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Abstract

According to comparativist theories of quantities, their intrinsic values are not fun-
damental. Instead, all the quantity facts are grounded in scale-independent relations
like ”twice as massive as” or ”more massive than.” I show that this sort of scale in-
dependence is best understood as a sort of metaphysical symmetry–a principle about
which transformations of the non-fundamental ontology leave the fundamental ontol-
ogy unchanged. Determinism–a core scientific concept easily formulated in absolutist
terms–is more difficult for the comparativist to define. After settling on the most plau-
sible comparativist understanding of determinism, I offer some examples of physical
systems that the comparativist must count as indeterministic although the relevant
physical theory gives deterministic predictions. Several morals are drawn. In partic-
ular: comparativism is metaphysically contingent if true, and it is most natural for a
comparativist to accept an at-at theory of motion.

1 Introduction

The notion of a physical quantity or magnitude is, so far as we know, impossible to do

without. Mass is one example, and it will function as my central example here. Mass is

unlike simple monadic properties in that individuals don’t simply have it or lack it – it comes

in degrees. These degrees, or values of mass, are commonly treated like monadic properties.

Each individual either has or lacks a mass of one gram – but this sort of description leaves

out a lot of relevant “mass facts.”
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One such fact is that nothing has both a mass of one gram and a mass of two grams.

Also, there’s a special relationship between a one-gram object and a two-gram object, since

the latter is twice as massive. We need a theory of quantity that can capture all of these mass

facts. Indeed, as Mundy (1987, 29) has pointed out, such a theory is implicitly presumed

by any quantitative scientific theory, and thus is essential to the empirical success of sci-

ence. In this sense, a successful theory of quantity is one of the most valuable contributions

metaphysics can offer to the scientific project.

To this end, two general theories have been proposed: the comparativist theory of quantity

and the absolutist theory. The comparativist theory holds that relations like “more massive

than” and “twice as massive as” give an exhaustive list of the fundamental mass facts. The

absolutist view holds that there are some extra fundamental facts as well, namely which

intrinsic mass property each object has, so that without intrinsic properties like “has a mass

of one gram” the list of metaphysically basic mass facts is incomplete.

If the above definition of comparativism seems imprecise, that’s because no fully precise

definition of comparativism has yet been proposed. Instead, most of comparativism’s de-

fenders have focused their efforts on motivating their own particular versions of the theory.

But there is a common thread in the metaphysics of quantity proposed by Bigelow and

Pargetter (1988), Arntzenius (2012, 49-59) and Dasgupta (forthcoming), along with that

presupposed by the approach to measurement theory outlined in Suppes and Zinnes (1963)

and the nominalist physics of Field (1980).

On all these comparativist accounts, the fundamental relations are independent of scale.

That is to say, on these accounts, the fundamental relations holding between a one-gram

massive object and a ten-gram object are exactly the same as those holding between a

one-kilogram object and an object massing ten kilograms. This scale independence of the

fundamental relations is one point of overlap between comparativist theories of quantity.

The best way to understand scale independence is as a sort of symmetry–a class of transfor-

mations which, when applied to the ontology of a possible world, leave the comparativist’s

fundamental ontology unchanged. So the scale independence of the comparativist’s funda-

mental mass facts amounts to the fact that mass doubling, mass tripling and so on do not

change these facts. I explain all this in detail in §2.

The correct definition of determinism for the comparativist is difficult to formulate, but

this notion of scale independence allows us to settle on what is at least a plausible necessary
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condition. For a comparativist interpretation of physics to count as deterministic, the scale-

independent facts about the past and present must fix the scale-independent facts about the

future. This will be established in §3.

Given this definition of determinism, we can formulate a fairly quick and straightforward

argument that any comparativist interpretation of Newtonian gravity must be indetermin-

istic in a wide variety of cases. But this argument’s soundness depends in an interesting

way on a metaphysical premise: it only works if velocity is taken to be a truly instantaneous

quantity, and not a property of infinitesimal temporal neighborhoods. In §4 I show that this

means the comparativist should accept a theory of motion, like the popular “at-at” theory,

according to which there are no truly instantaneous velocities.

One can also construct more involved examples in which even an at-at theorist should

agree that comparativist physics gives indeterministic predictions where absolutist physics

does not. In some such cases, comparativist physics exhibits a peculiar sort of temporal

action at a distance: the state of the entire past may be sufficient to determine the future,

while the present state is insufficient. (In other cases, even the whole past history is insuf-

ficient.) These examples are explored in §5. They have the flavor of idealized toy models,

so I hesitate to count them as evidence against the truth of comparativism. But it seems

to me that determinism and temporal locality, in these cases, should not be ruled out as

metaphysically impossible. Consequently, if comparativism is true, it is contingently true.

2 Scale independence

As I mentioned above, the precise definition of comparativism is somewhat up for grabs.

Relatively few metaphysicians have gone on record as comparativists, and of those who

have, most have defended specific theories of quantity rather than comparativism in general.

The only exception is Dasgupta (forthcoming). Dasgupta is concerned with defending com-

parativism broadly speaking, rather than identifying some particular system of comparative

relations as fundamental. So he characterizes comparativism in the following way:

[T]hings with mass stand in various determinate mass relationships with one

another, such as x being more massive than y or x being twice as massive as y...

[C]omparativism is the view that the fundamental facts about mass concern how
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material bodies are related in mass, and all other facts about mass hold in virtue

of them. (Dasgupta, forthcoming, 1)

Although Dasgupta gives several examples of relations that might count as fundamental for

particular comparativists, he never sets down criteria for these relations to meet. In fact, he

goes on to add:

[T]he comparativist thinks that the fundamental, unexplained facts about mass

are facts about the mass relationships between bodies, and all other facts about

mass hold in virtue of those mass relationships. This leaves open what kinds of

mass relations those fundamental facts concern: they might concern mass ratios

such as an object being twice as massive as another, orderings such as an object

being more massive than another, or even just linear structures such an object

lying between two others in mass. But this in-house dispute will not matter for

our purposes. (Dasgupta, forthcoming, 3)

This seems to indicate that for Dasgupta, any relation at all could count as fundamental as

long as it expresses some comparison between different values of a quantity like mass. But

when he moves on to consider arguments for and against comparativism, it becomes clear

that this is not what Dasgupta has in mind.

The first of several modal arguments he considers against comparativism is “that while

it is possible for everythings mass to double tonight at midnight, the comparativist cannot

make sense of this since the mass relationships would be exactly the same tomorrow as

they were today.” (Dasgupta, forthcoming, 7)1 But this is only true if one restricts which

comparative mass relationships are allowed to count as fundamental. If relations that depend

on a choice of scale are left out, Dasgupta’s point is quite correct. For example, the fact that

my brother’s mass is greater than mine will not change if every object’s mass is doubled.

But on the other hand, the fact that my brother’s mass is ten kilograms greater than mine

will certainly change. So Dasgupta must intend to leave out relations like this family of

two-place relations:

a Kn b: a is n kilograms more massive than b.

1Note that this problem is easily solved, as Dasgupta points out, by allowing mass relations to hold
between objects at different times.
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It thus appears that there must be some implicit restriction on which comparative relations

can count as fundamental for Dasgupta’s comparativist.

I agree with this implicit commitment of Dasgupta. There must be some restriction on

which relations the comparativist may count as fundamental, or else the view threatens to

collapse into an uninteresting variant of absolutism. If relations like Kn above are allowed

to count as fundamental, comparativist possible worlds will be able to contain just as much

ontological structure as absolutist worlds. There is nothing incoherent about a version of

comparativism that recognizes as much structure as absolutism, but I don’t see any appeal

in such a view. Why not just be an absolutist?

Dasgupta’s main argument for comparativism is that the comparativist requires less

ontological structure to “build” a possible world than the absolutist does. In effect, he means

that the absolutist recognizes more differences between possibilities than the comparativist

does. While the absolutist will count an otherwise empty world containing two one-kilogram

brass balls as distinct from a world with a pair of five-ton balls, the comparativist identifies

these two worlds as the same. But if the Kn relations are allowed into the comparativist’s

roster of fundamental relations, almost all of this ontological parsimony disappears. If a

privileged “zero mass” value were also picked out, the comparativist would recognize exactly

as much structure (just as many differences between possible worlds) as the absolutist. It’s

hard to see why anyone willing to recognize this much structure in a quantity would not just

adopt absolutism about that quantity.

Comparativism (at least when not used as a tool for implementing nominalism) is moti-

vated by the thought that the scale-dependent features of a quantity are of no fundamental

metaphysical importance. Part of what is distinctive and attractive about the compara-

tivist picture is that these scale-dependent features are grounded in relations that are scale-

independent (see Dasgupta, forthcoming, 14-16). But the Kn relations seem to have a scale

built into them.

How should we define comparativism so as to rule out these problematic relations? I sug-

gest the following modification (and generalization) of Dasgupta’s definition: comparativism

about some quantity – or family of quantities – is the view that the fundamental facts about

those quantities are given by the scale-independent relations comparing different objects’

values of the quantities. We may then define global comparativism to be comparativism
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about every quantity.2

This definition depends, of course, on a prior notion of what it is for a relation to be scale-

independent. We could attempt to define this the way a physicist intuitively might, positing

that the scale-independent relations are the ones that don’t depend on our choice of units,

or something like that. But (as Ted Sider has pointed out to me) such an attempt would

be doomed. Regardless of how we normally express differences in mass, there is nothing

to stop us from adopting a unit-independent language in which the relation of being five

kilograms more massive is expressed without mentioning kilograms. Calling that particular

relation K, we might just say that aKb whenever a is five kilograms more massive than b.

And of course, this merely underscores that, while we normally represent the fact that a is

five kilograms more massive than b in a way that varies depending on our choice of units,

the fact that a is five kilograms more massive does not itself depend on our choice of units

in any interesting way. Neither do the Kn relations.

Yet there remains a sense in which the Kn relations depend, not on our choice of units,

but on the scale of the mass quantity. The best way to express this dependence seems to

be via Dasgupta’s observation that the comparative relations he regards as fundamental

would not be changed by an operation like doubling the mass of every object in the universe.

The Kn relations, on the other hand, would change. Dasgupta’s comparativism (as well

as Field’s, and Bigelow and Pargetter’s) differs from absolutism, not merely in that the

fundamental facts about quantities are given by relations rather than absolute values, but

also in the following way: there are transformations we can perform on the numerical values

of quantities that alter which absolutist possible world the values represent, but not which

comparativist world they represent. When we double the values of mass, we have changed

something fundamental about the world if the absolutist is right, but not if the comparativist

is right. We may therefore say there is a sort of symmetry to the comparativist theory

of quantity that the absolutist theory lacks: transformations multiplying every value of a

quantity by some constant leave the comparativist’s fundamental ontology invariant, but not

the absolutist’s fundamental ontology.

2I will mostly focus on global comparativism, which I think is the most interesting and unified thesis, and
which comparativists like Dasgupta, Bigelow and Pargetter endorse. But even on an absolutist approach,
there remains the question, for any given quantity we use in physics, of whether that quantity’s absolute
values are physically meaningful (see e.g. Skow, 2011). So something akin to comparativism about particular
quantities may be warranted even if global absolutism is preferable to global comparativism.
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We may thus adopt the following as a definition of scale independence: A comparative

relation for a quantity like mass is scale-independent iff, when the quantity is represented

numerically, multiplying its values by a constant cannot change whether the relation holds.3

Comparativism, in its most interesting form (and the form that has appeared in the meta-

physics literature to date) is best understood as the claim that the fundamental facts about

quantity are given by scale-independent relations.

Besides fitting with Dasgupta’s theory, this is very much in keeping with other authors

identified as comparativist. When characterizing “the many relations which are associated

with a quantity like mass” in their “relational” theory of quantity, Bigelow and Pargetter

(1988, 298) include “relations like ‘more massive than,’ ‘half as massive as,’ and so forth,”

but no scale-dependent relations. This variety of comparativism is obviously unsatisfactory

for Field’s purposes, since describing it requires reference to numbers. Field wants to pursue

a nominalist interpretation of Newtonian physics which can be formulated without referring

to any mathematical objects. Thus he defines a scalar physical quantity Q via the following

system of primitive predicates:

x Q-Bet yz: x’s value of Q is between y’s and z’s.

xy Q-Cong zw The (absolute value of the) difference between x’s value of Q and y’s is the

same as the difference between z’s value of Q and w’s.

x Q-Less y x’s value of Q is less than y’s value of Q. (Field, 1980, 55-60)

The important thing for present purposes is that all of these relations are scale-independent.

Doubling the value of Q for every object in a world will lead to no change in any of these

relations.4

The scale independence of the comparativist’s fundamental ontology will be crucial in

examining the question of determinism. In particular, it will allow us to evaluate whether

a deterministic comparativist version of a given absolutist scientific theory is possible. In

some cases, this can be done even in the absence of a thorough definition of determinism for

the comparativist–a definition which may be quite difficult to arrive at.

3The reader may be concerned that representing a quantity’s values numerically is itself incompatible
with comparativism, but the representation theorems discussed in the next section establish that this is
indeed possible for the comparativist.

4As Field notes, further primitives will be needed to define mass density.
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3 Determinism and laws for the comparativist

There is a venerable definition of what it takes for a world to be deterministic, due to Laplace.

This requires that the state at a time determine the entire history:

Laplacean Determinism. A world w is deterministic iff, for any time t, there is only one

physically possible world whose state at t is identical to w’s.

The state of w at t corresponds to what is normally called the initial conditions of a physical

system. Although there are other definitions of determinism (Earman, 1986, 6-22), this one

is probably the most often-used in physics, and it has obvious advantages. For example, by

treating initial conditions as the state at a time (instead of, for example, the state of the

whole past), Laplacean determinism doesn’t beg the question against the view that there is

no fundamental arrow of time.

This definition, however, is potentially mysterious if we assume comparativism. The

comparativist’s fundamental ontology consists of comparative relations between objects at

different times, as well as the present. It is this whole web of relations which grounds

the (metaphysically non-fundamental) values physical quantities take on, according to the

comparativist. But a physical theory is normally taken to be deterministic if the values

of these quantities at a time (plus the laws) are sufficient to determine their values at all

times. In other words, determinism in physics is normally defined in terms of entities that

are fundamental for the absolutist, but not the comparativist. Moreover, the comparativist’s

fundamental ontology is extremely spare when restricted to a single instant of time. For as

we saw before (fn 1), fundamental relations between objects at different times are crucial if

the comparativist is to allow for metaphysical possibilities like the doubling of all objects’

masses.

Nonetheless, on the most obvious picture of laws for the comparativist, it is natural to

treat only the relations between objects at t as a world w’s initial conditions when we ask

whether w is deterministic. For example, in his discussion of laws, Dasgupta (forthcoming)

re-interprets the absolutist laws featured in physics textbooks in terms of fundamental com-

parative relations. In particular, he offers a comparativist version of Newton’s Second Law,

F = ma. He begins by identifying those parts of the law’s content that can be understood

in the comparativist’s fundamental terms. For example, the Second Law entails that, since

my brother is 1.16 times as massive as I am, whenever we’re both accelerating at the same
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rate, the force acting on him will be 1.16 times as great as the force on me. Generalizing

from examples of this sort, Dasgupta captures the entire comparativist-friendly content of

the Second Law as follows:

(L2) For any material things x and y,

(a) For any reals r1 and r2, if x is r1 times as massive as y and is accelerating r2

times the rate of y, then x has r1r2 times as much force acting on it than y.

(b) For any real r3, if x has r3 times as much force acting on it than y, then there

are reals r4 and r5 such that r4r5 = r3, and such that x is r4 times as massive

as y and is accelerating r5 times the rate of y. (Dasgupta, forthcoming, 18-

19)5

Dasgupta then offers an argument that his comparativist law (L2) reproduces all of the mea-

surable predictions made by the Second Law–a claim we’ll return to in §5. But assuming he’s

correct about this–and his argument generalizes to more complicated physics–the seeming

absolutist character of the laws we find in our physics texts is evidently not necessary for

their empirical success.

Setting aside for a moment the empirical predictions of (L2), it’s pretty clear how we

should apply the Laplacean definition of determinism to such a law. The state of the world

at t is given by all the fundamental comparative relations that hold between objects at t

(in Dasgupta’s example, all the ratios of forces to forces, masses to masses, distances to

distances, etc.). A world is then deterministic iff the fundamental relations between objects

at t, plus the laws, determine all the other fundamental relations (including the relations

between objects at different times).6

The same general approach to laws is adopted by Field (1980). Although Field does not

commit himself to a particular metaphysics of laws, he seems to recognize an imperative

to state the laws of his nominalist physics in terms of his primitive comparative relations.

For example, he formulates Poisson’s equation (for non-zero mass) as follows: “[A]t any two

points where the mass density is not zero, the ratio of the Laplaceans of the gravitational

5Note that additional direction relations between forces and accelerations will be needed in more than
one dimension; Dasgupta ignores these for brevity.

6As we will see in §4, the initial conditions for instant-determinism may also have to be extended to
include relations between objects at times falling in an infinitesimal neighborhood of t.
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potential is equal to the ratio of the mass densities.” (Field, 1980, 79) Although ratios (and

Laplaceans, for that matter) are not among Field’s primitive relations, he shows how to

formulate this sort of statement purely in terms of the congruence relations that he does

count as primitive (Field, 1980, 68-70). So Field’s laws could be written out in full detail

using only his primitive (comparative) relations. The corresponding initial data for a possible

world on Field’s theory would then be the comparative relations between spacetime points

lying on one time-slice.

It is also possible for comparativist laws to make use of absolutist-style values, however,

using some of the resources of measurement theory. Given a sufficiently rich and constrained

system of comparativist relations for a quantity like mass, a representation theorem can

be proven. Such a theorem establishes the existence, for every possible arrangement of

fundamental comparativist relations between physical objects, a mapping or homomorphism

from the objects into some mathematical structure–for example, the real numbers or a vector

space. We call this mapping a “homomorphism” because it doesn’t just map the physical

objects to the mathematical objects; it does so in such a way that the structure of the

mathematical set parallels the structure of the fundamental relations between the physical

objects. As a simple example, on one possibility according to Dasgupta’s theory of mass,

there are three objects A,B,C, with B’s mass being twice A’s and C’s mass being three

times as great as B’s. One homomorphism from these objects into the real numbers would

take A to 1, B to 2 and C to 6. Another would take A to 2, B to 4 and C to 12. A

representation theorem for mass on Dasgupta’s theory would establish the existence of such

homomorphisms for any possible set of massive objects and fundamental mass relations.

A couple points are worth noting immediately. First, a homomorphism of this sort

is not unique, and the resulting absolute values are unique only up to some factor, such

as multiplication by a constant–an expression of the fact that comparativist relations are

scale-independent. Second, the domain of a homomorphism includes all of the objects in a

comparativist world, at all times. Thus the absolute value an object is mapped to will in

general represent that object’s relations to past and future objects as well as present ones.

That said, given a representation theorem for a particular comparativist theory, it is

possible to characterize laws for that theory in a way that mimics absolutist laws as closely

as possible. We can formulate a comparativist version of an absolutist physical law expressed

by a mathematical equation, like F = ma, by positing the existence of a homomorphism such
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that the absolute values the objects are mapped to obey that equation. In the particular

example of F = ma, we might state the comparativist law as follows:

(L2*) For any physically possible world w, for any homomorphisms F (x),m(x), a(x)

where F is a homomorphism for the force relations, m for the mass relations and

a for the acceleration relations, F (x) = m(x)a(x) for all objects x ∈ w.7

The natural definition of determinism–and in particular, of initial conditions–looks quite

different on this picture of laws. For it seems natural to define the initial conditions at t as

the values assigned to each quantity by the homomorphisms. (Note that this is not the same

as the intrinsic state of the world at t, which includes only the comparative relations between

objects at t. Rather, it includes information about relations with objects at other times as

well.) On this approach, a world is deterministic iff the values assigned by homomorphisms

to past and future objects are fixed by the laws (which will take the form of (L2*)) plus the

values at t.

There is no guarantee that these two definitions will agree about which worlds are de-

terministic. Which definition is superior, from the perspective of comparativism? In other

words, should the comparativist believe in laws like (L2) which govern the fundamental

relations, or laws like (L2*) which govern the (non-fundamental) values assigned to each

quantity by homomorphisms?8

Laws like (L2*) will no doubt be useful for the comparativist in extracting predictions

from physics, and in relating a comparativist reformulation of physics to existing absolutist

theories. However, (L2*) seems to me a very poor candidate for a fundamental law of nature,

and its corresponding definition of determinism seems inappropriate given comparativism. It

is a familiar platitude that, while fundamentality may be a brute concept with no definition,

the fundamental properties and relations “are the properties and relations that occur in the

fundamental laws of physics.” (Arntzenius, 2012, 41) On Lewis’s popular Humean account of

laws, for example, the fundamental laws are regularities in the instantiation of fundamental

properties (Lewis, 1983, 368). And altering this feature of Lewis’s system would rob it of

much of its interest. Our best theories of physics have a particular mission: to describe

the universe at its most fundamental level. Insofar as they fail to do so, either through

7This form for comparativist laws was suggested to me by Ted Sider.
8It may be more accurate to say that laws like (L2*) govern the fundamental relations indirectly, via

posits concerning the existence of homomorphisms.
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inaccuracy or by failing to describe reality in fundamental terms, we should take that as a

sign that the true fundamental laws have not yet been discovered.9

Moreover, although determinism in non-fundamental laws is a topic of great foundational

interest, when we ask whether our world is deterministic, for purposes of metaphysics we

are most interested in whether things are fundamentally deterministic. For example, if the

fundamental facts about the present did not determine the fundamental facts about the

future, one can certainly imagine how an incompatibilist would see a ray of hope for free

will–even if some description of the present in non-fundamental terms did determine the

corresponding non-fundamental facts about the future. Especially if these non-fundamental

facts about the present were not, strictly speaking, intrinsic to the present, but included

lots of information about the past and future as well. The facts expressed by an assignment

of values to quantities via a comparativist representation theorem are exactly like that. To

ask whether our world is deterministic when described in terms of those facts would be to

change the subject, quite radically, away from the concept of determinism that matters for

metaphysics.

To cast the problem in more scientific terms, although determinism is a metaphysical

thesis, it is one with epistemological implications. Determinism helps us derive predictions

from a theory, and affects how we confirm the theory using these predictions (for example,

the Principal Principle connecting chance with subjective credence is trivial for deterministic

theories). It is a truism that we lack direct epistemic access to the fundamental facts about

the future (unless something like time travel is allowed by the laws).10 A notion of deter-

minism in which the “initial conditions” include information about the future would thus

appear remarkably ill-suited to the epistemic role determinism normally plays in science.

That said, representation theorems are a useful tool for studying the relationships be-

tween comparativist and absolutist laws of nature. Most physical theories do not have extant

comparativist formulations (although in many cases there are obvious ones in the offing),

and none has a single canonical comparativist version. Yet we would like to answer ques-

9I take it that Field’s nominalist project, for one, arises from similar motives. If there is nothing wrong
with formulating the fundamental laws in non-fundamental terms, it’s hard to see why the nominalist should
be unhappy with laws of physics involving Platonist assumptions.

10Since we also have no direct access to many facts about the present, at least according to relativity, the
Laplacean definition of determinism may not be the ideal one for epistemic purposes. But my point that the
ideal definition will not include facts about the future in the initial conditions surely stands.
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tions of the following sort: does a given absolutist scientific theory (e.g., special relativistic

electromagnetism) admit a comparativist formulation which is also deterministic?

Obviously this is not the sort of question that could be answered by examining com-

parativist versions of the given theory one by one, even if the theory possesses known com-

parativist versions. But there is a way to answer this general question in at least some

cases.

As we saw in the previous section, the interesting varieties of comparativism are the ones

that replace absolutist ontology with an ontology of scale-independent relations. This places

a limit on the amount of ontological structure a comparativist can ascribe to a world. A sys-

tem of comparativist relations can only distinguish between two worlds–or (which is equally

interesting for our purposes) two time-slices of worlds–if there is some scale-independent

difference between those worlds. And this is a question we can ask about absolutist worlds

as well. Thus, if there is no scale-independent difference between two physical possibilities

of a theory written in absolutist terms, any comparativist version of that theory must iden-

tify those two possibilities as the same. And if two sets of initial conditions–two time-slices

of worlds–are indistinguishable in scale-independent terms, no (interesting) comparativist

theory can treat those time slices as distinct.

Determinism is a thesis about which time-slices can fit into which overall histories for

physically possible worlds. A world is deterministic when no time-slice of that world can fit

into any other, different possible world while still obeying the laws. The comparativist can

“tell the difference” between two worlds (or time-slices) just in case the differences between

those worlds (or slices) are scale-independent.11 Put together, these facts give us a necessary

condition for determinism under comparativism:

A world w (described in absolutist terms) may be deterministic under compara-

tivism only if, for any time t, the scale-independent facts at t physically necessi-

tate all other scale-independent facts about w.12

11Here I assume that the comparativist will want a system of fundamental relations that doesn’t leave out
any scale-independent differences between worlds. For example, a comparativist theory of mass on which the
only fundamental relation is “more massive than” would be unsatisfactory. There may be more debatable
cases, but none of the cases arising in my examples will be debatable ones, I think.

12To clarify: in the comparativist version of w, time itself will not be an absolutist quantity, so in a sense it
will be illegitimate to talk about an absolute value like t. But it will still be possible to define a time-slice of
a comparativist world as a maximally large set of (temporal stages of) objects in w, all of which are related
by the “equal time” relation.
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What we have, then, is a formula for looking at a possible world described in terms of

ordinary (absolutist-looking) physics and determining whether the scale-independent facts

a comparativist would count as fundamental (or fixed by the fundamental) could evolve

deterministically under a comparativist version of the relevant laws. With this formula in

hand, let’s look at some cases where determinism comes under threat.

4 Escape velocity and at-at motion

I’d like to start out by looking at an instructive example from Newton’s theory of gravity–a

case in which determinism is threatened but can be restored by adopting further metaphysical

commitments. This example will serve to illustrate why the comparativist should adopt the

at-at theory of motion, as well as underscoring some relevant complexities that apply in

other cases.

The informed reader may be puzzled that the question of determinism in Newtonian

gravity is even on the table. After all, it is well known that Newtonian gravity is an inde-

terministic theory, in which (for example) swarms of massive objects may swoop in at any

moment from infinitely far away (Earman, 1986, 23-37), balls may–or may not–spontaneously

slide down a hill if it’s shaped just right (Norton, 2003), and so on (Earman, 1986, 37-53).

Why should it be surprising or interesting if the comparativist version of an indeterministic

theory itself exhibits indeterminism?

What is interesting, to me at least, is the possibility that indeterminism might be more

widespread in comparativist physics than it is in absolutist physics. Indeed, this possibility

takes on pivotal importance when viewed in light of the fact that, whatever the de jure status

of determinism in Newtonian gravity, the theory is de facto deterministic as it is ordinarily

applied. In other words, there is some vaguely-defined set of implicit posits made by working

physicists which serve to rule out the indeterminism in Newtonian gravity for purposes of

deriving predictions from the theory. Moreover, there is some hope that these implicit re-

strictions could be made explicit and rigorous by means of imposing boundary conditions and

restrictions on physically admissible initial conditions (Earman, 1986, 37-39, 52-53).13 Given

13Another example of a restriction on initial conditions is the popular “past hypothesis” sometimes posited
to explain the time-asymmetry of thermodynamics. So classical indeterminism is not the only foundational
problem that seems to call for this sort of solution.
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all this, it seems we should be very interested in examples where ordinary absolutist New-

tonian gravity, plus the necessary extra posits, is deterministic while comparativist versions

exhibit indeterminism.14

If there are such examples, presumably they will appear in processes where the scale of

some quantity helps determine scale-independent features of the outcome. So let’s look at

the theory and see if we can find any. The force law for Newtonian gravity is, of course,

F = G
m1m2

r2
(1)

where F is the attractive force between objects with masses m1 and m2, r is the distance

between them and G = 6.67428 ∗ 10−11 m3

kg∗s2 is the gravitational constant. Since none of the

terms in this equation are scale-independent, this isn’t immediately helpful in our search for

potential comparativist indeterminism. But when combined with F = ma, we can derive

a law in which scale-independent features of an experiment’s outcome appear to depend on

scale-dependent features of the initial conditions. This is the law governing escape velocity.

Like many concepts from physics, escape velocity admits both an intuitive and a technical

definition. In this case the two are pretty close together. The intuitive idea behind a planet’s

(or other object’s) escape velocity is: the velocity needed to “escape” from its surface past

its orbit.

The technical version is as follows: An object’s escape velocity ve is the magnitude of

the velocity directed away from their common center of mass that a projectile15 initially

located at its surface would need to asymptotically approach an infinite distance from the

object in the limit of infinite time, if the two were alone in an otherwise empty universe.16 In

other words, a projectile initially located at the Earth’s surface will continue to move farther

from the Earth forever, without any limit to its eventual distance, if and only if its initial

velocity17 exceeds the Earth’s escape velocity. Clearly–and crucially–whether a projectile

14If the reader remains nagged by the thought that indeterminism in Newtonian gravity is nothing new,
§5 will provide an example of comparativist indeterminism in classical electromagnetism, a theory whose
deterministic credentials are hard to dispute.

15By “projectile” I mean an object with some initial velocity which is never subject to any external force
aside from gravity.

16This is the definition of barycentric escape velocity (escape velocity relative to the common center of
mass of two objects). A surface escape velocity (the velocity relative to the planet’s surface needed to escape
its orbit) does depend in part on the mass of the projectile.

17That is, its initial velocity relative to the center of mass of the combined Earth-projectile system.
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escapes is a scale-independent fact.

The important thing about escape velocity for our purposes here is that it is a function

of the planet’s mass, but not the mass of the projectile – which implies that its value will

change if the mass of both objects is doubled. In effect, the force law (1) implies a physically

necessary relationship between the planet’s mass and radius and its escape velocity. The

projectile’s mass does not matter to this relationship. This means the theory can “tell the

difference” between different initial conditions that the comparativist will identify as the

same instantaneous state, since the differences between them are not scale-independent.

4.1 Earth and Pandora

Let’s put a detailed example on the table. The escape velocity for a planet of mass M and

radius r is given by

ve =

√
2GM

r
. (2)

From this equation it follows that if we double the planet’s mass (transform M to 2M), its

escape velocity increases from ve to
√

2ve.
18

As an intermediary example, consider a universe containing two planets, Earth and Pan-

dora, located far enough apart that for all practical purposes we can ignore their gravita-

tional interaction. These two planets are identical in all their physical properties except that

Earth’s mass (ME) is half of Pandora’s mass (MP ). Then, as noted above, if vE is Earth’s

escape velocity and vP is Pandora’s, vP =
√

2vE.19

Suppose that initially each planet has a projectile located at its surface with some initial

outward velocity of magnitude v. We may stipulate that the projectile on Earth has mass

m and the one at Pandora has mass 2m, so that the system of Pandora and its projectile

is a mass-doubled duplicate of the system of Earth and its projectile. Now suppose that

vE < v < vP , that is, the projectiles both have a velocity greater than Earth’s escape

velocity but less than Pandora’s. Then the system of Earth and its projectile will behave

18For a derivation of the escape velocity law, see Halliday et al. (1997, 331).
19Again, note that these escape velocities are reckoned relative to the center of mass of the entire system

(planet and projectile), not the planet’s center of mass. (This allows us to redescribe the example as
one in which the planet reaches the projectile’s escape velocity.) Since the velocity of the center of mass
is determined by the planet’s velocity, the projectile’s velocity, and the ratio of the planet’s mass to the
projectile’s, this quantity will also be left unchanged by mass doubling.
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quite differently from its mass-doubled counterpart Pandora. The distance between Earth

and its projectile will keep growing forever as the projectile shoots off “to infinity.” Pandora’s

projectile, on the other hand, will only travel finitely far away, remaining confined by the

more massive planet’s gravity.

The laws of gravity seem capable of telling the difference between Earth and Pandora,

despite the fact that they are indiscernible except for the difference in their masses. And

since we stipulated that there was no measurable interaction between them, it should be

obvious that the laws will recognize the same difference between the initial state of a universe

containing only Earth and its projectile, and an initial state containing only Pandora and

its projectile.20In the Earth universe, the projectile will fly off to infinity. In the Pandora

universe, on the other hand, the projectile will go only finitely far before stopping.

This example threatens indeterminism for any comparativist interpretation of Newtonian

gravity. We saw in §3 that determinism only holds for the comparativist when the scale-

independent facts about the world’s initial state determine the scale-independent facts about

other times. But the (instantaneous) initial states of the Earth and Pandora worlds agree

about all scale-independent facts. The two initial states are related by mass doubling, so by

our definition of scale independence they must agree on all scale-independent comparative

relations. For the comparativist, the initial state of the Earth universe and the initial state

of the Pandora universe are really the same initial conditions.

But these two worlds’ futures differ in physically significant ways that are clearly scale

independent. The differences between the future evolution of Earth’s universe and Pandora’s

20I say this should be obvious because, for the practicing physicist, approximately isolated systems can
generally be treated as if they were entirely isolated (where “approximately isolated” means they are sub-
ject to almost no external forces, or other non-force external influences like quantum entanglement). This
principle is what allows us to idealize an approximately isolated system, treating the balls on our pool table
as if they were colliding in a vacuum instead of surrounded by a bunch of other objects (for example).

This is not to say that there couldn’t be a good scientific theory in which even isolated systems behave
differently in the absence of their environment. But there’s an obvious scientific advantage to theories that
do have this feature (they make it possible to idealize in useful ways that actually work in practice), so there
is (and should be) a strong preference in favor of theories which predict that approximately isolated systems
behave almost exactly the same as completely isolated systems.

Now as a metaphysical matter, under comparativism Pandora and Earth are far from “isolated,” insofar
as each planet’s fundamental nature is partly constituted by its relations to the other planet. But as a
matter of physics, if comparativism entails that approximately isolated systems (in the sense stipulated
above) cannot be idealized as fully isolated, this saddles comparativism with a serious disadvantage relative
to absolutism. In my discussion of this example, I will assume that the comparativist is successful in avoiding
this disadvantageous commitment. (Thanks to Shamik Dasgupta for pressing me to articulate this premise.)
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show up in the comparativist’s fundamental relations as well as the absolutist’s intrinsic

values. Earth’s projectile will continue to move away from the planet forever without limit;

Pandora’s will not. So if ratios or orderings of distances and times (for example) are among

the fundamental relations, these will be quite different in the two cases. The distance between

Earth and its projectile at some time will always be greater than the distance at an earlier

time. The distance between Pandora and its projectile, on the other hand, will eventually

begin to decrease.21

Since there are scale-independent differences over time between these worlds, the com-

parativist can certainly recognize that both Pandora’s universe and Earth’s are physically

possible. But only at the expense of denying determinism. There can be no fundamental

difference, for the comparativist, between the initial state of Earth’s universe and the initial

state of Pandora’s. Since there is a difference between the futures of these two initial states,

it must be that the same initial state can evolve into two or more distinct future states while

obeying the comparativist’s laws. This is the very definition of indeterminism.22

Or so it seems. But as Kenny Easwaran has pointed out to me, the argument of this

section smuggles in a hidden assumption: that initial conditions are to be understood as

truly instantaneous time-slices. The comparativist can maintain determinism in the face of

my example by denying this assumption–a plausible move on its own merits, as we shall see.

4.2 A hidden premise: instantaneous initial conditions

The nature of the hidden premise will become apparent after a quick look at a puzzle

surrounding the nature of velocity. In mechanics, the state of the universe at a time is

normally thought to include the velocity of every material object at that time. But an

object’s velocity is ordinarily defined as the derivative of its position with respect to time,

21As noted above in fn 11, the comparativist could in principle save determinism by positing a system
of fundamental relations so austere that possibilities in which a projectile escapes are treated as equivalent
to possibilities in which it does not. But this would require leaving out even relations as weak as “d is
a greater distance than d′,” thus leaving it unclear how the resulting ontology could even represent our
ordinary acquaintance with the quantity of distance. This option is obviously unsatisfactory.

22Although the escape velocity example is particularly straightforward, a more general argument for inde-
terminism is also possible. If all masses in the universe are doubled, this will double the acceleration of all
massive objects, which will have scale-independent effects on the ratios of present and future velocities. It is
less clear, however, that the comparativist can’t get rid of this indeterminism by positing fewer fundamental
relations, per fn 11.
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v = dx/dt. And this quantity’s definition involves more than just the way the world is at

the exact moment t. The derivative of an object’s position x at t is the limit:

v(t) =
dx

dt
(t) = lim

t′→t

x(t′)− x(t)

t′ − t
(3)

This limit is not a property intrinsic to t; it depends on the infinitesimal neighborhood of

points in time before and after t.23 So the notion of instantaneous velocity as a component

of a scientific theory’s initial conditions would appear to be confused.

There are a few options for making sense of this puzzle (Arntzenius, 2000). One is to

posit that velocity is a truly instantaneous, intrinsic property of the world at t. In that

case, velocity is not identical with the time-derivative of position, and Eq. (3) cannot be

the definition of the velocity at t. Rather, it must express either a physical or metaphysical

necessity. This view has a revisionary flavor that may seem troubling, since it leaves open at

least the conceptual possibility that velocity and the derivative of position could disagree.

An attractive alternative is the at-at theory. On this theory of motion, Eq (3) is the

definition of velocity, which is not truly an instantaneous quantity. Rather, an object’s

velocity at t is a property extrinsic to t but intrinsic to t’s infinitesimal neighborhood. And

since velocity is a part of the initial conditions for classical theories of mechanics, it must

be that these initial conditions don’t correspond to a truly instantaneous state at a time.

Rather, the “state at t” mentioned in our definition of determinism really refers to the state

over a vanishingly small temporal neighborhood of t. While there are no true instantaneous

velocities on this view, the limit of the velocities over smaller and smaller intervals around t

serves the same purpose while maintaining the ordinary calculus definition of v(t).

My argument from the Earth/Pandora examples to indeterminism covertly assumed the

first, truly instantaneous picture of initial conditions. The argument proceeds by identifying

the initial conditions at t with the scale-independent facts about position and velocity in-

trinsic to t’s instantaneous time-slice. But according to the at-at picture, and its associated

picture of initial conditions, none of the velocity facts are intrinsic to this time-slice, not

even v(t). And velocity is a necessary component of the initial conditions for any theory of

mechanics–specifying just the positions at a single time while leaving out the velocities is not

23When I say the limit depends on t’s “infinitesimal neighborhood,” I do not mean to imply that there is
any unique such neighborhood. Rather, I mean that the limit is not determined merely by the position at t,
but is determined by the positions in any interval (t− δt, t+ δt).
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sufficient to determine the future evolution of the state, even granting ordinary absolutist

assumptions. So by identifying the initial conditions with the facts intrinsic to t, I have

covertly assumed the instantaneous velocity view.

What happens to the argument if we instead assume the at-at view? On that view there

is really no fundamental quantity of velocity–position is the only fundamental quantity, and

velocity is defined reductively from position via Eq. (3). But the initial conditions at t

consist of any facts that obtain in t’s infinitesimal neighborhood–that is, facts that hold

true of any finite interval (t − δt, t + δt) before and after t, no matter how small. Suppose

now that t is the initial stage of a universe like Earth’s or Pandora’s, with a projectile

initially moving away from a planet of mass M . Assuming absolutism, of course, the facts

about t’s neighborhood together with the gravitational force law allow us to predict whether

the projectile will escape. But what about if we assume comparativism? In other words,

do the scale-independent facts about t’s infinitesimal neighborhood determine whether the

projectile will escape?

From the gravitational force law (1) and F = ma, we know that the acceleration of the

projectile at t is GM/r2. (The acceleration a is dv/dt, which is also determined by the

projectile’s position r(t) in t’s infinitesimal neighborhood just like v is.) Comparing this

with the escape velocity equation (2), we see that ve =
√

2ar, so the projectile will escape if

v2 > 2ar. Is it a scale-independent fact whether this inequality holds? Multiplying mass by

a scalar doesn’t change it, of course, since mass doesn’t appear. What about if we change

the scale of other quantities? In terms of the relevant fundamental quantity, the position r,

the inequality is

(dr/dt)2 > 2(d2r/dt2)r. (4)

But if we multiply r by a scalar c, this will just multiply both sides of the inequality by

c2, which won’t change whether it holds. Whether the inequality holds or not is a scale-

independent fact about t’s neighborhood. Since the truth or falsehood of the inequality

determines whether v > ve, it determines whether the projectile will escape. Therefore the

scale-independent facts about the initial conditions determine whether the projectile will

escape, if we understand initial conditions in the at-at theorist’s way. (The argument here

is due to Easwaran.)

So if we leave out the hidden premise, the argument for indeterminism does not suc-

ceed. Does this give the comparativist good reason to deny the premise–to deny that initial
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conditions are instantaneous? I believe so. The goal of any comparativist interpretation of

Newtonian gravity should be to achieve the same scientific aims as the absolutist version

of the theory, without the absolutist’s more elaborate ontology. If the comparativist and

absolutist theories differ in their predictions–if they differ about which physical possibilities

are deterministic–the comparativist has failed in this goal.

Indeterminism by itself is not so bad, of course. We’re happy to accept the possibility

of objective chances in quantum theory. But indeterminism in classical physics is more

troubling, since the theory includes no probability measure over outcomes to interpret as

chance. In the case of escape velocity, an indeterministic comparativist interpretation will

simply predict that a projectile near a planet’s surface will either escape its orbit or not,

without offering any statistical predictions about the likelihood of these outcomes.

So the comparativist should prefer the at-at theory of motion over the alternative view

that there are instantaneous velocities. A way to preserve instantaneous velocities and initial

conditions may seem to suggest itself: just make acceleration an instantaneous fundamental

quantity as well. Whether a projectile will escape is determined by whether inequality (4)

holds. It appears that knowing the scale-independent facts about position, velocity and

acceleration is sufficient to determine this fact. And the view that acceleration, as well as

velocity, is an instantaneous fundamental quantity has been independently defended (Lange,

2005).

Adding instantaneous accelerations as well as velocities to the mix will not suffice to

determine this, however. Not if they are fundamental quantities distinct from position,

as the instantaneous view has it. For then their relationship with position is no longer

definitional–velocity is not defined to be the derivative of position, but rather there must be

some law that makes this the case. And this means it doesn’t follow that when we change

the scale of position, for example by doubling it, we must also double the value of velocity

and acceleration. These are separate fundamental quantities, and thus it will make sense

from the comparativist point of view to change the scale of one without changing the scale

of the others. But it was the fact that changing the scale of position automatically changed

the scale of velocity and acceleration by the same factor, on the at-at view, that allowed us

to determine whether inequality (4) would be satisfied. That response to the Earth/Pandora

argument does not succeed if we assume that position, acceleration and velocity are separate

fundamental quantities.
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We’ve seen that if the comparativist adopts the at-at picture of motion, as they should,

the Earth/Pandora examples do not imply that a comparativist version of Newtonian grav-

ity must be indeterministic. But more involved examples will bring back the specter of

indeterminism.

5 Indeterministic examples and metaphysical modality

What is the factor that prevents the Earth/Pandora examples from exhibiting indetermin-

ism, on the at-at view? The fact that certain comparative relationships between the different

derivatives of position–velocity and acceleration–are scale-independent is what sinks the oth-

erwise promising argument for indeterminism. One way to make some of these relationships

either trivial or undefined is to set one or both of these derivatives to zero. So one way to

start looking for indeterminism is to study systems with zero initial acceleration.

The example I have in mind is one I’ll call Friction World (because the details can be

filled in with an idealized Newtonian account of frictional forces). Think of the mass-m

hockey puck in Figure 1 as sliding over some surface with an initial velocity v, feeling no

forces at all. But upon entering the shaded region, it feels a constant force F in a direction

opposite v. F = ma tells us that the resultant acceleration will slow the puck (reducing the

value of v). The shaded region is only L meters wide, so if the puck can make it L meters

without slowing to a stop it will continue moving in the leftward direction forever afterward.

Suppose we describe these initial conditions solely in scale-independent terms. Here’s a

question we won’t be able to answer: will the puck make it past the shaded area and continue

moving left? To answer this question, there would need to be a scale-independent difference

between the different possible initial conditions for Friction World. But suppose that v is

just barely great enough for the puck to make it past the shaded region. Then if we double

F–a transformation that makes no scale-independent difference–the puck will no longer be

moving fast enough to make it. Or suppose the puck is just barely too slow to make it past.

Halving F will halve the puck’s acceleration as it moves over the shaded region, permitting

it to make it past.24

As in the escape velocity case, the differences between the possible outcomes in which

24If we understand this example in terms of friction, these transformations correspond to doubling or
halving the coefficient of friction.

22



Figure 1: Friction World

the puck stops or slides past are clearly scale-independent. In some cases, the puck remains

in the shaded area permanently. In others, it continues moving forever (which is to say,

the scale-independent ratios between its distances from the shaded area’s edge at different

times will keep increasing eternally). So here we have an indisputable case of compara-

tivist indeterminism for a physical system that is deterministic on the ordinary, absolutist

understanding of classical mechanics.

Interestingly, the indeterminism in the Friction World example eventually “goes away”

once the puck becomes subject to the force. There are stages of Friction World’s history

whose infinitesimal neighborhoods do determine the scale-independent facts about the puck’s

future. For the puck will immediately begin accelerating at a rate a = F/m once it enters

the shaded area. At that point, we may ask again whether it will stop or not, and there is

more scale-independent information to work with. Assume for the moment that the puck

will eventually stop. It will take an amount of time equal to t = v/a to do so. Since the

acceleration a will be constant, its average velocity will just be vavg = v/2. So it will cover

a total distance vavg ∗ t = v2/2a over the course of its journey. Clearly, this means it would

have slid past the shaded area iff the area’s length L were less than this distance. So in

general, the puck will make it past iff

v2

2a
> L. (5)
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As we saw in our discussion of Earth and Pandora, assuming at-at motion, when we double

the quantity of distance we must also double velocity and acceleration. So transforming the

scale of distance will multiply both sides of this inequality by the same constant, leaving

the same inequality. So it is a scale-independent fact whether (5) obtains. Thus, once

the puck enters the shaded area and begins accelerating, the scale-independent data about

Friction World’s present will determine the scale-independent facts about its future. The

indeterminism disappears once the puck begins to experience the force.25

Another peculiarity of this sort of example (understood the comparativist way): the

indeterminism can actually reappear at later times if we change the example in the right

way. For suppose we modify Friction World by adding a second, identical shaded region of

force, some distance beyond the first. To make it past both regions, one after the other, will

clearly require that
v2

2a
> 2L, (6)

since the total velocity lost by the puck as it slides over two successive regions of length L

will be the same as if it had to slide over one region of length 2L. At the time when it enters

the first region, the scale-independent facts will, as before, determine whether inequality (6)

is satisfied and hence will determine the scale-independent facts about the future (such as

whether the puck will pass the second region). But (assuming the puck gets past the first

region) consider a time after it has left the first region and before it has entered the second

region. At this point its acceleration will again be zero, and the scale-independent facts

about the infinitesimal neighborhood surrounding this moment in time will not determine

whether it will pass through the second region or be captured. The instantaneous situation

will be exactly as in the original Friction World case. So the indeterminism has “gone away”

while the puck was moving on the first surface, only to “come back” again between the two

surfaces.

A moment’s reflection will reveal another bizarre feature of this case. Suppose that, at

the time it enters the first region of force, the puck does in fact satisfy inequality (6). Then

it is physically impossible for the puck to later stop within the second region. Its velocity

25This “disappearing indeterminism” is a feature shared with one of the (debatable) cases of indeterminism
in classical mechanics. In the dome example described by Norton (2003), at the initial time it is indeter-
ministic whether and when the ball will begin to slide down the dome (and which direction it will go). But
if it does begin to slide down, it will move deterministically from then on (assuming we’ve ruled out other
potential sources of indeterminism like “space invaders” from infinity).
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Figure 2: Double Friction World

is high enough that it must keep moving forever. But holding fixed only the instantaneous

(neighborhood) state while it is somewhere between the two surfaces, it is physically possible

for the puck to stop within the second region. (This is just another way of saying that the

instantaneous state at the first time determines the future evolution, while the state at the

second time does not.) Something very curious is happening: given the earlier state, it is

physically necessary that the puck will keep moving forever, but given the later state it is

physically possible for the puck to stop moving. So the Double Friction case exhibits a sort

of temporal action-at-a-distance. While the puck is in between the two regions, the entire

past of the system physically necessitates an outcome that is not physically necessitated by

the state at the present time. According to the comparativist, in a case like this the past

can influence the future without said influence being mediated by the state of the world in

the present.

5.1 A more realistic example

These aspects of Friction World are odd and foundationally interesting. The reader may

wonder whether they can be reproduced in a more realistic setting. Friction World is, after

all, a toy model that bears little resemblance to any complete theory of physical forces. In

fact we can develop an analogous example in Newtonian gravity by modifying the escape

velocity example, although idealizations will remain.

25



Figure 3: Shell World

The key to doing so is the gravitational Shell Theorem. This theorem has two conse-

quences: the gravitational force outside a uniform spherical shell of mass M is the same

as that from a mass-M particle located at the center of the shell; and a uniform, hollow

spherical shell exerts no net gravitational force on any object inside it.

Our new example, Shell World, is formed by modifying the Earth/Pandora-type exam-

ples. Instead of a planet, the initial state consists of a uniform, rigid shell of mass M , with

a projectile initially located at the center of the shell with outward velocity v. By the Shell

Theorem, the projectile will initially feel no force and its acceleration will be zero. Here

comes the idealization: we must suppose that the projectile will somehow pass through the

shell.26 One possibility would be to just suppose that the objects in the example are perme-

able and only interact via the gravitational force. Another possibility would be to assume

the projectile is a point particle and there is a point-sized gap in the shell at the place where

the projectile’s trajectory will intersect the shell. This may be the best option, although the

idea of a hole with no spatial extension may seem conceptually confused. Finally, we could

make some assumptions about what will happen when the projectile collides with the shell

(perhaps the shell will break apart?). I will assume one of these solutions is postulated. For

our purposes it won’t matter which one.

26A further significant idealization: we must ignore whatever forces hold the rigid shell together, preventing
its gravitational collapse. This idealization strikes me as unproblematic, though, since filling in these details
will not undermine the morals of the example unless they introduce some initial acceleration.
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Regardless, once the projectile passes through the shell, it will immediately feel a gravi-

tational force from the shell’s mass, just as if the shell were a solid planet with total mass M

(this also follows from the Shell Theorem). At that point it will begin to accelerate toward

the shell. The case will then become exactly parallel to the Earth and Pandora examples:

the projectile will escape if v exceeds the shell’s escape velocity.27 But think about the

initial time, before the projectile exits the shell. At that point we may also ask whether

the projectile will escape or not. The ordinary way to find out, of course, is to compare

the projectile’s velocity v with the shell’s escape velocity. But because there is no initial

acceleration due to gravity, we may now pull the trick that made the Earth/Pandora cases

look indeterministic: we may double the mass of every object in Shell World. And since

the acceleration in Shell World is initially zero, the comparativist may not respond by using

inequality (4) to determine whether the projectile will escape. The scale-independent facts

about Shell World are not changed when we double the mass, even if we assume the at-at

theory of motion. So the type of indeterminism that at first appeared to be present in the

Earth/Pandora examples is actually present in Shell World.28

As in Friction World, the indeterminism is temporary: once the projectile passes through

the shell and feels the force, the instantaneous state will determine the future evolution.

What about temporal action-at-a-distance? Can we get the indeterminism to “come back”

by modifying the Shell World case, the way we did with Friction World?

This may seem challenging (what if we assume the shell breaks?), but actually it is easy

to construct a case of temporal action-at-a-distance by modifying Shell World. The key

ingredient is the time-reversal invariance of classical mechanics: since the history of Shell

World is physically possible, so is the time-reverse of that history. Consider this time-reversed

copy of Shell World. In effect, the projectile will begin at the right of the diagram in Figure

3 and move to the left, entering the shell.29 At the end of this process, it will be at the

27If we postulate that the projectile collides with the shell and breaks it, the problem of whether it escapes
will be more complicated to solve but not qualitatively different.

28An anonymous referee has raised a concern about Shell World and related examples. Note that the
initial conditions of Shell World are very unusual: only a tiny class of physical states will exhibit the sort of
symmetry required to guarantee zero initial acceleration. Indeed, these states make up a set of measure zero
in the space of all states. Does this undermine the foundational importance of the example? I don’t see why
it should. The significance of some pathological or peculiar behavior of certain states is not lessened unless
the states themselves can be ruled out as somehow unphysical or uninteresting. The fact that they are rare
or atypical states should not by itself disqualify them in this way.

29Depending on how the collision is handled, the pieces of the shell may also converge to form the shell.
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center of the shell, moving to the left with velocity −v. In effect, this temporal stage of the

time-reversed Shell World will be the mirror image of Shell World’s initial conditions. As

before, the projectile will escape iff v is greater than the shell’s escape velocity–which is not

determined by the scale-independent facts about this temporal stage.

But if we rewind time to a point before the projectile entered the shell, the instantaneous

state at that time will determine whether the projectile will eventually escape the shell’s

orbit. For at that earlier time, we will have scale-independent data about the acceleration

the moving object undergoes due to the shell’s gravity–and we know it will feel the same

acceleration when it leaves the shell once more. More generally, since the state of the

modified Shell World while the projectile is inside the shell is just the mirror image of the

initial state of the original Shell World–and the past history of the modified Shell World is

the time-reverse of the original Shell World–we know that the future of the modified Shell

World will necessarily be the mirror image of the time-reverse of its past. So the past history

of this modified Shell World physically necessitates its entire future, but the instantaneous

state while the projectile is inside the shell does not. Just as in the Double Friction case,

the comparativist must accept temporal action-at-a-distance.

It is worth mentioning that a close analog of the Shell World example also exists in

classical electromagnetic theory. Although the theory is relativistic, I will describe the

initial conditions for this example in one frame (the rest frame of the shell). Since there is

also an electromagnetic Shell Theorem, we may construct an example in which a positively-

charged projectile is initially located at the center of a negatively-charged shell, with some

initial outward velocity. All that’s needed is to modify the Shell World example so that

the projectile has electric charge Q and the spherical shell has charge −Q. We can call

the modified example Charge World. Once the projectile passes through the shell it will be

attracted to the shell’s charge by the Coulomb force:30

F = k
q1q2
r2

. (7)

The scale-independent facts about the initial state of Charge World will not determine

whether the projectile escapes this attractive force. This example is especially interesting

30Here, the constant k = 8.988 ∗ 10−9N ∗m2/C2 (in units of meters, newtons of force, and coulombs of
charge).
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because relativistic field theories like electromagnetism are entirely deterministic as ordinarily

understood, unlike Newtonian gravity (Earman, 1986, 55-78). So here we have a case in which

comparativism and absolutism disagree, with no caveats needed, about whether a certain

physical theory has indeterministic solutions. And since classical electromagnetism is also

time-reversal invariant, one may modify the example in the same way that we modified Shell

World to introduce temporal action-at-a-distance.

5.2 Metaphysical modality

In light of these examples, I want to consider the proposition that comparativism about

quantity is not only true, but metaphysically necessary. I’ll proceed from the assumption

that any reasonable system of physical laws are the laws of some metaphysically possible

world(s).

The motivation for this assumption is as follows: In the past, physicists considered seri-

ously the possibility that Newton’s laws were true. Indeed, they remain interested in many

counterfactuals concerning what would be true if Newton’s laws were the actual laws.31 It

would be bizarre if, in doing so, past and present physicists were entertaining a hypothesis as

impossible as the proposition that water is not H2O, or the existence of an all-red, all-green

object, or an object with a mass of both one gram and five grams. The view that these laws

are metaphysically impossible but logically possible would entail this bizarre consequence.

Moreover, the laws of our present-day best theories (general relativity and quantum field

theory) are known to be false, although they approximate the truth closely in broad do-

mains. Again, it would be bizarre to suppose that we entertain a metaphysical impossibility

every time we apply these laws.32

By a reasonable system of laws, I mean a collection of putative laws that good physicists

might hypothesize to be the fundamental laws of nature if presented with the right sort of

31One reason for this is that Newton’s laws are very good at approximating the more accurate laws of
relativity and quantum theory. Another reason is that they share many broad physical principles (which one
might, following Lange (2007), call “meta-laws”), such as conservation laws, with more accurate theories.

32Arguments for so-called causal structuralism have been thought to imply that non-actual but reasonable-
seeming laws are metaphysically impossible (Shoemaker, 1998). The thought is that, for example, it is
essential to the quantity of charge that opposite charges attract, and so a universe in which opposite charges
repel is a metaphysical impossibility. But as Fine (2005, §2) has shown, this implies only that non-actual
laws may have to involve alien properties, or the absence of familiar fundamental properties (e.g. a world
with no charge), not that they are metaphysically impossible.
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experimental data. Newton’s laws are like this: faced with the experimental data available

at that time, the best scientists of the early modern period hypothesized that they were the

fundamental laws. The laws of Friction World–Newton’s laws of motion plus a toy force

law–seem to me like reasonable laws in this sense. I am certain that the laws of Shell World

and Charge World–the laws of Newtonian gravity or classical electromagnetism, plus perhaps

some laws about collisions which I’ve neglected to fill in–are reasonable.

I’ve been a bit unspecific just now. By “the laws of Friction World (or Shell/Charge

World),” do I mean the absolutist version of these laws or some comparativist version of

them? This question gets to the heart of the matter. I have no argument that comparativist

laws for Friction World or Shell World are unreasonable. But it seems clear to me that the

absolutist version of Friction World’s (or Shell/Charge World’s) laws–as distinct from any

possible comparativist laws–are reasonable laws that ought to be true of some metaphysically

possible world. For it would be reasonable, in a case like Friction World or Charge World,

to posit that the laws of nature are deterministic.

It would be entirely reasonable, after all, for physicists, faced with the sort of experiments

that might lead them to accept classical electromagnetism, to suppose that the laws are de-

terministic under initial conditions like those of Charge World. All the observable predictions

of classical electromagnetism are consistent with determinism, and so it would seem rather

ad hoc to postulate (as the comparativist must) that the theory is indeterministic under

certain narrow special conditions despite otherwise exhibiting determinism.33 Even more

plausibly, a theory that avoids temporal action-at-a-distance under any conditions might be

preferred. Lange (2002, 7-17), for example, has argued for a principle of temporal locality

according to which there must be no temporal gaps between an event and its causes. If we

understand causation to involve physical necessitation, this principle is violated by compara-

tivist physics in cases like Double Friction and the analogous modification of the Shell World

example. Again, I’m not claiming that the comparativist’s laws for Friction/Shell/Charge

World are unreasonable laws. But I do maintain that some deterministic system of laws gov-

erning these cases must be reasonable–and since any such laws will be absolutist, I conclude

that absolutism must be a metaphysically possible thesis.

It is, of course, open to the comparativist to maintain that his view is metaphysically

33An alternative would be to stipulate that Charge World’s initial conditions are physically impossible,
but this appears equally ad hoc given the straightforwardness of the example.
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necessary by denying my principle that reasonable laws must be metaphysically possible.34

At this point it becomes difficult to respond, beyond registering my disagreement. But read-

ers who trust their modal intuitions about specific cases more than I do may find themselves

filled with the intuition that it is metaphysically possible for Friction World, Shell World

or Charge World to exhibit deterministic, temporally local laws. Such readers will then be

obliged to agree with the thesis of this section, even if they disagree with my principle about

the metaphysical possibility of reasonable physical laws.

6 Conclusions

I have argued that comparativism is not metaphysically necessary, and that it brings with

it certain theoretical commitments. Namely, comparativists should accept the at-at picture

of motion (or some close cousin of it), and should also accept that temporal action-at-a-

distance is possible according to their view (unless they want to deny that Friction World,

Shell World and Charge World are real possibilities). What does this imply about the truth

or falsehood of comparativism? Do we have any new reasons for rejecting the view?

To begin with, some will be attracted to the view that the true theory of quantity must be

metaphysically necessary. If the argument of §5.2 is correct, comparativism cannot succeed

on these terms. But for my part, I don’t see why a theory of quantity should have to be

metaphysically necessary in order to be true of our world. It seems entirely plausible to

me that the space of possibilities includes both absolutist and comparativist worlds. Kripke

has taught us, of course, that certain scenarios which are logically and (in some sense)

conceptually possible are nonetheless not intelligible ways a universe could be. But it seems

obvious, from the existence of both comparativism and absolutism as formal theories of

quantity with well-defined models, that absolutism and comparativism are both intelligible

ways for a universe to contain quantities. I take this to be a strong indication that both

views are metaphysically possible.

If one is persuaded by arguments like those of Lange (2005) that velocity must be an

instantaneous fundamental quantity, one should probably reject comparativism, to avoid

accepting indeterminism in a wide variety of physically important cases like the example of

34I expect this would be Dasgupta’s position, since he takes seriously the proposition that only the actual
world is metaphysically possible (Dasgupta, in progress).
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escape velocity. But at-at motion is pretty plausible on its own merits, so I don’t see this as

a huge theoretical cost for comparativism.

The sort of disappearing, reappearing indeterminism exhibited by the comparativist ver-

sions of Friction World and Shell World is pretty peculiar, as is the temporal action-at-a-

distance that arises in these examples. On the other hand, these two examples are rather

idealized (especially Friction World) and don’t much resemble any of the physical possibili-

ties according to our actual best theories. So at most, they commit the comparativist to the

metaphysical possibility of temporal action-at-a-distance. Again, this does not strike me as

a huge cost–especially given that determinism in Newtonian physics is already known to be

a vexed issue.

The most troubling example is Charge World. Here we have an example where the com-

parativist must disagree with the absolutist–and with physics as ordinarily understood–about

whether a relativistic theory of force is deterministic and temporally local. Classical elec-

tromagnetism is non-fundamental, which draws some of the sting. By itself, Charge World

shows at most that comparativism would lead to unwelcome pathologies if electromagnetism

were the fundamental theory of our universe. But classical electromagnetism is also a limiting

case of quantum electrodynamics, one of our most fundamental quantum field theories. This

raises the uncomfortable possibility that our most fundamental theories might also exhibit

chanceless indeterminism and temporal action-at-a-distance under comparativism.

This is a difficult question to address, given the outstanding controversy over which quan-

tities are fundamental in our most successful quantum theories. And even if those theories

were better understood, they are known not to be truly fundamental. But given compara-

tivism’s track record with determinism and temporal locality in classical theories, I would

not want to bet on its success in quantum theory. Comparativism should be explored further,

but metaphysicians who accept the theory run the risk that it might lead to pathologies in

fundamental physics as bad as the ones it causes for classical physics. Absolutism is a safer

option in this regard.
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