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The Halfers are right in the end: Sleeping Beauty

problem

Minseong Kim

Abstract. In this paper, I will examine the representative halfer and thirder solutions to
the Sleeping Beauty problem. Then by properly applying the event concept in probability
theory and examining similarity of the Sleeping Beauty problem to the Monty Hall prob-
lem, it is concluded that the representative thirder solution is wrong and the halfers are
right, but that the representative halfer solution also contains a wrong logical conclusion.

1. Introduction: Sleeping Beauty problem

The description of Sleeping Beauty problem appears in Elga (2000), and is
given the following:
“Some researchers are going to put you to sleep. During the two days that
your sleep will last (Monday, Tuesday), they will briefly wake you up either
once (only on Monday) or twice (both Monday and Tuesday), depending on
the toss of a fair coin (Heads: once; Tails: twice). After each waking, they
will ask you, the sleeping beauty, on what probability you will assign to the
outcome of the coin toss turning out to be the Heads. Then they will put
you, the sleeping beauty, to back to sleep with a drug that makes you forget
that waking. When you are first awakened, to what degree ought you believe
that the outcome of the coin toss is Heads?”

2. Introduction: The Thirder - Adam Elga

Elga (2000)’s argument can be summarized as the following:
From now on, let P (head) = 1/2 be the unconditional probability that a fair
coin toss will produce head. Therefore, P (tail) = 1/2.
Given that the result of the coin toss is tail, the probability that the sleeping
beauty wakes up on Monday and the probability that the sleeping beauty
wakes up on Tuesday should not be different. Therefore,

P (Monday|tail) = P (Tuesday|tail)
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As such (by the definition of conditional probability),

P (Monday ∩ tail) = P (Tuesday ∩ tail)

As the result of coin toss only affects what happens on Tuesday (awake, not
awake),

P (tail|Monday) = P (head|Monday)

P (Monday ∩ tail) = P (Monday ∩ head)

Thus,

P (Monday ∩ head) = P (Monday ∩ tail) = P (Tuesday ∩ tail)

As P (Monday ∩ head) + P (Monday ∩ tail) + P (Tuesday ∩ tail) = 1,

P (Monday ∩ head) =
1

3

Therefore, when first awakened, the sleeping beauty should assign 1/3 to
the probability that the outcome of the coin toss is Heads.
The followings are not directly in Elga (2000), but they will aid our
discussions:

P (Monday) = P (Monday ∩ head) + P (Monday ∩ tail) =
2

3

P (Tuesday) =
1

3

Let the unconditional probability that the sleeping beauty is only awakened
on Monday be P (EM) (EM represents experiment on Monday only) from
now on. P (EM) = P (head) tautologically. P (ET ) = P (tail), where ET rep-
resents experiment on Tuesday also - meaning that the sleeping beauty is
awakened also on Tuesday.
Solving the equations of the following:

P (Monday) = P (Monday|EM)P (EM) + P (Monday|ET )P (ET )

P (Tuesday) = P (Tuesday|EM)P (EM) + P (Tuesday|ET )P (ET )

P (Monday|EM) + P (Tuesday|EM) = 1

P (Monday|ET ) + P (Tuesday|ET ) = 1

where P (Tuesday|EM) = 0 by the settings of the experiment produces

P (Monday|EM) = 1
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P (Tuesday|EM) = 0

P (Monday|ET ) =
1

3

P (Tuesday|ET ) =
2

3

3. Introduction: The Halfer - David Lewis

Lewis (2001)’s argument can be summarized as the following:
Because no new information has been presented to the sleeping
beauty, when awakened, the sleeping beauty should assign 1/2 to
the probability that the outcome of the coin toss is Heads. Be-
cause P (head) = 1/2 = P (head ∩Monday), P (tail) = 1/2 = P (Monday ∩
tail) + P (Tuesday ∩ tail) and P (Monday ∩ tail) = 1/4. Therefore,

P (head|Monday) =
1/2

(1/2 + 1/4)
=

2

3

P (tail|Monday) =
1

3

The following is not included in Lewis (2001), but deriving them will aid
our discussions:

P (head|Monday) =
P (head ∩Monday)

P (Monday)
=

2

3

1

2
=

2

3
P (Monday)

P (Monday) =
3

4

P (Tuesday) =
1

4

Also,

P (Monday) = P (Monday|EM)P (EM) + P (Monday|ET )P (ET )

P (Tuesday) = P (Tuesday|EM)P (EM) + P (Tuesday|ET )P (ET )

P (Monday|EM) + P (Tuesday|EM) = 1

P (Monday|ET ) + P (Tuesday|ET ) = 1
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produces

P (Monday|EM) = 1

P (Tuesday|EM) = 0

P (Monday|ET ) =
1

2

P (Tuesday|ET ) =
1

2

4. Examining both solutions: Events and the Monty Hall
problem

It is noticeable that two representative approaches produce different
answers for P (Monday) and P (Tuesday). By examining these answers, we
may actually see which argument is right. I will argue that both approaches
are wrong, but in the end halfers are right. Let me slightly change the
question, but this change should not really affect the experiment. Instead
of not just waking up the sleeping beauty, the sleeping beauty is told before
the experiment is carried out that if the coin toss turns out to be head, the
sleeping beauty will be awakened on Monday and be killed. If the coin toss
turns out to be tail, then the sleeping beauty will be brought back to sleep
with the drug and that be awakened on Tuesday. On Tuesday, the sleeping
beauty will just be interviewed and not be killed in any case.
Now let us think about the events. Because the number of events we are
considering is considered finite, events can safely be used.
Now P (tail) = P (survive) and P (head) = P (dead on Monday), un-
conditionally speaking. But we have two different possible sub-events
for the event survive: survive ∩Monday = survived on Monday and
survive ∩ Tuesday = survived on Tuesday. Should we consider these two
events separately? The answer is both yes and no. For Lewis’s and Elga’s,
the answer is yes.
It is noticeable that what Monday and Tuesday actually refer to
have not been explicitly defined. There are two possible meaning for
P (Monday): P (Sleeping Beauty woke up AND today is Monday) and
P (Sleeping beauty will be wakened up on Monday). In the above, both
Lewis’s and Elga’s arguments use the former definition but without much
notice, and this, as we will see, has huge consequences. The latter has
probability 1, because the event definitely occurs. Let me first examine the
latter definition. Then two sub-events of survive are not actually different.
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If I survive on Monday (represented by conditional p), then I will survive on
Tuesday (represented by conditional q). If I am seen as surviving on Tuesday
(q), I should have survived on Monday (p). p→ q and q → p, therefore
p↔ q. Invoking Kolmogorov probability theory and representing p and q as
sets, p and q have to be the same set. Therefore, these two sub-events are
actually tautological to each other. It is wrong to consider them as separate
two sub-events that form the event survive. The only event that exists is
survive, not survived on Monday and survived on Tuesday.
By following this line of definition, it is apparent that the halfer approach
is right, the thirder approach is wrong by applying the analogy above.
it is shown that these sub-events are not actually separate sub-events,
so while P (Monday|tail) = P (Tuesday|tail) is true, this does not mean
that P (Monday ∩ head) + P (Monday ∩ tail) + P (Tuesday ∩ tail) = 1.
What actually happened is double-counting. It should have been just
P (Monday ∩ head) + P (tail) = 1, where P (tail) = P (Tuesday ∩ tail) =
P (Monday ∩ tail), because these three events/sub-events are actually
referring to the same event.
We can now see that the case is back to basic coin toss issue, and
P (head) = 1/2 will be what the sleeping beauty responds when asked for
the probability of the coin toss outcome without any new information.
From now on, let us call P (Monday) used in the above case as
P (Wake(Monday)), or shortly P (W (M)), which questions the prob-
ability that sleeping beauty would be wakened up on Monday. This is 1 by
the construct of the experiment. P (Wake(Tuesday), or P (W (T )) is defined
similarly.
But what about the former definition of Monday =
Sleeping Beauty woke up AND today is Monday? After all, this def-
inition is what most have in mind when discussing Sleeping Beauty
problem. Are the conclusions that follow from this definition inconsistent
with a different definition? I will argue that the conclusions are in fact
consistent, that what the thirder argument is committing is basically a
variant of Gambler’s Paradox.
First of all, let us first calculate what the probability of
P (Sleeping beauty is wakened up AND today′s Monday), in short
P (SM) and P (Sleeping beauty is wakened up AND today′s Tuesday),
P (ST ), assuming that two definitions yield the same conclusion. Going
back to the analogy above, P (W (M)) = 1 and P (W (T )) = 1/2 - in other
words, W (M) has two events associated: head and tail, while W (T ) has
only one event associated: tail. Thus, the ratio between P (SM) and P (ST )
is P (SM) : P (ST ) = 2 : 1. As P (SM) + P (ST ) = 1, P (SM) = 2/3 and
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P (ST ) = 1/3. This conclusion is compatible with the thirder representative
approach. So the derivation that assumed the consistency of the halfer
approach resulted in seemingly the thirder representative conclusion, and
this shows what is wrong in the halfer representative argument.
From this result, thirders may say that P (SM ∩ head) =
P (head|SM)P (SM) = (1/2)(2/3) = 1/3, P (SM ∩ tail) =
P (tail|SM)P (SM) = 1/3, P (ST ∩ tail) = P (ST ) = 1/3, therefore the
thirder approach may seem vindicated. We have arrived at the thirder
conclusions from the halfer assumption, giving exactly the same set of
prediction data derivable from the Elga’s paper! But exactly this allows
us to see what has gone with the thirder approach, because the thirder
conclusion and probability data are successfully derived from the core
halfer assumptions. In fact, P (head|SM) is arbitrarily specified as 1/2,
without proper logical reasoning. Sure, intuitively speaking it seems that
the information SM does not affect the probabilities of head and tail at all.
But the lessons from the famous Monty Hall problem are that this intuitive
appeal does not sometimes work.
Let us recall the Monty Hall problem.

Suppose youre on a game show, and youre given the choice of
three doors. Behind one door is a car, behind the others, goats.
You pick a door, say No.1, and the host, who knows whats
behind the doors, opens another door that is not No.1 which
has a goat. He says to you, ”Do you want to pick the door that
is not your chosen door?” Is it to your advantage to switch your
choice of doors? vos Savant (1990)

When the problem is approached with intuition only, it seems that there is
no advantage in switching. While No.3 is open and shown as the goat, infor-
mation about No.1 and No.2 are unknown and therefore it seems plausible
to conclude that both doors have equal probability, implying no reason to
switch.
But as many know, the answer to this problem is that one should switch.
When the Monty Hall show first begins, each door has 1/3 probability of
having a car. The important point is initial three pair configurations stay
on place - car:goat:goat, goat:car:goat, goat:goat:car (No.1:No.2:No.3). For
the first configuration, not switching leads to a car, while switching leads
to a goat. For the second configuration, not switching leads to a goat, while
switching leads to a car. For the third configuration, not switching leads to
a goat, while switching leads to a car. Overall, no switching will have a car
1/3 of the time, while switching leads to a car 2/3 of the time.
It immediately apparent where P (head|SM) falls into. Let us for now assume
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that the coin toss is done on Sunday, right before the experiment. Uncon-
ditional probabilities are P (head) = 1/2 and P (tail) = 1/2. There are three
disjoint events that as union has probability of 1: SM ∩ head, SM ∩ tail,
ST ∩ tail. These probabilities for now are the probabilities before the ex-
periment. SM ∩ head = 1/2, as head and tail are disjoint events and only
SM ∩ head has any mention of event head. Now learning of SM occurred
and therefore we may eliminate ST ∩ tail for now. Should we now assign
P (SM ∩ head|SM) = P (SM ∩ tail|SM) = 1/2? In other words, given the
knowledge of SM , should we assign equal probability to head and tail?
It becomes immediately apparent that this assignment issue is so similar to
the Monty Hall problem. We should not. What should be assigned is:

P (SM ∩ head|SM) =
P (SM ∩ head)

P (SM ∩ head) + P (SM ∩ tail)
=

1/2

1− P (ST ∩ tail)

And as long as P (ST ∩ tail) 6= 0, P (SM ∩ head|SM) > 1/2.
It is now apparent how the thirder representative approach went
astray. It is not supported by proper applications of probability the-
ory that P (tail|SM) = P (head|SM). In fact, it is indeed P (tail|SM) <
P (head|SM).
Also notice that Gambler’s fallacy cannot be used to support the thirder
argument. In Gambler’s fallacy, coin toss is done several times. For some
first tosses, a gambler notices that more heads appeared for these tosses, so
for his next toss, he believes it is more likely that a tail would appear to a
head, which is false because assuming fair coin, P (head) = 1/2 regardless.
But the Gambler’s fallacy does not apply to P (head|SM), because the coin
toss is not being done several times.
Now let us think about the case where the coin toss is done right after the
sleeping beauty is awakened on Monday and asked. In such case, what would
happen? The case is simpler here. Because waking up on Monday is com-
pletely irrelevant to the coin toss - because the coin toss has not occurred -
it will be rational for the sleeping beauty to respond 1/2 to the probability
for the outcome head when asked. Otherwise, a future coin toss can only be
considered as being entangled to what other irrelevant things have occurred.
Here I did appeal to the intuition which I decried above, but if this intuition
is not true, then the gambler in the Gambler’s fallacy may not be making a
wrong decision.
Or we can take a more complex route to arrive at the same conclusion. As
said, assume that the coin toss is done right after the sleeping beauty wakes
up on Monday. Now, P (head) = P (head|SM)P (SM) + P (head|ST )P (ST ).
Because P (head|SM) seems to be 1/2 - because waking up on Monday
should not change the probability of the head outcome and ST will not oc-
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cur if head is the outcome, calculation goes: P (head) = 1/2 = (1/2)P (SM).
From here, P (SM) = 1 is arrived, and this may be cited by the thirders to
support their case - because P (SM) = 1 is an implausible and impossible
value. It is indeed the implausible value and therefore should be rejected.
But events may have not been properly defined in this case. Let us check
this by invoking Bayes’ theorem.
Instead of asking P (head), P (SM) is asked. By Bayes’ theorem,
P (SM) = P (SM |head)P (head) + P (SM |tail)P (tail) Then we ask: what
is P (SM |head)? First, note that this probability should equal to the fol-
lowing physical meaning: if the sleeping beauty is awakened and told that
the outcome of coin toss is head, what should the beauty assign to the
probability that SM will occur? The rational answer is 0. Why? Because
the coin toss always occurs after SM occurs. The fact that the result of
the coin toss is already known implies that SM already occurred before
the beauty is awakened - implying that the beauty is awakened for the
second time. In other words, P (SM |head) = 0 and P (SM |tail) = 0. Thus,
P (SM) = 0 and P (ST ) = 1. This conclusion follows regardless of what po-
sitions one take - thirder or halfer. But of course this conclusion is absurd.
There is no way P (SM) = 0, because P (head) = P (head|SM)P (SM) +
P (head|ST )P (ST ) = P (head|SM)P (SM) regardless of the position taken.
If P (SM) = 0 then P (head) = 0, contradicting all positions and whatever
is assumed in addition.
Is this, however, really a contradiction in the probability theory? Not at all.
In fact, the above can be safely reasoned inside the probability theory. What
the above says only is that the event SM is ill-defined in a probability space.
But surely the event SM exists!
This suggests that the event SM for the sleeping beauty is in Knightian
uncertainty. It is not consistent for the sleeping beauty to include SM into
a probability space and only event head and tail can safely be used, where
head leads to no ST and tail leads to ST . Thus, regardless of whether the
sleeping beauty learns that the event just occurred is SM or not, the beauty
should answer 1/2 to P (head) or P (head|SM) - though the latter only works
colloquially - just reflecting the fact that the beauty learned fact SM , not
formally. When asked for P (SM), the beauty should say probability cannot
be assigned and that SM is just uncertain.
One may argue that by creating a variant of P (head) which is P2(head)
that shows the probability of head coming up in the past or future, Knigh-
tian uncertainty case might be avoided. But this does not really solve a
problem. First of all, Bayes’ theorem applies for every “correctly-specified”
possible event definable by the experiment. If we accept that original event
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head exists and is well-defined, then whatever the case is, SM should be in
Knightian uncertainty. Furthermore, what is P (SM |head− at− past), ab-
breviated as P (SM |HAP )? It is of course 0 again. Let us abbreviate head−
at− future as HAF , tail − at− past as TAP and tail − at− future
as TAF . Thus, P (SM) = P (SM |HAF )P (HAF ) + P (SM |TAF )P (TAF ).
What then probability of SM given head at future coin toss? Of course 1.
Because you now know that coin toss in the future! Therefore, P (SM) =
P (HAF ) + P (TAF ). But how do we assign probability to P (HAF ) +
P (TAF )? This in the end returns to the question of assigning P (SM),
because the probability of the coin toss occurring in the future equals to
P (SM). A circular loop is formed, and therefore this solution does not work.

5. Conclusion

This short paper examined both the halfer and thirder solution for the Sleep-
ing Beauty problem. By analogy and reduction to the Monty Hall problem
and by properly applying the event concept in probability theory, it is con-
cluded that both solutions went astray, but in the end halfers are right.
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