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Abstract

A fascinating research program in neurophysiology attempts to quan-

tify the amount of information transmitted by single neurons. The claims

that emerge from this research raise new philosophical questions about

the nature of information. What kind of information is being quantified?

Do the resulting quantities describe empirical magnitudes like those found

elsewhere in the natural sciences? In this article, it is argued that neural

information quantities have a relativisitic character that makes them dis-

tinct from the kinds of information typically discussed in the philosophical

literature. It is also argued that despite this relativistic character, there

are cases in which neural information quantities can be viewed as robustly

objective empirical properties.
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Consider the claim that the H1 neuron in the visual system of the blowfly

transmits information at a rate of 81 bits per second. This claim conveys a

typical result generated by a fascinating research program in neurophysiology

that attempts to estimate the rate at which information flows through individual

neurons (Rieke et al., 1999; Frye and Dickinson, 2001; Van Hateren et al., 2005;

Neri, 2006). Working out exactly what is meant by such claims leads rapidly, and

inexorably, into philosophically contentious terrain. Despite this, such claims

have received hardly any serious attention in the philosophical literature.

Here I attempt to answer two questions about quantitative estimates of neu-

ral information. First, what kind of information do such estimates purport to

describe? Taxonomies of informational concepts have been developed both in

the philosophy of mind and in the philosophy of biology. It is unclear, however,

that the kind of information referenced in the claim above conforms to any of the

existing analyses. The second question is whether information rate claims de-

scribe objective empirical magnitudes like those we find elsewhere in the natural

sciences. Analogical reasoning provides prima facie grounds for doubt. If I send

you a message in Morse code, and you happen not to know Morse code, there

is a sense in which little or no information has been transmitted, regardless of

what the decoded message might have said. In that sense, the quantity of infor-

mation transmitted by a physical signal depends on the interpretive capacities

of a receiver, and consequently appears to lack a certain kind of objectivity.

Of course, the sort of information described in the claim about the blowfly H1

neuron is quite unlike the kind of information typically transmitted by means

of conventional human symbol systems. Nevertheless, the comparison is not

entirely void of interest. In what follows, I’ll argue that there is a subtle but

theoretically significant sense in which the quantity of information transmitted

by a neural signal is relative to the capacity of a receiver mechanism to make

use of the signal. In order to answer the two questions above, it is necessary to

understand that relativity. I’ll begin by discussing a simple model to illustrate

what receiver-relativity means in a quantitative setting. Then, I’ll argue that

receiver-relativity is a real feature of the empirically driven estimates of neural

information transmission. In the second half of the article, I’ll build upon the

discussion of receiver-relativity to develop answers to the two questions posed

in the previous paragraph.
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1 Receiver-relativity in a simple model

Imagine a nocturnal organism with an extremely simple sensorimotor arc that

drives locomotion. There are three variables to consider. First, there is an en-

vironmental property X, which represents luminance. As far as the organism

is concerned, X can take on only three states, bright, dusk, and dark. Second,

there is a single perceptual neuron, Y, which can take on three discrete states

α and β, and γ. Third, there is a motor neuron, R, which controls locomotion.

The states of R are driven by the states of Y. The coupled system XYR is a

communication device in the sense associated with the mathematical theory of

communication. (Shannon and Weaver, 1949). As Figure 1 shows, X plays the

role of the information source, Y plays the role of the information transmitter,

and R plays the role of receiver. The fourth element in the diagram, which

Shannon and Weaver called the destination, is here interpreted somewhat ab-

stractly as the behavior of the organism that results from the motor signal at

R.

Figure 1: This figure is a neurophysiologically-oriented interpretation of the
classic diagram of a communication system that appears in Shannon and Weaver
(1949). The labels X, Y, and R correspond to what they called the source, the
transmitter, and the receiver, respectively. The rightmost box corresponds to
what they called the destination.

This is not the only way to interpret the neurobiology of perception in terms
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of Shannon’s diagram, but this interpretation provides a setup in which we

can ask questions about how the quantitative relation between two variables

might be influenced by a user of that relation. This way of setting up the XYR

model is reminiscent of an analogy that is common in discussions of neural

representation: that of reading a geographic map. X corresponds to the terrain,

Y corresponds to the map, and R corresponds to the person who uses the map

in order to navigate the terrain. The markings on the map are correlated with

the features of the terrain. It is in virtue of her ability to exploit that correlation

that the map-reader can navigate successfully. Similarly, in the XYR model,

the organism is able to decide whether to move or stay still by attending to the

correlation between X and Y.

α β γ Xm

bright .5 0 0 .5
dusk 0 .25 0 .25
dark 0 0 .25 .25
Ym .5 .25 .25

Table 1: A relative frequency table which represents a hypothetical joint
probability distribution over X and Y. The rightmost column represents the
marginal distribution of X, while the bottom row represents the marginal dis-
tribution of Y. Where I is the mutual information and H is the entropy,
I(X;Y ) = H(X) + H(Y ) − H(X,Y ). The upper bound on the amount of
transmittable information is given by the lesser of the two marginal entropies.
Here, the mutual information is: I(X;Y) = H(X) + H(Y) - H(X,Y) = 1.5 + 1.5
- 1.5 = 1.5 bits/message.

Table 1 describes a hypothetical joint distribution over X and Y. Following

Shannon and Weaver, I refer to the states of X as messages, and to the states

of Y as signals (Shannon and Weaver, 1949, p. 2). The set of signals and

the set of messages are each represented by a random variable that follows a

given probability distribution. (An alternative but mathematically equivalent

formulation: the messages are the symbols sent from X to Y; the signals are

the symbols sent from Y to R.) Assuming that all messages and signals are

elementary symbols, (i.e. we ignore combinatorial codes) a simple calculation

shows that the mutual information between X and Y is 1.5 bits per message.1

1The entropy associated with a single value of some random variable is given by the log
of the reciprocal of its relative frequency. Log2(1/.5) = 1 bit. Log2(1/.25) = 2 bits. To find
the entropy of an entire distribution, we take a weighted sum over all individual entropies.
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Note that nothing thus far has been said about R. Can the properties of R

influence the amount of mutual information instantiated by the XY relation?

To explore this question, let us imagine that R is completely and chronically

insensitive to the distinction between β and γ. What consequences flow from

this supposition?

There are two principled ways of answering this question. According to the

first answer, the XY relation is to be viewed as a simple physical relation that

is not causally influenced by R, which, after all, is located downstream in the

causal chain. On this view, we will have to say that that although 1.5 bits of

information are indeed transmitted from X to Y, that 1.5 bit quantity is not

directly relevant to the functional capacities of the organism. Because the re-

ceiver mechanism can discriminate only a portion of the underlying distribution,

only a portion of the underlying distribution is relevant to explaining how the

organism manages to achieve behavioral control. The rest is explanatorily idle.

On this view, quantities of neural information can be assessed in isolation from

questions of biological function.

According to the second answer to our question about how R might influence

the XY relation, there is a flaw in the way we have attempted to describe the

scenario thus far. What sort of flaw? Notice that because the mutual informa-

tion between X and Y is logically entailed by the underlying probabilities, the

only way that R can influence the mutual information is by influencing those

probabilities. According to this second way of thinking, R’s insensitivity to β

and γ demonstrates that the given distribution is not an accurate representation

of the biological facts. If the organism cannot, even in principle, exploit the XY

relation for some biological end, then the correlation expressed by that rela-

tion isn’t one that can legitimately be used to compute the mutual information

between X and Y.

This second way of looking at the scenario is motivated by the thought that

neural information is essentially an expression of the biological capacities of

the organism. According to this second view, if we want to compute I(X,Y)

accurately, we must ensure that the given distribution include only those values

that have biological relevance. How can this restriction be accommodated in

So, the marginal entropy H(X) = .5(1) + .25(2) +.25(2) = 1.5. The computation required to
find the marginal entropy H(Y) is identical to that required for H(X). To compute the joint
entropy H(X,Y), we take a weighted sum over the individual entropies associated with each
of the six terms in the center of the table. Three of those terms evaluate to 0. Once they
are removed, the remaining terms constitute an expression that is identical to that for H(X),
which, as we just saw, is equal to 1.5 bits.
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our procedure for estimating I(X,Y)? The accommodation is straightforward

enough: since R is insensitive to the distinction between β and γ, we rewrite

the relative frequency table so that β and γ are counted together as two instances

of one biologically exploitable variable. In that case, a simple calculation shows

that there is exactly 1 bit of information flowing through the XYR system.

If this second way of looking at the scenario is correct, the original quantity

of 1.5 bits is a kind of fluke. A couple of paragraphs back, I said that the 1.5 bit

quantity was explanatorily idle. In light of that description, we might dub the

correlation from which it was computed an idle correlation. This notion can be

contrasted with the more familiar notion of a spurious correlation. A spurious

correlation between factors A and B is one in which there is no direct causal

relationship (in either direction) between A and B. Either the AB relation is

accidental, or it is the result of a common cause. An idle correlation need not

be spurious. The XY relation is a direct causal relation, and the correlation

evident in Table 1 is perfectly real. The idleness of an idle correlation stems

rather from the fact that the neural pathway in which it is embedded doesn’t

seem to “care about” it. For that reason, it fails to constitute an empirically

adequate explanatory factor.

We can extract two lessons from the comparison between our two interpreta-

tions of the insensitivity scenario. The first lesson is about how to explicate the

concept of receiver-relativity. An information system is receiver-relative just in

case the mutual information between the set of messages and the set of signals

depends on facts about how the underlying correlation is exploited by down-

stream mechanisms. The second lesson concerns the evaluation of our two ways

of looking at the insensitivity scenario. The choice between them seems to turn

on the issue of biological relevance. If neural information quantities express

purely physical facts that float free from considerations of biological function,

then the first way of looking at the scenario makes good sense. If, however,

neural information quantities express facts about the functional capacities of an

organism, then the receiver-relative view is more appropriate.

2 Some strengths of the receiver-relative view

In this section I argue that the receiver-relative conception of information does a

better job of capturing the content of information rate claims in neurophysiology

than does the non-relative conception.
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Someone might argue for the opposite view as follows. No matter how the

organism behaves, as long as there is a way of describing the X and Y variables

such that the probability distribution in Table 1 accurately represents their ac-

tivity, the 1.5 bit quantity follows with necessity. The best response to this claim

is not to deny its truth, but its relevance to scientific theory. There is indeed

a coherent notion of information according to which the XY relation expresses

1.5 bits, but it is not the notion of information we should be interested in if we

hope to learn anything significant about biology. Insisting on the correctness

of the 1.5 bit quantity is like insisting that there is a lot of information latent

in the correlation between the hair on your head and the direction of the wind.

Since no mechanisms are designed to make use of that correlation, the sense

in which it carries information is not the sense we have in mind when we say

that a neuron has transmitted a particular number of bits. When we say that

a neuron has transmitted a particular number of bits, what we mean is that it

has transmitted a particular number of useable bits. 2

To support this claim, I want to highlight the role of the signal-noise dis-

tinction in experimental practice. The first thing to note is that probability

distributions over stimulus and response are never simply given to us, as was

presumed in the XYR model. The experimental strategy is not to first examine

the probabilities, and then, in a second step, determine what portion of the

signal distribution has biological relevance. Rather, experiments are designed

to capture biologically relevant signals directly, so that the observed data are

already sorted into signal and noise components.

To see how this works, consider the following expression for mutual informa-

tion. Although it is mathematically equivalent to the one used above, this new

expression has the benefit of more closely mirroring experimental operations.

I(X,Y ) = H(Y )−H(Y |X) (1)

The H(Y) term on the right side refers to the full entropy of the percep-

tual neuron, and it is operationalized by presenting the organism with a wide

variety of random stimuli, which, at least in theory, will elicit a representative

sample of the full range of physiologically possible response rates. H(Y|X) is

2It is worth noting here that the hair-in-the-wind argument exploits a perfectly contingent
fact about humans. Filiform hairs on the legs of crickets move with the local air currents
too. But in that case, neural receiver mechanisms use the hair-air correlation for predator
detection (Magal et al., 2006). In that case, hair direction really is an informational signal.
At least in principle, the amount of information transmitted in this case could be quantified.
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called the neural noise (Dayan and Abbott, 2001, p. 74; Borst and Theunissen,

1999, p. 950.) It is typically measured by presenting the organism with repeated

instances of the neuron’s preferred stimulus. The idea behind this operational-

ization is that, when a given value of X is simply repeated, there isn’t any

variation in its value about which one could hope to be informed. Under these

conditions, Y is not transmitting any information, despite the fact that it re-

mains active. Crucially, the set of responses elicited under these non-functional

conditions is not entirely abnormal. This spontaneous activity will reappear

under conditions in which the stimulus at X really does vary. Since we know

this activity is non-functional, its contribution to the variation must be filtered

out.

The idea that the H(Y|X) term should be regarded as non-functional activity

is equivalent to the assumption that the function of Y is to report to downstream

mechanisms on the status of X-like stimuli. This assumption shapes the exper-

imental design needed to get an accurate measurement of the information rate.

If, in fact, the function of Y is something other than reporting on the nature

of X-like stimuli, then we would need to employ a different experimental setup,

with different stimuli and background conditions. So we must ask: what em-

pirical facts make the actual measurement setup the right one to employ? The

actual setup is the right one because, as a matter of empirical fact, Y-signals

are used by the flight motor for the purpose of navigating through stimuli of

precisely the kind employed in the experiment.

This is the crucial insight behind the argument that informational quanti-

ties are receiver-relative. The nature of Y’s function depends on the manner in

which its activities are exploited by downstream mechanisms. Since experimen-

tal procedures show that the value of I(X,Y) depends on Y’s functional role,

we can say that the value of I(X,Y) depends on how signals from Y are used

downstream. And since, according to the definition in Section 2, an informa-

tional quantity is receiver-relative just in case the quantity depends on how the

underlying correlation is used, I(X,Y) is a receiver-relative quantity.

To make this more concrete, notice that the assumption that the unique

function of Y is to report to downstream mechanisms on the nature of X-like

stimuli is far from trivial. Many neurons play functional roles that are far too

subtle to be isolated in behavioral experiments. This is one reason why experi-

ments are only performed on a small number of simple model systems and why

those model systems are almost invariably perceptual or sensory. Only systems

with a highly streamlined functional profile which is systematically related to
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environmental properties are sufficiently transparent for experimentalists to con-

firm that a particular experimental setup is appropriate for getting an accurate

estimate of I(X,Y).

Take the H1 neuron as an example. It is probably fair to say that the H1

neuron is the chief model neuron in information-theoretic neurophysiology. Why

is that? H1 makes for a great model neuron because the simplicity of the sys-

tem in which it is embedded makes it possible to reliably detect when its signals

have been received successfully. When H1 signals are received successfully, they

influence the flight of the organism quite directly. Even in this simple system

however, confirming that a particular experimental setup accurately exploits

the biological function of the neuron requires a rich patchwork of background

knowledge. First, lesion experiments have established that H1 signals track hor-

izontal optic flow (Frye and Dickinson, 2001). On the basis of that knowledge,

experimentalists can be confident that vertical sine-wave gratings will serve as

appropriate stimuli, and that fine tuning the contrast and angular velocity of

such stimuli will trigger something close to the maximal neural response. Sec-

ond, the perception-action loop from H1 to the flight motor is tight. Each H1

cell synapses with centrifugal horizontal cells that govern the part of the flight

motor that creates horizontal torque (Neri, 2006). This is important because it

means that the successful receipt of H1 signals can be confirmed through behav-

ioral observation. Moreover, there is only one H1 neuron in each lobule of the

fly’s brain; one corresponding to each eye. This is strong anatomical evidence

that the H1 is the only perceptual neuron that contributes in such a direct way

to horizontal flight control. As a result, whenever we observe the fly making

highly accurate horizontal flight adjustments (which it does at a millisecond res-

olution, flying at speeds up to two meters per second), we can be sure that the

signals responsible for that behavior are coming from H1 (Frye and Dickinson,

2001). Without this rich patchwork of behavioral and anatomical knowledge

that tells us what H1 signals are supposed to accomplish, we would not be able

to tell whether the activity of the H1 neuron is being exploited on any particular

occasion. And if we didn’t know that, we wouldn’t know whether our experi-

mental design accurately captures the noise in the system. The take home point

here is that receiver-relativity is not only real, it is consequential. We cannot

reliably estimate neural information quantities without (i) having a clear un-

derstanding of how the underlying stimulus-response correlation is exploited to

achieve some biological end, and (ii) confirmation that the experimental setup
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actually exploits that function.3

3 What kind of information is being estimated?

We are now in position to investigate the first of the two questions posed in the

introduction: what kind of information do estimates of informational quantities

in the brain purport to describe? We’ve already established that informational

quantities are receiver-relative. Now the goal is provide an analysis of the empir-

ical magnitude that we have quantified, and see how that empirical magnitude

fits into the larger landscape of philosophical thought about information.

The question is motivated in part by a desire to better understand the con-

tent of neurophysiological theory. But it is also motivated by a desire to bet-

ter understand informational quantities generally. Informational quantities are

philosophically interesting in part because they seem to straddle two radically

disparate conceptual arenas. From one perspective, information quantities are

the unsurprising result of a choice to represent ordinary empirical phenomena

with a particular collection of mathematical tools. Rather than representing

an empirical variable with a probability distribution, we represent it as a log-

arithmic function of a probability distribution. This change in mathematical

notation, it seems natural to think, has no deep metaphysical implications at

all. The empirical variables that we have elected to represent with this logarith-

mic notation are no less ordinary than any other feature of the empirical world

that lends itself to probabilistic representation. From another perspective, how-

ever, the appropriateness of information-theoretic tools reflects the fact that

there is something signal-like about the character of the empirical phenomenon

itself. We employ information-theoretic tools precisely because we hope to high-

light that signal-like character. It is from this perspective that it seems fitting

to characterize information as the currency of communication. From this per-

spective, there is indeed something unusual about the empirical magnitudes we

attempt to quantify information-theoretically. To see this, one must only recall

the truism that communication is, at least paradigmatically, a relation between

3I have not given a definition of the term “function.” As the size of the philosophical
literature on the subject suggests, it is not easy to say exactly what it means for an object
or process to have a biological function. For many aspects of biological theory, including the
kind of function discussed here, I favor the modern history theory of functions, as expressed in
Godfrey-Smith (1994). But my view is compatible with other theories of biological function
as well. It is important, however, that the notion of function have some relation to natural
history. Without that connection, it loses some of the objectivity that I argue is worth
retaining in neurophysiological theory. See Section 4 for further commentary on this point.
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agents. With that truism in mind, the treatment of small and patently non-

thinking neurons in informational terms is deeply interesting, and maybe even

perplexing.

Both in the philosophy of mind and in the philosophy of biology, this ten-

sion between the ordinary and the perplexing aspects of information has been

diagnosed as the result of verbal ambiguity. Our word “information,” it is often

claimed, denotes two distinct concepts. One of them, which, for the purposes of

disambiguation is often labeled Shannon information, is a technical concept. It

may evoke conceptual puzzles related to the interpretation of probability, but

its use does not require any controversial metaphysical assumptions about the

nature of communication. The second concept, which is often labeled semantic

information, is taken to be central to understanding communicative phenomena,

and is also taken to raise a special set of problems in the philosophy of mind

and the philosophy of biology. Many sub-varieties of information have been

discussed in the philosophical literature, but every philosophical survey of in-

formation introduces this distinction.4 It is therefore appropriate to restrict the

discussion to the question of whether the sort of information under scrutiny in

this discussion can be subsumed under either of these two umbrella categories.

3.1 The semantic interpretation

Are neural information estimates best interpreted as claims about semantic in-

formation? It is common, especially for sensory neurons, to be described as

being engaged in acts of representation. For example, in a passage about the

filiform hairs on cricket cerci, Purves et al say “peripheral sensory neurons

associated with the hairs represent the full range of air current directions and

velocities impinging on the animal” (Purves et al., 2001, p. 195). Since represen-

tational phenomena and semantic phenomena are closely related, the semantic

interpretation seems plausible.

To investigate the semantic interpretation more carefully, we must first no-

tice that the question we have posed is a bit ambiguous, and can be fruitfully

separated into two lines of inquiry. The first is whether the phrase “81 bits/s” in

the claim “The H1 neuron transmits information at a rate of 81 bits/s” picks out

a semantic property of a neural signal. The answer to this question is a decisive

‘no.’ The question of how many bits are associated with an informational signal

4A very recent survey is Floridi (2015). Other prominent surveys include Sayre (1976),
Adams (2003), and Harms (2006).
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is orthogonal to the question of what semantic features that signal expresses.

Two strings can have entirely different meanings and nevertheless transmit the

same number of bits. Consider, for example, a long binary string. The ones and

zeros may be equally probable, but that hardly entails that they mean the same

thing.5 Conversely, two tokens of one string may be semantically equivalent

but nevertheless transmit different quantities of information. For example, the

meaningful string “it is currently raining” carries more information for someone

in a windowless room than it does for someone standing outside.

The second line of inquiry prompted by the semantic interpretation of neural

information estimates is the following. Do neural information estimates describe

how much semantic information is flowing through a circuit, without purporting

to specify what the semantic content is? In other words, do neural information

estimates measure how much meaning is flowing through a system? Mundane

examples suggest that this idea is at least coherent. One might want to insist,

for example, that the quantity of semantic information conveyed by a particular

sentence is less than the quantity conveyed by the book in which it appears.

There is an interesting history in logic, tracing back to the work of Bar-Hillel

and Carnap (1953), which tries to make this idea precise. One reason to resist

this interpretation of neural information estimates is that the amount of seman-

tic information in a system is a matter of what is said about things outside the

system, whereas the amount of information in neural information rates is de-

termined entirely by the probabilities attached to the variables that constitute

the system. Semantic properties are relational. They hold between a symbol

and the thing it stands for. Probabilities need not be relational. They can just

describe the frequency with which one kind of thing happens, without talking

about the relation between that thing and something else.6

5I have suppressed the role of time in this discussion because it complicates the mathematics
without changing the conceptual issues under consideration. Notice that the argument doesn’t
change significantly if we consider two non-identical strings sent from one location to another
over time. If strings share statistical properties, their transmission may achieve the same
information rate expressed in bits/s. This is still no reason to think that the two strings have
the same meaning.

6Another, more controversial, reason to resist the semantic interpretation of information
theoretic estimates is that the activity in a single neuron seems to be too low-level for semantic
properties to emerge at all. If there are no semantic properties at the level of individual
neurons, then, clearly, information estimates describing the behavior of individual neurons
cannot be interpreted semantically. Rosa Cao has defended this anti-semantic position on the
basis of an interesting dilemma. The signals transmitted by individual neurons either lack
sufficiently robust connections to the external world to carry content on their own, or the
connections they exhibit are too inflexible too deserve an informational, as opposed to merely
causal, mode of description (Cao, 2012).
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3.2 The Shannon interpretation

If neural information estimates are not best interpreted in terms of semantic

information, what about Shannon information? Here the situation is a bit more

difficult to assess because philosophical commentary on the nature of Shannon

information has been somewhat out of step with its use in science and engi-

neering. Definitions of Shannon information in the philosophical literature tend

to have an ontological orientation that is completely absent in technical manu-

als on the subject, where definitions of key concepts are purely mathematical,

and no suggestions are made about the range of empirical phenomena to which

the mathematics is legitimately applied.7 The ontologically oriented definitions

found in the philosophical literature tend to be radically permissive. Consider,

for example, the definition proposed in a review paper on information in bi-

ology by Godfrey-Smith and Sternly: “For Shannon, anything is a source of

information if it has a number of alternative states that might be realized on a

particular occasion. Any other variable contains some information about that

source, or carries information about it, if its state is correlated with the state of

the source”(Godfrey-Smith and Sterelny, 2008).8 A similar definition is found

in a more recent article on information by Piccinini and Scarantino that gives a

thorough overview of informational concepts. They say: “The identity of a com-

munication theoretic message is fully described by two features: it is a physical

structure distinguishable from a set of alternative physical structures, and it

belongs to an exhaustive set of mutually exclusive physical structures selectable

with well-defined probabilities” (Piccinini and Scarantino, 2011, p. 20).

As highlighted by their use of the term “identity,” the two criteria mentioned

in the Piccinini and Scarantino definition are to be read not only as necessary

conditions, but also as sufficient conditions for the presence of quantitative

information. Godfrey-Smith and Sternly’s use of the phrase “any other variable”

likewise suggests that correlation between empirical variables is to be read as

a sufficient condition. According to such permissive definitions, then, anything

that can be modeled by information theory is, ipso facto, information.

Working scientists can be forgiven for asking what the point of such a permis-

sive concept could possibly be. The motivation behind the permissive concept is

7See, for example, Cover and Thomas (1991).
8The phrase “For Shannon” in this definition might be misleading. Shannon was many

things, but he was not a metaphysician. He was not interested in trying to divide the world
into informational phenomena and non-informational phenomena. In fact, in a short paper
entitled “The Bandwagon,” Shannon warns that information theory is easily misused when
applied outside the realm of communications technology (Shannon, 1956).
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its metaphysical innocence. The desire for metaphysical innocence traces back

to the work of Fred Dretske who, in his 1981 book Knowledge and the Flow of

Information, hoped to develop a naturalistic and reductive theory of semantics

(Dretske, 1981). In order for the desired reduction to count as a theoretically

significant achievement, the reductive base had to be something far less meta-

physically controversial than the phenomenon to be reduced. Since covariation

between empirical variables is about as metaphysically innocent as it gets, it

was a natural choice for Dretske.

With this background on the philosophical appropriation of Shannon’s ideas

in place, we can return to the question of whether the philosopher’s permis-

sive notion of Shannon information is the right concept with which to interpret

neural information estimates. Again, I think the answer is ‘no.’ Definitions of

information focused on covariation between empirical variables are so easily sat-

isfied that they rule out almost nothing. In particular, they cannot distinguish

the correlations that support genuine information transmission from merely idle

correlations. Recall from Section 2 that an idle correlation is one which may be

supported by a direct causal relationship, but which is, nevertheless, not among

the correlations that are exploited for purposes of biological control.

If we employ the permissive conception of information to interpret the claim

that the H1 neuron transmits 81 bits/s, the empirical content of the resulting

claim is implausibly sparse. It says, in effect, that we happen to have observed

a correlation which led us to the 81 bits/s figure. In fact there is nothing

happenstance about it. Experiments were painstakingly designed to evoke the

performance capacity of the neuron. As discussed in Section 3, in order to get

an accurate estimate of the mutual information, experiments must be designed

to filter out idle correlations (noise), from genuine information-supporting cor-

relations (signals). We can conclude that the permissive concept is not the right

one for interpreting neural information claims. The concept of neural informa-

tion, therefore, cannot be subsumed under either of the two prominent umbrella

categories employed in the existing philosophical taxonomies of informational

concepts.

If the quantitative kind of information described in neurophysiological esti-

mates is neither semantic nor permissive, what kind of information is it? The

idea that has been missing from the analysis thus far is that of biological func-

tion. Neural information is instantiated, not wherever there are empirical corre-

lations, but only where biological control systems have evolved to exploit corre-

lations. When we estimate the quantity of information flowing through a neural
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pathway, we are not simply re-expressing a physical quantity on a logarithmic

scale. Instead, we are expressing a fact about a specific biological capacity of

an organism.

This functional conception of information doesn’t fit neatly into the existing

philosophical taxonomies. Nevertheless, it is not entirely novel. The notion of

information in signaling games, such as those described in Skyrms (2010), is

also, at least in a very broad sense, functional. In a typical game, we have a

communication setup that looks a lot like the XYR model: it includes a set of

environmental states, a set of possible signals, and a set of receiver responses. In

Section 2, I emphasized that if we want to quantify the information in a biologi-

cal system, we must heed the distinction between functional and non-functional

activity. Is this point sufficiently general to apply to the informational quantities

in signaling games? In principle, yes. A vervet who looks up at the sky has not

(yet) signaled that an eagle is near, even if there happens to be some correlation

between looking up and the presence of eagles. So it would be a mistake to in-

clude “looking up” events when quantifying the information in vervet predator

signaling. Despite this, there is no methodologically significant parallel between

the notion of information in signaling games and that in neurophysiology. The

primary reason for this is that signaling game models are not data driven. The

insights they provide do not typically depend on accurate estimation of empiri-

cal magnitudes. Modelers simply stipulate that, for example, the environment is

to be partitioned into three discrete states. In neurophysiology, the partitioning

must be discovered rather than stipulated.

Moreover, as Cao (2012) emphasizes, the notion of information in the sig-

naling game literature is only applicable within a game-like setting, where the

notion of utility has some natural application. Definitions of information in

the signaling game context are not, therefore, sufficiently general to cover all

functional notions of information, and they are particularly awkward to ap-

ply to within-organism communication systems, where the notion of utility is

undefined.

So what would a definition of information look like, if it was designed to

capture within-organism functional phenomena? The following definition, de-

veloped by Bergstrom and Rosvall, provides a good starting point.

An object X conveys information if the function of X is to reduce,

by virtue of its sequence properties, uncertainty on the part of an

agent who observes X (Bergstrom and Rosvall, 2008).
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This definition is on the right track.9 However, as Godfrey-Smith (2011)

suggested in a response article, it is difficult to understand what exactly is

meant by the term “agent” in the definition. The following dilemma reinforces

Godfrey-Smith’s worry. If the term “agent” is meant in the full-fledged sense

of an autonomous, goal-driven decision maker, then it seems unlikely to apply

to small neural mechanisms. If it is meant only as an abstraction, perhaps in

the sense of an ideal observer of the system, then nature cannot have selected

the object for its effects on the agent. In that case, the phrase “function of X”

seems toothless, and the definition loses empirical content.

Bergstrom and Rosvall’s appeal to agency is not merely a quirk in their

presentation. The appeal to agency is seductive, and is deeply embedded in both

philosophical and scientific discussions of information theory. Unfortunately, the

appeal to agency threatens to undermine a kind of scientific objectivity that we

should hope to preserve in any respectable neurophysiological theory. In the

next section, I take up the question of objectivity, and try to reconcile it with

the kind of receiver-relativity discussed in Sections 2 and 3.

4 Is neural information objective?

In their book Memory and the Computational Brain Gallistel and King provide

an eminently clear and thorough account of what a successful theory of neural

representation would have to include, and the various ways in which current

theories fall short. One of the most prominent themes in the book is the warning

that we are likely to overestimate the degree to which we understand how the

brain works if we are not careful to insist on concrete, material interpretations

of central concepts like “representation” and “computation.” Nevertheless, in

their discussion of information theory, which plays a central role in the account,

they too fall back on the notion of agency. The authors, who deserve praise for

their intellectual honesty, are explicit about this appeal, and quite candid about

its less palatable consequences.

This is an absolutely critical point about communicated information

- and the subjectivity it implies is deeply unsettling. By subjectivity,

we mean that the information communicated by a signal depends on

the receiver’s (the subject’s) prior knowledge of the possibilities and

9Although their article is focused on genetic information, they suggest that their definition
can be extended to include neural information quantities.
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their probabilities. Thus the information actually communicated

is not an objective property of the signal from which the subject

obtained it (Gallistel and King, 2009, p. 8)!

I agree that the implied subjectivity is deeply unsettling. It is unsettling

because, if a physical magnitude depends on the perspective of an agent (or

subject), it lacks a paradigm kind of scientific objectivity. In an overview of the

philosophical literature on scientific objectivity, Sprenger and Reiss suggest that

discussions of scientific objectivity typically begin with the following thought.

There are, fundamentally, two kinds of qualities in the world. . . “the ones that

vary with the perspective one has or takes, and the ones that remain constant

through changes of perspective” (Reiss and Sprenger, 2014, p. 4). What it

means to say that a body of scientific theory is objective is that it restricts

itself to properties of the latter sort. If informational quantities depend on the

epistemic state of an agent, then they are not invariant to shifts in perspective,

and therefore lack this basic variety of scientific objectivity. That is a conceptual

flaw we should be unwilling to accept.

Before I give my own definition of information, let us ask why scientists and

philosophers alike so frequently rely on notions of agency to describe informa-

tional quantities. The root of the problem may be the overwhelming temptation

to rely on analogies to cases of information measurement in human communi-

cation. Here is a simple case that illustrates how such analogies generally work.

A politician on the campaign trail has four prepared speeches, and chooses one

for each scheduled speaking event. For most of the people in the audience,

the speech contains lots of information. But for the speech writer, who, let us

suppose, is tagging along on the campaign trail, the quantity of information

communicated is much smaller. For her, there are only four possible signals,

and all the uncertainty associated with the event is resolved as soon as the first

few words are uttered. If we assume that the speeches are chosen at random and

with equal probability, the speech writer receives exactly two bits of informa-

tion as soon as she recognizes which of the four speeches has been selected. In

this situation, the epistemic state of the receiver (the speech writer) effectively

partitions the source into distinct signals, and the manner of that partitioning

determines the quantity of information transmitted. If we model all instances of

information transmission on cases like this, it is hard to suppress the suspicion

that informational quantities have an irreducibly subjective quality.

Agential definitions of informational quantities do get something right: they
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highlight the relativistic nature of information. But it is not necessary to rely

on the notion of agency to do this. Instead, we can simply insist that the infor-

mational quantity associated with a signal depends on the role that the signal

plays in the functional economy of the organism. Notice that the political speech

story bears structural similarities to the XYR model explored in Section 2. In

both cases, properties of the receiver have a direct influence on the probabilities

attached to the signals. In the political speech case, the influence is epistemic;

it has to do with the speech writer’s priors. In the XYR model, there is no

agent to whom such Bayesian properties could be ascribed. The influence is

instead a matter of functional capacity. This parallel suggests a way forward

for constructing a definition of information that captures the concept at work in

neural information estimates without relying on agency. I’ll use the Bergstrom

and Rosvall definition as a starting point.

An object X conveys information if (i) the sequence properties of X

are correlated with the states of some variable Y that has biological

relevance to the organism and (ii) there exists a receiver mechanism

R, whose function it is to exploit the correlation between X and Y

to realize some biological capacity.

This definition is admittedly loose, and is not intended to serve as any-

thing like a procedure for sorting informational systems from non-informational

systems. The difficulties of that task are buried in the meaning of the terms “se-

quence properties” and “receiver mechanism,” the interpretation of which will

vary dramatically from one biological system to the next. It is even less useful for

determining how much information is flowing through a biological communica-

tion system. It does, however, manage to present the notion of an informational

quantity in a way that acknowledges its relativistic character without hitching

it to the troublesome notion of agency.

When interpreted as claims about this kind of information, neural informa-

tion estimates have the potential for a substantial kind of scientific objectivity.

This is because the kind of relativity at issue is relativity to the capacities of

a biological mechanism which we can, at least in the best cases, identify and

observe. Of course, this view also suggests that neural information estimates

are subject to the vagaries of functional analysis. In those cases where the

functional role of a neuron is clearly specifiable, such as it is in the case of the

H1 neuron, estimates of neural information are reasonably objective. In cases

in which the functional role of a neuron is less clearly specifiable, the correct
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experimental procedure for determining the role of noise in the system will be

underdetermined by the facts at hand. Or, when a single neuron plays multiple

functional roles at once which cannot easily be disentangled experimentally, we

should expect that no particular estimate will be the final word one the matter.

5 Conclusion

I have emphasized that neural information estimates quantify functional capac-

ities. Their values are entailed by underlying correlations between empirical

variables. However, because they have a fundamentally functional character,

they cannot be estimated accurately without taking into account the manner

in which those correlations are used by downstream mechanisms. The concept

of information implicit in information estimates of neural activity is novel; it

doesn’t correspond to either of the most prominent conceptions of information

in the philosophical literature. Finally, I argued that, despite appearances to the

contrary, there are cases where neural information estimates can be regarded as

robustly objective properties of a neural system, despite the relativity to which

they are inevitably subject.
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