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1.- Introduction

The modal interpretations of quantum mechanics dotheir roots in the works of van
Fraassen (1972, 1974), who claimed that the quastate always evolves unitarily (with no
collapse) and determines whaty be the case: which physical properties the systeaw
possess, and which properties the system may hdateatimes. On this basis, in the 1980s
several authors presented realist interpretatibasdan be viewed as belonging to a “modal
family”: realist, non-collapse interpretations dfet standard formalism of the theory,
according to which any quantum system possessasitdgbroperties at all times, and the
guantum state assigns probabilities to the posgintgerties of the system. Given the
contextuality of quantum mechanics (Kochen and Bgret967), the members of the family
differ to each other in its rule of definite-valascription, which picks out, from the set of all
observables of a quantum system, the subset ohitefialued properties, that is, the
preferred contexfsee Lombardi and Dieks 2014 and references therei

The traditional modal interpretations, based on hlilmethogonal decomposition or on
the spectral-decomposition of the quantum stateclikn 1985, Dieks 1988, 1989, Vermaas
and Dieks 1995) faced some difficulties. On the loaed, given the multiple factorizability of
a given Hilbert space, their rules of definite-veahscription may lead to contradictions of the
Kochen-Specker variety (Bacciagaluppi 1995, Vernte@®7). This difficulty motivated the
development of an atomic modal version, which pasts the existence of certain elemental
building blocks that compose all quantum systemsature (Bacciagaluppi and Dickson
1999), and of a perspectival version, according/thich the properties of a physical system
have a relational character and are defined wipeaet to another physical system that serves
as a “reference system” (Bene and Dieks 2002).H@nother hand, those traditional modal
interpretations do not pick out the right propestiéor the apparatus in non-ideal
measurements (Albert and Loewer 1990, 1991, 1988, 993, Ruetsche 1995); this was
considered as a “silver bullet” for killing the maddnterpretations (Harvey Brown, cited in
Bacciagaluppi and Hemmo 1996). Perhaps these pnsbéxplain the decline of interest in
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modal interpretations since the end of the 90'sfrele Bub’s preference for Bohmian
mechanics in those days can be understood in dhitext: given the difficulties of the modal
interpretations whose preferred context dependshenstate of the system, the natural
alternative for a realist is Bohmian mechanics,olhtan be conceived as a member of the
modal family whose preferred context is a priorfimed by the position observable (Bub
1997).

But position is not the only observable that canappealed to in order to define the
state-independent preferred context of a modalrprééation. The modal-Hamiltonian
interpretation (MHI) (Lombardi and Castagnino 20@Bastagnino and Lombardi 2008)
endows the Hamiltonian of a system with the roleselecting the subset of the definite-
valued observables of the system. This makes thel Mikimune to the non-ideal
measurement’s “silver bullet”, since it not only caants for ideal and non-ideal
measurements, but it also supplies a criteriondgbnguish between reliable and non-reliable
measurements in the non-ideal case (Lombardi arsta@ano 2008, Ardenghi, Lombardi
and Narvaja 2013, Lombardi, Fortin and Lopez 20M)reover, the MHI rule of definite-
value ascription has been reformulated in an exiglimvariant form, in terms of the Casimir
operators of the Galilean group (Ardenghi, Castagnand Lombardi 2009, Lombardi,
Castagnino and Ardenghi 2010), and the compagbiit the MHI with the theory of
decoherence has been proved (Lombardi 2010, Lomlfeodin, Castagnino and Ardenghi
2012). From the ontological viewpoint, the MHI poggs an ontology without individuals,
according to which quantum systems are bundlesrabgrties, and properties inhabit the
realm of possibility, not less real than the donafiactuality (da Costa, Lombardi and Lastiri
2013, da Costa and Lombardi 2014, Lombardi and k€K 6).

Nevertheless, in spite of the many aspects covesedhe MHI, perhaps its main
advantage in the eyes of scientists is given bgateeral applications to well-known physical
situations, leading to results compatible with ekpental evidence: free particle with spin,
harmonic oscillator, hydrogen atom, Zeeman effdirte structure, Born-Oppenheimer
approximation (see Lombardi and Castagnino 2008ti@&e5). The purpose of this paper is
to add a new application to the list: the caseptical isomerism, which is a central issue for
the philosophy of physics and of chemistry sincpaiints to the core of the problem of the
relationship between physics and chemistry. Hekeilitbe shown that the MHI supplies a
direct and physically natural solution to the pssh| which does not require putting classical
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With this purpose, the paper is organized as fdlow Section 2, the discussion about
whether chemistry is reducible to physics will mtraduced in terms of the problem of
molecular structure. On this basis, Section 3 feitlus on the particular problem of optical
isomerism and the so-called Hund’s paradox, whiomtp to the difficulty in giving a
guantum explanation to chirality. Section 4 will deevoted to explain the different attempts to
solve the paradox and their difficulties. In Sectf®, the main features of the MHI will be
recalled, emphasizing the aspects that will lead>ection 6, to offer a solution of Hund’s
paradox in exclusively quantum terms. Finally, he Conclusions the general argument will
be reviewed, stressing why the MHI supplies a pmatpe that sounds natural to chemists’
ears and provides them the tools to face some glgm@blems related with the links between
chemistry and physics.

2.- Linking physics and chemistry: the problem of nelecular structure

Since the advent of quantum mechanics and its Ggijgin to chemical systems, reduction
became a regulative idea in the accounts of tladioakship between physics and chemistry. In
the famous introductory paragraph of his articld @29, Paul Dirac described the central idea
of what later would be known as quantum chemistifhe underlying physical laws
necessary for the mathematical theory of a large paphysics and the whole of chemistry
are thus completely known, and the difficulty idyothat the exact application of these
equations leads to equations much too complicatedée soluble. It therefore becomes
desirable that approximate practical methods of lgiog quantum mechanics should be
developed, which can lead to an explanation ofntiaégn features of complex atomic systems
without too much computativfDirac 1929,p. 714). The approximate methods referred to by
Dirac, which are the core of quantum chemistry,stitute the field in which the problem of

the relationship between physics and chemistryiagsjparticular relevance.

The problem finds one of its main manifestationstie debate about the nature of
molecular structure, given by the spatial arrangeméthe nuclei in a molecule. The debate
focuses not on an auxiliary or secondary notiort, @ a central concept of molecular
chemistry: molecular structure is the main factorthe explanation of reactivity, it ighe
central dogma of molecular sciericBNoolley 1978, p. 1074). As Robin Hendry claims,
“molecular structure is so central to chemical exylon that to explain molecular structure
is pretty much to explain the whole of chemistiijendry 2010, p. 183). The problem
consists in the fact that the concept seems tormglace in the theoretical framework of
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that molecules exist as individual objects and #hatry molecule has a shape, characterized
by its molecular framie(Primas 1994, p. 216), the classical idea of mltdi spatial position
for the atomic nuclei, conceived as individual alge is, at least, strongly conflictive in the
guantum context. Although this problem has beerelyidliscussed, the debate is far from
settled.

Some authors consider that the impossibility ofivileg molecular structure from
guantum mechanics is the consequence of our phrtalledge of the molecular systems in
the theoretical framework of quantum mechanics. iRstance, Guy Woolley and Brian
Sutcliffe stress that:We have never claimed that molecular structure oatre reconciled
with or reduced to quantum mechanics, or that thergomething ‘alien’ about it; our claim
is much more modest. We do not know how to makeotieectior’ (Sutcliffe and Woolley
2011, p. 94; see also Sutcliffe and Woolley 20X2hne Hettema (2012) is even more
optimistic: he adopts an explicitly reductionisarste by considering that the intertheoretic
relationship between molecular chemistry and quantuechanics fulfill the conditions
required by the traditional Nagelian model of redt Another reductionist strategy is that
based on the concept of quantum decoherence: eedcas the process that accounts for the
classical limit of quantum mechanics (Zurek 199003, environment induced decoherence
would supply the necessary link between the claksioncepts of molecular chemistry and
the quantum domain (Trost and Hornberger 2009,rS2@t1, 2013).

From an opposite position, other authors point the difficulties of explaining
molecular structure in exclusively quantum termsisTs the case of Woolley in his works of
the 70’s and the 80’s, where he stresses that,danmof the description of a molecule from
“first principles”, “one cannot even calculate the most important patarsan chemistry,
namely, those that describe the molecular struét(Méoolley 1978, p. 1074); he considers
that the impossibility of determining the geometdy a molecule by means of quantum
mechanics is a proof of the fact that moleculascdtire is only a powerful and illuminating
metaphot (Woolley 1982, p. 4). In turn, Hans Primas higihlis non-locality as a specific
feature of quantum mechanics that excludes theasmaincept of molecular structurethe
holistic correlations between the nuclei and eleot are suppressed, so the description of a
molecule reduces to the description of the motiothe electrical field of a classical nuclear
frameworK (Primas 1998, p. 91; see also Primas 1983). fatlg Primas’ ideas, Robert
Bishop (2005) also recognizes the limitations cdrgfum mechanics to account for molecular
structure, and points out that proper attentiothtocontext relevant to a particular situation
can resolve otherwise intractable problems (se® Bishop and Atmanspacher 2006). Other



authors stress that conceiving the molecule asndividual object with its own spatial
structure requires to ignore quantum correlatidiiste shape of a molecular state should of
course not show holistic correlations to other nealar quantities and hence be
unambiguously defined(Amann 1992, p. 32).

Robin Hendry (2004, 2008, 2010) has largely adeek$ise issue of molecular structure
in the context of the problem of reduction. He diedistinguishes between the intertheoretic
and the metaphysical aspects of the reduction debias distinction allows him to point out
that, although reductionists and non-reductioragi®e that classical intertheoretic reductions
of chemistry are not currently available, they @iffn how they interpret the situatiorthé
issue is essentially future directethoth sides must wait and see, even if they would be
different ways. But why do the two sides makerdiitebets? Perhaps the answer concerns
their different underlying metaphysical viewgHendry 2010, p. 184). On this basis, Hendry
considers that the reduction debate must turnieider the ontological relationships between
the entities, processes, and laws studied by diftesciences.

A central element in the discussion about molecsiiarcture is the role played by the
Born-Oppenheimer approximation, whose fundamentedmgse is the possibility of
decomposing the Hamiltonian of the molecule insoeltectronic and its nuclear components.
This move relies on assuming the nuclei as claskkeaparticles at rest in a definite position:
on this basis, the terms of kinetic energy assedidb the nuclear motion are removed
(clamped-nuclei assumptipnin the Hamiltonian resulting from that assumpticthe
molecular structure is described by the positidnhe nuclei. In turn, the so-called ‘potential
energy surface’ that affects the electrons of tlideoule can be calculated by means of this
Hamiltonian. Nevertheless, from the viewpoint ofduetion, the Born-Oppenheimer
approximation faces at least two difficulties. Eirig introduces the molecular structure into
the quantum description from the very beginningicsi the positions of the nuclei are
established with the appeal to classical geometitsiderations. Second, the assumption of
the nuclei at rest in fixed spatial positions cadicts the Heisenberg principle, which
prevents quantum systems from having definite alug position and velocity
simultaneously (see Lombardi and Castagnino 20bdn@ 2015). As Hendry (1998, 2010)
points out, the “proxy” defense of Born-Oppenheimmadels is based on the assumption that
using them instead of the exact solution makes angmall difference to the energy; but,
from a theoretical viewpoint, those modelsiniply assume the facts about molecular
structure that ought to be explaiffedHendry 2010, p. 186). Hasok Chang clearly matkes
point: “The difficulty here is not only about the practitek of the calculation, and the



clamping-down of nuclei is not merely an approxioratAside from assuming that the nuclei
are fixed, it is necessary to know exaaitliiere exactly the nuclei in question should be
placed. Otherwise it is not possible to specify pmtential function, which needs to be
inserted into the Schrodinger equation, whose swiutletermines the wavefuncion of the
electrons in the molecule. In other words, withkmidwing the locations of the nuclei in the
molecule it is impossible even to set up (not tatioe solve the Schrodinger equation
(Chang 2015, p. 198).

The discussion around the nature of molecular &iracis often related with the
interpretation of the Born-Oppenheimer approxinratidowever, there is a specific problem
regarding molecular structure that plays a centld in the debate about the relationship
between molecular chemistry and quantum mechanhius.is the problem of isomerism. The
particular relevance of this case is that, as it & explained in the next section, the
difficulties derived from it are independent frometassumptions involved in the Born-
Oppenheimer approximation.

3.- Isomerism and optical activity: Hund’s paradox

The composition of a molecule is given by its cheahiformula, which specifies in what
stechiometric proportion the component elementpegsent in the chemical compound. But
the formula supplies no information about the geimiced arrangement of the component
atoms. For instance,,B840, corresponds to different chemical compounds: nidthynate,
acetic acid and glycolaldehyde. Compounds thataterthe same number of atoms of each
element (and, therefore, have the same chemicahula) but have different spatial
arrangements of their atoms are caligoimers(see Figure 1). Isomerism is a phenomenon
highly relevant in chemistry, since it explains ttéerence in the physical and chemical

behaviors of substances with the same composition.
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Figure 1: Isomers corresponding to the chemicahéda C,H40-

There are two main forms of isomerism: structusamerism and stereoisomerism. In



structural isomerssometimes referred to aenstitutional isomershe component atoms and
the functional groups are connected together ifemiht ways. On the other hand, in
stereoisomersthe component atoms are linked together in theesaay, but the geometrical
positioning of atoms and functional groups in spddéers. The class of stereoisomers
includes the subclass ehantiomersthe structures of the members of a pair of epamdrs
are non-superimposable mirror-images of each qges Figure 2 below). The property that
distinguishes the members of a pair of enantionsecalledchirality.

When present in a symmetric environment, enantiesnh@ve identical chemical and
physical properties. Nevertheless, they differhia kind of interaction with polarized light. In
particular, the members of a pair of enantiomersleadistinguished for their ability to rotate
plane-polarized light by equal amounts but in ogpadirections. It is for this reason that they
are calledoptical isomersand it is usually said that they arptically active When the plane
of polarization is rotated clockwise (as seen lweaver towards whom the light is traveling),
the optical isomer is calledextro-rotatory(D); in the case of counterclockwise rotation, the
optical isomer is calletbvo-rotatory(L).

Chiral molecules have an important function in 8mzymatic reactions of biological
systems: many pharmacological drugs are chiral,gamérally only one of the members of
the pair exhibits biological activity. The actiohdrugs is usually explained by means of the
idea of “receptor”. Receptors are protein molecutesiuman body, which are exclusively
built from L-aminoacids. This means that proteinl@cales are chiral and, as a consequence,
they have different reactions with the two enangmnof a chiral drug. For instance,
aspartame is a sweetening agent that has two enser: one of them is more than a hundred
times sweeter than sucrose; the other, is tastetesghtly bitter. A dramatic example of the
different biological activity of enantiomers is tha thalidomide, a drug of molecular formula
Ci3H10N204 introduced to the marked in 1957 by a pharmacauttompany in West
Germany. It was prescribed to pregnant women adatise and to prevent nausea; its use
spread rapidly to 46 countries. But the drug waslenand marketed as a mixture of D-
thalidomide and L-thalidomide: the D-thalidomideas effective sedative, whereas the L-
thalidomide is a teratogen, that is, an agent affgche development of the fetus and causing
structural or functional abnormality. It is not kmo exactly how many worldwide victims of
the drug there have been, although estimates rfaage10.000 to 100.000. These are only
some examples of the fact that, at present, theeaaand production of enantiomers is a key
activity in the pharmaceutical industry.

Chemists not only successfully explain the behawbenantiomers in terms of the



geometrical shape of the molecules, but they hés@ @developed many techniques for the
preparation of compounds where the proportionshefdnantiomers can be controlled. The
problem with chirality arises not at the chemiaaldl, but with the attempts to explain the
phenomenon in quantum terms.

When a molecule is described by quantum mechathiesCoulombic Hamiltonian only
depends on the distances between the particlesangpthe molecule; in particular, if only
the atomic nuclei are considered, the Hamiltoniapemds exclusively on the inter-nuclear
distances. In the case of structural isomers, tfierehce between them is manifest in the
Hamiltonian. But in the case of optical isomerisaththe inter-atomic distances are the same
for the two members of the pair and, as a conseg)¢he Hamiltonian is exactly the same
for both. This means that quantum mechanics supfie same description for two structures

that can effectively be distinguished in practicetigh their optical and biological activity.

It is very important to stress that the problemogtical isomerism is completely
independent of the Born-Oppenheimer approximati@t.us suppose, for instance, that we
could count with the exact Hamiltoniad (with no approximation) of a molecule of alanine
C3H7NO,, which includes three nuclei of carbon, one ofagiéen, and two of oxygen, plus all
its electrons (Figure 2)

O\ /OH HO\ /O
| |

Figure 2: Enantiomers of alanine

Even if we cannot write down this Hamiltonian deeits complexity, we know that it only
depends on the distance of the component part@tel therefore, not even the exact
Hamiltonian can account for the difference betwBeslanine and L-alanine. As Sutcliffe and
Woolley claim: ‘Clearly then, an eigenstate of H doest correspond to a classical molecule
with structure! That observation begs the questwhat are the equations thdeterminethe
quantum state of molecules? Beyond the[B@n-Oppenheimerpproximation we have no
idea” (Sutcliffe and Woolley 2012, p. 416; emphasighe original). In short, the problem of



the quantum mechanical distinction of optical isoenef the same substance is beyond the
Born-Oppenheimer approximation and its underlyisguanptions.

The problem embodied in optical isomerism pointa tdeep difficulty in the attempts
to account for molecular structure in quantum terfries was already noticed by Friedrich
Hund, pioneer in the development of quantum chewigt the 1920s. Hund’'s paradox can
be formulated in two versions. The first one, doédund himself (1927), reads as follows:
since chiral states are not eigenstates of the ktanan (the Hamiltonian is parity invariant),
and none of them corresponds to the basal statg daltertain chiral molecules display an
optical activity that is stable in time, associatec well-defined chiral state, and are they not
in a superposition of the two possible chiral satdlore recently, Hund’'s paradox was
formulated in a slightly stronger version (BerlBuyrin and Goldanskii 1996): why do chiral
molecules have a definite chirality?

Let us consider a chiral molecule from the perspecatf quantum mechanics, and call
H its total Hamiltonian, which takes into accourtthke interactions among nuclei, among
electrons and among electrons and nuclei. Sinc&€thdombic interaction only depends on
the distance between the interacting particlesis isymmetric under spatial reflection;
therefore, the Hamiltonian commutes with the pasjpgratorP :

[P.H]=0 (1)

This means that the eigenstates of the Hamiltongue definite parity. Moreover, this feature
is preserved during the time evolution of the systbecause the parity operator commutes
with the Hamiltonian and, as a consequence, is1atant of motion.

With these elements, Hund’s paradox can be exptesdermal terms. The eigenstates
|w,) of the Hamiltonian of this molecule have parityrsyetry:

P|o,) =*|w,) (2)

In particular, the even levels have even parity] #&me odd levels have odd parity. For

instance, the ground stdt®, ) is symmetric and the first excited stite) is anti-symmetric:

Plo) = +|wp) Ploy) =-fe) ®)

However, on the basis of experimental data it issge to know that the states of optical
iIsomers do not have this symmetry. In fact, if thve isomers corresponding to the two chiral
states are represented by the quantum stajeand|D), each isomer is the mirror image of
the other, that is:



PlL)=[0)

(4)
P[0)=|1)

Therefore, the statds) and|R) cannot be eigenstates of the Hamiltonian. On tmerary,
they can be expressed as superpositidagf and|w) :

1)= 5 ww)+ )

1 (5)
D)= () ~[e))
On the other hand, the ground state is a supeigosit the chiral states:
1
=—|(|L)+|R 6
) =75 (L) +IR) ©)

Why, then, do we observe chiral states? In othedstdWhat is the shape of the hypothetical
superposition of these two species? Is there agirogason to exclude such superpositions?
What reason can be giveafrom a quantum-mechanical point of viewor chemical
systematics?(Amann 1992, p. 32).

4.- Some attempts to solve the paradox

Once it is concluded that chiral states are narestates of the Hamiltonian, it is necessary to
explain why those states are observed in the laixyraOne strategy consists in maintaining
the Coulombic Hamiltonian, identifying the statds) and |D) as superpositions of the
eigenstates of the Hamiltonian, and then supplgimgason why the molecule does not decay
to the ground state, eigenstate of the Hamiltortiais:is Hund’s strategy, based on graphical
visualization.

Let us consider a quantum system with a poterék) with mirror reflection
symmetry, such as that of Figure 3. The states€$tton the left” and “at rest on the right”
break the symmetry of the situation and, for tl@ason, they cannot be eigenstates of the
Hamiltonian.

Figure 3: Potential’(x)  with mirror symmetry 9



In fact, if the wavefunctions of the ground statg) and of the first excited statey) are

graphed, the results of Figure 4 are obtained.

7\ N\ N\
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Figure 4.Shap of the eigenfuncions of a particle subject to the tial 7' (x). On the Ift,
the ground state, symmetric under space reflections. On thethgHtrst excited state, anti-
symmetric under space reflections.

Figure 4 clearly shows that the eigenfunctionsheffHamiltonian preserve parity: they do not
correspond to states localized on the left or @ right, since both occupy both “wells.”
However, experimentally it is possible to placeuamfum particle in one of the two minima
of the potential, for instance, on the left. liciear that this particle is not in an eigenstate of
the Hamiltonian, but is in a superposition. Therahstates|L) and |D) correspond to

wavefunctions as those shown in Figure 5.

DR+ / \ b 0()-f1(f- / \ i
o / \

Figure 5.Shap of the eigenfuncions of a particle in the st¢|Z) and|R). On the left, the
state L) corresponds to a particle located on the left side. Onigihie the state[R)
corresponds to a particle located in the right side.

In their article “On the time dependence of optiaativity”, Robert Harris and Leo
Stodolsky (1981) face the problem of chiral isoreard emphasize the limitations of Hund’s
proposal. In particular, since chiral states aré¢ @igenstates of the Hamiltonian, it is
necessary to admit the existence of an exceptikindl of molecules that do not remain in
their ground states. For these authors, the keglie this difficulty is the interaction between
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molecules; they modify the Hamiltonian of the sgstavith the purpose to describe such
interaction. The central idea is that the paradaesea when the molecule is considered in
isolation, whereas a real system actually consist®any molecules in interaction. For this
reason, they propose to study the molecules iniscodl to each other: intermolecular
collisions would modify the dynamics of the whotamposite system.

The solution to Hund’s paradox offered by Harrid &todolsky is based on considering
the interaction of the molecule with its environman this case composed of other similar
molecules. But in this case it is not clear how imeraction breaks the symmetry of the
problem. As Hendry claimsThe particular form of the symmetry-breaking additmust be
justified however, and it is quite mysterious hdwattcould work if all one has in the
environment are more molecules described by Coutoriamiltonians. The Coulomb
Schrédinger equation for an n-molecule ensemblehyafrogen chloride molecules has
precisely the same symmetry properties as a Coulschbddinger equation for a 1-molecule
system. If the particular form of the symmetry-Breg addition is not justified, then it is just
ad hoc: a deus ex machifigHendry 2010, p. 186).

Once the possibility of solving the problem of optiisomerism in terms of the
interaction with an environment was consideréddid not take long for the idea of
decoherence to enter the stdgee, e.g., Joos 1996). In fact, although the gi@iate of the
molecule is a superposition of the chiral stdtes and |D), we always measure definite
values of chirality. Analogously to the traditionglantum measurement problem, here the

problem is to account for the transition from tlhiperposition to one of the chiral states, say,

u:
o) =5 (|L)+[D) ~ |L) @)

During the last decades, the quantum measuremeblkepn is being faced in the light of the
theory ofenvironment induced decoheren@rek 1981, 1991, 2003), which relies on the
study of the effects of the interaction betweenuamjum system, considered as an open
system, and its environment. On the basis of tlagyais of the evolution of the reduced state
of the open system, it is proved that, under certanditions, that state becomes diagonal,
that is, loses the interference terms that prectldesicality. The reduced state is conceived
as a mixed state containing only the representatibrelassical correlations and, as a
consequence, it can be interpreted in terms ofragree. When this idea is applied to the
problem of isomerism, the conclusion is that thdemuale is in one of the stat¢k) or |D),

and the probabilities measure our ignorance alisutefinite state. In this way, the theory of
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decoherence would have solved the problem undegriitmd’s paradox.

This idea was widely accepted in the philosophghamistry community. For instance,
in the Editorial 37 of the journadFoundations of Chemistnits editor Eric Scerri (2011)
explicitly considers optical isomerism in the cottef the debate about the possibility of
accounting molecular structure in quantum-mechéarteans. He relates the problem of
isomerism with the measurement problem in quantwenhanics, and states that the question
about molecular structures*part of a bigger problem that has long plagukd foundations
of quantum mechanics, namely the problem of thiapse of the wavefunctiof...] this
problem has gradually begun to dissolve with thewgng realization of the role of quantum
decoherence in physics and other disciplihgScerri 2011, p. 4). On the basis of the
extensive literature on decoherence, Scerri cldimas the problem of optical isomerism is
dissolved by taking into account the interactionttd molecule with its environmentThe
study of decoherence has shown that it is not gbservations that serve to collapse the
superpositions in the quantum mechanics. The ce#lapan also be brought about by
molecules interacting with their environméntScerri 2011, p. 4; for a similar claim, see
Scerri 2013).

This position, however, does not take into accahat, in spite of the wide application
of the decoherence program, its ability to solhesttiaditional measurement problem has been
largely discussed, and doubts have been raisedeobatsis of different arguments. In fact, no
matter how the open molecule evolves, the statbeofvhole system molecule+environment
IS a superposition at any time: the superpositi@ven disappears through its unitary
evolution. For this reason, although the reducestesbperator of the molecule lacks
interference terms, this does not allow us to sappbat what is observed at the end of the
process is one of two definite events: either thiene associated Witﬂ1L>, or the event
associated with D). In this sense, Stephen Adler concluddsdd not believe that either
detailed theoretical calculations or recent expegital results show that decoherence has
resolved the difficulties associated with quantusasurement theofyAdler 2003, p. 136).
The criticism of Jeffrey Bub (1997) is even strongtating that what is observed at the end
of the measurement process is a definite evenvmigtis unjustified, but also contradicts the

eigenstate-eigenvalue link, a standard assumpitigaantum mechanics.

Another way to criticize the solution to the mea&suent problem via decoherence relies
on stressing the difference between a proper maxtlre mixed state of a closed systeand
an improper mixture-the state of an open system, obtained by tracifghef degrees of
freedom of its environment (d’Espagnat 1966, 1976): improper mixtures canhet
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interpreted in terms of ignorance. As Maximiliarhi®sshauer emphasizes in his well-known
book about decoherenceSifice the two systems A and B are entangled andotiaé
composite system is still described by the supérposit follows from the standard rules of
guantum mechanics that no individual definite stedi@ be attributed to either one of the
subsystems. Reduced density matrices of entangbsysems therefore represent improper
mixture$ (Schlosshauer 2007, p. 48). The difference betw@meper and improper mixtures
turns out to be even clearer when it is proved thatreduced state of the open system,
obtained by partial trace, is a kind of coarse+ggdistate of the composite system to which
the open system belongs (Fortin and Lombardi 20Rd)haps confusions are due to the fact
that proper and improper mixtures cannot be disisiged from a mathematical viewpoint.
However, that mathematical indistinguishabilityerggally depends on the formalism used to
express the theory, in particular, the Hilbert gpémrmalism. But the situation might be
different in other cases. For instance, it has @emed (Masillo, Scolarici and Sozzo 2009)
that proper and improper mixtures are represented Wgrdiit density operators in the so-
called quaternionic formulation of quantum mechsaiidler 1995); hence, in this formalism
they can be distinguished also from a mathematiebpoint. In a recent article, Scerri
(2012) recognizes that the question of whether lde@nce explains quantum measurement is
a subtle matter, and refers to the review papéswtio Bacciagaluppi (2012); in this paper
the author points out that, although naive claimsthe kind that decoherence gives a
complete solution to the measurement problem dfs@tewhat part of the “folklore” of the
matter, decoherence as such does not provide dhdios, at least not unless it is combined
with an appropriate interpretation of quantum medats(for a detailed argument, see Fortin,
Lombardi and Martinez Gonzalez 2016).

In summary, the different answers to the problenomtical isomerism offered in the
literature are far from conclusive. Perhaps itimet to try with an interpretive strategy:
tackling the problem by means of an interpretattdnquantum mechanics capable to be
applied not only to the abstract model of quantumasarement, but also to situations

commonly treated in the practice of physics andvabiy.

5.- The modal-Hamiltonian interpretation

As advanced in the Introduction, the MHI is a r&alhon-collapse interpretation belonging to
the “modal family”, which endows the Hamiltoniantiwvia key role both in the definition of
systems and subsystems and in the selection giréferred context.
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5.1- The postulates of the MHI

By adopting an algebraic perspective, the MHI defia quantum syste® as a pairfO, H)
such that (i)O is a space of self-adjoint operators acting onllber spaceH , representing
the observables of the system, (H)JO is the time-independent Hamiltonian of the system
S, and (iii) if p,JO" (whereO' is the dual space @) is the initial state ofS, it evolves

according to the Schrodinger equation.

A quantum system so defined can be decomposedis ipamany ways; however, not
any decomposition will lead to parts which aretumn, quantum systems. The expression
‘tensor product structure’ (TPS) is used to call partition of a closed syste, represented
in the Hilbert spaceH =+, O H,, into partsS, and S, represented inH, and H;,
respectively. Nathan Harshman and Sujeev Wickrakaagae(2007a, 2007b) point out that
quantum systems admit a variety of TPSs, each eadirlg to a different entanglement
between their parts. However, there is a particliRR$ that is invariant under time evolution:
the TPS isdynamically invariantwhen there is no interaction between the partsother
words, in the dynamically invariant case the congms behaviors are dynamically
independent from each other; each one evolvesripiteccording the Schrodinger equation.
On this basis, according to the MHI, a quantumesystan be split into subsystems when

there is no interaction among the subsystems.

Composite systems postulateA quantum systens. (O, H), with initial state
P, O, is compositewhen it can be partitioned into two quantum system
st (0L HY and S% (0%, H? such that (i) ©=0'00%, and (i)
H=H'OI?+I*0H?, (where |* and |1? are the identity operators in the
corresponding tensor product spaces). In this casesay thatS' and S* are
subsystemsf the composite syster8 = S + S. If the system is not composite,

it is elemental

With respect to the preferred context, the basieaidf the modal-Hamiltonian
interpretation is that the Hamiltonian of the sgstewith its own symmetries, defines the
subset of observables that acquire definite actakles. The group of transformations that
leave the Hamiltonian invariant is usually call&throdinger group” (Tinkham 1964). Since
each symmetry of the Hamiltonian leads to an endegeneracy, much valuable information
on the energy spectrum of the system can be obténapplying the machinery of the group
theory to the study of the symmetries of the Hamilin. The degeneracies with origin in
symmetries are called “normal” or “systematic” (@okhTannoudji, Diu and Lalée 1977). On
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the contrary, degeneracies that have no obvioggnon symmetries are called “accidental”.
However, deeper study usually shows either thatattedental degeneracy is not exact, or
else that a hidden symmetry in the Hamiltonian lbarffiound which explains the degeneracy.
A classical example is the degeneracy, in the tgaimcatom, of states of different angular
momentum but the same principal quantum numhbéfor instance, 2and 2 functions). In
this case, Vladimir Fock (1935) showed that theethegacy arises from a four-dimensional
rotational symmetry of the Hamiltonian in momentgpace. For this reason it is assumed
that, once all the symmetries of the Hamiltoniamehbeen considered, a basis for the Hilbert
space of the system is obtained and the “good goamtumbers” are well defined. This
strategy is what underlies the group approach tangum mechanics, where the physical
features of the quantum system are studied by zinglythe symmetry properties of its
Hamiltonian (Weyl 1950, Tung 1985).

Now we have all the conceptual elements necessargesent the MHI rule of definite-
value ascription, here called ‘actualization rul€he basic idea can be expressed by the
classical Latin maximUbi lex non distinguit, nec nos distinguere debémusere the law
does not distinguish, neither ought we to distisguiThe Hamiltonian of the system, with its
symmetries, is what rules actualization; then, nobservable whose eigenvalues would
distinguish among eigenvectors corresponding toingles degenerate eigenvalue of the
Hamiltonian has to acquire definite value, since attualization would introduce in the
system an asymmetry not contained in the Hamilton@nce this idea is understood, the
actualization rule can be formulated in a very senwpay.

Actualization rule: Given an elemental quantum syst&n(©, H), the actual-
valued observables d& are H and all the observables commuting with and
having, at least, the same symmetriedias

The justification for selecting the Hamiltonian the preferred observable ultimately lies in
the physical relevance of the MHI and in its apitib solve interpretive difficulties. Here we
will focus on the first point, in order to show thiae case of Hund’s paradox can be counted
as a further successful application of the integiren.

5.2- Measuring as breaking symmetries

As already mentioned, the MHI scheme has been eppb several well-known physical
situations, leading to results consistent with erogl evidence (see Lombardi and Castagnino
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2008, Section 5). Let us recall some of them, oheoto stress the role played by symmetries

in those situations.

The Hamiltonian of the free particle reads
P2 _PRI+R+F

2m 2m ®)

H free =

where P is the momentum observable, with componddts, ,B, andm is the mass of the
particle. H ., is invariant under space-displacements in anyctio®, and the components
PR P

z

are the generators of the symmetry. Since the ktaman is degenerate, the
components ofP need to be used for the theoretical descriptiothefsystem: usually any
two of them are added tél;,, to constitute a complete set of commuting obsdegab
(CSCO), {Hee: PP} {Hee: Py P} OF {H (e, P, P}, that defines a basis of the Hilbert
space. But this fact does not mean that those wiisles have to be considered definite-
valued; in fact, this would be not possible sirfgeP, ,B do not commute to each other. The
MHI is completely consistent with this fact: accmgl to its actualization ruled ;.. acquires

a definite value, and alsB? since it is proportional tdH .; neverthelessP,,R, ,F, are not
definite-valued because the actualization of anthem would introduce an asymmetry not
contained in the Hamiltonian: it woularbitrarily break the symmetry of the free particle.
This result of the application of the MHI agreeshahe empirical non-accessibility to the
values of B ,R,,E in the free particle. If we want to know thoseues, we must perform a
measurement on the particle, in particular, a nreasent that involves an interaction that
breaks the symmetry of the original system by maag its Hamiltonian. For instance, we
can introduce a screen acting as a potential lpdhd breaks the homogeneity of space. This
means that, under measurement, the particle isongel free: the symmetry breaking
introduced by the interaction with the measuringtem is what allows us to have empirical

access to an observable that was a symmetry genefdhe original free system.

In the case of the free particle with spin, the Hemian is

2
P ks 9)

H=H +Hspin:2m

free

According to the MHI, in this case the system imposite because it can be decomposed into
two non-interacting subsystems: a free particleneut spin, represented i ;.. and with
Hamiltonian H .. = P?/2m, on which the rule applies as explained above, ansbin
=k S, with k = const The spin

system, represented ik, and with HamiltonianH

spin spin

subsystem is invariant under space-rotation: theeiggors of this symmetry are the three
componentsJ,,J, ,J, of the total angular momenturd. But since in this case the orbital
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angular momentuni is zero, the total angular momentuin= L+ S turns out to be simply
J =S, and the three componen§; ,S ,$ of the spinS are the generators of the space-
rotation symmetry. As in the previous case, theedhiobservablesS ,S ,§ cannot
simultaneously be definite-valued since they dogumhmute to each other. The MHI agrees

with this fact: according to the actualization rulethis caseH ;, acquires a definite value,

spin
and also S? since it is proportional toH pin (S? is the Casimir operator of the group
generated byS,,S ,3); neverthelessS, ,§ ,$ are not definite-valued since they are the
generators of the space-rotation symmetry, andtitgalization of any of them would break

the symmetry ofH_ ., in an arbitrary way. Again, this conclusion agredth the fact that we

spin
have no empirical access to the spin componeniiseofree particle with spin. If we want to
know the value of those components, we have tmparh measurement on the system: we
have to introduce a magnetic fie®l of modulus|B| in some direction, say, which breaks
the isotropy of space and, as a consequence, ifiaarspace-rotation symmetry. Under the

action of B, the HamiltonianH is not invariant under space-rotation anymoreahse

spin
now it includes an interaction proportional |1B| S, that privileges a particular direction of
space. In other words, we can have experimentasact the spin compone only by

means of a measurement that breaks the spacesrosgtinmetry of the original Hamiltonian
and, therefore, makes the system no longer frees iBhthe usual way in which a spin

component is measured in a Stern-Gerlach experiment

The Hamiltonian of the hydrogen atom reads

P2 P e’
free e+ P+ (10)
2m, 2m, |Q,-Q,

where the subindexes and p refer to the electron and to the proton respelstivaend e is
the electric charge of the electron. When the spihe electron is not considered, the atom is
invariant under space-rotation, and the total aargolomentumJ =L+ S is simply J = L.

Then, the three components,L,,L, of L are the generators of the symmetry group. The

v
possible states of the atom are labeled by the tgmamumbers: the principal quantum
number n, the orbital angular momentum quantum numbeand the magnetic quantum
number m, which correspond to the eigenvalues of the oladdes H, L° and L,
respectively. Since the Hamiltonian is degenerate tb its space-rotation invariance, the
hydrogen atom is described in terms of the bfisid,m )} defined by the CSC({)H ,LZ,I7} .
Nevertheless, its space-rotation invariance makesselection ofL, a completely arbitrary
decision: given that space is isotropic, we caroskd, or L, to obtain an equally legitimate

description of the free atom. The arbitrarinesthanselection of the-direction is manifested
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in spectroscopy by the fact that the spectral lioésthe free hydrogen atom give no
experimental evidence about the valued.gfwe have no empirical access to the nunoer

of the free atom. The MHI agrees with those expenital results since it does not assign a
definite value toL,: the actualization of the value &f would arbitrarily break the symmetry
of the Hamiltonian of the free hydrogen atom.

Analogously to the measurement on a free particigh spin, in the case of the
hydrogen atom a magnetic field along thez-axis breaks the isotropy of space and, as a
consequence, the space-rotation symmetry of thevatdélamiltonian. In this case, the
symmetry breaking removes the energy degeneracy imow L, is not arbitrarily chosen
but selected by the direction of the magnetic fi@dt, in turn, this implies that the atom is no
longer free: the Hamiltonian of the new systempigraximately

e
H :Hfree"'HeBL (11)

where H .. is the Hamiltonian of the free atom. As a consegaethe original degeneracy

of the (2I +1) -fold multiplet of fixedn and| is now removed: the energy levels turn out to
be displaced by an amouity,, ,
the so-calledZeeman effecfThis means that the Hamiltonian, with eigenvalugs, , is now

which is also function ofiy : this is the manifestation of

non-degenerate: it constitutes by itself the CS{]ﬂ)} that defines the preferred basis
{|n,|,m>}. According to the MHI actualization rule, in thteseH and all the observables
commuting withH are definite-valued: since this is the caselfbrand L,, in the physical
conditions leading to the Zeeman effect both olea@es acquire definite values.

When the spectral lines of the hydrogen atom cpmeding ton>1 are examined at a
very high resolution, they are found to be closghaced doublets: the energy levels of the
atom are affected by the “coupling” between thecteten spin S and the orbital angular
momentumL . Now the Hamiltonian of the system reads

H:Hfree+H H

spin+ S« (12)

where H . is again the Hamiltonian of the free atoH,,;, =k S* is the Hamiltonian of the

spin
spin, andH_, is the Hamiltonian representing the spin-orbierattion. When the spin-orbit
interaction is neglectedH,_, = 0), the system is composite and can be describéetims of
the basig{|n,I,m,s,m)=| n L mO| s @)}, where thes(s+1)s* are the eigenvalues &,
and themy: are the eigenvalues d§,. But when the spin-orbit interaction is taken into
account, the observablds and S, no longer commute wittH and, therefore, they are not

constants of motion of the system: it is usualli ghat m and m, are not good quantum
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numbers anymore. Nevertheless, the Hamiltoniarillsirsvariant under space-rotation: the

componentsJ,, J,, J, of the total angular momentund are the generators of the

g
symmetry group. In turnJ = L+ S is the sum of the orbital angular momentumand the
spin angular momentur§, andm; = m + ma, wherem, corresponds to the eigenvalue bf

. S0, nowm; is a good quantum number. Then, the bHssisJ, j,s,m; >} of the Hilbert space
of the system is defined by the CSC{B, 12,32, \]Z}. In this case, the spin-orbit coupling
removes the original degeneracy of the eigenvalugs of the atom with no coupling;
therefore, the MHI actualization rule seledfs, J? and S* as definite-valued observables,
because all of them commute with and have the same degeneracyrinas H . But the
space-rotation symmetry still present in the sydiands to a degeneracy bif, manifested by
the fact that the energy eigenvalugg, do not depend om;. Then, according to the MHI,
although in this casen, is a good quantum numbet, does not acquire a definite value, and

this result agrees with the arbitrariness of #leaion of thez-direction for J, .

When a magnetic field is applied to the atom, thectal lines split in different ways.
The “normal” Zeeman effect, explained above, iseobsd in spin0 states where, obviously,
the spin-orbit coupling has no effect. In the statdere the spin-orbit coupling is effective,
the action of the magnetic field produces a furthgitting of the energy levels known as
“anomalous” Zeeman effectNevertheless, the explanation of the anomalotectefs the
same as that of the normal effect: the action efrttagnetic field along th&-axis breaks the
space-rotation symmetry of the Hamiltonian by peging the z-direction, and this leads to
the removal of the original degeneracy of the Hemikn in the quantum number; (instead
of in the quantum numben as in the normal effect). In this case, the MHUatzation rule
prescribes thatJ, will be also definite-valued, in agreement withe tlexperimental

accessibility ofm, .

All the cases described above point to a featutbefjuantum measurement that is not
noticed in the usual, merely formal treatmentsh&f process. In fact, in the von Neumann
model, the observablé to be measured on the syst&nof interest is considered in formal
terms and deprived of its physical content. Thdre interaction betweerS and the
measuring apparatugl is endowed with the only role of introducing therelation between
A and a pointerP. However, the physical situations just consideskbdw that we have no
empirical access to the observables that are gemgraf the symmetries of the system’s
Hamiltonian; and, in the context of measuremektmnay be one of those observables. This is
precisely the case in the Stern-Gerlach experimehgre S, is a generator of the space-

rotation symmetry ofH. . =k S?; it is the interaction with the magnetic fiel = B, that

spin
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breaks the isotropy of space by privileging thalirection and, as a consequence, breaks the
space-rotation symmetry ¢

spin-

This physical account of quantum measurement shibats when the observabla to
be measured on the syste®nis a generator of a symmetry of the Hamiltonldg of S, the
interaction with the apparatusl not only must establish a correlation betwegnand the
pointer P, but also must break that symmetry. Thereforemfra physical viewpoint,
measurement can be conceived as a process thés liheasymmetries of the system to be
measured and, in this way, allows us to have adoeas otherwise empirically inaccessible
symmetry-generator observable. This suggests tmatformal von Neumann model of
quantum measurement should be complemented by sicphymodel in terms of which
measurement is a symmetry breaking process thalerena symmetry generator of the

system’s Hamiltonian empirically accessible.

6.- The modal-Hamiltonian account of optical isomasm

In the light of the above account of quantum meame@nt, now Hund’'s paradox can be

rephrased in MHI's language.

As explained in Section 3, the exact Hamiltoniein of an enantiomer molecule is
symmetric under spatial reflection: it commuteshwtiie parity observabl® (see eq. (1)).
Now, let us consider the observaldeirality C, whose eigenstates af®) and |L): the
eigenvaluesd and | of C represent the properties dextro-rotation and leation,
respectively. The observable should be definite-valued for the molecule to hextcb-

rotatory (D) or levo-rotatory (L).

It is easy to see thaf does not commute withi : [C,H]# 0. As in the examples of
the previous section, in this case the actualinabibthe observabl€ would determine the
chirality of the molecule in a completely arbitramay: it would introduce in the molecule an
asymmetry not contained in its Hamiltonian. As assqjuence, from the MHI viewpoint, the
observable chiralityC of the enantiomer molecule is not definite-valuiwt is, it does not
belong to the preferred context. In other wordsc¢tsy speaking the isolated molecule is not
dextro-rotatory (D) or levo-rotatory (L): chiraliig a property that has no definite value in it.

The fact that chirality does not have a definitdugain the isolated molecule is
compatible with experience: we have no experimeatadlence of the handedness of an
isolated molecule. In order to make chirality manifest asledinite-valued property, it is
necessary to interact with the molecule. But thieraction leading to the expression of
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handedness must be such that it breaks the partynstry of the original Hamiltoniar .
More precisely, the molecule must interact withtheo systenM, which plays the role of the
apparatus, in such a way that the Hamiltonkdn of the new composite system is no longer
parity invariant. For instance, this happens when

H, =H+H, (13)

where the HamiltoniarH,, of the new system breaks the original parity ireveze of H :
[Hy.P]#0 - [H,,P|# 0. Additionally, C must commute with the total Hamiltonid, in
order to obtain a stable reading of chirality. Untheese conditions, according to the MHI the
observableC acquires a definite actual value: we measure dextiation or levo-rotation.
However, now the system is no longer the isolateteoule, but the molecule in interaction
with the measuring system.

This is precisely what happens when the moleculgtes the plane of polarization of
plane-polarized light. In this case, a good caneidar H,, is the Hamiltonian usually
introduced in quantum chemistry to describe theratdtion between molecules and polarized
light (see Shao and Hanggi 1997), which is a fumctf the electric fieldE and the magnetic
field B of the light.Therefore, the observabl@ turns out to be a definite-valued observable
of the new composite system. In other words, diyras not an intrinsic property of the
molecule, but of the system ‘molecule plus lighti.a certain sense, this answer to Hund’s
paradox agrees with the view according to which siodution must be sought in the
interaction of the molecule with its environmenbwever, our approach does not appeal to
decoherence, but relies on an interpretation ohtyua mechanics that explicitly accounts for
measurement from the perspective of the symmaetfidse system.

It is important to stress that, from the MHI viewmto symmetries are not conceived as
generated by the spatial shapes of molecules: syneseare internal features of the
Hamiltonian of the whole closed system; they dohmete to be conceived in terms of spatial
configurations. According to the MHI, it is not cect to suppose that an enantiomer
molecule has, before being observed, a definitedivess depending on its shape, and that
such a property is discovered when the moleculeracts with a system with the opposed
handness. From the MHI perspective, isolated médscave no definite chirality; chirality
acquires a definite value when the molecule becameart of a composite system that is no

longer parity symmetric.

The problem of isomerism is a particular case chtwdan be called, following Woolley

and Sutcliffe (1977), theymmetry problenm chemistry: if the interactions embodied in the
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Hamiltonian of the molecule are Coulombic, the sohs of the Schrdodinger equation have
certain symmetries that cannot account for the asstmes of the molecular structure. For
instance, Coulombic molecules are spherically sytrioad; however, the asymmetry of
polyatomic molecules is essential in the explamatd their chemical behavior. As Hendry
stresses, according to quantum mechanics an idatadéecule in a general energy eigenstate
may possess no directional property (Hendry 199831). The author considers the example
of the hydrogen chloride molecule, which has anmamgtrical charge distribution that
explains its acidic behavior and its boiling poingwever, according to quantum mechanics,
the expectation value of the dipole moment of aemle in an arbitrary eigenstate of the full
molecular Hamiltonian is always zero. On this basie concludes thatif*the acidic
behaviour of the hydrogen chloride molecule is emeid by its asymmetry, and the
asymmetry is not conferred by the molecule’s play$iasis according to physical laws, then
surely there is a prima facie argument that ontatag reduction fails: (Hendry 2010, p.
186). The MHI casts new light on this problem, sinicsuggests that, although the isolated
molecule lacks the necessary asymmetry, an adeguataction may break the symmetry of
the original Hamiltonian in the way needed to explhe asymmetric features that become
manifest when the system is experimentally measured

7.- Conclusions

In the context of the debates about the nature @&calar structure, in this paper we have
focused on Hund’s paradox, derived from the difficun giving a quantum explanation to
optical isomerism. We have revised different atttsmip solve the paradox, in particular, the
widespread appeal to decoherence in recent literatwe have argued that none of these
attempts is completely successful. On this bases have recalled the main features of the
MHI in order to show how this interpretation offees solution of Hund’'s paradox in

exclusively quantum terms.

Since its first formulation in 2008, the MHI wasvedoped in several articles, and was
presented many times to varied audiences. It eesting to notice the different reactions to
the same proposal. Philosophers of physics usuralgt on requiring the justification for the
selection of the Hamiltonian as the key to deteamire preferred context, by claiming that no
basis of the Hilbert space has a privileged stdyscontrast, philosophers of chemistry (and
chemists) are always surprised by our insistengesiiifying that selection, since in chemistry
it is usual to work in the basis of the energyfdat, the MHI is in resonance with molecular

chemistry, in the context of which molecules amaadt always described in their stationary
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states, that is, in eigenstates of the Hamiltongard a great deal of relevant knowledge is
obtained from studying the symmetries of the Hammikin. The MHI account to optical
isomerism fits in the framework of this resonance.
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