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THOUGHT EXPERIMENTS IN MATHEMATICS 
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It is not news that we often make discoveries or find reasons for a mathematical 

proposition by thinking alone. But does any of this thinking count as conducting a 

thought experiment? The answer to that question is “yes”, but without refinement the 

question is uninteresting. Suppose you want to know whether the equation 

[ 8x + 12y = 6 ] has a solution in the integers. You might mentally substitute some 

integer values for the variables and calculate. In that case you would be mentally 

trying something out, experimenting with particular integer values, in order to test the 

hypothesis that the equation has no solution in the integers. Not getting a solution 

first time, you might repeat the thought experiment with different integer inputs.  

The fact that there are such mundane thought experiments is no surprise and does 

not answer the question we are really interested in.2 The numerical thought 

experiment just given involves nothing more than applying mathematically prescribed 

rules (such as rules of substitution and calculation) to selected inputs. It would be 

more interesting if there were mathematical thought experiments in which the 

experimental thinking goes beyond application of mathematically prescribed rules, by 

using sensory imagination as a way of eliciting the benefits of past perceptual 

experience.3 In what follows we will try to show that there are such thought 

experiments and to assess their epistemic worth.  

Our method will be to present some candidate thought experiments with what we 

hope is enough background explanation and in sufficient detail for you, the reader, to 

perform the relevant mental operations yourself; without this participation the paper 

will be neither convincing nor engaging. We have tried to avoid run of the mill 

                                            
1
 I would like to thank the Brazilian Coordination for the Improvement of Higher Education Personnel 

(CAPES) and the Russian Foundation of Basic Research (RFBR). 
  
2
 For this reason we find that the category of thought experiments as characterised by Jean-Paul Van 

Bendegem in “Thought experiments in mathematics: anything but proof” Philosophica 72, (2003), pp. 
9-33 to be too broad.  
 
3
 For a different focus, see Eduard Glas, “On the role of thought experiments in mathematical 

discovery” in J. Meheus and T. Nickles (eds.), Models of Discovery and Creativity, (Springer 2009). 
Glas says that “imagery, mental or experiential, is not essential” to the aspect of thinking that he 
counts as thought experiment (even when accompanied by imagery). For this reason, the kinds of 
thinking that we discuss in this paper do not fall under what Glas counts as thought experiment.  
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examples by staying out of universally familiar mathematical areas; but to keep the 

material accessible, the examples are mathematically quite simple, with something a 

bit more advanced reserved for the end. The paper has three main parts, 

corresponding to the mathematical areas from which the examples are drawn: knot 

theory, graph theory and geometric group theory. In the last two parts later 

exposition depends on earlier; so the material is best read in the order presented. 
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1. CANDIDATES FROM KNOT THEORY  

Preliminaries  

For the examples to be intelligible, some background about knots in mathematics is 

needed. Here it is with a minimum of technical detail.  

A knot is a tame closed non-self-intersecting curve in Euclidean 3-space. 

The word “tame” here stands for a property intended to rule out certain pathological 

cases, such as curves with infinitely nested knotting. Knots are just the tame curves 

in Euclidean 3-space which are homeomorphic to a circle.4 In Figure 1 on the left is a 

diagram of a knot and on the right a pathological case.  

 

 

 

 

 

 

A knot has a specific geometric shape, size and axis-relative position, but if it is 

made of suitable material, such as flexible yarn that is stretchable and shrinkable, it 

can be transformed into other knots without cutting or gluing. Since our interest in a 

knot is the nature of its knottedness regardless of shape, size or axis-relative 

position, the real focus of interest is not just the knot but all its possible transforms. A 

way to think of this is to imagine a knot transforming continuously, so that every 

possible transform is realized at some time. Then the thing of central interest would 

be the object that persists over time in varying forms, with knots strictly so called 

being the things captured in each particular freeze frame. Mathematically, we 

represent the relevant entity as an equivalence class of knots. 

Two knots are equivalent  iff one can be smoothly deformed into the other by 

stretching, shrinking, twisting, flipping, repositioning or in any other way that 

                                            
4
 We are setting aside higher dimensional knot theory. 

 

Figure 1 
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does not involve cutting, gluing, passing one strand through another or 

eliminating a knotted part by shrinking it down to a point. 5  

In practice equivalent knots are treated as the same, with a knot strictly so called 

regarded as just one of the forms a knot can take. This practice will be followed here. 

More precisely, the word ‘knot’ without the qualification ‘strict’  will be used to refer to 

an equivaIence class of strict knots. Figure 2 presents  diagrams of the same knot. 

 

 

 

Diagrams like these are not merely illustrations; they also have an operational role in 

knot theory. But not any picture of a knot will do for this purpose. We need to specify:  

A knot diagram is a regular projection of a strict knot onto a plane (as viewed 

from above) which, where there is a crossing, tells us which strand passes over 

the other. 

Regularity here is a combination of conditions. In particular, regularity entails that not 

more than two points of the strict knot project to the same point on the plane, and 

that two points of the strict knot project to the same point on the plane only where 

there is a crossing. 

A knot diagram with one or more crossings tells us at each crossing which strand 

passes over the other, but it does not tell us how far above the other it goes. So 

distinct strict knots can have the same knot diagram. But this does no harm, because 

strict knots with the same knot diagram are equivalent.  This is all the background we 

need in order to proceed to examples. 

 

                                            
5 There are mathematically precise definitions of knot-equivalence. It is clearly not enough to say that 

equivalent knots are homeomorphic, as all knots are homeomorphic to the circle hence to each other. 
They are equivalent iff there is an ambient isotopy taking one to the other. More about that shortly. 
 

Figure 2 
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A thought experiment with knots 

An important and obvious fact is that a knot has many knot diagrams. As we 

represent knots by knot diagrams, a major task of knot theory is to find ways of 

telling whether two knot diagrams are diagrams of the same knot. In particular we 

will want to know if a given knot diagram is a diagram of the unknot, which is the only 

knot representable by a knot diagram without crossings. To warm up, here are some 

exercises. Using your visual imagination on the two knot diagrams in Figure 3, see if 

you can tell whether either is a diagram of the unknot. 

Figure 3 

 

 

In fact it is not possible to deform the knot represented on the left so that the result is 

a diagram without crossings, but you will probably have no difficulty with the one on 

the right. Figure 4 indicates a simple way. 

 Figure 4 

 

 

Before considering what you can reasonably conclude from the results of your 

efforts,  try to visualize deforming the knot represented by this more complicated 

knot diagram, Figure 5, to get a diagram without crossings.  
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Figure 5 

 

It can be done, but it is difficult without actually producing physical diagrams 

representing the knot at one or more intermediate stages of the complete 

deformation. To conduct this thought experiment one performs one or more trials, a 

trial being a finite sequence of steps, each of which consists of (a) visualizing a 

deformation in 3-space of a knot as represented by one seen diagram and (b) 

drawing (or otherwise producing) another knot diagram corresponding to the 

projection of the knot at the end of the visualized deformation so far. The experiment 

has a positive outcome when one of the trials ends with a diagram which has no 

crossing.  Figure 6 illustrates the intermediate stages of a successful trial for this 

case. The dashed section of each diagram indicates the part about to be moved or 

the part just moved.   

Figure 6 
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Assessment and objections 

One charge laid against so-called thought experiments in physics is that they are not 

experiments at all, but ‘merely picturesque arguments’ for a claim that is already 

believed.6  Is that true of the process of visual imagining and diagram making just 

described? Picturesque it may be. But one may embark on the process in order to 

find out whether the knot represented by the initial diagram in Figure 6 (matching 

Figure 5) is an unknot, lacking any conviction either way; one may even doubt that it 

is the unknot. So one may really be experimenting, in the sense of performing a 

series of actions in order to test the hypothesis that the original diagram is a diagram 

of the unknot.  

Granting that it is a genuine experiment, another worry concerns its epistemic value.  

Can we really make discoveries this way, relying heavily on visual imagination? Are 

we not simply replacing proper experiments by ‘fantasies of the imagination’7? There 

is an important distinction between veridical imagining and fantastical imagining.8 

Veridical imagining is aimed at finding out the true answer to some question, and is 

constrained by the accumulated effects of past perceptual experience. Of course this 

does not make veridical imagining infallible; the adjective “veridical” is intended to 

describe an aim, not a result, of imagining. Fantastical imagining is not constrained 

in that way, as it is not aimed at answering a question, but serves psychological ends 

such as wish-fulfilment, horror thrill, sensory fascination and so on. Veridical 

imagining is common and useful. Wanting a desk for a particular room, you visit a 

furniture showroom; there you see an attractive desk, somewhat bigger than you had 

in mind. Would it fit reasonably well into the room with its other furniture? In this 

situation it is reasonable to visualize the room to reach a judgement. This is veridical 

imagining. Other examples readily come to mind: Can I prepare a tolerable evening 

meal from the ingredients I now have at my disposal? Can five normal adults sit 

comfortably in my car? We do in fact rely on sensory imagination to answer such 

questions, and we get correct answers frequently enough for this practice to persist.  

                                            
6
 Norton 1996. “Are thought experiments just what you thought?” Canadian Journal of Philosophy 

26 (3), p.333-366.  
 
7
 Norton 1996. 

 
8
 Articulated by Paul Boghossian in a New York Institute of Philosophy workshop on the a priori in 

June 2013. 
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This still leaves open the question of epistemic value in this case. Here are two 

questions we need to answer:  

(1) Can our visual imagination be sufficiently reliable here?  

(2) How do we reliably reach a conclusion about a mathematical question from 

information about physical situations? 

The question of reliability is a serious one when trying to imagine deformations 

starting from a complicated knot diagram. But in our case the complexity is quite 

small and there is no real worry. Let us call a maximal part of a knot diagram 

between undercrossings an arc. Then the first step in Figure 6 involves flipping the 

rightmost arc over the central part of the diagram and shrinking it until it falls just 

within the leftmost arc. This clearly preserves knot identity (up to equivalence, of 

course). The remaining steps are clearly identity preserving atomic moves known as 

Reidemeister moves.9 When one makes a non-atomic move in getting from one 

diagram to another, as in the first step of Figure 6, one can check its permissibility by 

seeing if one can break it down into a sequence of Reidemeister moves. Returning 

to the rightmost diagram of Figure 3, it is easy to see that (with two Reidemeister 

moves) it can be turned into a diagram without crossings, as shown in Figure 4. So 

the answer to the first question is: yes, a person’s visual imagination can be (and 

often is) sufficiently reliable for this task. Your own experience in following the 

examples should provide you with supporting evidence. 

In these cases we are visualizing a physical possibility, at least partly based on 

experience with string, yarn, cotton thread or suchlike. How do we get from an 

empirical discovery of a physical possibility to a mathematical possibility? The highly 

informal way in which the subject has been presented here hides the conceptual 

distance between the physical thought and the corresponding mathematical 

proposition. In these cases the conclusion is that a strict knot which projects the 

starting diagram is ambient isotopic to a strict knot which projects a diagram without 

crossings. But what does “ambient isotopic” mean? To get a sense of the full 

mathematical content of such a claim, note first that a strict knot is mathematically 

identified with a homeomorphism  from the unit circle S1 into R3 (not the image of S1 

                                            
9
 Every introductory text on knot theory and some more advanced texts define the Reidemeister 

moves, and they can be readily found on the web. For an introduction see Colin Adam’s The Knot 
Book, American Mathematical Society 2001.  
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under the homeomorphism), with an additional condition on the homeomorphism to 

rule out wild knots10. Ambient isotopy is defined as follows: 

Strict knots 0 and 1 are ambient isotopic iff there is a continuous map 

F: R3
[0,1]  R3 such that for each r in [0,1], F(x, r) is a homeomorphism of R3, 

F(x, 0) is the identity map on R3, and F(x, 1)  0 = 1. 

This definition makes clear that visualizing alone does not enable us to discover a 

full mathematical fact expressed in saying, of two strict knots, that they are ambient 

isotopic. This is because one cannot tell by visualizing alone that there is a 

continuous map fulfilling the stated conditions. But we have been assuming that 

visualizing can make it reasonable to believe the mathematical claim and lead to 

discovery. How is this possible? 

The answer is that these visual thought experiments take place in the context of 

background knowledge about the links between the mathematical definitions and 

idealised physical objects and transformations that can be visualized. These links 

belong to what is referred to as the foundational aspect of knot theory, and often 

expositions of the foundations reveal that the mathematical definitions are tailored to 

represent the intended kind of visualizable objects and transformations. Sometimes 

promising definitions are put forward only for the sake of showing their inadequacy 

for representing the intended visualizable material, before proper definitions are 

given.11  Moreover, mathematically inequivalent definitions of tame knots are given in 

different texts, but it is known that each adequately represents what is intended, 

much as real numbers can be defined as Dedekind cuts of rational numbers or as 

Cauchy equivalence classes of Cauchy convergent sequences of rational numbers. 

For foundational purposes there needs to be some way of fixing the subject matter in 

mathematical terms, so that the correctness of basic assumptions and methods can 

be proven. But once that job has been done, we may proceed without adverting to 

our foundational definitions. This is the situation with regard to basic knot theory. The 

                                            
10

 Even here there is some oversimplification. First, the homeomorphism is usually required to 
preserve orientation (which has not been defined here), to avoid identifying chiral knots with their 
mirror images. Also, for the advantages of operating in a compact space the co-domain of the 
homeomorphism is usually taken to be S

3
 instead of R

3
. 

 
11

 See for example Josh Greene, Combinatorial Methods in Knot Theory, Lecture 1: Foundations, 
January 2013. https://www2.bc.edu/joshua-e-greene/MT885S13/Lecture%201.pdf 
 

https://www2.bc.edu/joshua-e-greene/MT885S13/Lecture%201.pdf
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foundational definitions are needed for proving Reidemeister’s Theorem: two strict 

knots are equivalent if and only if there is a finite sequence of Reidemeister moves 

taking a diagram of one to a diagram of the other. Once that has been established 

we can go a long way with visual thought experiments.   

 

Another example: the trefoil and the unknot 

Let us return to the leftmost diagram of Figure 3, reproduced in Figure 7. 

Figure 7 

 

 

This is a trefoil knot. If you have been visualizing properly your attempts to visualize 

a deformation of this trefoil so that it projects a diagram without crossings will have 

been unsuccessful. After a few trials you may have become convinced that this 

trefoil is not the unknot. The diagram is cognitively quite simple. So, unless your 

visual imagination is poor, a few negative trials provides evidence that the trefoil is 

not the unknot.  

For more conclusive evidence, we can use a knot invariant known as colourability12.  

A knot diagram is colourable if and only if each of its arcs can be coloured one of 

three different colours so that (a) at least two colours are used and (b) at each 

crossing the three arcs are all coloured the same or all coloured differently.  

Colourability is a knot invariant in the sense that if one diagram of a knot is 

colourable every diagram of that knot is colourable.13 This fact can be proved using 

                                            
12

 Colourability is sometimes called ‘tricolourability’. 
 
13

 There is a combinatorial version of colourability . If instead of colouring the arcs one labels them 0, 
1 or 2, the colourability conditions together have a numerical equivalent: (a) at least two of the 
numerical labels are used and (b) at each crossing if x is the value of the overcrossing arc and y and 
z are the values of the other two arcs, 2x  y  z = 0 (mod 3). This mod 3 labelling readily generalises 
to other invariants known as ‘mod p labelling’, where p is an odd prime. 
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Reidemeister’s theorem. Since any diagram of a knot can be reached from any other 

diagram of that knot by a finite sequence of Reidemeister moves, to prove the 

invariance of colourability it suffices to show that if a Reidemeister move is 

performed on a colourable knot diagram the resulting diagram is again colourable.  

A standard diagram of the unknot, a diagram without crossings, is clearly not 

colourable because it has only one arc (the whole thing) and two colours cannot be 

used. So in order to show that the trefoil is distinct from the unknot, it suffices to 

show that the trefoil diagram is colourable. So here is a thought experiment to test 

the hypothesis that the trefoil represented in Figure 7 is colourable: while looking at 

the diagram, visualize each of the arcs as coloured red, green or blue  using at least 

two colours; alternatively, when looking at the diagram mentally label each arc with 

one of the words “red”, “green” or “blue” using at least two of them.14 Then check that 

at each crossing all three arcs have the same colour or all three have different 

colours.   

Because the trefoil diagram of Figure 7 is visually so simple, this thought experiment 

can be carried out reliably, thereby giving the thinker very strong reason to believe 

that the trefoil is colourable, as in fact it is, hence not equivalent to the unknot. With 

more complicated diagrams, it is difficult to hold the relevant information in visual 

imagination, and one is forced to colour or label arcs on the page or screen and then 

check that the conditions are met.  

 

  

                                                                                                                                        
 
14

 This can be done either by visually imagining a written colour word placed next to an arc or, just as 
easily, by aurally imagining uttering a colouring word as a label of an arc one is visually attending to.  
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2. EXAMPLES WITH GRAPHS  

Cycle graphs 

We often represent mathematical objects by a configuration of dots connected by 

line segments, such as a tree or a cycle. This gives rise to the algebraic notion of a 

graph G which consists of a set VG, the ‘vertices’ of G, and a set EG of pairs of 

members of VG, the ‘edges’ of G.15  We will be concerned with cycle graphs:  

G is a cycle graph iff VG = {v1, v2, …, vk}  for k  3 and every edge in EG occurs 

just once in the sequence {v1, v2}, {v2, v3}, …, {vn, vn+1}, …, {vk, v1}. 

A cycle graph has an obvious representation as a regular polygon; there are just as 

many edges as vertices. The spatial representation of graphs makes us notice not 

only kinds of graphs, but also various graph-theoretic properties and relations. The 

following are relevant examples. 

A path between vertices u and v is a non-empty sequence of edges {y1, y2}, 

{y2, y3} , …, {yn-2, yn-1}, {yn-1, yn}, with the yj distinct, and u = y1 and v = yn .  

A graph is connected iff between any two of its vertices there is a path.  

The length of a path is the number of edges in the path. 

For connected graphs we have the following notions of distance and diameter:  

This distance between two vertices u and v, d(u, v) = the length of a shortest path 

between u and v.  

The diameter of a graph is the maximum distance between vertices, i.e. 

max {d(x, y) : x, y  VG}. 

With these definitions at our disposal, we can proceed to our initial example. 

Suppose we want to express the diameter of a cycle graph with n vertices in terms of 

n. A thought experiment can help us here. Imagine the vertices of the graph to be 

small but heavy pearls of equal size and weight, adjacent pearls connected by a 

fixed unit length of strong flexible thread, like a necklace. Then imagine holding the 

necklace by any one pearl, letting the rest of it go. What will happen? The rest will 

                                            
15

 Strictly speaking, EG is a multiset, so that an element {u, v} can occur more than once, the number 
of occurrences being the number of edges with endpoints u and v. Those edges with endpoints u and 
v are said to be parallel to one another. Also, there can be one or more edges {u, u,}, known as loops. 
Cycle graphs are simple graphs, in the sense that they have no loops and no two edges are parallel. 
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fall as far as the thread will let it; so the maximum distance between the top pearl 

(the held pearl) and any other will be the number of units of thread (representing 

edges) between the top pearl and a lowest pearl. What if we hold the necklace by 

any other pearl, say k units of thread further on? As the necklace is a cycle, by 

visualizing what happens each time we rotate the necklace by a unit, we can tell that 

the configuration made by the hanging necklace remains unchanged, and so the 

distance between the new top pearl and the new lowest pearl (or pearls) will be the 

same. So the number of units of thread between the top pearl and a lowest pearl is 

the maximum distance between pearls. This represents the diameter of the graph. 

But what is this number, for a given number n of unit threads in the whole necklace? 

The thought experiment continues. We now visualize the dangling necklace with 

fine-grained attention to discover its form. At the top is a single pearl with its two 

neighbouring pearls hanging next to each other at a distance of one unit below the 

top; if there are at least two more pearls, the next pair of pearls will hang at distance 

of two units from the top; if there are at least two more, the next pair will hang at a 

distance of three from the top, and so on. That will be the same whether the number 

of pearls is even or odd. Now visualize the lowest few pearls of the dangling 

necklace. How will they be arranged? If the number is odd, below the top pearl the 

remaining pearls will hang in pairs, the lowest pair having a unit of thread connecting 

them, illustrated on the left in Figure 8. If the number is even, at one unit below the 

top pearl will be one pair of pearls, at one unit below them another pair of pearls, and 

so on until we run out of pairs and just one pearl remains (as the total number of 

pearls is even). By visualizing attentively the bottom of the image necklace in this 

situation, one can discern that this lowest single pearl will be connected by unit 

threads to each of the lowest pair of pearls just above it, as on the right in Figure 8. 

Figure 8 

   

 

 

 

 

Odd Even 
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To make use of these results, we reason as follows. Let the total number of unit 

threads (edges) be n. If n is even, we notice that there are two equal length paths 

from top to bottom; so we merely need to divide by 2. If n is odd, noticing that the 

thread between the bottom pair of pearls does not belong to any path between top 

and bottom pearls, we subtract that one thread from the total; then we can notice 

that there are two equal length paths from the top to either bottom pearl; so we only 

need to divide the remaining n1 edges by 2. Either way we get n/2, the greatest 

integer  n/2. So here is a discovery one can make with the help of a thought 

experiment: the diameter of a cycle graph with exactly n vertices is n/2.  

To assess this candidate thought experiment, the two questions we need to answer 

are: (1) Is what we have called a thought experiment in this case really an 

experiment, as opposed to a picturesque argument for a claim already believed? (2) 

Given that it is an experiment with certain outcomes, is it a reliable way of getting 

those outcomes? 

The relevant mental actions here are (a) visualizing the cycle graph as a physical 

object, the necklace of pearls, and then visually imagining the result of holding the 

necklace by one pearl while letting go of the rest of it, (b) visualizing what happens to 

the configuration as we change top pearls, going from one pearl to an adjacent pearl, 

and (c) visualizing the spatial forms of the result of letting the necklace dangle, for 

odd and even numbers of pearls, with special attention to the top and the bottom. It 

seems right to say that parts and (a) and (b) are unrevealing: we already know that 

the necklace will dangle, pulled down by gravity as far as the connecting thread will 

allow, and that changing the pearl by which the necklace is held will leave the 

configuration unchanged. Part (c), however, may be revealing. Finer-grained 

imagery results from taking into account the parity information. The forms of the 

lower end of the necklace in the two cases are revealed to us by the visualizing.  So 

(a) followed by (b) and then (c) constitutes a series of mental actions, not to test a 

hypothesis, but to find the forms the necklace would take. That is a thought 

experiment. The results of the experiment are the forms we find; we use them as 

input to further thinking leading to our mathematical conclusion. 
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Is our visual imagination reliable here? If you agree that we would get the same 

results if we performed the experiment physically with actual necklaces matching the 

description in the thought experiment, you should accept that this use of visual 

imagination is reliable.16 This is not surprising: our visual experience of physical 

situations relevantly similar to the described situation is sufficiently extensive to 

produce reliable dispositions for veridical imagining. Mathematically the result is 

quite trivial. For something a bit more interesting mathematically we focus on Cayley 

graphs.       

 

Cayley graphs 

Cayley graphs are representations of groups with a finite set of generators. Recall 

that a group is a set G together with a binary function xy satisfying exactly these 

conditions: 

Closure:   For all x, y in G, xy is in G. 

Associativity:   For all x, y, z in G,  (xy )z  =   x(y z). 

Identity:   For some z in G, for every x in G,  xz = x = zx 

Inverse:   For any z in G satisfying the identity condition, for every x in G there is 

a y in G such that xy = z = yx.     

It is easy to prove from the identity condition that there is just one identity, often 

denoted e. It is easy to prove from the inverse condition that each member x of G 

has just one inverse, denoted x1. As  is associative, we can omit brackets and the 

function symbol and use juxtaposition instead. This improves legibility.17  

Let S be a finite subset of G. S is a set of generators for G iff every member of G is 

the product of a finite sequence of members of S or their inverses. More formally, 

putting S1 for the set of inverses of members of S, this is:  

For every x in G, there are yi (1  i  n) in SS1 such that x = y1y2…yn .  

                                            
16

 We clearly could perform this experiment physically as well as in thought; the same goes for the 
thought experiments on knots illustrated in Figures 4 and 5. This refutes Buzzoni’s claim that a 
mathematical thought experiment ‘leaves no room for a separate real performance of the experiment.’ 
‘On Mathematical Thought Experiments’ Epistemologia  XXXIV (2011), pp. 61-88. 
   
17

 So for example, we write  ab1
aab for (a(b1

a))(ab)  . 
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In this case, ((G, ), S), usually written simply (G, S), is a generated group. Here are 

some examples of finitely generated groups: 

 Let n be an integer greater than 2. The domain of the group is the set Cn of 

rotations of a regular n-sided polygon about its centre by k2/n radians for 

integers k. The function  is composition. Let anticlockwise rotation by 2/n be 

the sole generator.  

 The set of integers Z under addition, with generator 1.  

 The set S3 of permutations of a triple {a, b, c} under composition, with 

generators {r, f}, where r (for ‘rotation’) takes a, b, c to c, a, b, and f (for 

‘flip’) takes a, b, c to c, b, a.18   

Some groups are not finitely generated. An example is the set Q of rationals under 

addition.19 Many finitely generated groups have different sets of generators. For 

example, C5 is generated by { 2/5 }; it is also generated by { 4/5 }. The group 

(Z, +) is generated by { 1 }; it is also generated by { 2, 3 }.20 

Cayley graphs represent finitely generated groups in the following way: each group 

member is represented by a unique vertex, and each vertex represents exactly one 

group member; for any group member g and generator s there is a directed edge 

from the vertex representing g to the vertex representing sg.21  

Let us look at some examples. A graph for C6 is suggested by the general 

geometrical description of Cn given above. Put c for the generator, anticlockwise 

rotation by 2/6 radians; for k  0, put ck for this operation repeated k times, that is, 

anticlockwise rotation by k2/6 radians, and ck for clockwise rotation by k2/6 

                                            
18

 S3 is also the group of symmetries of an equilateral triangle. If we take a, b, and c to be vertices of 
an equilateral triangle, r (rotation) and f (flip) are obvious operations (symmetries) of the triangle.  
  
19

 Take any finite set of rationals with denominators d1 , d2 , . . . , dn . Any sum of those rationals could 

be expressed as a rational n/m with denominator m =  d1  d2  . . .  dn. But not all rationals could be 

so expressed: consider p/q where p and q are primes and q  m. 
 
20

 To see that {4/5} generates C5, note that a sequence of three anticlockwise rotations by 4/5 = 

anti-clockwise rotation by 2/5; two anticlockwise rotations by 4/5 = clockwise rotation by 2/5. To 

see that {2, 3} generates Z note that +3+(2) = +1 and +2+(3) = 1. 
 
21

 As the group operation is so often function composition, we maintain the convention that s applied 
to g (i.e. s after g) is sg, so that an edge goes from g to sg.  
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radians. Put e for the identity, that is, anticlockwise rotation by 2.  We can represent 

this generated group as in Figure 9. 

Figure 9 

  

 

 

 

 

 

 

As the generated group (Z, +, { 1 }) is infinite, we can only show part of its graph, as 

in Figure 10; but it is obvious how it continues. The identity e is 0, the sole generator 

is 1 and any integer n results from adding 1 or 1 |n| times.  

Figure 10 

 

 

 

 

Groups with two or more generators have more complicated structures than their 

single generator counterparts. This can be seen by comparing diagrams of their 

Cayley graphs. Here are a couple of examples. Figure 11 is a diagram of the Cayley 

graph of (Z, +, { 2, 3 }). We use different colours for composition with the different 

generators, black for an edge from n to n+2 and red for an edge from n to n+3. 

Figure 11 
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Figure 12 depicts the graph of S3 with generators r and f. We use red for an edge 

from x to rx and black for an edge from x to fx.  Also, for each generator s which is its 

own inverse, there will be two edges between adjacent vertices, one from x to sx, the 

other from sx to x, as x = ssx. In this case it is visually easier to read the image if we 

merge the two edges using arrowheads both ways. We do this for edges between x 

and fx, as f (= flip) is its own inverse.  

Figure 12 

 

 

 

 

 

 

Although in practice we often ignore the difference between the visual image and the 

graph, they are not the same, as there can be visually divergent images of the same 

graph. The lines could be arcs of a circle, for instance; or the shape, size and 

positioning of polygonal faces can be changed without changing the graph. Figure 13 

for example shows the graph of S3 with generators {r, f} as a prism (without labels). 

Figure 13 

 

 

 

 

 

 

The Cayley graph of a finitely generated group represented by these diverse images 

is a graph-theoretic object, not a drawing. We can be precise about this. Let G be a 
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group generated by a finite set S. The Cayley graph of (G, S) is the graph (V, E) with 

V = G and E = the set of ordered22 pairs x, sx for x in G and s in S.  

Why bother with the visible diagrams of Cayley graphs? Because they can help us 

grasp the nature of the Cayley graphs they represent; they can help us reason about 

them; they can suggest to us hypotheses about them; they can help us to discover or 

explain facts about them.23   

Here is a simple example. Recall that a single line segment with arrowheads both 

ways represents two edges with opposite directions between the same pair of 

vertices. Then inspection of the visual representations of graphs so far will show that 

all the vertices of a graph have the same number of edges coming into them and the 

same number leaving them. Is this true for all Cayley graphs? A little reflection 

shows that it is. Let v be any vertex of the Cayley graph of (G, S). Then for each s in 

S, v, sv is an edge leaving v; moreover, every edge leaving v is v, sv for some s in 

S. So the total number of edges leaving v is |S|. Again, for each s in S, s1v, v is an 

edge into v (as v = ss1v)  and all edges into v are of this form. So the total number of 

edges into v is |S|. So all vertices of the graph have the same number of edges 

coming in and the same number leaving: in the terminology of graph theory, every 

Cayley graph is regular. In this case, visual inspection of some visual graphs (the 

standard visual representations of Cayley graphs) led to a general conjecture about 

Cayley graphs (the mathematical entities), a conjecture that is confirmed by 

reasoning.   

 

Thought experiments with Cayley graphs: vertex transitivity 

In the case just considered, attentive visual inspection of the visual graphs 

suggested a conjecture. Now we claim that operations in visual imagination can do 

                                            
22

 The pairs are ordered because all edges of a Cayley graph have a direction. Notice that edges can 

run in both directions between a given pair of vertices: both e, f and f, e are edges in the Cayley 
graph represented by Figure 12. 
 
23

 For more on the roles of diagrams of Cayley graphs see the following articles by Irina Starikova: 
"Why Do Mathematicians Need Different Ways to Present Mathematical Objects? The Case of Cayley 
Graphs", Topoi 29(1), (2010), pp. 41-51; "From Practice to New Concepts: Geometric Properties of 
Groups", Philosophia Scientiae, 16(1), (2012), pp. 129-151. 
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the same kind of work. Looking at the visual graph for C6 with anticlockwise rotation 

through 2/6 as generator, it is clear that we can move any vertex to any other by a 

transformation of the whole configuration that maps vertices one-to-one onto 

vertices, in such a way that edge relations are preserved. Putting g for the mapping, 

this means that  v, w is an edge if and only if g(v), g(w) is an edge. The 

transformation is simply a rotation of the whole about the centre by as much as is 

required to take v to w, and this is made obvious to us by visual imagination.  

A one-to-one mapping of the vertices of a graph onto those vertices (i.e. a 

permutation of the vertices) which preserves edge relations is said to be an 

automorphism of the graph. So the property of the Cayley graph of (C6, {r}) which 

visual imagination revealed to us is this: for any of its vertices v and w there is an 

automorphism which maps v to w. A graph with this property is said to be vertex 

transitive.  

For the finite cyclic groups (Cn, {r}) and the infinite cyclic group (Z, {1}),finding an 

automorphism is very easy. Take any v and w in the group. If v = w, the identity 

function does the job. Otherwise, there will be some non-zero integer k such that w = 

rkv. This is k rotations through 2/n (or k unit translations) with direction depending 

on whether k is negative or not. But this same operation applied to all members of 

the group will preserve edge relations of the Cayley graph, as can be recognised 

from visualizing the operation on the graph as a whole.  

What about finitely generated groups with more than one generator? Let us look at 

the Cayley graph for S3 with generators r and f as depicted in Figure 13, the prism. A 

red directed edge represents one application of r, i.e. a step from a vertex v to a 

vertex rv ; a black edge is the merging of two edges with opposite directions, each 

representing one application of f. Let v and w be any distinct vertices. The thought 

experiments involve visualizing spatial operations on the whole prism until one finds 

one (or a sequence of them) which maps v to w and takes edges to edges without 

exception. There are three possibilities to consider. In each case we describe a 

visualizable operation (sequence) which clearly does the job.  

(1) v and w belong to the same triangle, that is, w = rv or w = r2v. Visualize a rotation 

of the whole prism about the axis through the centre of both triangles (the ‘horizontal’ 

axis) by one or two thirds of a revolution in the direction of the red edge from v. For 
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example, let v and w be as in Figure 14. Anti-clockwise rotation of the whole prism 

by two thirds of a revolution maps v to w leaving edge relations undisturbed.24  

 

Figure 14 

 

 

 

 

 

 

 

 

 

(2) v and w lie at opposite ends of the same black edge. Then reflection in a plane 

parallel to the triangles cutting the prism in half maps each vertex with its counterpart 

at the other end of a black edge and preserves edge relations. This is the mapping 

that takes each x to fx. An alternative is to rotate anticlockwise about the horizontal 

axis until the black edge between v and w is at the top, then rotate about the vertical 

axis through the centre by half a revolution as in Figure 15. If v and w start at the 

bottom left edge, this is the mapping that takes each x to fr2x. 

 

 

 

 

 

 

                                            
24

 We should be careful here when specifying the mapping mathematically, because the whole-prism 
rotation does not coincide with rotation r of the group: for x in the near triangle the mapping takes x to 

rx, but for x in the far triangle it takes x to r
1
x. 

v 

w 
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Figure 15 

 

 

 

 

 

 

 

 

 

(3)  v and w do not lie at opposite ends of the same black edge and do not belong to 

the red same triangle. It is easiest to consider two cases. (i) Let v and w be 

diagonally opposite vertices on the bottom face of the prism. Then a half revolution 

about the vertical axis as in Figure 15 takes v to w and leaves edge relations 

undisturbed. (ii) Let just one of v and w be a vertex at the top of a triangle. Then half 

a revolution about the vertical axis followed by one or two thirds of an anti-clockwise 

revolution, will take v to w and preserve edge relations.  

We can visualize these whole-prism operations using a picture of the prism with 

vertices appropriately labelled v and w, and in so doing we readily discern that 

vertices are mapped one-to-one onto vertices and that edges are taken to edges. 

This is not surprising. Each whole-prism revolution we have mentioned is a bijection 

of vertices onto vertices which preserves edge relations; so the composite operation 

of performing one of these revolutions after another is a bijection which preserves 

edge relations: a composition of automorphisms is an automorphism.    

We can conclude that for any v and w in the Cayley graph of S3 there is an 

automorphism taking v to w: the Cayley graph is vertex transitive. What if we replace 

the triangular faces of the prism with matching regular polygons of more than three 

sides? The same three cases for pairs of distinct vertices need to be considered 

(with reference to triangles replaced by reference to n-gons), and using a power of 

schematic imagination it is not difficult to discern that the same kinds of 
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transformation will provide the needed automorphisms. The only difference is that in 

this case, the whole-prism rotations about the central horizontal axis which are 

available to us are k/n of a revolution for each integer k such that 1 k  n, instead of 

1/3 or 2/3 of a revolution. As this works regardless of the number of polygon sides, 

we have a way of telling that the Cayley graphs of an infinite class of groups with two 

generators (the dihedral groups Dn) are vertex transitive.  

Against the background knowledge that all groups with a single generator (the cyclic 

groups) have vertex transitive graphs, this finding raises the questions: Is the Cayley 

graph of every group with two generators vertex transitive? Is every Cayley graph 

vertex transitive? There are many kinds of groups with two generators that we have 

not considered; so it would be wrong to regard the thought experiments described 

here as providing significant evidence for the hypothesis that all  2-generated groups 

have vertex transitive graphs. A fortiori our thought experiments do not provide much 

evidence for the hypothesis that all Cayley graphs are vertex transitive.  But the 

outcomes of our thought experiments make these hypotheses worthy of 

investigation, by trying to find a proof or a counterexample. In fact there is a fairly 

straightforward proof that every Cayley graph is vertex transitive.  

What we have shown is that in some cases one can use one’s visual imagination to 

find the required automorphisms, without already knowing that there are any, hence 

in a truly experimental way. This active use of visual imagery, first studied by 

cognitive scientists in the 1970s,25 is a useful part of the toolkit of mathematicians 

and students of mathematics, though the results are usually recorded symbolically, 

without trace of the mental experimentation which led to them. The utility of visual 

imagination depends on confining our efforts to images and image transformations 

which are simple enough for us to manipulate reliably in imagination. But the variety 

of images and image transformations that we can handle reliably suffices to make 

visual imagination a potent instrument of mental experimentation in mathematics.     

 

 

 

                                            
25

 Shepard, R. and Cooper, L. (ed.s), Mental Images and Their Transformations. Cambridge, Mass.: 
MIT Press 1982. 
 



24 
 

3. A CASE FROM GEOMETRIC GROUP THEORY 

The example we will now present is the first step of a revolutionary advance in 

geometric group theory due to Russian mathematician Mikhail Gromov. To keep the 

exposition short and digestible, we omit some of the technical details.  

If S and T are distinct finite subsets of a group G and both generate G, the Cayley 

graphs (G, S)  and (G, T) will not in general be isomorphic. For example, the Cayley 

graphs of (Z, {1}) and (Z, {2, 3}), illustrated by Figures 10 and 11, are not 

isomorphic. How, if at all, can we use Cayley graphs of a group to discover 

properties of the group itself, that is, properties which are invariant with respect to 

generating sets?  

The seminal thought is that we may be able to find group properties which do not 

depend on the generating set by ignoring the fine-grained local features of the 

different Cayely graphs of a given group and attending only to the coarse, global 

features shared by all the group’s Cayley graphs. But how, given a particular Cayley 

graph of a group, can we tell what its coarse global features are?  

A Cayley graph of an infinite (finitely generated) group is an infinite graph; so only 

finite portions of it can be visually represented. But we can imagine viewing ever 

larger portions of the graph in the hope that large scale features of the group may 

emerge. We can give this idea mathematical articulation by regarding a Cayley 

graph as a metric space, as follows.  

For every pair g, h of members of a generated group (G, S) there is at least one path 

in its Cayley graph from g to h. The length of a path is just the length of the 

sequence of consecutively adjacent edges which constitutes the path, and the 

distance between g and h, denoted dS(g, h), is the length of a shortest path starting 

at g and ending at h. This distance function is the shortest path metric. 26 Viewing 

ever larger portions of the Cayley graph amounts to successively viewing diagrams 

representing the parts of the Cayley graph containing vertices at most n units away 

                                            
26

 This shortest path metric dS is the same as the word metric for (G, S). Suppose each element of S 

is assigned a unique name of the form “sk”. Let a symbol of the form “sk
1

” name the inverse of what is 

named by “sk”. A word in S is a finite sequence of elements of the form “sk” or “sk
1

”, so that a word 
denotes a product of members of G. The word metric for (G, S) is defined: dS(g, h) = least length of a 

word w in S such that w denotes hg1
. Note that left multiplying g by hg1

 takes g to h. 
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from the identity e, for increasing n.27  We call this kind of visual transformation 

‘zooming out’. 

Now let G be any infinite group with different finite sets of generators S, T and 

maybe others. From a visual representation of the Cayley graph of (G, S) or (G, T) – 

it does not matter which – we can try zooming out in visual imagination so far that 

the fine details of the Cayley graph are lost and features of the large scale geometry 

(or ‘coarse’ geometry) of the object now come into view. The hope is that the large 

scale geometry is the same for whichever Cayley graph we start with, that is, 

regardless of generating set. If this works, then we might find that algebraic 

properties of the group G itself, properties which are invariant with respect to 

generating set, can be discovered by attending to the coarse geometry of the object 

we reach by zooming out. Here is how Gromov put it: 

This space [the space of the Cayley graph of  = (G, S) with the shortest path 

metric] may appear boring and uneventful to a geometer’s eye since it is discrete 

and the traditional local (e.g. topological and infinitesimal) machinery does not run 

in . To regain the geometric perspective one has to change his/her position and 

move the observation point far away from . Then the metric in  seen from a 

distance d becomes the original distance divided by d and for d   the points in 

 coalesce into a connected continuous solid unity which occupies the visual 

horizon without any gaps or holes and fills the geometer’s heart with joy.28        

To get Gromov’s point one must bear in mind that a Caley graph is not a geometric 

object: its ‘edges’ are just pairs of vertices and so contain no points between 

endpoints. A Cayley graph with shortest path metric is a metric space, but the metric 

(the distance function) is discrete, as the distance between any two vertices is a non-

negative integer. By ‘moving the observation point far away from’ the Cayley graph 

metric space (that is, by zooming out from it), the discrete object is transformed in 

appearance into a space with a dense and continuous metric, having (non-negative) 

real values.  

                                            
27

 In customary terms, we bring into view (representations of) the n-balls for (G, S) for increasing n, 

where the n-ball = {g G: dS(e, g)  n}.    
 
28

 Gromov, M. ‘Asymptotic invariants of infinite groups’ In Niblo and Roller (ed.s), Geometric group 
theory. Volume 2 London Mathematical Society Lecture Notes 182, (Cambridge University Press 
1993).   
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What happens if we imagine zooming out from a visual presentation of a Cayley 

graph? If, actually looking at one, we zoomed out perceptually far enough the whole 

thing would disappear from view. To avoid this, an idealization is involved in our 

mental exercise: we suppose that while distances between vertices shrink as we 

zoom out, the vertices themselves do not fade at all. The experimental question is: 

what would happen to one’s view of a standard diagram of a Cayley graph as one 

moved the observation point away by distances without upper bound, if vertices 

remained in view like points of starlight? What kind of space would emerge as a 

result? The answer depends on the Cayley graph one starts with, and is obtained by 

a combination of visual imagination and physical reasoning.  

What happens then to standard diagrams of Cayley graphs of (Z, {1}) and (Z, {2, 3}), 

shown partially in Figures 10 and 11? Both become indistinguishable from the 

traditional representation of the real numbers as a single uninterrupted line without 

ends. In this case at least, differences due to different generating sets have been 

wiped out, as desired. What happens to the integer points of the plane 

(ZxZ, {1, 0, 0, 1})? The vertices in each horizontal string coalesce, and at the 

same time the vertices in each vertical string coalesce; that is, spaces between the 

points shrink and disappear, resulting in a continuous plane. What happens to the 

appearance of a finite Cayley graph as we imagine zooming out? Eventually its 

vertices coalesce to a single tiny dot. Does this nullify the whole exercise? Not at all: 

we are looking for asymptotic properties, properties that emerge at the limit of 

zooming out or properties that emerge at a late stage and persist, and so our focus 

is naturally on infinite groups (with finite generating sets.) 

There is no reason to think that what we have described as an idealized mental 

operation of zooming out in visual imagination is really a disguised argument for 

something we already believe. For the question would then arise how we came to 

believe it, if not by the kind of thinking we describe. It is true that there is more to the 

mental operation than a simple transformation in visual imagination, for we add 

conditions. We ask how the appearance of the diagram of the Cayley graph of 

(Z, {2, 3}), for instance, would be transformed by zooming out under the condition 

that vertices remained visible, though not necessarily distinguishable. This indicates 

that the cognitive processes involved are complicated and probably also not fully 

open to introspection. But it is clear that visual imagination of a spatial change is 
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involved and that the thinking as a whole does not reduce to the application of 

mathematically prescribed rules. Reliability is going to be limited by the fact that the 

kind of spaces we can easily visualize are Euclidean or embeddable in a Euclidean 

space. But the examples given fall within these limits.  

The direct outcomes of these experiments do not count as mathematical results and, 

as just mentioned, the outcomes are limited. This is not a problem, because the real 

rewards of the zooming-out thought experiments are not their direct outcomes, but 

their effects in suggesting three mathematical possibilities. First, zooming-out 

suggests that there is a way of filtering out differences due to the different generating 

sets of the same group. Secondly, zooming out suggests that there is a way of 

thinking of an infinite generated group in terms of a metric space with a continuous 

metric (so that a group may have properties determined by geometric properties of 

the continuous metric space). Thirdly, zooming out suggests that we will sometimes 

get the same continuous metric space from distinct groups (not just the same group 

with different generating sets), perhaps giving us an equivalence relation on groups. 

To benefit mathematically from these effects, we need to find a mathematically 

precise account of a suitable relation that holds between the Cayley graph of a 

finitely generated group (G, S) with the shortest path metric – call it (G, S) – and the 

continuous metric space we arrive at by zooming out from (G, S). The relation is 

suitable only if for any infinite group G generated by finite subsets S and T, (G, S) 

and (G, T) stand in this relation to the same continuous metric space. 

The mathematization of the intuitive relation meeting these requirements is so neat 

that we present it now. An isometric mapping between metric spaces is one that 

preserves distances; a quasi-isometric mapping is one that preserves distances to 

within fixed linear bounds: 

A map f from (S, d) to (S', d') is a quasi-isometric mapping iff there are real 

constants K  0 and L  0 such that for all x, y in S 

d(x, y) /L   K     d'( f (x), f (y) )    L.d(x, y)  +K.  

Quasi-isometric mappings are not in general surjective on the intended target space, 

and we will fail to capture the intuitive relation if we impose surjectivity as an extra 
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condition.29 But we would like to find an equivalence relation on metric spaces which 

is a suitable loosening of isometry. So some extra condition is needed. The condition 

is that the mapping be surjective to within a fixed bound. Precisely put, the mapping f 

from (S, d) to (S', d')  is quasi-surjective on S' iff there is a real constant M  0 such 

that every point of S' is no further than M away from some point in the image of S 

under f. Putting these together, we define: 

A map f from (S, d) to (S', d') is a quasi-isometry iff f is a quasi-surjective quasi-

isometric mapping from (S, d) to (S', d'). 

(S, d) is quasi-isometric to (S', d') iff there is a quasi-isometry from (S, d) to (S', d').     

This is an equivalence relation, which works as intended. First, a discrete space can 

be quasi-isometric to a dense continuous space. The inclusion (identity) mapping 

from (Z, {1}) to R, with constants L = 1 and K = 0, is a quasi-isometric mapping; 

and it is quasi-surjective as every real number is at most 1/2 a unit distance away 

from an integer. So (Z, {1}) is quasi-isometric to R with standard distance metric.30  

Moreover, (Z, {2, 3}) also is quasi-isometric to R with standard distance metric; so 

(Z, {1}) and (Z, {2, 3}) are quasi-isometric spaces. This fact generalizes: for any 

infinite group G with finite generating sets S and T, (G, S) and (G, T) are quasi-

isometric spaces, as intended. This means that properties of G which are quasi-

isometric invariants will be independent of the choice of generating set, and therefore 

informative about the group itself.  

Furthermore, for some different groups G and H with generating sets S and S' 

respectively (G, S) and (H, S') are quasi-isometric; in this case the groups G and 

H are said to be quasi-isometric. So finitely generated infinite groups fall into 

equivalence classes modulo quasi-isometry.  

Finally, an immensely rewarding outcome: there are some kinds K of geometric 

space such that groups with Cayley graph spaces which are quasi-isometric to a 

space of kind K (though not necessarily the same space) share significant algebraic 

                                            
29

 This is because the intuitive relation holds between ((Z, {1}) and  R with the normal distance 

metric, but |R|  |Z|; so|there is no surjection from Z to R. 

 
30

 For a quasi-isometry from R to Z, the mapping which takes each real number r to the nearest 

integer or, if r is half-way between integers, to the greatest integer less than r, is a quasi-isometric 
mapping (with L = 1 and K = 1) and is surjective, hence trivially quasi-surjective.       
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properties. This turns out to be the case for groups which are quasi-isometric to 

hyperbolic geodesic spaces, but that is a story for another occasion.31 

 

4. SUMMARY AND DEFENCE 

We have presented examples from knot theory, graph theory and geometric group 

theory of a kind of thinking which involves active use of visual imagination and goes 

beyond the application of mathematically prescribed rules, as a way of answering 

questions or overcoming obstacles. Is a trefoil knot equivalent to the unknot?  What 

is the diameter of a cyclic graph in terms of the number of its edges?  Is the Cayley 

graph of (S3, {f, r}) vertex transitive? What spatial representations enable us to 

discover properties of a finitely generated group which are invariant with respect to 

generating sets?  

Our impression is that the role (or roles) of this kind of experimental thinking in the 

advance of mathematical knowledge is under-appreciated, though we have not 

justified that opinion here. Our aim has been merely to substantiate the view that 

there are thought experiments in mathematics which involve visualization of physical 

situations or transformations, often with an idealised aspect. 

These visual thought experiments neither are, nor serve in place of, mathematical 

proofs of the conclusions reached, even when those conclusions are true and the 

thought experiments are reliable ways of reaching them. But we hope that the cases 

we have presented support our view that the thought experiments can give the 

thinker good reason to believe them.  

This raises a general philosophical worry. If visual thought experiments of the kinds 

we have described can provide reasons for mathematical beliefs, they would provide 

empirical reasons. But mathematics, as opposed to the application of mathematics to 

non-mathematical subject matter, is an a priori science. How then can there be 

empirical evidence for a mathematical fact? 

The main problem here lies with the dictum that mathematics is an a priori science. It 

is ambiguous. If it means that any knowable mathematical truth can be known 
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 See Starikova, I. "From Practice to New Concepts: Geometric Properties of Groups", Philosophia 
Scientiae, 16 (1), (2012), pp. 129-151. 
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without empirical justification, it is consistent with the claim that we can have 

empirical reasons for believing a mathematical proposition. But it may mean 

something much stronger, ruling out the possibility that we can have empirical 

reasons for believing a mathematical proposition. If the dictum has this stronger 

meaning, so much the worse for the dictum. Here is a simple example. How many 

vertices does a cube have? Your background knowledge includes the facts that 

cubes do not vary in shape and that material cubes will not differ from geometrically 

perfect cubes in number of vertices. To find out the answer one can inspect a 

material cube and count its vertices. (Or you can visualize a cube to find four at the 

top surface and four at the bottom.) The visual experience in this case provides 

evidence for your conclusion that a cube has 8 vertices. “But is this really a 

mathematical fact?” Why not? It is a very simple fact, but we can extend the 

problem: Do all platonic solids have the same Euler characteristic? Surely the 

answer to that is a mathematical fact. And it can be verified in the same way. 

Physical models of each of the five platonic solids can be visually inspected to find 

out whether V  E  F is the same for all of them. The visual inspection provides 

empirical evidence for a positive answer. There are plenty of other examples, and a 

good case can be made that our initial knowledge of some single-digit addition facts 

is acquired empirically, from experiences of counting.  

Empirical evidence has a much larger role in the epistemology of actual 

mathematical belief acquisition than is often thought. Even so, one may resist the 

idea that visual imagination is a way of providing us with empirical evidence. But 

visual imagination is not just a way of indulging in fantasy. It is also a way of 

harnessing the amalgamated memories of past experiences of visual perception to 

come to conclusions about physical situations. In this role it provides empirical 

evidence. Of course there is always the question, for any particular use of visual 

imagination to answer a question, whether it is reliable. There is no general test for 

reliability, but in the context of mathematics we have a way of resolving doubts: we 

look for a proof.  

For these reasons we see no general bar to accepting that full blooded thought 

experiments are instruments, alongside proofs, for the advancement of mathematical 

knowledge.   


