
Non-unitary evolution of quantum logics

Sebastian Fortin, Federico Holik and Leonardo Vanni

Abstract In this work we present a dynamical approach to quantum logics. By
changing the standard formalism of quantum mechanics to allow non-Hermitian
operators as generators of time evolution, we address the question of how can logics
evolve in time. In this way, we describe formally how a non-Boolean algebra may
become a Boolean one under certain conditions. We present some simple models
which illustrate this transition and develop a new quantum logical formalism based
in complex spectral resolutions, a notion that we introduce in order to cope with the
temporal aspect of the logical structure of quantum theory.

1 Introduction

Non-Hermitian Hamiltonians [1] find many applications in diverse areas of physics
such as for example, optics [2, 3], solid state physics [4], decoherence[5], the quan-
tum to classical limit, and final equilibrium [6]. Decoherence and relaxation times
can be defined using non-unitary evolutions, pole theory, and non-Hermitic Hamil-
tonians [6, 15]. In this work we study the logical properties of quantum systems
under the evolution given by a Non-Hermitian Hamiltonian, in order to provide a
quantum logical description of the classical limit.
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The rigorous formulation of quantum mechanics was achieved after a series of
papers by von Neumann, Jordan, Hilbert and Nordheim [16]. Projection operators
play a key role in the axiomatization, and this is related to the spectral decomposi-
tion theorem [17, 18], which associates a projection valued measure to any quantum
observable represented by a self adjoint operator [19]. The set of projection opera-
tors can be endowed with an orthomodular (non-Boolean) lattice structure [20, 22]
and was named quantum logic [21], in contrast with the distributive structure of
classical propositional systems [23]. This approach allows to compare quantum and
classical systems by putting them in a common mathematical framework [24]. The
quantum logical approach can be also used to provide a solid axiomatic foundation
for quantum mechanics, and to explain in an operational way many of important
features of the Hilbert space formalism [24, 28]. But it turns out that the quantum-
logical approach has not addressed, up to now, the wholly important problem of
characterizing the dynamical transformation in the logic of a system undergoing a
decoherence process [29] and the reaching of the classical limit. As was shown in
[31], the study of the classical limit offers the possibility of describing the transition
from the quantum logic of a quantum system to the Boolean logic characteristic of
a classical one. We will continue this line of research in this work by using non-
Hermitian time evolutions.

In the standard approach to decoherence [32, 29], the classical limit is reached by
the effect of the interaction between the environment and the system. An important
model is that of a quantum system interacting with a heat bath of harmonic oscilla-
tors. In certain cases, the study of these examples gives rise to quantum Langevin
equations (see for example [30]). But there exists an alternative approach, which
allows for the possibility of studying the classical limit in terms of the evolution
of mean values of relevant sets of observables [34, 41]. According to this frame-
work, it is possible to make an analytical continuation on the energy variable into
the lower complex half-plane for any possible Hamiltonian of the system. In gen-
eral, poles will be found [42, 5], and they can be used to define all possible non-
unitary decaying modes with their respective characteristic decaying times, which
are proportional to the inverse of the imaginary part of the poles1. Poles are com-
plex eigenvalues of the non-Hermitian Hamiltonian He f f which governs the time
evolution of the system. Using these characteristic times it is possible to deduce the
relaxation time, which turns out to be the inverse of the imaginary part of the pole
which lies closest to the real axis. Therefore, it is the largest characteristic time. It is
also possible to compute the decoherence time, which turns out to be a function of
the imaginary part of the poles and the initial conditions of the system.

The complete description of a quantum system involves non-commutative opera-
tors: in the standard approach to quantum mechanics, these are generated by the set
of bounded operators B(H ) on a Hilbert space H [17, 23]. As a consequence, the
lattice of quantum properties will be non-distributive [43, 23]. On the other hand,
for classical systems, onservables are represented by functions over phase space
and form a commutative algebra; thus, classical properties are distributive [20, 23].

1 We do not consider the Khalfin mode since it has an extremely long decaying time [47, 48]
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According to recent works [45, 46], there are certain quantum systems such that,
while initially the commutator between two operators can be different from zero,
it may tend to zero under the action of certain time evolution operators. In other
words, non-Boolean lattices can become Boolean under the action of special time
evolutions. On the basis of this observation, in this work, we study the impact of
a non unitary evolution on the logical structure of the system by continuing previ-
ous works [31]. That is, we study how the logical structure of quantum properties
corresponding to relevant observables, becomes essentially Boolean by using an al-
gebraic approach [17].

The paper is organized as follows. In Section 2 we review the standard quantum
logical formalism. In Section 3 we review the Schrödinger and Heisenberg pictures
in the standard formalism of quantum mechanics and show that they are not suitable
for describing a dynamical interpretation of the logical structure. Next, in Section 4,
we review the non-Hermitian Hamiltonians approach to quantum theory and show
how it can be used to describe the dynamic of logics provided that the Heisenberg
picture is used. In Sections 5 and 6 we present concrete examples of this behavior,
the first one with only two different characteristic times, and the other with many of
them. We summarize the discussion in Section 7 and then present a novel formalism
for a dynamical quantum logical approach, based on a generalization of the notion
of projective valued measure to the field of complex numbers. Finally, in Section 8
we present our conclusions.

2 Classical and quantum logics

The state of a classical particle S is completely determined by its position q and
momentum p. Thus, the state can be considered as point (p,q) in phase space R6. On
the other hand, physical observables are represented as functions over phase space.
As an example, consider the energy of the particle E(p,q). If we now consider
an empirically verifiable proposition such as “the energy of the system lies in the
interval (a,b)”, we can represent it as the set of states of the system which make that
proposition true. Similarly, any empirically verifiable property O can be naturally
represented as a set of points O in phase space, i.e., O ⊂ R6. This representation
allows to determine if a physical system possesses a given physical property or not:
the particle possesses a given property if and only the point (p,q) representing the
state of the particle is included in the set representing that property.

With this assignment between properties and subsets of state space, the logical
structure of classical properties gets connected with set theoretical operations. In
this way, the conjunction “∧” of two assertions represented as subsets of phase
space can be described as a set theoretical intersection “∩”; the disjunction “∨” as
a set theoretical union “∪”, and the negation “¬” as the set theoretical complement
“(...)c”. A partial order relation “≤” (understood as a sort of implication) is given
by set theoretical inclusion “⊆”. For technical reasons it is reasonable to restrict
to measurable sets of phase space (this is strongly connected with the necessity of
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computing mean values and probabilities of events) [25, 26]. As is well known,
subsets of a given set, endowed with the logical operations described above form a
Boolean algebra [23]. A distinctive feature of a Boolean algebra is the distributive
law, which asserts that for any propositions a and b, we have

a = (a∧b)∨ (a∧¬b) (1)

This is just one of the many properties of Boolean logic, and we put it into the spot,
because it will allow us to illustrate the differences with the quantum case.

In quantum mechanics the state of a particle is represented by a trace class pos-
itive Hermitian operator of trace one, usually called density matrix. Pure states can
be represented by one dimensional projection operators or equivalently, as density
matrices ρ such that ρ2 = ρ [17]. In order to establish the algebraic structure under-
lying the logical propositions associated to a quantum system, let us take a deeper
look into the formal structure of quantum mechanics. Physical observables are rep-
resented mathematically as self adjoint operators acting on a Hilbert space. What
allows physicists to make this connection? The answer lies in the spectral theorem
[17, 18], which allows to associate to each self adjoint operator A a projective valued
measure (PVM), defined as a function from the Borel sets into the set of projection
operators of the Hilbert space satisfying

P : B(R)→P(H )

such that
P( /0) = 0
P(R) = 1

P(∪ j(B j)) = ∑
j

P(B j),

for any disjoint denumerable familyB j. Also,

P(Bc) = 1−P(B) = (P(B))⊥

The spectral decomposition theorem allows to put self adjoint operators and PVMs
in a one to one correspondence. Despite the mathematical technicalities, these re-
sults allow to provide a very clear operational interpretation for observables rep-
resented as self adjoint operators as follows. Given an observable A, consider the
proposition “the value of A lies in the interval (a,b)” (notice that all empirically
testable propositions in quantum mechanics are of this form). Using the PVM asso-
ciated to A (which we call PA), the real line interval (a,b) is mapped to a projection
operator PA(a,b). If the state of the system is described by the density matrix ρ , the
probability of obtaining the property represented by PA(a,b) when measuring A is
given by the Born rule [49]

p(PA(a,b)) = tr(ρPA(a,b)) (2)
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In this way, the above mentioned proposition is naturally described by a projection
operator. This can be done for any observable and any associated proposition. Thus,
empirically testable propositions in quantum mechanics are represented by the set
of projection operators of the Hilbert space. Denote this set by P(H ). As is well
known, there is a one to one correspondence between the elements of P(H ) and
the set of closed subspaces in the Hilbert space (see for example, Chapter 4.2 of
Reference [17]). Thus, we will represent empirical propositions in quantum me-
chanics interchangeably as closed subspaces or as projection operators. Similarly
to classical mechanics, the conjunction of two propositions can be represented as
a subspace intersection. In symbols: the conjunction “∧” of two propositions rep-
resented by closed subspaces S and T is given by the subspace intersection S∩T
(the intersection of two closed subspaces is always a closed subspace). But alike the
classical case, it is not possible to take the disjunction “∨” as the union of subspaces:
the union of two subspaces will not be in general subspace, and thus, will not be a
valid proposition. The solution to this riddle is to represent the disjunction as the
closure of the direct sum of the two given subspaces. Implication will be naturally
represented by subspace inclusion (S ≤ T if and only if S ⊆ T), and negation will
be represented by taking the orthogonal complement (with respect to the Hilbert
product): ¬(S) = (S)⊥. The main difference with classical mechanics relies in the
fact that instead of a collection of subsets of a set (and their canonical operations),
we now have a set of closed subspaces of a Hilbert space. In this context, it is im-
portant to remark that the set theoretical union and the direct sum of subspaces are
very different operations; a similar remark holds for the negation as set theoretical
complement and the negation as orthogonal complement of subspaces. Thus, it is to
be expected to find important differences between the quantum and classical propo-
sitional structures. Indeed, it is immediate to check that the distributive law is no
longer valid for arbitrary quantum properties a and b; in fact, we generally have the
inequality

a≤ (a∧b)∨ (a∧¬b) (3)

If the above inequality is strict, it is said that we have incompatible properties.
From the mathematical point of view, this is a direct consequence of the non-
commutativity of the observables involved. Let us take a look at the formal structure
of this with more detail. In Reference [23] (Chapter 1, Definition 1.1.3) two observ-
ables A and B are said to be compatible if and only if, for every Borel sets ∆ and Γ ,
the projection operators PA(∆) and PB(Γ ) satisfy:

PA(∆)PB(Γ ) = PA(∆)PB(Γ ) (4)

The above Equation implies that the sub-quantum logic generated by the set of pro-
jections (empirical propositions) associated to A and B form a commutative sub-
quantum logic. But it is well known that a sub-quantum logic is commutative if
and only if it is a distributive lattice (Cf. for example, Proposition 4.16 of Refer-
ence [17]; see also Theorem 3.1.2 in Section 3 of [23]). And we will also have that,
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if [A,B] 6= 0, then there will exist propositions associated to A and B that will not
satisfy the distributive equality.

3 Schrödinger and Heisenberg representations

Quantum mechanical dynamics is governed by the time evolution operator

U = exp−iHt (5)

where H is the Hamiltonian of the system. As is well known, it is possible to
understand such an evolution from two different perspectives: Heisenberg and
Schrödinger pictures. In the latter one, a physical system has associated an initial
state ρ0, and any physical magnitude will have associated a self adjoint operator O
which remains constant in time. In this case (and assuming that there is no inter-
action with the environment or any measuring apparatus), the state of the system
evolves obeying the following equation

ρ(t) =Uρ0U† (6)

On the other hand, in the Heisenberg representation, the physical system has
associated a state ρ which remains constant in time, while any physical magnitude
has associated an initial self adjoint operator Ô0 which changes in time according
to the equation

O(t) =U†O0U (7)

In this way, we have two equivalent formulations of quantum mechanics. The equiv-
alence has its roots in the fact that mean values of physical observables are coinci-
dent for each representation

〈O〉ρ(t) = 〈O(t)〉ρ (8)

In this way, the empirical content of each representation is the same.
From the point of view of the Schrödinger representation, the commutator be-

tween two observables is a constant in time: [O1,O2] = O1O2−O2O1. This means
that in this representation, the compatibility of two observables is a synchronic rela-
tion: two observables are compatible or incompatible independently of the temporal
evolution. Because of these reasons, if we are trying to study the diachronic charac-
ter of the logic associated to a quantum system, this representation is not suitable.
Notwithstanding, the mean value of an observable can change during time. But, as
the Hamiltonian is an Hermitian operator, then, any evolution is unitary. In particu-
lar, the mean value of the commutator obeys the unitary time evolution equation

〈[O1,O2]〉ρ(t) = 〈U†[O1,O2]U〉ρ0 (9)
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From the point of view of the Heisenberg representation we have that, as the observ-
ables evolve, the commutator evolves in a unitary way. If we call C to the operator
representing the commutator between O1 and O2, then

[O1(t),O2(t)] =C(t) =U†C0U (10)

In this case, given that the evolution is unitary, it is possible to show that if
C0 6= 0 =⇒C(t) 6= 0, and on the other hand, C0 = 0 =⇒C(t) = 0. This means that
if two operators are compatible/non-compatible at the beginning, they will remain
compatible/non-compatible under the effect of unitary time evolution.

The above considerations show that both the Schrödinger and the Heisenberg
representations, if restricted to evolutions modeled by Hermitian self adjoint oper-
ators (and thus, unitary evolutions), forces us to a synchronic logic. Notice that a
similar analysis could be made for the approach to open quantum system dynam-
ics in the Heisenberg picture [30], but due to reasons of space, we will address this
question elsewhere. In this paper we aim to represent time evolution of logics; thus,
a natural choice is to change the setting a little bit and use non-Hermitian evolution
operators. We follow this strategy below presenting some examples first.

4 Quantum mechanics with non-Hermitian Hamiltonians in the
Heisenberg representation

In the standard formulation of quantum mechanics the Hamiltonian is a self adjoint
operator, and as such, its eigenvalues are real numbers. If we relax this restriction,
we win some generality and consequently, a richer dynamics can be described. In-
deed, the approach to quantum mechanics based on non-Hermitian operators uses
this freedom to obtain a non-unitary evolution [8]. According to the Brussels school,
if we consider a non-Hermitian Hamiltonian with complex eigenvalues zn, then, it
is reasonable to describe it using the formula

H = ∑
n

zn|zn〉〈z̃n| (11)

where |zn〉 is an eigenvector of H which, in certain cases, may no longer belong to
the traditional Hilbert space, but to the more general rigged Hilbert space. |zn〉 is the
Gamov vector which belongs to the space Φ

×
+ of the Gelfand triplet Φ

×
+ ⊃H ⊃Φ+,

and 〈z̃n| ∈ Φ+ (see [50, 55]). We will denote by HR to the rigged Hilbert space
associated to H .

The complex energy zn possesses a real part ωn and an imaginary part which
we conveniently write as − 1

2 γn. In this way zn = ωn − i 1
2 γn. The techniques for

computing observable quantities in the non-Hermitian setting is similar to that of
standard quantum mechanics. The Hamiltonian is introduced in the master equation
and the equation is solved. For the case of the time evolution of an eigenstate |zn〉 of
Ĥ we obtain a solution analog to that of the standard formalism
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|zn(t)〉= e−iĤt |zn〉= e−iωnte−
1
2 γnt |zn〉 (12)

But we can now clearly see that a time decreasing exponential factor exp−
1
2 γnt comes

into stage. This mathematical property allows to study certain physical phenomena
for which decaying rates play a central role in a natural way. Some examples of this
are the reach of the mechanical equilibrium, quantum decoherence and decaying
rates of unstable particles. As is well known, some of these physical processes can
be described using open systems interacting with the environment, as for example,
the einselection approach to decoherence. But the approach to quantum mechanics
based on non-Hermitian operators offers a natural perspective in which these phe-
nomena can be thought of as intrinsic. This alternative offers some computational
advantages for certain examples, and at the same time, poses interesting philosoph-
ical discussions [31].

As in Section 3, we adopt the Heisenberg representation where we can compute
the evolution of the commutator between two observables

[O1(t),O2(t)] =C(t) (13)

In this case, given that the evolution is in general non-unitary, the commutator also
evolves in a non-unitary way. Some authors (see for example [46, 45]) studied exam-
ples of decoherence in the Heisenberg representation. In particular, there are some
examples for which the initial commutator between two observables is different
from zero. According to what we exposed in Section 3, this means that we are deal-
ing with incompatible properties, and as such, it is not possible to measure both
observables simultaneously. Notwithstanding, due to the action of decoherence, the
final commutator is zero.

C(0) 6= 0−→C(t→ ∞) = 0 (14)

Our proposal consists in interpreting this process in the following manner: two
incompatible properties become compatible. In this work we propose this line of
thought to study the time evolution of the logical properties of physical systems in
time. In other words, we propose a dynamical perspective of the quantum logical
approach. As we will show, this is not only a technical perspective, but involves
a radical modification of the logics associated to physical systems: time decaying
rates will be included in the propositional system.

It is important to remark at this point that the adoption of non-Hermitian opera-
tors may imply the existence of the reverse process:

C(0) = 0−→C(t→ ∞) 6= 0 (15)

If two observables commute at the beginning of the process, they may become non-
commutative as time evolves.

From the quantum logical point of view, these results are very important because
they imply that the logical properties associated to a physical system may change in
a qualitative way. An example of this is the case of the distributive inequality sat-
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isfied by non-compatible quantum properties. As we have seen, such an inequality
is a consequence of the non-commutativity of their associated observables. If the
evolution is such that a couple of observables transition from the non-commutative
to the commutative case, then the distributive inequality becomes an equality.

a ≤ (a∧b)∨ (a∧¬b) (16)
⇓

a = (a∧b)∨ (a∧¬b)

In order to interpret this fact, it is possible to imagine a very simple case in which
the two properties are represented each one by a vector. To illustrate, let us suppose
that a quantum system has associated the following Hamiltonian

H = ω |ω〉〈ω̃|− i
2

γ |γ〉〈γ̃| (17)

where ω is a real energy and γ is an imaginary energy related to the decaying rate
of that mode. On the other hand, let us consider an observable of the form

O =
1
2
[(o1 +o2) |ω〉〈ω̃|+(o1−o2) |ω〉〈γ̃|+(o1−o2) |γ〉〈ω̃|+(o1 +o2) |γ〉〈γ̃|]

(18)
where o1 and o2 are the eigenvalues of the given observable. In this case, the com-
mutator between Ĥ and Ô evolves in such a way that

[H(t),O(t)]∝ e−γt (19)

In the above expression we can see that the imaginary part of the energy appears in
the commutator as the inverse of the characteristic time in an exponential. In this
case, for times much bigger than the characteristic time, we can assume that the
commutator is zero and that it remains unchanged after that. Then, the commutator
between the Hamiltonian and the observable O —which was initially different from
zero— vanishes, and thus, the two properties, which were non-compatible at the
beginning, become compatible ones. In this case, the evolution of the observables
can be interpreted in the following way: the angle between the vectors tends to be
smaller when time increases. As far as it is different from zero, the inequality re-
mains, but in the infinite time limit the angle goes to zero, and then, the correspond-
ing observables become commutative. As a consequence, we recover distributivity
and a Boolean algebra.
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5 An example with two different characteristic times

The simple example presented in the previous Section has the virtue of clarifying
the mechanism through which a pair of initially non-commuting observables be-
comes commutative. But it does not offer too many aspects to question further. The
case with more than one characteristic time may offer an interesting variant. Let us
suppose then that we have a quantum system with observables OA, OB and OC such
that

CA−B(t) = [OA(t),OB(t)]∝ e−γ1t and CA−C(t) = [OA(t),OC(t)]∝ e−γ2t (20)

If, starting from this point we define the observable OD = OA +OB +OC, then we
have that

CA−D(t) = [OA(t),OD(t)] = [OA(t),OB(t)]+ [OA(t),OC(t)] (21)

follows an evolution in two steps. In order to simplify the description with regard
to the non-distributivity we define the functions f (a,b) = a and g(a,b) = (a∧b)∨
(a∧¬b). In this way, the equality of Eqn. (1) can be written as f (a,b) = g(a,b) and
the inequality of expression (3) can be written as f (a,b) ≤ g(a,b). Then we have
that:

1. At the beginning, the commutators are different from zero: CD−A(t) 6= 0, CD−B(t) 6=
0 and CD−C(t) 6= 0. This means that OD-OA, OD-OB and OD-OC are incompat-
ible. Thus, physical properties a, b, c and d associated to them, will also be
incompatible. In this way we have the distributive inequality for the three cases.

f (d,a)≤ g(d,a) f (d,b)≤ g(d,b) f (b,c)≤ g(b,c)

2. After the passage of the first characteristic time t1 = γ
−1
1 , the first term of (21)

disappears, but the commutator between ÔA and ÔD remains non-vanishing. This
means that a part of the algebra became commutative but the other one did not.

f (d,a)≤ g(d,a) f (d,b) = g(d,b) f (b,c)≤ g(b,c)

3. Finally, after the second characteristic time t2 = γ
−1
2 , the last term of Eqn. (21)

disappears, and the commutator between OA and OD vanishes. In this way, the
remaining part of the algebra becomes distributive:

f (d,a) = g(d,a) f (d,b) = g(d,b) f (b,c) = g(b,c)

The above example shows that the non-unitary evolution transforms incompatible
observables in a complex manner. This is just an example, and physical systems of
interest may have associated many different characteristic times. For example, in
the model of an harmonic oscillator interacting with a bath of harmonic oscillators,
we will find infinitely many characteristic times [56]. This situation offers a much
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more complex dynamic of logics that we will address in future works. But we will
give an example in the following Section.

6 Many different characteristic times

In reference [5] we have presented a formalism based on finding the poles of the
analytic extension of the mean values. In this paper we consider a system with a
Hamiltonian that can be divided in two parts:

H = H0 +V (22)

H0 is supposed to be a known hermitian Hamiltonian (the free Hamiltonian): we
know its eigenvalues and eigenvectors. On the other hand V is a perturbation. The
total Hamiltonian H is a perturbed Hamiltonian and we can use perturbation theory.
This theory tells us that there is a relation between the eigenvectors of the perturbed
Hamiltonian |ω̃〉 and the eigenvectors of the non-perturbed Hamiltonian |ω〉. This
relation is given by the Lippmann-Schwinger equations. To the first order, the equa-
tions are [51]

〈ψ|ω̃〉= 〈ψ|ω〉+ 〈ψ| 1
ω + i0−H

V |ω〉

〈ω̃|ψ〉= 〈ω|ψ〉+ 〈ω̃| 1
ω + i0−H

V |ψ〉

To solve these equations we need to go to the complex plane and to compute poles
and residues. These poles were deeply studied by the Brussels school led by Pri-
gogine (see [57, 60]). The poles can be interpreted as complex energies of the per-
turbed system. Then, it is possible to build an effective Hamiltonian and we can
compute the evolution of the mean values. The result is that the imaginary parts of
the poles appear in these mean values as the characteristic times of the exponentials.
The mean value can be split in three parts: a constant part, and another part with an
exponential decay and a term that is a polynomial decay, known as Khalfin term.
But the Khalfin term is very difficult to be detected, and for this reason it can be
neglected [5]. So, we obtain

(ρ(t)|OR)∼= (ρR∗|OR)+∑
j

a j(t)e−γ jt (23)

where ρR∗ is the equilibrium state, γ j are the imaginary part of the poles and func-
tions a j(t) depends on the observable OR and the initial condition.
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7 A dynamical reformulation of quantum logic

The discussion posed in this paper calls for a reformulation of the quantum logi-
cal formalism in order to take into account the dynamical evolution of logics. In
order to achieve this aim, we will modify the notion of projective valued measure
presented in Section 2 (cf. Eqn. 2). Equation (11) gives us an important clue: in
such a decomposition, a one dimensional vector is assigned to a complex number.
In the standard formalism of quantum mechanics (for discrete spectra), a vector is
assigned to each real number in the spectra. This analogy calls for a generalization
of the notion of projection valued measure. We define a complex projection valued
measure (CPVM) as a map from the Borel sets of the complex plane B(C) to the set
of projection operators satisfying

PC : B(C)→P(H )

such that
PC( /0) = 0
PC(C) = 1

PC(∪ j(B j)) = ∑
j

PC(B j),

for any disjoint denumerable familyB j. Also,

PC(Bc) = 1−PC(B) = (PC(B))⊥

Eqns. (24) constitute a natural generalization of the notion of PVM (Eqns. (2)) to
the field of complex numbers. In this way, we postulate that to each non-Hermitian
operator H of physical interest we can a assign a CPVM PC

H .
In Section 2 we discussed the interpretation of the empirical propositions defined

by the spectral theorem in the context of the standard formalism of quantum me-
chanics. Now we ask for an interpretation of the logical propositions defined by the
notion of CPVM associated to a non-Hermitian operator. This can be done in a nat-
ural way as follows. Consider a non-Hermitian Hamiltonian H (such as the one in
Eqn. (11)) and a region Ra,b,c,d of the complex plane defined by

a≤ℜ(z)≤ b (24)
c≤ ℑ(z)≤ d (25)

Ra,b,c,d is just the cartesian product between the Borel sets (a,b) and (c,d). Now,
consider all the complex eigenvalues Zi(Ra,b,c,d) of H which lie inside this region
and the associated projection operators Pzi

i . The CPVM PC
H assigns to Ra,b,c,d a sub-

space of HR formed by the direct sum of all subspaces associated to each complex
eigenvalue: PC

H (Ra,b,c,d) = ∑Zi∈Ra,b,c,d
Pzi

i .
In order to give a physical interpretation to the above projections as propositions,

let us consider the case in which the region involved contains just one eigenvalue
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z j with associated eigenprojetor P
z j
j . If z j = a j + b ji, this proposition is naturally

interpreted as: “the observed value of H is a j and the decaying rate associated
to this mode is b j”. All elementary propositions are of this form. The remainder
propositions are naturally formed by direct sums and orthogonal complements of
the elementary ones. The notions of conjunction, disjunction and orthogonal com-
plement are just the same as in the standard quantum logical approach. In this way,
we reach a (non-Boolean) lattice of projection operators associated to the algebra of
non-Hermitian operators. We call this logic L C. Alike the standard interpretation
of the propositions in the von Neumann lattice of projection operators L , which
could be termed “static”, the propositions of L C are interpreted as observed values
and decaying rates. In this way, we reach a dynamical version of the of the quantum
logical approach.

It is important to remark that our approach allows for a novel quantum logical
perspective on the quantum to classical transition. Let us nw turn into the formal
aspects of this dynamics. Suppose that the system is initially described by a set
observables V0 generating a von Neumann algebra V0 (the minimal von Neumann
algebra containing V0). To fix ideas, think of V0 as the algebra of bounded ob-
servables B(H ) for a Hilbert space H ; but notice that in principle, it could be a
more general von Neumann algebra, i.e., a Type II or Type III factor (depending on
the model that we are studying). Under the action of the non-Hermitian evolution
U(t) = exp−iHt , V0 is mapped to the set

Vt =U(t)V0U†(t) (26)

As before, Vt generates an algebra Vt . In this way, the classical limit will be reached
if the limiting algebra V∞ is a Boolean one. Notice that the formulation of this prob-
lem is plagued of subtleties: the question about under which conditions the classical
limit is reached can be a hard mathematical problem, which goes far from the scope
of this article. Notwithstanding, the examples presented in previous Sections show
us that this picture works for cases of interest.
If the process is suitably defined, Eqn. (26) generates a family of von Neumann
algebras

FV0 = {Vt}t∈R (27)

Notice also that each von Neumann algebra Vt has associated an orthomodular lat-
tice [17] of projection operators LVt . In this way we also have the family of quantum
logics

FL0 = {LVt}t∈R (28)

which allow for a quantum logical description of the classical limit process. Notice
that the family FL0 constitutes a strain of orthomodular lattices, by appealing to
the non-Hermitian operator responsible of the non-unitary evolution. If the classi-
cal limiting process is successful, the orthomodular lattice LV∞

will be a Boolean



14 Sebastian Fortin, Federico Holik and Leonardo Vanni

one. If we now consider the category of von Neumann algebras and the category of
orthomodular lattices, we find a map Φ relating them as follows

V0 · · · Vt · · · V∞

L0 · · · Lt · · · L∞

Φ

It is worth mention again that a structure such as the one described in the above dia-
gram cannot be included in the standard unitary formulation of quantum mechanics.

8 Conclusions

In this paper we addressed the question of how to study the dynamical evolution of
quantum logics associated to quantum systems reaching the classical limit. With this
aim we have presented a quantum logical approach to the formulation of quantum
mechanics based on non-Hermitian operators. This allows us to describe the time
evolution of algebras which, being initially non-commutative, become Boolean ones
because of the action of a non-unitary time evolution.

This novel perspective allows to describe a family of algebras evolving in time.
The starting algebra can be non-Boolean, while the final one (for infinite time) will
be Boolean. In this way we presented a quantum logical approach for the reaching
of the classical limit, something which was not present in the previous literature.
We have shown in Section 3 that this was difficult to describe using the standard
formalism of quantum mechanics, and thus, a shift to the non-Hermitian Hamiltoni-
ans approach was in order. We have described concrete examples of this transition
between logics in Sections 4, 5 and 6.

In Section 7 we have introduced the novel notion of complex projective valued
measure (Eqn. (24)), a generalization of the standard notion (Eqn. (2)) to the field
of complex numbers. This allows us to reinterpret the results of previous Sections
with a new quantum logical formalism prepared to deal with decaying times asso-
ciated to physical processes. In this way, we built a family of orthomodular lattices
continuously parameterized by time, for which the initial lattice is fully quantum
mechanical, but the limiting one is Boolean.

We hope that the ideas presented in this paper can be further developed in order to
study the formal aspects of this algebraic approach to decoherence and the classical
limit. This could find applications in theories more general than standard quantum
theory, such as algebraic relativistic quantum field theory and algebraic quantum
statistical mechanics [49].



Non-unitary evolution of quantum logics 15

References

1. F. G. Scholtz, H.B. Geyer and F.J.W. Hahne, Annals Of Physics, 213, 74-101, (1992).
2. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A.

Siviloglou and D. N. Christodoulides, Physic. Rev. Lett., 103, 093902, (2009).
3. S. Klaiman, U. Günther and N. Moiseyev, Physic. Rev. Lett., 101, 080402, (2008).
4. O. Bendix, R. Fleischmann, T. Kottos and B. Shapiro, Jour. Phys. A: Math. Theo., 43, (2010).
5. M. Castagnino and S. Fortin, Jour. of Phys. A 45, 444009 (2012).
6. M. Castagnino, R. Id Betan, R. Laura and R. J. Liotta, J. Phys. A: Math. Gen., 35, 6055-6074,

2002.
7. A. Bohm, Quantum mechanics, foundations and applications,Springer Verlag, Berlin, 1986.
8. A. Bohm and N. L. Harshman, “Quantum theory in the rigged hilbert space - Irreversibil-

ity from causality”, in A. Bohm, H. Doebner and P. Kielanowski (Eds.), Irreversibility and
Causality Semigroups and Rigged Hilbert Spaces, Volume 504 of the series Lecture Notes in
Physics, Springer Verlag, Berlin, pp 179-237, 2007.

9. R. Weder, Jour. Math. Phys., 15, 20, 1974.
10. E. Sudarsham, C. Chiu and V. Gorini, Phys. Rev. D 18, 2914–2929 (1978).
11. M. Castagnino and R. Laura, Phys. Rev. A 56, 108–119 (1997).
12. R. Laura and M. Castagnino, Phys. Rev. A 57, 4140–4152 (1998).
13. R. Laura and M. Castagnino, Phys. Rev. E 57, 3948–3961 (1998).
14. M. Castagnino and S. Fortin, Mod. Phys. Lett. A 26, 2365–2373 (2011).
15. M. Castagnino and S. Fortin, Jour. Phys. A 45, 444009 (2012).
16. J. Lacki (2000). “The Early Axiomatizations of Quantum Mechanics: Jordan, von Neumann

and the Continuation of Hilbert’s Program.” Archive for History of Exact Sciences, 54: 279-
318.
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