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Abstract

There are various ways to reach a group decision on a factual yes-no
question. One way is to vote and decide what the majority votes for.
This procedure receives some epistemological support from the Condorcet
Jury Theorem. Alternatively, the group members may prefer to deliberate
and will eventually reach a decision that everybody endorses – a consen-
sus. While the latter procedure has the advantage that it makes everybody
happy (as everybody endorses the consensus), it has the disadvantage that it
is difficult to implement, especially for larger groups. Besides, the resulting
consensus may be far away from the truth. And so we ask: Is delibera-
tion truth-conducive in the sense that majority voting is? To address this
question, we construct a highly idealized model of a particular deliberation
process, inspired by the movie Twelve Angry Men, and show that the answer
is ‘yes’. Deliberation procedures can be truth-conducive just as the voting
procedure is. We then explore, again on the basis of our model and using
agent-based simulations, under which conditions it is better epistemically to
deliberate than to vote. Our analysis shows that there are contexts in which
deliberation is epistemically preferable and we will provide reasons for why
this is so.

1 Introduction

Consider a group that has to decide on a a factual yes-no question. A jury in
court, for example, has to decide whether the defendant is guilty or not. An
environmental committee has to decide on a certain policy recommendation for
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the government. Situations like these raise the following questions: (1) Which
decision-making procedure should be applied here? (2) What justifies the chosen
decision-making procedure in general? And: (3) What justifies the application of
the chosen decision-making procedure in the specific situation?
There are three types of criteria to evaluate a proposed decision-making procedure:
First, there are practical reasons: The procedure should be easy to implement; it
should be implementable for groups of a given size; and following the procedure
should not take too much time to arrive at a decision. Second, there are procedural
reasons: The procedure should implement certain principles of rational decision-
making; it should be fair; and it should end up in a consensus that all group
members endorse. Third, there are epistemic reasons: The group decision should
be reliable and it should coincide with the fact of the matter if it is the task of
the group to decide on a fact of the matter (e.g. the group decision should be
‘guilty if and only if the defendant is guilty). Unfortunately, there is no decision-
making procedure that scores highest on each of these criteria. Hence, in any given
decision-making situation some compromise has to be made.
Let us now introduce two decision making procedures and their advantages and
disadvantages. First, there is majority voting. Here each group member casts
a vote, and the group decision is the one that the majority (or a supermajority)
of group members supports. This procedure ranks high on practical grounds: It
is easy to implement, it works for groups of large size, and it does not take long
to arrive at a group decision. There are also strong epistemic reasons in favor
of majority voting: Most relevant here is the Condorcet Jury Theorem which
considers a group of n independent voters each of whom has a probability greater
than 1/2 to make the right decision. It then follows (from the Weak Law of Large
Numbers) that the probability that the majority makes the right decision converges
to one if n goes to infinity.1 Hence, majority voting is a reliable procedure if one is
interested in tracking the truth. Concerning procedural reasons, majority voting
does not fare too well: The procedure can leave almost half of the group unhappy,
which may be considered as unfair. it also does not result in a consensus that
everyone endorses.
Second, there are deliberation procedures. These procedures are more dynam-
ical than the voting procedure. Here the group members argue for their verdict,
they try to convince each other, they may learn from each other and change their
mind as a result of this. If all goes well, a deliberation procedure results in a con-
sensus, i.e. in a decision that everyone supports and endorses. It lies in the nature
of deliberation procedure that they do not follow a strict rule. For example, there
is usually no given order in which the various group members speak, and there are
no rules that govern the belief change dynamics. There is not just one deliberation
procedure, there are many and every deliberation is in a way special. This makes

1There are various improvements of the result, such as: (1) The conclusion also holds if one
makes the weaker assumption that the average reliability of the voters is greater than 1/2. (2)
List & Goodin (2001) generalized the theorem to cases with more than two choice options. (3)
Dietrich & Spiekermann (2010) proved a modified version of the Condorcet Jury Theorem where
they differentiate between individual dependencies and dependencies on a common cause.

2



it harder to evaluate deliberation procedures according to the criteria listed above.
But let us try. Deliberation procedures are certainly not optimal on practical
grounds. It is impossible to implement them for larger groups (think about the
citizens of a country) and it may take very long until the group reaches a consensus
(if it reaches a consensus at all). The main advantage of deliberation procedures
is procedural: It is good that all group members have a chance to actively partic-
ipate in the decision making process, that the group productively interacts, and
that everyone endorse the resulting consensus. Finally, there is a large literature
which defends the view that deliberation is also epistemically advantageous. Here
it is stressed that the collective evaluation of arguments increases the chance of
identifying errors and that the chances of manipulation are lower in this case as
the group controls the flow of information.2

There is, however, no formal analysis which (i) shows that deliberation procedures
are truth-conducive (in a similar way as majority voting is truth conducive accord-
ing to the Condorcet Jury Theorem) and that (ii) explores which procedure does
better (under certain conditions) epistemically. We will address these question in
this article by constructing and analyzing a simple and highly idealized model of
deliberation. It remains an open question whether the results we obtain also hold
for more detailed and realistic models. The proposed model will be a good starting
point for further studies.
The remainder of this article is organized as follows. Sec. 2 presents and motivates
our model of deliberation. Sec. 3 explores the consequences of the model and
shows that deliberation is, under certain conditions, truth conducive. Sec. 4
compares the probability of making the right decision using majority voting with
the probability of making the right decision using deliberation. Finally, Sec. 5
concludes and suggests a number of questions which should be addressed in future
research.

2 A Bayesian Model of Deliberation

In this section, we first formalize the voting procedure and its probabilistic analysis
(Sec. 2.1). Then we introduce our new model of deliberation (Sec. 2.2). As we
want to compare the two procedures, we make sure that the parameters that
characterize the epistemic performance of the agents in the voting procedure also
show up in the model of deliberation. Our model of deliberation is Bayesian, i.e.
we assume that the group members have partial beliefs about the truth or falsity
of some hypothesis (e.g. ‘the defendant is guilty’) on the basis of which they cast
a (first) vote. In the course of deliberation, they then update their beliefs, taking
the (previous) votes of the other group members into account and using Bayes
Theorem. Our models specifies the details of this procedure.

2See Bohman & Rehg (1997), Cohen (1989a), Dryzek (1990), Elster (1998), Fearon (1998),
Marti (2006), and Nino (1996).
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2.1 The Voting Procedure

We consider a group of n members, denoted by a1, . . . , an, who deliberate on the
truth or falsity of some hypothesis. Throughout this article, we assume that n
is an odd number. To proceed we introduce a binary propositional variable H
with the values, H: the hypothesis is true, and ¬H: the hypothesis is false. For
reasons of symmetry that will become apparent immediately, we assume that the
hypothesis is true. The group members express their individual verdicts in terms
of a yes/no vote. The votes are represented by binary propositional variables Vi
(for i = 1, . . . , n) with the values: Vi: Group member ai votes that the hypothesis
is true, and ¬Vi: Group member ai votes that the hypothesis is false.
Next, we make two assumptions: First, we assume that the votes are independent,
given the truth or falsity of the hypothesis, i.e.

Vi ⊥⊥ V1, . . . , Vi−1, Vi+1, . . . , Vn|H ∀i = 1, . . . , n. (1)

Second, we assume that each group member ai is partially reliable with a first
order reliability ri defined as follows:

ri := P (Vi|H) = P (¬Vi|¬H). (2)

Here we assume that the rate of false positives equals the rate of false negatives.
This assumption can, of course, be easily relaxed.
We can now calculate the probability that the majority makes the right judgment:

PV =
n∑

k=n+1
2

∑
{aj1 ,...,ajk

}

⊂{a1,...,an}

∏
t∈

{j1,...,jk}

rt
∏
t/∈

{j1,...,jk}

(1− rt) . (3)

If all group members are equally likely to make the right individual judgment, i.e.
if ri =: r for all i = 1, . . . , n, then the expression in eq. (3) simplifies to

PV =
n∑

k=(n+1)/2

(
n

k

)
rk(1− r)n−k . (4)

With the help of eqs. (3) and (4), we can explore the truth-tracking properties
of majority voting. It is well known that PV in eq. (4) strictly monotonically
increases with n and converges to 1 for r > 0.5. This is the Condorcet Jury
Theorem; PV in eq. (3) strictly monotonically increase with n and converge to 1
if the average of the ri’s is greater than 0.5.

2.2 The Deliberation Procedure

Our model is inspired by the movie Twelve Angry Men. Here the members of a
jury in court meets in a closed room after attending the procedure in the court
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room. They are allowed to leave the room only after coming up with a consensual
verdict. During the procedure, no new evidence comes up (everything was already
presented in the court room). However, some people forgot or did not notice
certain pieces of evidence. There is also disagreement about the strength of certain
pieces of evidence. Initially, the jury members do not know each other at all
(they were randomly assembled). They therefore do not know how much weight
they can assign to the verdicts of their colleagues. However, during the course of
deliberation they get to know each other much better. They see how the others
argue, how they criticize the arguments of others, and what they remember of
the details of the case. This helps them to better assess how reliable the other
group members are and which weight to assign to their verdicts. The deliberation
procedure proceeds in several rounds of voting (with discussions in between). It
starts with an initial voting in which 11 jurors are for ‘guilty’ and 1 for ‘innocent’.
Afterwards a discussion takes place, followed by the next round of voting. The
result is now 9 : 3 and so on until the result of another round of voting is 1 : 11.
The group then convinces the last member in favor of guilty to change his mind,
and the movie ends.
The movie inspires our model of deliberation as it presents a clearly structured
deliberation process for a situation where all group members have the same knowl-
edge (as they all attended the procedure in court and no new information comes
in). The big challenge for modeling this procedure is to specify what happens in
between the rounds of voting. Here, people present arguments and criticize each
others arguments. This is impossible to do in a model as general and as simple as
the one we want to present. To proceed that we are only interested in the result of
the deliberation process. We assume that it is the interest of each group member
that the probability that the final verdict of the group corresponds to the truth is
as large as possible. Each group member wants to to maximize this probability,
and to do so it is important that each group member estimates the reliability of
the other group members well. Here we assume, as in the previous section, that
each group member ai has a first order reliability ri to make the right judgement.
However, the other group members do not know this reliability. They can only
estimate it. They will do so on the basis of what the other group members say in
the course of deliberation. This suggests that the group members get better and
better in assessing the reliability of the other group members. This implies that
each group member also becomes better and better to make the right judgement
in the various voting rounds provided that they are fairly competent to judge the
reliability of the other group members well.
To model this, we assume that each group member has a second order reliability ci
to judge the first order reliability of the other group members. If ci = 1, then group
member ai assigns the correct first order reliability rj to group member aj 6= ai.
(We assume that all group members have perfect access to their own reliability
which is an assumption that may be wrong empirically but it can be relaxed easily.)
If ci = 0, then group member ai assigns a random reliability from the interval (0, 1)
to group member ai. If ci ∈ (0, 1), then we follow the procedure specified below
which basically assigns a reliability drawn from a more or less broad distribution
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around ri (depending on the value of the second order reliability). This reliability
weights the verdict of group member aj in each voting round.
The group members are therefore characterized by two parameters. The first order
reliability ri to make the right decision, and the second order reliability ci to assess
the first order reliability of the other group members. We assume that these two
reliabilities are independent. There may be people who have a high first order
reliability and a high second order reliability, but there are also people who are
good at getting the facts right, but fail to assess the reliability of others. And
vice versa. So, without any further knowledge about the particular group we are
interested in, we are on the safe side if we assume that the two reliabilities are
independent.
We assume that the first order reliability is kept fixed during the course of delib-
eration. It characterizes, in general terms, how good a certain group member is in
making the right judgement. In the course of the deliberation, the quality of the
judgement of the group member only goes up because she learns to better weigh
the judgements of the other group members. That is, we assume that the second
order reliabilities increase in the course of the deliberation because they learn to
better judge the reliabilities of the other group members as the deliberation pro-
cess reveals new information about their reliability (but not about the fact under
consideration).
The deliberation procedure we propose then works as follows. The group has to
decide on the truth or falsity of a hypothesis H. Each group member assigns a
certain probability to H. Then each group member casts a vote on the basis of
this probability. Then each group member updates her probability on the basis
of the votes of the other group members, weighted according to the estimated
reliabilities as explained above. The procedure is iterated, and in each round the
second order reliabilities are increased which leads to a more accurate estimation of
the reliability of the votes of the other group members. After a number of rounds,
this process converges.
One disclaimer before we continue: we call the process we model here a deliberation
as it (i) involves the change of belief of the group members in every round and as it
(ii) leads to a consensus (as we will see). The model involves several idealizations
and black-boxes what happens in between the various rounds of voting. We insist,
however, that what happens effectively models a deliberation process.
Let us formalize things now a bit more. First, every group member casts an

initial vote, V
(0)
i or ¬V (0)

i , for or against the hypothesis in question. We introduce

parameters p
(k)
i and set p

(k)
i = 1 if V

(k)
i and p

(k)
i = −1 otherwise. These initial

votes, for each person, come from an initial probability assignment P
(0)
i (H). We

assume that group member ai will initially vote Vi if P
(0)
i (H) ≥ 0.5 and ¬Vi

otherwise.3 This relates to the first order reliabilities in an obvious way, that is,
the group member with first order reliability ri will assign an initial probability
greater or equal to 0.5 (and thus vote correctly) with probability ri. Next, every

3As we disregard strategic considerations in our model, a group member’s vote is only deter-
mined by the probability the group member assigns to the corresponding proposition.
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group member ai estimates the first order reliability rj of her fellow group members
aj, viz.

r
(0)
ij := P

(0)
i (Vj|H) = P

(0)
i (¬Vj|¬H). (5)

The higher ai’s second order reliability, the better is ai’s assessment of the first

order reliability of aj, i.e. the closer is r
(0)
ij to rj. If the initial second order reliability

c
(0)
i = 1, then r

(0)
ij = rj. If the initial second order reliability c

(0)
i = 0, ai randomly

assigns a first order reliability from the interval (0, 1) to aj (for j = 1, . . . , n).
If the initial second order reliability is in between the extremes, then agent ai
assigns a reliability r

(0)
ij to agent aj by drawing from a β-distribution whose width

is small if ai’s second order reliability is large and whose width is large if ai’s second
order reliability is small. To model this, we assume that the estimated first order

reliability r
(0)
ij is calculated from a β-distribution translated to an interval around

rj. The length of this interval is defined by the c
(0)
i . Higher values of c

(0)
i will result

in smaller intervals surrounding rj and thus a more accurate estimation. To do so
we consider a β-distribution with parameters

α = 2 , β =
min(1, rj − c(0)i + 1)−max(0, rj + c

(0)
i − 1)

rj −max(0, rj + c
(0)
i − 1)

in [0, 1] which is then linearly transferred to the interval[
max(0, rj + c

(0)
i − 1),min(1, rj − c(0)i + 1)

]
. This procedure is illustrated in

Figure 1. The values α and β are set such that the β-distribution has the mode
rj after it is transferred to the required interval.

Table 1

0 0 0

0,01 0,04776360944 1

0,02 0,0948026102 2

0,03 0,141114226

0,04 0,1866956326

0,05 0,2315439569

0,06 0,275656275

0,07 0,3190296107

0,08 0,361660934

0,09 0,403547161

0,1 0,4446851479

0,11 0,4850716943

0,12 0,524703538

0,13 0,563577355

0,14 0,601689755

0,15 0,639037282

0,16 0,67561641

0,17 0,711423543

0,18 0,746455009

0,19 0,780707062

0,2 0,814175873

0,21 0,846857534

0,22 0,878748052

0,23 0,909843344

0,24 0,940139237

0,25 0,969631462

0,26 0,998315652

0,27 1,026187338

0,28 1,053241944

0,29 1,079474784

0,3 1,104881056

0,31 1,129455838

0,32 1,153194083

0,33 1,176090615

0,34 1,198140121

0,35 1,219337146

0,36 1,239676087

0,37 1,259151185

0,38 1,277756522

0,39 1,295486005

0,4 1,312333368

0,41 1,328292156

0,42 1,343355718

0,43 1,357517197

0,44 1,370769521

0,45 1,383105389

0,46 1,39451726

0,47 1,404997342

0,48 1,414537573

0,49 1,423129609

0,5 1,43076481

0,51 1,437434217

0,52 1,443128535

0,53 1,447838115

0,54 1,451552928

0,55 1,45426254

0,56 1,455956088

0,57 1,456622251

0,58 1,456249214

0,59 1,454824636

0,6 1,452335611

0,61 1,448768627

0,62 1,444109515

0,63 1,4383434

0,64 1,431454645

0,65 1,42342678

0,66 1,41424244

0,67 1,403883275

0,68 1,392329866

0,69 1,37956162

0,7 1,365556656

0,71 1,350291674

0,72 1,3337418

0,73 1,315880423

0,74 1,296678988

0,75 1,276106769

0,76 1,254130605

0,77 1,230714577

0,78 1,205819647

0,79 1,179403208

0,8 1,151418562

0,81 1,121814275

0,82 1,090533406

0,83 1,05751254

0,84 1,022680595

0,85 0,985957313

0,86 0,947251323

0,87 0,906457631

0,88 0,863454285

0,89 0,818097872

0,9 0,770217269

0,91 0,719604743

0,92 0,666002808

0,93 0,609084042

0,94 0,548418421

0,95 0,4834169245

0,96 0,413225362

0,97 0,336498721

0,98 0,2508241302

0,99 0,1506627663

1 0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(a) β-distribution on (0 , 1)

Table 1

0 0 0

0,01 0,01 0

0,02 0,02 0

0,03 0,03 0

0,04 0,04 0

0,05 0,05 0

0,06 0,06 0

0,07 0,07 0

0,08 0,08 0

0,09 0,09 0

0,1 0,1 0

0,11 0,11 0

0,12 0,12 0

0,13 0,13 0

0,14 0,14 0

0,15 0,15 0

0,16 0,16 0

0,17 0,17 0

0,18 0,18 0

0,19 0,19 0

0,2 0,2 0

0,21 0,21 0

0,22 0,22 0

0,23 0,23 0

0,24 0,24 0

0,25 0,25 0

0,26 0,26 0

0,27 0,27 0

0,28 0,28 0

0,29 0,29 0

0,3 0,3 0

0,31 0,31 0

0,32 0,32 0

0,33 0,33 0

0,34 0,34 0

0,35 0,35 0

0,36 0,3565 0,04776360944

0,37 0,363 0,0948026102

0,38 0,3695 0,141114226

0,39 0,376 0,1866956326

0,4 0,3825 0,2315439569

0,41 0,389 0,275656275

0,42 0,3955 0,3190296107

0,43 0,402 0,361660934

0,44 0,4085 0,403547161

0,45 0,415 0,4446851479

0,46 0,4215 0,4850716943

0,47 0,428 0,524703538

0,48 0,4345 0,563577355

0,49 0,441 0,601689755

0,5 0,4475 0,639037282

0,51 0,454 0,67561641

0,52 0,4605 0,711423543

0,53 0,467 0,746455009

0,54 0,4735 0,780707062

0,55 0,48 0,814175873

0,56 0,4865 0,846857534

0,57 0,493 0,878748052

0,58 0,4995 0,909843344

0,59 0,506 0,940139237

0,6 0,5125 0,969631462

0,61 0,519 0,998315652

0,62 0,5255 1,026187338

0,63 0,532 1,053241944

0,64 0,5385 1,079474784

0,65 0,545 1,104881056

0,66 0,5515 1,129455838

0,67 0,558 1,153194083

0,68 0,5645 1,176090615

0,69 0,571 1,198140121

0,7 0,5775 1,219337146

0,71 0,584 1,239676087

0,72 0,5905 1,259151185

0,73 0,597 1,277756522

0,74 0,6035 1,295486005

0,75 0,61 1,312333368

0,76 0,6165 1,328292156

0,77 0,623 1,343355718

0,78 0,6295 1,357517197

0,79 0,636 1,370769521

0,8 0,6425 1,383105389

0,81 0,649 1,39451726

0,82 0,6555 1,404997342

0,83 0,662 1,414537573

0,84 0,6685 1,423129609

0,85 0,675 1,43076481

0,86 0,6815 1,437434217

0,87 0,688 1,443128535

0,88 0,6945 1,447838115

0,89 0,701 1,451552928

0,9 0,7075 1,45426254

0,91 0,714 1,455956088

0,92 0,7205 1,456622251

0,93 0,727 1,456249214

0,94 0,7335 1,454824636

0,95 0,74 1,452335611

0,96 0,7465 1,448768627

0,97 0,753 1,444109515

0,98 0,7595 1,4383434

0,99 0,766 1,431454645

1 0,7725 1,42342678

0,779 1,41424244

0,7855 1,403883275

0,792 1,392329866

0,7985 1,37956162

0,805 1,365556656

0,8115 1,350291674

0,818 1,3337418

0,8245 1,315880423

0,831 1,296678988

0,8375 1,276106769

0,844 1,254130605

0,8505 1,230714577

0,857 1,205819647

0,8635 1,179403208

0,87 1,151418562

0,8765 1,121814275

0,883 1,090533406

0,8895 1,05751254

0,896 1,022680595

0,9025 0,985957313

0,909 0,947251323

0,9155 0,906457631

0,922 0,863454285

0,9285 0,818097872

0,935 0,770217269

0,9415 0,719604743

0,948 0,666002808

0,9545 0,609084042

0,961 0,548418421

0,9675 0,4834169245

0,974 0,413225362

0,9805 0,336498721

0,987 0,2508241302

0,9935 0,1506627663

1 0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,15 0,3 0,415 0,5125 0,61 0,7075 0,805 0,9025 1

(b) β-distribution in (a) transferred
to the open interval (0.35, 1)

Figure 1: The β-distribution with parameters α = 2 and β = 1.625 corresponding
to rj = 0.75 and ci = 0.6.

It turns out that our results do not vary much with the value of α. What counts
is that the β-distribution has the mode rj after it is transferred to the interval

defined by rj and c
(0)
i .
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We furthermore assume that the group members become more competent in esti-
mating the first order reliabilities of the other group members. That is, we assume

that the second order reliability c
(k)
i in round k increases linearly as a function of

the number of rounds until a maximum value Ci ≤ 1 is reached after M rounds.
Afterwards, c

(k)
i remains constant. Hence,

c
(k)
i =

{
(Ci − c(0)i ) · k/M + c

(0)
i : 0 ≤ k ≤M
Ci : k > M

. (6)

Note that this is a very simplified (and non-Bayesian) updating process for the
second order reliabilities. It effectively models the epistemic effect of the exchange
of arguments. We come back to this below.
Using these reliability estimates, each group member ai calculates the likelihood
ratios4

x
(0)
ij :=

P
(0)
i (Vj|¬H)

P
(0)
i (Vj|H)

=
1− r(0)ij

r
(0)
ij

(7)

for j 6= i = 1, . . . , n. The revision process is carried out on the basis of the votes
cast by the other group members and their estimated likelihood ratios:

P
(1)
i (H) = P

(0)
i (H|Vote

(0)
1 , . . . ,Vote

(0)
i−1,Vote

(0)
i+1, . . . ,Vote(0)n )

=
P

(0)
i (H)

P
(0)
i (H) + (1− P (0)

i (H))
∏n

k 6=i=1

(
x
(0)
ik

)pk (8)

Here Vote
(0)
i ∈ {Vi,¬Vi}. To derive eq. (8), we have assumed independence

condition
Vi ⊥⊥ V1, . . . , Vi−1, Vi+1, . . . , Vn|H ∀i = 1, . . . , n. (9)

This condition, which is also assumed in the derivation of the Condorcet Jury
Theorem (see eq. (1)) makes sense for a procedure of rational deliberation: The
only cause for a group members’ verdict is the truth or falsity of the hypothesis in
question. The verdicts of the other group members do not have any direct influence
on a group members revised verdict. However, the verdicts of the other group
members are evidence for the truth or falsity of the hypothesis, and a rational
group member should take them into account by updating on them (weighted,
effectively, with the estimated reliability of the other group members).
Note that the independence condition (9) is assumed to hold in each round of the
deliberation process. This requirement is a plausible condition for rational agents,
though it may be empirically violated. What our model does, then, is to provide
a normative benchmark for the assessment of actual deliberations.

4We follow the convention used in Bovens & Hartmann (2003). Note that r
(0)
ij ≥ 1/2 implies

that 0 ≤ x(0)ij ≤ 1 and r
(0)
ij ≤ 1/2 implies that x

(0)
ij ≥ 1.
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The group members will then vote again and again based on their updated prob-
abilities. As before, a group member votes for the hypothesis if her updated
probability is greater than or equal to 0.5, otherwise she votes against it. For ex-

ample, the second round of deliberation starts with the prior probabilities P
(1)
i (H),

and everybody repeats updating her probability assignments as before by consid-
ering the new votes. As a result, we find that the individual votes converge to a
group consensus. Our simulations show that the convergence process is fairly fast.
We often need less rounds to arrive at a consensus than the twelve angry men.
Therefore the specific value of Ci in eq. (6) does not matter. We set is to .6 in our
simulations.

3 Truth Tracking

In this section, we explore under which conditions the proposed deliberation pro-
cedure is truth-tracking. To do so, we distinguish between homogeneous groups
(Sec. 3.1) and inhomogeneous groups (Sec. 3.2). In a homogeneous group, all
group members have the same first order reliability. In this case, we obtain sev-
eral analytical results. In an inhomogeneous group, different group members have
different reliabilities and results can only be obtained in agent-based simulations.
In these simulations we randomly assign reliabilities to the various group members
from a uniform distribution and average the results over many runs.

3.1 Homogeneous Groups

Let G be a homogeneous group of n members, i.e. a group whose members have
the same first order reliability. This group deliberates on the truth or falsity of
the hypothesis H. We assume that each group member has access (through some
shared history for example) to each others’ first order reliabilities (corresponding to
ci = 1, i = 1, . . . , n). We furthermore assume that the group members revise their
probability assignment for the truth of the hypothesis using the above procedure.
Without loss of generality we assume the hypothesis to be true. Then the following
theorem holds.

Theorem 1 For a homogeneous group G with reliable group members (i.e. for
r > 0.5), the following three claims hold:

(i) The probability that the group reaches a consensus in finitely many steps
increases with the size of the group and approaches 1 as the size of the group
increases.

(ii) If the majority of the group members vote correctly in the first round, the
subjective beliefs will stabilize on the truth in finitely many steps, i.e. after
finitely many steps, each group member assigns subjective probability 1 to
the truth of the hypothesis after which the deliberation process will no more
change the probability assignments.

9



(iii) If the majority of the group members vote incorrectly in the first round, the
subjective beliefs will stabilize on the wrong belief in finitely many steps, i.e.
after finitely many steps, each group member assigns subjective probability
0 to the truth of the hypothesis after which the deliberation process will no
more change the probability assignments.

Proof. See Appendix A1. �

For a homogeneous group G with partially reliable members, i.e. a group whose
members have a first order reliability r < 0.5, the situation is more complicated
and the emergence of a consensus depends strongly on the size of the group and
the initial probabilities. To see this notice that for r < 0.5 we will have x > 1 and

thus x
∑n

j=1 p
(0)
j < 1 if and only if

∑n
j=1 p

(0)
j < 0, i.e. if the majority of the group

members vote incorrectly in the first round. Using the same argument as in the
Condorcet Jury Theorem the chance that the majority of the group members (with
first order reliability less than 0.5) will vote incorrectly increases with the size of
the group and approaches 1. Thus using the argument in the proof of Theorem 1
if the majority of the group members start with initial subjective probabilities of
less than 0.5 for H and hence vote incorrectly in the first round, the probability
assignments will increase in the next round and this continues until at some point,
say at round t, the majority assigns a probability greater than 0.5 for H and thus
votes correctly. After this stage the process will reverse and the probabilities will

start to decrease since
∑n

j=1 p
(t)
j > 0 and thus x

∑n
j=1 p

(t)
j > 1. If the size of the

group, the likelihoods and the initial probabilities are such that at some round
s − 1 the majority assign probabilities less than 0.5 (and thus vote incorrectly)
but the probabilities increase in such a way that in round s all the probability
assignments are above 0.5 then the group reaches a consensus at this round s.
On the other hand if the probability assignments increase until at some round
s−1 the majority but not all group members assign a probability above 0.5 (so the
probabilities decrease in the next round) and in round s all probabilities decrease
to less than 0.5 then the group will again reach a consensus but this time on the
wrong answer. Otherwise the group can oscillate (not necessarily in consecutive
rounds) between the case where the majority vote correctly and the case where the
majority vote incorrectly. In any case, the subjective beliefs of the group members
will not stabilize for partially reliable groups.

Theorem 2 For a homogeneous group G with partially reliable group members
(i.e. for r < 0.5), the subjective beliefs of the group members will not stabilize
even if the group reaches a consensus.

Proof. See Appendix A2. �

Notice that in the proof of Theorem 1, the actual value of the likelihood ratio x
is not relevant. All that matters is whether x > 1 or x < 1. This allows for an
immediate generalization of these results.
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The situation in Theorems 1 and 2 is highly idealized as we assume that the second
order reliability is 1, which means that the group members have access to each
others’ objective first order reliabilities. In such a context it will be hard to justify
the iteration of the deliberation process after the second round. Assuming that
group members are able to weight each others’ opinion by the actual objective first
order reliabilities there is no room for improvement of such opinions by iteration
of the deliberation process more than once. Corollary 1 allows a generalization
that makes the iteration of the deliberation process meaningful and extends our
results to nontrivial cases where the second order reliabilities are less than 1.

Corollary 1 For a homogeneous group G with first order reliability r, let the sec-
ond order reliabilities ci for i = 1, . . . , n be less than 1 (so the group members won’t
have access to each others’ actual first order reliabilities) but high enough so that
the group members can correctly assess whether or not the other group members
are reliable, that is let ci be high enough so that rij > 0.5 if and only if rj > 0.5
for j = 1, . . . , n. Then the results of Theorems 1 and 2 still hold.

According to Corollary 1, to have the results in Theorem 1 one does not need
the agents to know each other’s first order reliability precisely. Rather, one should
require the second order reliabilities to be high enough that the agents can correctly
distinguish between the reliable and partially reliable members of the group. It is
also important to note that this does not need to be the case as the deliberation
starts. As the group members become better and better in assessing each other’s
first order reliabilities in the course of deliberation (because they listen to each
others’ arguments and reasons), the second order reliabilities increase. So even for
groups with low second order reliabilities, if the deliberation process continues long
enough, the iteration of the deliberation process will improve these second order
reliabilities until the assumption of Corollary 1 is satisfied and so the emergence
of convergence will be guaranteed.
We conclude this subsection with some simulation results. In Figure 2 we consider
a partially reliable homogeneous group. As we argued above the probability of
reaching a consensus on the correct answer can oscillate as the group moves from
the case where the majority vote correctly to the case where the majority vote
incorrectly.

3.2 Inhomogeneous Groups

Let us now consider inhomogeneous groups with second order reliabilities less than
1. Our simulations suggest that the deliberation process also tracks the truth
in this case (under plausible conditions). We will also present an illustration of
Theorem 2 and the argument preceeding it. To control the noise in the simulation
results, we average over 105 to 106 runs.
Figure 3, shows the probability of tracking the truth in the deliberation as a
function of group size. We examine inhomogeneous groups with partially reliable
members comprising the minority (Figure 3 (a)) and the majority (Figure 3 (b))
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Figure 2: PD for a homogeneous group as a function of the group size. Each group
member has a reliability of 0.4.

of the group members. As the simulation results suggest, in both cases the delib-
eration tracks the truth for large group sizes. Notice that the group in Figure 3
(b) has an average first order reliability of less than 0.5, but given the low second
order reliabilities the group members do not have access to each others correct
likelihood and only estimate these values in a rather large interval.

4 0,30934 0,7386
12 0,56735 0,8768
20 0,73978 0,9259
28 0,79285 0,9674
36 0,86048 0,9832
44 0,87408 0,9917
52 0,9124 0,9956
60 0,91795 0,9981
68 0,94164 0,9989
72 0,96834 0,9993

P(
D
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0,3

0,475

0,65

0,825

1
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Figure 3: PD for inhomogeneous groups as a function of the group size. (a) 1/4 of
the group members has a reliability of 0.25, the rest has a reliability of 0.7 (solid
line). (b) 1/4 of the group members has a reliability of 0.7, the rest has a reliability
of 0.25 (dotted line).

We conclude that the deliberation procedure (as modeled above) is truth-conducive
under similar conditions that hold for the Condorcet Jury Theorem. Note, how-
ever, that we do not have an analytical proof for this. The statement is only
suggested by the results of the simulations presented here (and many others which
we do not show for reasons of space).
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4 Which Procedure is Better?

Let us now compare the two procedures. We ask: which procedure is better if our
sole goal is to arrive at group decision that is as reliable as possible? We will see
that the answer depends on the specific context. There are contexts where the
deliberation procedure outperforms majority voting epistemically, and there are
contexts where it is the other way around. Which decision procedure is chosen
will, of course, also take other considerations into account (as argued in Sec. 1).
Sec. 4.1 focuses on homogeneous groups, and Sec. 4.2 focuses on inhomogeneous
groups.

4.1 Homogeneous Groups

Let X = {(±V1, . . . ,±Vn) | + Vi = Vi,−Vi = ¬Vi} be the set of all possible voting
profiles for a group of size n. A decision rule on X is a function f : X → {V,¬V },
that for each voting profile returns a (collective) vote for the hypothesis. As argued
in details in Dietrich (2006) the epistemically optimal decision rule is the weighted
average where the weights are given by the likelihood ratios. For homogeneous
groups this weighted average is reduced to simple majority voting as all group
members have the same likelihood ratio and thus the same weight in the averaging
process. For groups with very high second order reliabilities the estimated likeli-
hood ratios correspond to the correct values and as one can notice from Theorem
1, for reliable homogeneous groups, the deliberation process will result in a group
consensus on the correct (respectively, wrong) answer if and only if the majority of
group members vote correct (respectively, wrong) initially. By the same theorem
the subjective beliefs will stabilize on the true belief (respectively, wrong belief) if
and only if the majority of group members vote correctly (respectively, wrongly)
in the beginning. Thus:

Proposition 1 For a reliable homogeneous group G with high second order relia-
bilities, the deliberation process has no epistemic advantage to majority voting and
vice versa.

This result is hardly surprising as the weighted average, of which the majority rule
for voting is a special case (i.e. all voters get the same weight), has been shown to
be epistemically optimal. See Nitzan & Paroush (1982) and Gradstein & Nitzan
(1986). That is, if one knows that the group is homogeneous, or if one wants to
consider the group to be homogeneous (for political or whatever reasons), then
majority voting does best.
The advantage of the deliberation process for these groups, however, is that the
group will arrive at a consensus and all group members agree on the collective
decision. This is in contrast to majority voting where a minority has to accept
the resulting compromise without actually endorsing it. Hence, the advantage of
deliberation to majority voting for these groups is merely procedural. For partially
reliable homogeneous groups, however, the deliberation process comes with some
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epistemic advantage. For these groups the majority voting is doomed to end with
the wrong choice for large groups by the same argument as in the Condorcet Jury
Theorem. The deliberation process, however, may converge to the correct answer
(depending on the group size and the initial probabilities). One can of course argue
that partially reliable homogeneous group are not the right context for comparison
of the two procedures since they fall outside the domain in which the majority vot-
ing can be considered a justified decision making procedure. Nevertheless we point
to how the procedures compare for these groups for the sake of completeness. For
reliable homogeneous groups with lower second order reliabilities, however, one
would expect the majority voting to preform better than the deliberation proce-
dure. This is so because the deliberation in a reliable homogeneous group G with
high second order reliabilities is epistemically more efficient than the deliberation
in a group G′ with the same first order reliabilities as in G but with low second
order reliabilities. On the other hand, by Proposition 1, voting (in G or G′, notice
that it does not matter since group members in G and G′ have the same first order
reliabilities) is epistemically as efficient as deliberation in G and thus more efficient
than deliberation in G′.

4.2 Inhomogeneous Groups

Let us now consider inhomogeneous groups. We have already argued that the
deliberation process presents no epistemic advantage over majority voting for ho-
mogeneous groups with high second order reliabilities and that for reliable homo-
geneous groups with low second order reliabilities majority voting does better than
our deliberation procedure5. On the other hand for partially reliable homogeneous
groups the majority voting is doomed to give the wrong result while the deliber-
ation process can end with the consensus on the correct answer as pointed out in
the discussion after the Proposition 1. Let us now compare both procedures for
various inhomogeneous groups.
In what follows, let PD and PV denote the probability of converging to the correct
result through deliberation and voting respectively and let

∆ = PD − PV .

Unless otherwise stated, we plot ∆ as a function of the group size n. Unless
expressed differently, in all simulations the second order reliability of the group
members start from 0.6 and is increased linearly, notice that the second order
reliability of 0.6 defines an interval of maximum length 0.8 centered around each

5Notice that the deliberation procedure gives better results for reliable homogenous groups
with high second order reliabilities compared to the same group (same first order reliabilities)
but with lower second order reliabilities. This is because the higher second order reliabilities
imply more accurate weighting of the votes (with respect to their actual reliabilities). Since for
reliable homogenous groups voting does at least as good as deliberation with the assumption of
high second order reliabilities, it thus performs better than deliberation with the assumption of
low second order reliabilities.
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Figure 4: ∆ as a function of the group size.

rj (cut at zero or one when necessary) thus allowing for possibly very inaccurate
estimations.
In Figures 4(a) and 4(b), the majority of the group members (2/3 and 4/5, re-
spectively) have a high first order reliability and the rest have a low first order
reliability. In Figures 4(c) and 4(d) the situation is reversed while in all cases the
average first order reliability is above 0.5. The simulation results suggest that for
inhomogeneous groups the deliberation procedure shows epistemic advantage over
majority voting. The difference, however, is more visible for small and medium size
groups and becomes smaller as the size of the group increases. This is, of course,
not surprising as both PV (pace Condorcet Jury Theorem) and PD (as suggested
by our simulations) coverage to 1. Figure 5 shows the comparison between the
deliberation procedure and majority voting for two inhomogeneous groups with
average reliabilities of less than 0.5.
The comparison of the deliberation procedure and the voting procedure also de-
pends the second order reliabilities. The probability of the correct choice in de-
liberation is positively correlated with the second order reliabilities while voting
depends only on the first order reliabilities. Thus the difference between deliber-
ation and voting increases for the higher values of second order reliabilities and
decreases for lower values.
Figure 6 shows the difference between truth tracking in deliberation and voting as
a function of the (initial) second order reliability for three different groups sizes
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Figure 5: ∆ as a function of the group size.
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Figure 6: ∆ as a function of the (initial) second order reliability for different group
sizes n: n = 15 (dotted line), n = 27 (solid line), and n = 33 (dashed line).

(n = 15, 27 and 33) with the same distribution of (first order) reliabilities: 2/3
of the group has reliabilities of 0.6 and the rest has reliabilities of 0.75. As we
can see, the result of the comparison depends highly on the (initial) second order
reliabilities. Initial second order reliabilities greater than 0.6, 0.5 and 0.4 make the
deliberation procedure epistemically better for groups of size n = 15, 27 and 33,
respectively, while for lower (initial) second order reliabilities the voting procedure
performs better.
Finally, Figure 7 shows a group with one highly reliable member where the other
group members have near average reliabilities.
Note that the deliberation procedure proposed here does not assume that the
first order reliabilities of all group members are known to, say, the chairman of
the group. If there were such a person who would have this information, then
the weighted average would give the epistemically optimal result, see Nitzan &
Paroush (1982) and Gradstein & Nitzan (1986). However, in a real deliberation
situation it is often not wanted (for moral or political reasons) that this information

16



3 0,0502
9 0,1441

15 0,1560
21 0,1504
27 0,1363
33 0,1304
39 0,1200
45 0,1093
51 0,1055
57 0,1011
63 0,0907
69 0,0905
75 0,0852
81 0,0777
87 0,0756

D
el

ta

0

0,04

0,08

0,12

0,16

Group Size
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87

Figure 7: ∆ for a group with only one highly reliable member. One member has
a reliability of 0.9, the rest has a reliability of 0.55. The (initial) second order
reliability is 0.85.

is made known, and so a deliberation procedure such as the one proposed here,
which relies on the best estimates of the reliabilities of the group members, is the
preferred procedure.

5 Conclusions

Voting and deliberation are two standard procedures to reach a group decision.
The goal of this paper was (i) to present a new Bayesian model for non-strategic
rational deliberation, (ii) to study the emergence of consensus and its truth track-
ing properties, and (iii) to compare this deliberation process with majority voting
in terms of their truth-tracking properties. To this end, we proposed a Bayesian
model which allows for such a comparison. The model is based on two attributes
of the group members: we assumed that each group member has a first order re-
liability to make the right decision and a second order reliability which specifies
how good the group member is in estimating the first order reliability of the other
group members. The first order reliability is identical with the reliability used in
the modeling of the voting procedure. This identification allows us to compare the
two procedures in a meaningful way. Our model focuses on the situation where
all group members have the same information about the fact they have to assess
(remember the twelve angry men) and where the deliberation process is structures
as a sequence of voting procedures. When casting a new vote, each group members
takes the verdicts of the other group members in the previous round into account,
weighted according to their estimated reliability.
Our model is clearly highly idealized and includes several black boxes. For exam-
ple, the presentation of arguments and counter-arguments in between the various
rounds of voting is modeled effectively by its effect on the assessment of the re-
liability of the corresponding group member. And so one has to take the results
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we obtain with a grain of salt. However, the results are plausible and it has to be
seen whether more sophisticated models reproduce them.
What are our main results? We have shown that the deliberation process results in
a consensus and correctly tracks the truth for groups of large size in the following
cases: (i) homogeneous groups with a first order reliability greater than 0.5 and
with a high second order reliability. (ii) inhomogeneous groups with average first
order reliabilities above 0.5 and with a high (initial) second order reliability. In this
sense the deliberation procedure manifests the same epistemic properties as the
majority voting while adding the benefit of a group consensus which for groups with
average first order reliabilities above 0.5 and high (initial) second order reliabilities
will make sure that all group members reach a stable correct belief about the
hypothesis in finitely many steps. We furthermore provided simulation results
that indicate that the deliberation procedure tracks the truth even in cases that
do not fall under the conditions stated in the Condorcet Jury Theorem for majority
voting as well as for groups with low second order reliabilities.
Clearly, these results are consequences of our assumptions. But how robust are the
results? Do they also hold if we make changes in our deliberation model and relax
some of its idealizations? Here are three topics which we would like to address in
future work.
First, we want to study the effect of relaxing the independence assumption (9).
While it makes sense for voting, the independence assumption is questionable
for deliberations from a descriptive, but not from a normative point of view as
more and more links between the group members are established in the course of
deliberation. This makes the group members (and henceforth also their verdicts)
directly dependent on each other. At the end of the deliberation process, when a
consensus is reached, it is as if the original assembly of independent individuals has
become one homogeneous entity, with all group members endorsing the consensus.
The challenge, then, is to model how an increasingly connected social network
emerges in the course of the deliberation process and what this entails for the
decision-making of the group. We believe that the work presented in this article
will be a good starting point for these studies.
Second, we want to study the updating mechanisms for the first order reliabil-
ities. The assumption that the first order reliability remains unchanged during
the deliberation makes sense in the context of this article. Note that we are only
focusing on contexts where the group members share the same information (they
all attended the procedure in court and have no additional knowledge about the
case). However, when dealing with situations where different group members have
different information at their disposal it is plausible that the first order reliability
of the group members changes as a result of the deliberation. It will be interesting
to see what taking this into account implies for the main questions we addressed
in this article.
Third, it might also be valuable to study more sophisticated updating mechanisms
for the second order reliabilities. One can also imagine scenarios where the first
and second order reliabilities are not independent.
Fourth, we have assumed that the agents have no other interests than to track the
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truth. This is (unfortunately!) an unrealistic assumption in many real delibera-
tions. Are these other interests always negatively interfering with the epistemic
goal considered in this article? To address this question, game theoretical models
have to be developed.
Addressing these questions requires more detailed models than the one presented
here and we hope that our model will be the starting point of many future inves-
tigations.
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Appendix

A1. Proof of Theorem 1

First notice that since all group members have the same reliability ri = r and the
same second order reliability ci = 1, the estimated reliabilities in each round will
be equal to the actual reliabilities and the likelihood ratio will be the same for all

group members in each round, i.e. x
(k)
ij =: x = (1− r(k)ij )/r

(k)
ij = (1− r)/r. So

P
(k+1)
i (H) = P

(k)
i (H|Vote

(k)
1 , . . . ,Vote

(k)
i−1,Vote

(k)
i+1, . . . ,Vote(k)n )

=
P

(k)
i (H)

P
(k)
i (H) + (1− P (k)

i (H))
∏n

j 6=i=1

(
x
(k)
ij

)p(k)j

=
P

(k)
i (H)

P
(k)
i (H) + (1− P (k)

i (H))x
∑n

j 6=i=1 p
(k)
j

, (10)

where p
(k)
j ∈ {0, 1} is the vote of group member aj in round k and p

(k)
j = 1 if

V ote
(k)
j = Vj, i.e. if group member aj has voted (correctly) for the truth of the

hypothesis and p
(k)
j = −1 otherwise. Simplifying this we have P

(k+1)
i (H) > P

(k)
i (H)

if and only if x
∑n

j 6=i=1 p
(k)
j < 1.

The votes in the first round are given by the initial probability assignments that
arise from the group members’ reliabilities r. This means that group member aj
will start by initially voting correctly, i.e. p

(0)
j = 1 (or equivalently P

(0)
j (H) ≥ 0.5)

with probability r and incorrectly, i.e. p
(0)
j = −1 (or equivalently P

(0)
j (H) < 0.5)

with probability 1 − r. Thus P
(1)
i (H) > P

(0)
i (H) if and only if x

∑n
j 6=i=1 p

(0)
j < 1.
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Since r > 0.5 and x < 1, x
∑n

j 6=i=1 p
(0)
j < 1 if and only if

∑n
j 6=i=1 p

(0)
j > 0 that is if the

majority of the group members (excluding ai) vote correctly in the first round.
Notice that if the majority of the group members votes correctly in some round,

say in round t, and if p
(t)
i = −1 then the majority of the group excluding ai has

voted correctly in round t and thus
∑n

j 6=i=1 p
(t)
j > 0. If, however, p

(t)
i = 1 it is

possible that
∑n

j 6=i=1 p
(t)
j = 0 that is when there are exactly the same number of

correct and incorrect votes in the rest of the group. In this later case P
(t+1)
i (H) =

P
(t)
i (H). However, since the probability assignment for any member who has voted

incorrectly in round t strictly increases, after some finite number of rounds, say l,
the probability assignment for at least one of these group members, say as, will

increase enough such that p
(t+l)
s = 1 and from then on we have that the number of

correct votes in the whole group is at least two more than the number of incorrect

ones and thus
∑n

j 6=i=1 p
(t+l)
j > 0 for i = 1, . . . , n. Thus for simplicity of notation

and without loss of generality we can assume that when the majority of the group
votes correctly initially, the number of correct votes is at least two more than

the number of incorrect votes. Thus
∑n

j 6=i=1 p
(0)
j > 0 for i = 1, . . . , n and so

P
(1)
i (H) > P

(0)
i (H) for i = 1, . . . , n. Similarly when we consider the case where the

majority of the group members vote incorrectly in the first round we shall assume
that the number of incorrect votes is at least two more than the number of correct
ones.
In the second round of the deliberation the votes will be casted on the basis of
the updated probability assignments. Thus if P

(1)
i (H) > P

(0)
i (H) for i = 1, . . . , n

then
∑n

j 6=i=1 p
(1)
j ≥

∑n
j 6=i=1 p

(0)
j > 0 since each group member j who had voted for

the truth of the hypothesis on the basis P
(0)
j (H) will still vote the same on the

basis of the equal or higher probability P
(1)
j (H) while some of the group members

who had voted against the hypothesis may change their vote if their subjective

probability has been raised to a value above 0.5. Hence from
∑n

j 6=i=1 p
(1)
j > 0 we

have P
(2)
i (H) > P

(1)
i (H) for i = 1, . . . , n.

Repeating the same argument the subjective probabilities of the group members
(for the truth of the hypothesis) will increases in each round and will be greater or
equal to 0.5 in finitely many steps. Thus if the majority of the group members vote
correctly in the first round the group will reach a consensus on the correct answer in
finitely many steps. If the group members keep repeating the deliberation process
(possibly even after the consensus is reached) the probabilities will increase until

at some round t, we have P
(t)
i (H) = 1 for i = 1, . . . , n after which repeating the

deliberation process will no more change the probabilities. This proves part (ii).
By the same argument, if the majority of the group members vote incorrectly in
the first round the probability assignments will decreases until after finitely many
steps all group members will assign probability zero to H and the group will reach
a consensus and the subjective beliefs will stabilize (on the wrong belief) and this
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gives the result for part (iii). Parts (ii) and (iii) will together imply part (i), as
it is either the case that the majority have voted correctly in the first round or
that the majority have voted incorrectly and in either case the group will reach
a consensus in finitely many rounds (on the correct answer and incorrect answer
respectively).
If r ≥ 0.5 then by the Condorcet Jury Theorem the probability that the majority
of the group members would vote correctly in the first round (and thus the group
reaches a consensus on the correct answer), increases with the size of the group and
approaches 1 as the size of the group increases. Similarly if r < 0.5 by the same
argument as in the Condorcet Jury Theorem the probability that the majority of
the group members would vote incorrectly in the first round (and thus the group
reaches a consensus on the wrong answer), increases with the size of the group and
approaches 1 as the size of the group increases. This proves part (i).

A2. Proof of Theorem 2

Since r < 0.5 and thus x > 1, by the argument in the proof of Theorem 1,
if the majority of the group members start by voting incorrectly we have that∑n

j 6=i=1 p
(0)
j < 0 and thus x

∑n
j 6=i=1 p

(0)
j < 1 and the probability assignments increases

until the majority will assign a subjective probability above 0.5 to hypothesis

at some round t (and thus vote correctly) after which x
∑n

j 6=i=1 p
(t)
j > 1 and the

subjective probabilities will decrease and this will repeat. Similarly if the majority
start by voting correctly the subjective probabilities will decrease until at some
stage the majority will assign a probability less than 0.5 to the hypothesis after
which they will vote incorrectly and thus the probability assignments will start to
increase, etc.
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