case where an application of the End-to-
End Principle is accomplished through a weakening of the
spanning layer.

9.4 Grid Authentication
In a retrospective lecture on“tussle spaces”in the design of

networks, David Clark called out the lack of security at the
Internet spanning layer as one regret regarding the design
of the Internet. In today’s difficult security environment,
it is common to assume that some form of tight security
is a necessity at the spanning layer, and in particular that



authentication of identity should be a requirement of any
use of common infrastructure.

The middleware framework for sharing of information tech-
nology resources that was given the communal name “The
Grid” had strong authentication built in at the spanning
layer of its protocol stack [8]. The Grid service stack was ad-
vertised as having a “thin waist” in analogy to the spanning
layer of the Internet, seeking to lay claim to the implication
of scalability. Grid authentication required that every user
and resource under the management of the common mid-
dleware be assigned an X.509 Grid Certificate, obtainable
only through a hierarchy of Certificate Authorities under
the control of the U.S. Department of Energy or a similarly
authoritative agency.

The exact impact of this requirement on the deployment
scalability of the Grid is open to debate, but there is no
question that a spanning layer that did not make this re-
quirement for all access to common services would have had
a weaker waist which would have had more possible imple-
mentations. The issue of what part, if any, of the substan-
tial storage, networking and computing resources that were
foreseen as being under the management of strong Grid au-
thentication could have been responsibly accessed without
such authentication, and what the implication might have
been for the deployment scalability of Grid middleware, is
beyond the scope of this discussion.

9.5 Process Management in Programmable Net-
working

PlanetLab is a platform for the allocation and use of dis-
tributed information technology resources in the form of in-
termediate nodes running a modified Linux kernel [4]. Plan-
etLab nodes are located throughout the United States, Eu-
rope and in some other parts of the world. The “spanning
layer” of the distributed community of PlanetLab users con-
sists of the shell command line, Internet, standard network
services (e.g. scp) with some extensions for “slice” manage-
ment, and a Linux kernel modified to implement increased
isolation of resource utilization between slices. Resources of
the intermediate node are allocated by executing commands
and running servers that service requests of their own client
communities.

The NSF-sponsored Global Environment for Network In-
novation (GENI) also had with ambitious plans to provide
a scalable network virtualization platform, and succeeding
in some of those goals. Today, the inheritors of the man-
tle of network diversity lie in Software Defined Networking
and Network Function Virtualization. Perhaps the hourglass
can provide an analytical tool to help predict the likelihood
that these approach will actually scale in deployment if their
functionality is implemented in the spanning layer of a net-
work or distributed system.

10. CONCLUSIONS
My interest in undestanding the hourglass and the End-to-

End Principle grew out of the forcefully expressed assertion
that integrating the use of storage into the Internet would
somehow violate a fundamental rule and destroy its scala-
bility. I have worked for over 15 years to understand how
a necessary design feature of distributed system can be so
dangerous as a feature of shared infrastruture. I have of-
ten been confused, and I have engaged in many confusing
discussions and arguments, due I think in part to a lack of

shared foundational defintions. It is my hope that this paper
can shed some light on the history of the development of the
most successful shared interfaces to have been developed in
the history of the field of Computer Science, and to aid in
the design of similarly successful systems in the future.

11. ACKNOWLEDGMENTS
I would like to thank the architects of all the systems that

have motivated and informed my understanding of scalabil-
ity in design, and the many mentors and colleagues who have
encouraged and/or challenged my ideas.

12. REFERENCES
[1] M. Beck. On the hourglass model. CoRR,

abs/1607.07183, 2016.

[2] M. Beck, T. Moore, and J. S. Plank. An end-to-end
approach to globally scalable network storage. In In
ACM SIGCOMM 2002, 2002.

[3] L. Cardelli. A semantics of multiple inheritance. In
Information and Computation, pages 51–67.
Springer-Verlag, 1988.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: An
overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12, July
2003.

[5] D. D. Clark. Interoperation, open interfaces and
protocol architecture. In The Unpredictable Certainty:
White Paper, pages 33–144. The National Academies
Press, Washington, DC, 1997.

[6] F. J. Corbató and V. A. Vyssotsky. Introduction and
overview of the multics system. In Proceedings of the
November 30–December 1, 1965, Fall Joint Computer
Conference, Part I, AFIPS ’65 (Fall, part I), pages
185–196, New York, NY, USA, 1965. ACM.

[7] G. Fagg, T. Moore, M. Beck, R. Wolski, J. S. Plank,
A. Bassi, and M. Swany. The internet backplane
protocol: A study in resource sharing. 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid, 00(undefined):194, 2002.

[8] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure, pages 47–48.
Advanced computing. Computer systems design.
Morgan Kaufmann Publishers, 1999.

[9] D. M. Ritchie and K. Thompson. The Unix
time-sharing system. Communications of the ACM,
17:365–375, 1974.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Trans. Comput.
Syst., 2(4):277–288, Nov. 1984.


