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Abstract

It is commonly claimed, both by physicists and philosophers that
the universality of critical phenomena is explained through particu-
lar applications of the Renormalisation Group (RG). This paper has
three aims: (i) to clarify the nature of the explanation of universal-
ity; (ii) to discuss the physics of such renormalisation group expla-
nations; (iii) to examine the extent to which universality is thus ex-
plained.

The derivation of critical exponents proceeds via a real-space or
a field-theoretic approach to the RG. Following Mainwood (2006) I
argue that these approaches ought to be distinguished: while the
real-space approach fails adequately to explain universality, the field-
theoretic approach succeeds in the satisfaction of this goal.
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‘Universality’ is the technical term for a striking kind of multiple realis-
ability. This occurs when diverse systems exhibit similar scaling behaviour
on the approach to a critical phase transition. While first-order phase tran-
sitions are abrupt variations in macroscopic behaviour – such as the trans-
formation from water to steam – critical phase transitions mark the point
(the critical temperature) beyond which systems no longer undergo first-
order phase transitions.

It turns out that the similar scaling behaviour exhibited on approach to
the critical phase transition can be very well described by power laws of
the form ai(t) ∝ tα where t is proportional to the temperature deviation
from the critical temperature.1 Physical systems can be categorised into
universality classes according to their behaviour as they approach the crit-
ical point: members of the same class have identical critical behaviour –
the same set of critical exponents {α, β, ...} for several power laws – while
they may have radically diverse microphysical structures and behaviour
away from the critical point.

A paradigm example of universality is that the liquid-gas critical phase
transition and the (uniaxial) ferromagnetic-paramagnetic critical phase tran-
sition share critical exponents. Both of these types of systems may be de-
scribed by equivalent power laws as they transition from certain ordered
states (liquid or ferromagnetic respectively) to critical states. These sys-
tems are examples of the 3D Ising universality class.

Hundreds of papers have been published in Physics journals over the
last fifty years on this topic. On the one hand a great deal of experimen-
tal evidence is available which classifies many different physical systems
into a few universality classes, and finds the critical exponents for these
classes to ever greater accuracy; see Sengers and Shanks (2009) and refer-
ences therein. On the other, theoretical work is continually under way to
refine and develop the theoretical models for each universality class; see
Pelissetto and Vicari (2002). It is now the case that both through computer
modelling (Monte Carlo simulations) and through field-theoretic deriva-
tions (using perturbation theory) critical exponents derived match very
closely those discovered empirically.

1E.g. the specific heat (in zero magnetic field) (c) scales as c ∼ α−1(t−α) as T → Tc.
t = T−Tc

Tc
.
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This paper has three aims: (i) to clarify the nature of the explanation of
universality; (ii) to discuss the physics invoked in renormalisation group
explanations; (iii) to examine the extent to which the physics of the renor-
malisation group explains universality.

(i) In §1 I outline a range of different explananda, and distinguish the
kinds of explanation which may satisfy each. This is important because
some confusion in the philosophical debate over the explanation of uni-
versality has resulted from implicit appeal to different explanatory stan-
dards in the literature.

(ii) §2 details the physics of the real-space and field-theoretic approaches
to the renormalisation group. The two approaches, which have different
mathematical structures, are often elided although, as I argue, the expla-
nations on offer are distinct. Paying attention to the physics further reveals
that there are various technical lacunae in the renormalisation group ex-
planation of universality which have been neglected in the philosophical
literature.

(iii) In §3 I develop reasons for thinking that, despite various technical
lacunae, the field-theoretic approach to the renormalisation group is suffi-
cient to explain universality along the lines developed in §1. In this section
I express doubts that a similar argument could be run in the context of
the real-space approach. This latter conclusion is particularly worth high-
lighting because the philosophical literature, insofar as the approaches are
distinguished, focusses primarily on the real-space approach.

1 Structure of the Explanation of Universality

The discussants in the philosophical literature on the explanation of uni-
versality2 seem to have different standards of explanation in mind. As
such, I set out what I take to be the various phenomena which need ex-
plaining (explananda) and the explanations offered in response (explanan-
tia).

Throughout the rest of the paper I refer back to this table and explain

2E.g. Batterman (2000; 2014), Butterfield and Bouatta (2011), Callender and Menon
(2013), Reutlinger (2014) and references therein.
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the various boxes in more detail. The explanantia on the right hand side
explain the corresponding explananda on the left hand side.

Explanandum (L) Explanans (R)

1L: System A has critical
exponents {α} & system B

has critical exponents {α} &
... & system E has critical

exponents {α}.

1R: {α} derived from
Hamiltonian for system A &

{α} derived from
Hamiltonian for system B &

... & {α} derived from
Hamiltonian for system E.

2L: Systems A-E have certain
behaviour in common (or the
differences between A-E are

irrelevant to their
behaviour).

2R: Identify common
features shared by A-E and
show that they are sufficient
for common behaviour (or

demonstrate the irrelevance
of heterogeneities).

3L: There’s a generic
commonality in behaviour
(or a generic irrelevance of

certain details).

3R: The trajectories in the
abstract space converge.

In the table above, 1L is just a conjunction of seemingly independent
facts about the critical exponents of independent systems where each fact
is offered an independent explanation by 1R. 1L is distinguished from
2L to emphasise that 2L requires a deeper explanation. The common be-
haviour ought not to be explained by distinct explanations for each phys-
ical system; an explanation of the form of 2R is required which adduces
a similarity in the systems and demonstrates its sufficiency for their com-
mon behaviour.3

Consider an analogy: a traveller visits a foreign country and goes from
house to house observing the local customs. She observes an oddity in the
locals’ behaviour: in each family she visits the youngest child sleeps in a
bed angled such that their head is vertically lower than their feet. At each
visit she asks for an explanation of this phenomenon and every family of-
fers a different answer: ‘because he is short and this way he will grow
taller’; ‘because greater blood flow to her head will increase her intelli-
gence’; ‘because it is cooler and his head otherwise becomes hot’; ‘because

3A similar point is made in Batterman (2016).
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that is the only way to avoid the awakening smell of dinner’ ...

Our traveller will likely be dissatisfied with this range of distinct ex-
planations – analogous to our dissatisfaction with 1R. There is an unusual
commonality and she will seek a unified explanation along the lines of 2R.

A straightforward way to offer an explanation of universality follows
2R: one explains the common behaviour by isolating and pointing to an
aspect of the underlying description which is shared by the different sys-
tems in the same class. While merely pointing to the commonality is inad-
equate to a full explanation of universality, a 2R-type explanans explains
if one additionally demonstrates that the common features lead to the ob-
served common behaviour in each case. In §§3.1-3.2 I respectively claim
that the field-theoretic approach provides a 2R-type explanation while the
real-space approach does not.

What about 3R? If we consider our traveller, 3R might correspond to
the general claim that ‘communities tend to share cultural practices’. This
would only be satisfying if our traveller were assured that the general
claim applied to this community and that there was some mechanism
through which the families’ sleeping practices were aligned.

Batterman appeals to an explanation along the lines of 3R: commonal-
ity is to be expected generically because of the convergence of flows in the
abstract space:

It turns out that different physical Hamiltonians can flow to
the same fixed point. Thus, their critical behaviors are charac-
terized by the same critical exponents. This is the essence of
the explanation for the universality of critical behavior.

[Batterman (2000, p.127)]

Of course this explanation is insufficient if the converging trajectories
are not linked to the systems which exhibit the commonality. In large part
the goal of the rest of this paper is to explore whether these trajectories
are so linked. Batterman claims that the link is due to the flow of ‘phys-
ical Hamiltonians’, as such much of this paper will explore how physical
Hamiltonians may be defined in the context of critical phenomena. That
is, I explore whether we can link the abstract convergent flows to the de-
scription of distinct systems which exhibit universality.
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Without a link to 2L, 3R remains a claim not grounded by reference
to real physical systems. By analogy the claim that communities tend to
share cultural practices is explanatorily insufficient if it cannot be demon-
strated that this community shares cultural practices. Importantly in both
the analogy and the universality of critical phenomena 3R-type claims
may play an important explanatory role where the link to 2L is available.
I argue in this paper that the physics is much less worked out than the
literature seems to suggest. Nonetheless we seem to have a framework
available for a 3R-type explanation in the field-theoretic approach to the
RG: in §3.1 I show that there are sound theoretical arguments whereby
the field-theoretic approach implies that convergent flows can be linked
to trajectories in phase space which may represent the different physical
systems which display common behaviour.

Note that in the real-space RG context the formalism of convergent
flows in a phase space can also be written down. There is little reason to
think that the distinct convergent trajectories represent the different phys-
ical systems of interest; although there are limited exceptions discussed
in §3.2. As such I argue that the 3R explanation fails in the real-space RG
because it does not have the resources to imply 2L; the real-space RG does
nonetheless allow for the prediction of the critical exponents for certain
(archetypal) systems in each universality class. Thus it is important to re-
iterate that the real-space RG approach is predictively useful despite its
inadequacy qua explanation of universality.

There is a further issue which ought to be discussed here – this pertains
to the parenthetical statements in the table above. Batterman highlights
the fact that the details which distinguish systems are irrelevant to their
universal behaviour:

In effect the renormalization group transformation eliminates de-
grees of freedom (microscopic details) that are inessential or irrelevant
for characterizing the system’s behavior at criticality.

[Batterman (2000, p.127), original emphasis]

The renormalisation group (RG) formalism allows one to demonstrate
the irrelevance of aspects of our physical systems quite generally. We may
view this as offering two equivalent explanations: adducing the details
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which are in common and sufficient for behaviour of interest; or demon-
strating that the details which distinguish the systems are irrelevant to
said behaviour. What’s important for Batterman is that the RG provides
a general demonstration of robustness at the critical point.4 He argues
that robustness with respect to microphysical perturbations implies that
all systems which go to the critical point have a representation which is in-
dependent of microphysical details. This would thus establish that the dis-
tinguishing details are irrelevant and, by implication, that the common de-
tails are sufficient for common behaviour. This robustness demonstration
is rather like that of type 3R. In order for it to explain universality we need
an additional argument to the effect that the details which distinguish the
universally behaving systems are those details which are demonstrably ir-
relevant according to the RG analysis. Throughout the rest of this essay I
discuss the extent to which such arguments might succeed.

Whilst other authors seem to ignore the conceptual links between irrel-
evance of details and universality, Batterman’s work is very important for
its role in highlighting these connections. My contention in this paper is
that the field-theoretic RG is the proper context for gleaning such insights.
The upshot of this section is that we have a framework for explaining uni-
versality. We may either proceed via 2R, or via 3R with an appropriate link
to 2L made explicit.

In the following I outline the background physics (§2) and analyse the
explanation on offer by the field-theoretic and the real-space approaches
to the Renormalisation Group (RG), see §3.1 and §3.2 respectively.5

In the physics literature it is standard practice to distinguish these ap-
proaches; I will argue, following Mainwood (2006), that the distinction is
also significant when assessing the RG explanation of universality. I, like
Mainwood, endorse the field-theoretic explanation of universality while

4In some places Batterman refers to the core mathematical representation which is
robust with respect to perturbations in microphysical details as a ‘minimal model’; see
for example Batterman and Rice (2014). The literature on this issue is rather thorny and I
will not discuss it further here.

5The field-theoretic approach is also known as the ‘momentum-space’, ‘k-space’ or
‘Wilsonian RG’ approach. The field-theoretic approach, primarily developed by Wilson
and Fisher is not merely the Fourier transform of the real-space approach, spearheaded
by Kadanoff. Rather each approach involves a different, though related, set of techniques
and physical models; see §2.2 for further discussion.
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arguing that the real-space explanation is inadequate. However, my rea-
sons for believing this are distinct from those endorsed by Mainwood.

2 The Physics

The following two sections involve some technical detail; overall I claim
that the two approaches to the RG provide different putative explanations
of universality and that, as such, they ought to be distinguished.

In the real-space approach critical exponents are derived based only
on a representative model for each universality class. A model is not pro-
vided for each member of the same class and it is not demonstrated that
the details which distinguish each member of the same class are irrelevant
to that system’s critical behaviour. In addition I argue that the mathemat-
ical model employed is insufficiently general to represent the common as-
pects of all members of the universality classes; thus an explanation of
type 2R is not available and there is no general way to construct a 3R-2L
mapping.

For the real-space case, universality is not explained but assumed: no jus-
tification is given for the application of the single model to the other mem-
bers of the class. This conclusion is reached through consideration of the
models and a sketch of the RG methods by which the critical exponents
are derived for each such model.

In §3.2 I consider three responses to this assumed-not-explained objec-
tion: first one might claim that the observation of self-similarity explains
universality; second there is an argument due to Kadanoff (1971) which
develops the real-space RG argument; third liquid-gas systems and uniax-
ial magnetic systems may exhibit common behaviour because of a struc-
tural mapping (the lattice-gas analogy) between them. In all three cases
I express doubts that the behaviour of the broad range of systems which
exhibit universality could be thus explained.

I also describe the field-theoretic RG approach. The field-theoretic RG
makes use of a renormalisable Hamiltonian. I argue that this provides it
with the tools to describe the commonalities in the various systems suf-
ficient to their common behaviour. The RG techniques then allow one
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to class all differences between systems so represented as irrelevant to
their critical behaviour. As such the field-theoretic RG explains univer-
sality by showing that all systems in the same class will have common be-
haviour due to the irrelevance of the details which distinguish them and
their shared representation by a renormalisable Hamiltonian at the critical
point – this is a 2R-type explanation.

The standard account of this explanation implicitly depends on physics
which has not been worked out, as such it includes certain technical lacu-
nae. These correspond to our inability explicitly to formulate Hamiltoni-
ans which represent the details which distinguish systems within the same
universality class. Nonetheless, unlike in the real-space case, we have the-
oretical justification for the claim that such distinguishing details are irrel-
evant. In addition we may derive a link (the order parameter) between
each system and its mathematical representation. In §3.1 I further discuss
the gaps in the physics and adduce reasons to consider the field-theoretic
RG explanation nonetheless adequate.

Overall: the real-space RG provides an explanation of type 1R for a
few individual systems but does not achieve 2R. It looks like we can draw
diagrams which provide 3R as well in this case, but the abstract picture
of convergent trajectories fails to correspond to the real physical systems
in the same universality class. Conversely the field-theoretic RG explains
along the lines of 2R (where the common features are representation by
the LGW Hamiltonian and the order parameter), and allows one to justify
3R-type explanations.

2.1 The Models

It turns out that the critical behaviour of the different universality classes
can be derived from a range of simple model systems. I briefly describe the
Ising model, and its extension to the n-vector model which defines a broad
range of models classified according to their values for two variables. This
model is crucial to understanding the real-space RG, and is abstracted to
provide the basis for the field-theoretic RG. Microphysical models are not
defined for multiple members of the same universality class, rather a rep-
resentative model is used for each class.
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Niss (2005) describes the early history of the Lenz-Ising model.6 This
history demonstrates that the Ising model was specifically designed to
represent the physical characteristics of magnetic systems rather than the
broader range of systems which display critical phenomena. Niss observes
that it was commonplace in the 1920s to model magnetic materials as com-
posed of a lattice of numerous micromagnets – often idealised as compass
needles – which mutually interact. The model was proposed to represent
the transition between the ferromagnetic and paramagnetic states of cer-
tain materials.7 The major innovations due to Lenz and Ising were to de-
fine a particular interaction between neighbouring micromagnets and to
restrict their possible orientations to a discrete range. This latter assump-
tion arose out of a combination of empirical data, knowledge of the struc-
tural and symmetry properties of solid matter and considerations from
early quantum mechanics. Note that the Ising model provides crude ap-
proximations to the properties of real ferromagnets but captures their key
qualitative features.

In modern formulations the Ising model is described as an array of
spins. It consists of a D-dimensional cubic lattice with {ei} basis vectors
with sites labelled k = (k1e1, ..., kDeD). At each site there is a spin variable
σk ∈ {−1, 1}, though in extensions to this model the spin variable can take
a greater range of values. A Hamiltonian is defined:

H = −J
∑

k,k+µ

σkσk+µ −B
∑
k

σk (1)

The coupling constant J takes a positive value and is assumed to be in-
dependent of all variables other than the system volume. The Ising model
interaction is generally defined over nearest, or next-nearest neighbours,
thus µ is a lattice vector which takes any vector to the relevant neighbour
in the positive direction. B is an external magnetic field.

The Hamiltonian of a system corresponds to the energy of the system
in a particular configuration, thus we see (as is confirmed empirically)
that the Ising Hamiltonian will take a lower value when the spins are

6I will henceforth refer to it as the ‘Ising model’ – as it is generally known – although
Lenz and Ising jointly proposed it in papers in 1920 and 1924 respectively.

7The Ising model also predicts the spontaneous magnetisation below the critical tem-
perature, though this was not discovered until Peierls did so in 1936.
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aligned, and a higher value when spins are disordered. The ferromagnetic-
paramagnetic transition can be defined over this lattice as the transition
from the spin configuration with all spins aligned to that where there is
no general correlation between the spin directions. This transition will
take place at the Curie temperature (Tc). In 1944 Lars Onsager published
a paper which derived the specific heat of a two dimensional Ising model
in the absence of an external magnetic field. He demonstrated that this
system will display power law behaviour with a particular critical expo-
nent. However, despite much effort, no-one has succeeded in an analytic
derivation of critical behaviour for any three dimensional model.

Behaviours characteristic of systems approaching Tc are termed ‘criti-
cal phenomena’ and it is with respect to the power laws which describe
such behaviour that universality can be observed. Current mathematical
procedures to describe such behaviour involve the Renormalisation Group
(RG) which I describe below. First I note the n-vector model which gen-
eralises the Ising model to various universality classes. As Stanley (1999,
p. S361) notes: “empirically, one finds that all systems in nature belong to
one of a comparatively small number of such universality classes”.

The n-vector model includes spins which can take on a continuum of
states.

H(d, n) = −J
∑

k,k+µ

σk · σk+µ −B
∑
k

σk (2)

Here, the spin σk = (σk,1,σk,2, ...,σk,n) is an n-dimensional unit vector.
The two parameters which determine the universality class are the system
dimensionality d (which will determine the set of nearest neighbours) and
the spin dimensionality n. The standard, 3D Ising model corresponds to
H(3, 2).

I now turn to a discussion of the renormalisation group derivation of
critical exponents. A full exposition would require more space than we
have here but I sketch the procedure below.8 RG transformations are con-
structed to preserve thermodynamical properties of the system of interest
(those derived from the partition function) while increasing the mean size

8There are many textbooks and review articles which describe these techniques, see
for example Binney et al. (1992), Cardy (1996) and Fisher (1998).
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of correlations. Thus, for example, the RG transformations take a ferro-
magnetic system towards the critical point (where the order parameter
fluctuates wildly).

2.2 Field-theoretic and Real-space Renormalisation

I mentioned above that there are competing methods for deriving the crit-
ical exponents for each universality class. These correspond to different
RG approaches:

Real-space RG: Consider the Hamiltonian of a system on a lattice (e.g.
in the Ising model). The higher energy interactions will probe the structure
of the lattice, and in order to consider the system probed at a larger length-
scale, we average over the higher energy contributions to the Hamiltonian.
This can be done by increasing the effective lattice size and constructing
a new Hamiltonian for a system on a larger lattice; see figure 2 on p.24;
this is sometimes referred to as ‘coarse-graining’ or ‘zooming out’. This
can be thought of as a blocking procedure, whereby some group of par-
ticles is replaced by one particle which represents the group through an
average or suchlike.9 On this model the RG flow represents the changes
in parameters which leave the form of the Hamiltonian, and certain qual-
itative properties of the system unchanged (i.e. those which are derived
from the partition function) while increasing the lattice size. Monte Carlo
computer based methods allow for the derivation of the critical exponents
from the n-vector Hamiltonian (equation (2)) via the real-space RG.

Field-theoretic RG: The Hamiltonian (equation (7)) considered in this
case is more abstract (technically it is a functional of the order parame-
ter) and depends for its construction on Ising-type models – I discuss its
derivation below. The calculation of this Hamiltonian for real systems in-
volves integration over a range of scales and energies. The highest en-
ergy (smallest scale) cut-off (denoted Λ) corresponds to the impossibility
of fluctuations on a scale smaller than the distance between the particles in
the physical system. The RG transformation in this case involves decreas-
ing the cut-off, thus increasing the minimum scale of fluctuations consid-
ered. This procedure is analogous to increasing the lattice size and will

9A variety of acceptable blocking methods are discussed by Binney et al. (1992).
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similarly generate a flow through parameter space designed to maintain
the Hamiltonian form and qualitative properties of the system in question.

The following is an expanded version of the paragraphs above with
more technical detail, the aim is to provide a clear sketch of the deriva-
tion of the critical exponents for each approach. The RG transformation
R transforms a set of (coupling) parameters {K} to another set {K ′} such
that R{K} = {K ′}. {K∗} is the set of parameters which corresponds to a
fixed point, defined such that the RG transformation will have no effect on
the set of parameters transformed, as such R{K∗} = {K∗}. If we assume
that R is differentiable at the fixed point this leads us to a version of the
RG equations.

K ′a −K∗a ∼
∑
b

Tab(Kb −K∗b ) (3)

where Tab =
∂K ′a
∂Kb

∣∣∣
K=K∗

There are now two more steps before we can define relevance and
irrelevance. Firstly we define the eigenvalues of the matrix Tab as {λi}
and its left eigenvectors as {ei}. Now we can define scaling variables
which are linear combinations of the deviations from the fixed points:
ui ≡

∑
a e

i
a(Ka − K∗a). By construction these scaling variables will trans-

form multiplicatively near the fixed point such that u′i = λiui. The second
(trivial) step is to redefine the eigenvalues as λi = byi where b is the renor-
malisation rescaling factor and yi are known as the renormalisation group
eigenvalues.

If yi > 0 then ui is relevant; if yi < 0, ui is irrelevant; and if yi = 0,
ui is marginally relevant. The relevant scaling variables will increase in
magnitude after repeated RG transformations while the irrelevant scaling
variables will tend to zero after multiple iterations. (The behaviour of the
marginal scaling variables requires more analysis to determine.) Thus,
given the Hamiltonian of one of our models one can define an RG trans-
formation which will allow one to: (i) classify certain of the coupling pa-
rameters of the system in question as (ir)relevant to its behaviour near the
fixed point, (ii) extract the critical exponents from the scaling behaviour
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near the fixed point. Up to this point the description is generic.10

The real-space RG depends on the application of a blocking transfor-
mation, a standard example is depicted in figure 2, though almost any
blocking transformation would do equally well. It is required that the
Hamiltonian form is stable across these transformations. Since the Hamil-
tonians are not renormalisable this involves the application of a transfor-
mation and subsequent truncation of the Hamiltonian.11 This procedure is
generally carried out using computer methods.

The field-theoretic RG approach derives the critical exponents using
diagrammatic perturbation theory – I do not have space to elaborate this
here. The Hamiltonian in this context is macroscopic and depends on the
order parameter (φ) which, in the Ising model context, is a sum of the
spins in a small region of volume δV at x: φ(x) = µ

δV

∑
i∈δV σi.

12 We re-
quire that a � δV � l where a is the physical lattice spacing and l is
the dominant statistical length (often the correlation length). One can ap-
proach its construction from the Ising model as follows (see Klein, Gould,
and Tobochnik (2012) for more details):13

10Note that in the real-space approach the coupling parameters to the Ising-type Hamil-
tonians are marked as relevant or irrelevant while in the field-theoretic approach it’s the
operators – functions of the order parameter – which are so labelled.

11It is these truncations which motivate Mainwood (2006)’s dismissal of the explana-
tion on offer by the real-space RG. I discuss this further on p.18. See §3.2 for my distinct
critique of the real-space RG explanation.

12The symbol φ is used to refer to the thermal average of the order parameter φ(x, t).
This quantity has a system-dependent definition. For example in liquid-gas transitions
φ(x) ≡ ρ(x)− ρgas(x) where ρ(x) is the average density in a volume centred on x i.e. is a
fluctuating quantity and ρgas(x) is the time-averaged density for the gas at the tempera-
ture at x. Clearly, below Tc for gaseous systems and above Tc in general φ ≈ 0, but below
Tc for liquid systems φ > 0. Analogously at the ferromagnetic-paramagnetic transition,
where the magnet is well modelled by the Ising model the order parameter is as defined
above. Thus for ferromagnetic systems (at T < Tc) φ 6= 0 and for paramagnetic systems
(T > Tc) φ = 0.

The order parameter is defined for many other systems: for the binary fluid φ(x) =
X ′(x)−X ′′whereX ′(x) is the local molar density of one of the fluids andX ′′ its thermally
averaged value when the fluids have separated; for Helium I - Helium II transitions the
order parameter is ψ(x) which is the quantum amplitude to find a particle of He II at x;
similarly for conductor-superconductor transitions whereψ(x) is the quantum amplitude
to find a Cooper pair at x.

13There are many different derivations of this Hamiltonian which speaks to its gener-
ality. See Binney et al. (1992), Goldenfeld (1992) for some alternatives.
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Start with the Ising model (equation (1)); then postulate a form for the
Helmholtz free energy F(φ) of a system in contact with a heat bath. The
terms in equation (4) correspond (a) to the interaction of the coarse grained
Ising spins with an external magnetic field, (b) the interactions between
the coarse grained spins which depends only on the distance between the
blocks and (c) an approximation of the entropy (using Stirling’s approxi-
mation). F = U − TS.

F(φ) = −

(a)︷ ︸︸ ︷
B

∫
φ(x)dx−

(b)︷ ︸︸ ︷
1

2

∫∫
J(|x− y|)φ(x)φ(y)dxdy

− kBT
(∫

[1 + φ(x)] ln(1 + φ(x))dx +

∫
[1− φ(x)] ln(1− φ(x))dx︸ ︷︷ ︸

(c)

)
(4)

Assuming φ(x) is small allows the logarithms to be expanded and trun-
cated after the second order (on the assumption that the spin blocks only
vary significantly over large distances). Using Parseval’s theorem, ex-
panding J(|x − y|) in Fourier space, truncating after the second deriva-
tive, converting back to real-space and then integrating by parts leads to
(b) becoming

Ĵ(0)

∫
φ(x)φ(x)dx +

1

2
R2

∫
[∇φ(x)]2dx (5)

This results in a modified version of equation 4:

F(φ) =

∫
dx[R2[∇φ(x)]2 + εφ2(x) + φ4(x)−Bφ(x)] (6)

This is the Landau-Ginzburg free energy, where R2 ∝
∫
x2J(|x|)dx.

This has the same form as the Landau-Ginzburg-Wilson (LGW) Hamil-
tonian (equation (7)).14 I will not discuss the few remaining steps as the
physical underpinnings have been outlined. The form changes only slightly
when it is read as a functional integral and the system is considered in the

14In Statistical Mechanics F = Tr{He−βH}
Z = 〈H〉 .
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absence of an external magnetic field (B = 0). The integral is generalised
to dimension d.

H =

∫
ddx

[1

2
ζ2|∇φ(x)|2 +

1

2
θ|φ(x)|2 +

1

4!
η|φ(x)|4

]
(7)

Note however that the LGW Hamiltonian is not the Ising model ef-
fective Hamiltonian. This latter object is more complicated, however it is
demonstrated in Binney et al. (1992, Appendix K), (and is plausible given
its derivation) that equation (7) is a good approximation to a truncated
form of the Ising Hamiltonian near the critical point.

The construction of equation (7) is quite different from equations (1-
2). It builds on these models but abstracts from them. More details can
be found in (e.g.) Fisher (1974). There he demonstrates the field theoretic
methods which allow one to derive expressions for the critical exponents
as functions of d and n, see equation (8) for the first few terms of the expo-
nent α; this will give a value for various universality classes. This deriva-
tion depends on the functional integration of the LGW Hamiltonian over
all functions φ(x).

α =
4− n

2(n+ 8)
(4− d) +

(n+ 2)2(n+ 28)

4(n+ 8)3
(4− d)2 + ... (8)

Crucially, it can be shown that the addition of certain terms to the
LGW Hamiltonian will lead to irrelevant contributions which do not af-
fect the values for critical exponents describing the approach to a given
fixed point. In Binney et al. (1992, Ch.14) the criteria for relevance and
irrelevance are derived. An operator Op is relevant if p − d(p − 2)/2 > 0
and irrelevant if p− d(p− 2)/2 < 0 where d is the dimension of the system
under investigation.15 Op specifies the power of φ under consideration.16

This serves to establish that for the LGW Hamiltonian, for d = 3, any

15Note that the Ising-type Hamiltonians used in the real-space RG approach are not
renormalisable, as such criteria for relevance and irrelevance of additions to those Hamil-
tonians cannot be specified in this generality.

16It is formally defined as follows: Op ≡
∫
ddxλp

∑p/2−1
m=0 (−1)m Cm

(p−2m)!φ
p−2m where

where Cm ≡ 1
2mm!

( ∫ Λ ddq
ζ2q2

)m.
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Op with p > 6 will be irrelevant at the appropriate fixed point.17 This is
an important result for the discussion in the remainder of this paper. Its
generality depends on the justification for the applicability of the LGW
Hamiltonian to various models. As we will see in what follows this will
depend in part on the order parameter assigned to each member of each
universality class.

The theory behind this result is relatively involved, but the idea is sim-
ple: the LGW Hamiltonian is renormalisable. This means that applying an
RG transformation to the Hamiltonian will not add terms which cannot
be absorbed into the parameters ζ, θ, η in equation (7). Thus the Hamilto-
nian is in some sense scale-invariant: its renormalisability means that it is
independent of the details of the cut-off (Λ).

The fixed point – which describes the location of the critical phase tran-
sition – is itself a point of scale invariance as it is unaffected by RG trans-
formations.18 Thus at the fixed point the only elements which are rele-
vant and contribute to the behaviour at the fixed point are those in the
renormalisable Hamiltonian. All other terms which may be added to that
Hamiltonian will consequently be irrelevant or marginally relevant (see
§3.1). By contrast the Hamiltonians employed in the real-space approach
are not renormalisable and the description of their behaviour near the crit-
ical point relies on the imposition of scale invariance by truncating the
Hamiltonian after each iteration of the RG transformation.

The next section will explore the extent to which each RG approach can
be considered to explain the universality of critical phenomena.

3 Universality Explained?

Universality is explained if we are able to show that each member of each
universality class has features in common and to demonstrate that it is suf-
ficient to have those features to generate the universal behaviour – that is

17Odd powers of φ are generally excluded for reasons of symmetry. For d = 3 it can be
established perturbatively (at least to low orders) that O6 is also irrelevant.

18This corresponds physically to the divergence of the correlation length in critical sys-
tems.
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an explanation along the lines of 2R; see §1 for my taxonomy of explana-
tions. Universality may be equally well explained by the convergence of
flows in an abstract space, so long as we can provide a map between these
flows and the physical systems they purport to represent. In this section
I build upon the details of physics given thus far. I argue that the field-
theoretic explanation is adequate (§3.1) but that the real-space explanation
is inadequate both to 2R- and 3R-type explanations (§3.2).

My claims here follow those of Mainwood (2006, pp. 152-187) who
argues that the real-space and field-theoretic approaches should be distin-
guished when assessing the RG explanation of universality. Mainwood
claims that the real-space approach fails to provide an adequate explana-
tion because the RG transformation needs to be tailored to each model un-
der consideration – which follows from the non-renormalisability of the
Hamiltonians used. As such he considers the real-space approach inad-
equate to the identification of common aspects between members of the
same universality class.

I suggest that the real-space approach cannot explain universality for
a more basic reason: it fails to represent the diverse range of systems
which fall into the same class and thus does not demonstrate a flow of
different systems into the same fixed point; I discuss this further in §3.2.
Mainwood’s claims may bolster my own to the extent that even were the
real-space RG to model each distinct system one would still have some
grounds for doubting the explanation of universality.

In addition to my worries about the real-space RG, I argue that the stan-
dard characterisation of the field-theoretic RG explanation of universality
adverts to physics which is somewhat less developed than first appears.
I highlight these technical lacunae and demonstrate that they ought not
overly to bother us.

Where the explanation of universality is presented, it is commonly
claimed that the explanation demonstrates the irrelevance of the hetero-
geneous details of physical systems. E.g.:

The distinct sets of inflowing trajectories reflect their vary-
ing physical content of associated irrelevant variables and the
corresponding non-universal rates of approach to the asymp-
totic power laws dictated byH.
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[Fisher (1998)]

Similar arguments can be found in (e.g.) Kadanoff (2013), Batterman
(2014) and various textbooks. Such arguments are often represented pic-
torially, see figure 1. This explanatory sketch implies that we are able to
include irrelevant details of diverse physical systems in the mathematical
representations.

Multiple systems in the same universality class are represented at the
critical point by the LGW Hamiltonian (eqn. 7). In order to represent
the details which distinguish such systems we would need to add irrele-
vant operators to that equation. This is not done for the specific systems
which fall into the same universality class. It is not known how to con-
struct Hamiltonians which represent all the peculiarities of the various
systems which exhibit universal behaviour. Thus no map can be explic-
itly defined which relates the distinct convergent trajectories of figure 1 to
real, physical systems.

3.1 Field-theoretic RG

We have sound theoretical reasons to think that the LGW Hamiltonian
represents a wide range of physical systems. The physical analysis be-
hind this claim is the renormalisability of the LGW Hamiltonian and the
demonstration that certain classes of operators are irrelevant, as discussed
on p.16. Binney et al. (1992, p.366) express this as follows:

to the accuracy of our calculation we have shown that any
three-dimensional physical system whose Hamiltonian can be
written as an even functional of a one-component scalar field
should have the same critical behaviour as the Landau-Ginzburg
model.

Thus we need to show, for each system of interest, that its order param-
eter can be written as a one-component scalar field. Paying close attention
to the order parameter of each system will also ground the various assig-
nations of systems to different universality classes. The order parameter
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Figure 1: The RG flow in the abstract space of Hamiltonians (or, more precisely, the space
of couplings for a fixed Hamiltonian form). Figure from Fisher (1998).
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accounts for the symmetry group (i.e. the n of the n-vector model) and
the dimensionality. Defining the order parameter for a condensed matter
system is not a straightforward process. It depends subtlely on the kind of
phase transition the systems undergoes, and which macroscopic features
change at such a phase transition. Footnote 12 on p.14 provides some ex-
amples of various order parameters.

The field-theoretic approach provides a 2R-type explanation of univer-
sality: all systems in the same class are represented both by order parame-
ters with the same symmetry and dimensionality and by the central oper-
ators of the LGW Hamiltonian; additionally we have a general argument
that at the critical point such commonality is sufficient for common critical
behaviour.

One might worry that this explanation assumes universality: once the
order parameter has been specified, common representation is assured for
the different systems in the same class. As such, specification of the order
parameter might be said to do all the explanatory work.

I don’t think that this argument goes through. The reason is that the
different systems which have common order parameters are only guaran-
teed to have common behaviour at the critical point; this is exactly what
we wanted: that’s the statement of universality. What the field-theoretic
RG framework does not guarantee, nor should it, is that systems which
share order parameters (and thus symmetry and dimensionality) have
common properties away from the critical point – differences away from
the critical point are represented by the irrelevant operators. The explana-
tory force of the RG lies in exactly this principle: that it shows common
behaviour at the critical point for systems whose behaviour is otherwise
different. Part of this explanation does lie in the matching of order param-
eters to systems, but the RG framework and the LGW Hamiltonian also
play important roles.

A further concern with this explanation rests on the observation that
the order parameter and LGW Hamiltonian correspond to large-scale fea-
tures of the systems of interest, thus our explanation is not tied in detail to
the microscopic heterogeneities of systems of interest.

So long as we have reason to believe that our model represents the
different systems which exhibit universality the explanation needn’t in-
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clude all the details of each system; it has long been acknowledged that
good explanations may abstract from underlying details. Observations of
scale symmetry coupled with a microscopic justification of the choice of or-
der parameter provide reasons to link the model to the universally behav-
ing systems; discussion of irrelevant operators supplement such reasons.
Further justification akin to that provided by the derivation of the LGW
Hamiltonian from the Ising model – see §2.2 – may provide a bottom-up
account of critical phenomena. Such accounts, though interesting, are not
essential to adequate explanations.

The central operators of the LGW Hamiltonian represent the common
aspects which unite the various systems in the same class at the critical
point. Such systems are distinguished at most by operators which are
demonstrably irrelevant to the behaviour at the critical point. Thus the
common aspects are sufficient for the systems’ exhibiting universal be-
haviour and we have a 2R-type explanation. Furthermore this, in princi-
ple, grounds a 3R-type explanation: the various systems are represented
by Hamiltonians distinguished by irrelevant operators and the flows of
the distinct systems converge at the fixed point.

That we cannot write down the irrelevant operators may be worrying.
It may be thought that evidence is scant for the claim that such operators
indeed represent the heterogeneities which distinguish physical systems
away from the critical point.

I hope partially to alleviate such worries by briefly considering crossover
theory.19 The theoretical description of crossover tells us that in some cases
we may derive a correspondence between certain operators and the details
of physical systems. By showing that certain operators may represent the
details which distinguish systems away from the critical point, this ought
to bolster the analysis of the field-theoretic RG explanation presented just
above.

Systems undergoing crossover display critical behaviour characteristic
of some universality class as they approach Tc, but under repeated itera-
tions of the RG transformations (read: as the temperature moves closer to

19This has been appealed to by Mainwood (2006), Callender and Menon (2013), and
Butterfield and Bouatta (2011) with a view to deflating claims of emergence in the context
of critical phase transitions. My claims here are distinct from those and ought to be far
less contentious.
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Tc) they deviate from that behaviour and cross over to a different universal-
ity class. For example a system near the Heisenberg fixed point may have
an additional relevant operator, we might thus define a Heisenberg type
(n = 3) Hamiltonian including operators for isotropic and anisotropic cou-
plings. It turns out that a system so described will cross over to Ising-type
behaviour; for further details see Fisher (1974) and Cardy (1996).

Crossover theory is empirically successful, and such successes are pred-
icated on deriving a relationship between operators and the details of
physical systems. Although the operators for which such a correspon-
dence can be shown are not irrelevant – these are relevant or marginally
relevant operators – such correspondences help to establish that operators
may play the required role in the field-theoretic RG explanation of univer-
sality.

For most instances of universality we have yet to discover irrelevant
operators which are physically interpreted as representing those features
which distinguish multiple members of the same class. The phenomenon
of crossover does suggest that such differences can be modelled. This in
turn justifies the claim that the field-theoretic approach explains the uni-
versality of critical phenomena: it identifies shared features in our sys-
tems of interest (represented by the LGW Hamiltonian) sufficient to pre-
dict their display of the critical exponents. The expanded Hamiltonians
with the irrelevant operators, together with the flow induced by the RG,
may be depicted as in figure 1 and thus explain universality.

The question remains: is universality thus explained? I claimed above
that one way to explain universality is by constructing a map between
convergent flows and real physical systems (akin to 3R on p.4). However,
as noted above, no map can be explicitly constructed in this case since we
do not know how to write down the irrelevant operators for the various
systems of interest. Thus an explanation of type 3R with the necessary link
to 2L may be found only in principle; in practice the 2R-type explanation
goes through.
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Figure 2: This demonstrates a single application of the real-space RG where a block of
spins is replaced by a single larger spin. Figure from Fisher (1998).

3.2 Real-space RG

The real-space RG may be understood by appeal to simple diagrams like
that in figure 2. It is thus unfortunate that, as I argue in this section, the
putative explanation provided by the real-space RG is inadequate.

The real-space approach allows for the derivation of critical exponents
consistent with empirical observation for various models. Furthermore
we have an account of relevance and irrelevance and the claim that: “In
general, for fixed points describing second-order critical points, there are
two relevant parameters: the temperature and the field conjugate to the
order parameter (for the magnet it is the magnetic field)” (Cheung (2011,
p.51)). Why is this explanation of universality not sufficient?

On p.4 I categorised a few options for how universality may be ex-
plained. I claimed that 1R was insufficient but 2R or a supplemented 3R
could do the job. I think that neither latter option is live in the real-space
case. This is because the mathematical model employed does not have
the tools to represent systems other than the archetypal system for each
universality class.
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While the field-theoretic approach makes use of a Hamiltonian derived
from the Ising model, the Hamiltonian used in that approach is renormal-
isable. As such it includes a scale-invariant core at the critical point which
represents a range of different systems. That’s how 2R is achieved: by
showing what’s in common and the general demonstration that all possi-
ble distinguishing features are irrelevant.

The real-space approach does not make use of a renormalisable Hamil-
tonian, nor does it have a formalism which establishes generally that the
Hamiltonians apply across a wide range of systems. Likewise there seems
to be little hope that a picture like that in figure 1 can be shown to corre-
spond to distinct systems in the same universality class having convergent
flows. Thus no core commonality can be adduced for a 2R-type explana-
tion, nor can a 3R-2L link be established. Three responses to this claim
ought to be considered:

Firstly, it could be noted that irrelevant couplings are discussed in the
real-space context, and we know that only a few, relevant couplings de-
termine the critical exponents, thus perhaps these relevant couplings pro-
vide the 2R explanation. My response here is that the model is still tied to
the details of the system it was created to represent. Thus the irrelevant
couplings are those aspects of that system which will not affect its critical
exponents.

To show that some aspects of a given system are irrelevant to its be-
haviour in a given context is quite different from showing that all systems
with the relevant properties (and with different irrelevant properties) will
display the behaviour. The former, system-relative claim is established by
the real-space RG but the latter more general claim is not. The success of
the field-theoretic RG explanation is due to the fact that we can categorise
operators as relevant or irrelevant quite generally. In the real-space RG
potential couplings are only categorised for a given model; as such 3R-2L
is unavailable.

Secondly, one might claim that the blocking transformation is tailored
specifically to the behaviour of systems at criticality thus perhaps the block-
ing itself represents the common features for 2R. The blocking is con-
structed so as to mirror the self-similarity of such systems and its appli-
cation to systems at criticality is thus justified. This would mean that the
real-space RG explains universality by appeal to the fact that all these sys-
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tems have some commonality, i.e. their self-similarity, which justifies the
use of these techniques to derive their critical exponents.

The problem with this claim is that the real-space RG approach does
not simply derive the exponents from the blocking techniques. In fact,
such exponents are derived by applying the blocking transformation and
then truncating the Hamiltonian so that it will retain its original form. As
such, the original Hamiltonian significantly determines the application of
the real-space RG and the exponents derived. It is thus not sufficient to
claim that the blocking techniques are justified by the self-similarity ex-
hibited by the systems.

This can be seen by considering the phenomenon of crossover men-
tioned above. How may we establish theoretically whether a given model
will display crossover phenomena? This depends on the terms in the
Hamiltonian for that system. I raise this here as evidence that the initial
Hamiltonian is crucial to the real-space derivation and explanation. As
such, the appeal to a common blocking RG transformation cannot provide
a 2R-type explanation.

Thirdly, for the remainder of this section I consider a pair of specific
elaborations of the real-space RG approach which provide limited expla-
nations of universality. The first demonstrates that critical exponents de-
rived on the real-space approach do not depend on certain couplings for
the Ising model. The second – the lattice-gas analogy – relates liquid-gas
to magnetic systems. Neither, I argue, provides a general account of the
range of classes and systems which behave universally. Such general ac-
counts are presently unavailable: one might claim that for any system we
could in principle write down its full microscopic Hamiltonian and deduce
its critical exponents using real-space RG methods. While no-one can ac-
tually do that and there is no general argument that such a methodology
would be successful I see no reason to presume that the real-space RG
provides a general explanation of universality.

Batterman (2016) highlights an argument found in Kadanoff (1971) to
the effect that one can introduce a parameter λ into the free energy func-
tion for the Ising model, and it can be demonstrated that the critical expo-
nents do not depend on the value of this parameter. In Kadanoff’s example
this parameter corresponds to the ratio of the couplings for nearest neigh-
bour to next nearest neighbour models. As such we may be assured of a
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particular kind of generality of the Ising model representation. The inde-
pendence of the critical exponents from such parameters is, however, in-
sufficient to establish the requisite generality for the real-space approach.
If a similar argument were available for the variation between a liquid-gas
system and a magnetic system then this explanation would be far more
convincing.

The lattice-gas analogy exemplifies a possible mapping which may
provide reasons to view the Ising model as representing liquid-gas sys-
tems in addition to magnetic systems. If this succeeds it would justify an
explanation of type 2R for the limited case at hand. However it would
not justify an RG explanation because the mapping is not one sourced in
the relevance and irrelevance criteria of the RG. Rather it would provide a
distinct explanation of universality.

In addition the lattice-gas explanation would not explain why liquid-
gas systems behave like anisotropic magnets in the critical region but not
outside that region. Since anisotropic magnets and liquid-gas systems ex-
hibit radically different behaviour outside such regions it is not appropri-
ate to claim that they are both well described by the Ising model in all
contexts.

Furthermore it is not generalisable to other examples of universality,
e.g. those systems which fall into the Heisenberg universality class. In
both respects the field-theoretic approach outdoes the real-space approach
even with the lattice-gas analogy.

The lattice gas model is summarised as follows:

Consider the Hamiltonian

H = −4J
∑
〈ij〉

ρiρj − µ
∑
i

ρi, (9)

where ρi = 0, 1 depending if the site is empty or occupied, and
µ is the chemical potential. If we define σi = 2ρi−1, we reobtain
the Ising-model Hamiltonian with B = 2qJ + µ/2, where q is
the coordination number of the lattice. Thus, for µ = −4qJ ,
there is an equivalent transition separating the gas phase for
T > Tc from a liquid phase for T < Tc.

[Pelissetto and Vicari (2002, p.554)]

27



This mapping is clear enough, but merely shifts the burden of justifi-
cation. As Pelissetto and Vicari acknowledge “The lattice gas is a crude
approximation of a real fluid” (ibid.). Their justification for this approxi-
mation is empirical: “Nonetheless, the universality of the behavior around
a continuous phase-transition point implies that certain quantities, e.g.,
critical exponents ... are identical in a real fluid and in a lattice gas, and
hence in the Ising model.” The model is provided the following rationale
in the context of its original presentation:

The question naturally arises as to the relationship between
a lattice gas and a real gas in which the atoms are not confined
to move on lattice points. If one replaces the configurational in-
tegral in the partition function of the real gas by a summation
over lattice sites, one would obtain the partition function of the
lattice gas. Theoretically speaking, by making the lattice con-
stant smaller and smaller one could obtain successively better
approximations to the partition function of the real gas.

[Lee and Yang (1952, p.412)]

This is rather odd. Although gases may often be modelled as contin-
uum gases, this is itself an idealisation which requires a physical justifica-
tion. Furthermore, the problem with the application of the Ising model to
a physical gas is not that the Ising model is discretised – we expect gases
to contain finitely many particles. Rather one should be concerned that
the molecules have more degrees of freedom available to them than the
components of uniaxial magnets. The move towards continuum is an ide-
alising step: we sought a de-idealisation to justify the application of the
Ising model to liquid-gas systems.20

If we were to accept this justification of the lattice-gas model further
questions would be raised: for magnets and liquid-gas systems do not
display the same behaviour away from the critical point. It is precisely
because the systems behave so differently much of the time that univer-
sality is startling. Thus, even if it turns out that the lattice-gas analogy

20This is not to suggest that idealised models are intrinsically problematic, I am just
sceptical that the physical justification of this analogy is sufficient to explain universality.
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gives a good account of liquid-gas systems, additional details are needed
to explain the limited applicability of the Ising model to such systems.21

Do we have an explanation why these different systems undergo sim-
ilar behaviour near the critical point? We are told that most of a system’s
features are irrelevant to its critical behaviour. It turns out, and this is
surprising and interesting, that uniaxial magnets and fluids have some
behaviour which is approximately described by the same model: namely
the Ising model. But this result is a consequence of careful mapping be-
tween the systems; it was not an RG result. While a lattice gas model may
explain universality to some degree, a generalisable RG explanation is not
available on the real-space approach: the RG was used for the derivation
of the critical exponents from the models, not in the justification of the
applicability of the models to various physical systems.

On the real-space approach we only have an account for what’s in com-
mon between systems with diverse microphysics when we have a well-
motivated mapping between the Ising models and a model for the sys-
tem in question. The lattice-gas analogy may provide one such mapping.
However the real-space RG does not allow for a generalised explanation
of universality because it cannot underwrite the flow of various different
systems into the same fixed point.

4 Conclusion

Batterman characterises the RG explanation of universality as follows:

One constructs an enormous abstract space each point of
which might represent a real fluid, a possible fluid, a solid, etc.
Next one induces on this space a transformation that has the
effect, essentially, of eliminating degrees of freedom by some
kind of averaging rule.

21Even at the critical point Vause and Sak (1980) argues for a failure of the lattice-
gas analogy: while magnets display a symmetry under global spin inversion (in the
absence of an external magnetic field) which implies a symmetry of the magnetisation-
temperature curve about the temperature axis, liquid-gas systems will not display anal-
ogous symmetries of the density-temperature curve.
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... Those systems/models (points in the space) that flow
to the same fixed point are in the same universality class–the
universality class is delimited–and they will exhibit the same
macro-behavior. That macro-behavior can be determined by
an analysis of the transformation in the neighborhood of the
fixed point.

[Batterman (2014, pp. 13-14)]

My aim in this paper has been to spell out the physical details which
underpin the quote above. In so doing I argued that the picture Batter-
man provides of the RG explanation is not workable on the real-space ap-
proach, but that it is consistent with the field-theoretic approach. How-
ever I claimed that, due to certain outstanding technical lacunae, the field-
theoretic RG explanation is better conceived as providing an explanation
which: adduces common aspects of the various systems which exhibit uni-
versality, and demonstrates that such common aspects are sufficient for
universal behaviour.

The real-space approach starts with a model and derives the critical
exponents on the basis of that model. It is difficult to see how this ap-
proach adequately explains the phenomenon that heterogeneous systems
have identical critical behaviour.

The field-theoretic approach, on the other hand, explains universality
by positing an effective Hamiltonian and deriving the critical exponents
from that. That this Hamiltonian is demonstrably general grounds the
explanation of universality. Thus the primary moral of my paper is that
these two approaches ought to be distinguished
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