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Abstract

Non-relativistic quantum mechanics is grounded on ‘classical’ (Newto-
nian) space and time (NST). The mathematical description of these con-
cepts entails that any two spatially separated objects are necessarily dif-
ferent, which implies that they are discernible (in classical logic, identity
is defined by means of indiscernibility) — we say that the space is T2, or
"Hausdorff". But quantum systems, in the most interesting cases, some-
times need to be taken as indiscernible, so that there is no way to tell
which system is which, and this holds even in the case of fermions. But
in the NST setting, it seems that we can always give an identity to them,
which seems to be contra the physical situation. In this paper we discuss
this topic for a case study (that of two potentially infinite wells) and con-
clude that, taking into account the quantum case, that is, when physics
enter the discussion, even NST cannot be used to say that the systems do
have identity.

Keywords: identity of quantum particles, spatial identity, space and time
in quantum mechanics.

1 The problem
In discussing the idea that physics comprises two languages, Roland Omnès [9]
addresses that

"Physics, being both an empirical and a theoretical science can only
be fully expressed by means of two distinct languages, or two dif-
ferent kinds of propositions. There is a mathematical language for
theory. In the case of quantum mechanics, the framework of this
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language is provided by the theory of Hilbert spaces. Some of its
main propositions express how wave functions evolve in time; other
propositions may state the value of matrix elements for observables,
from which one derives spectra, probabilities and therefrom cross
sections and the statistics of measurements.
There is also another language dealing with empirically meaning-
ful propositions. These propositions describe an experimental set-
up; they state which events occur; they indicate the reading on a
voltmeter or a measuring device. They are concerned directly with
experiments, expressing: how these experiments are performed and
their results. The existence of two languages in physics may look
trivial, but it raises the question of their relation and of their mu-
tual consistency, which is the backbone of interpretation."

Of course Hilbert spaces are not the only way to erect a quantum mechanics
(see [13] for nine different alternatives), but he is right concerning the standard
way of considering the quantum formalism. The most important point to our
concerns is the alleged possible consistency of these two languages. But, first, let
me try to elaborate the distinction in order to appropriately deal with the idea
(to which we agree almost in totum with Omnès, as the reader san see in [8]).
The first language, let us call it LT , is the object language of the theory properly
speaking, and here we suppose that the theory is axiomatized. The second, let
us call it LM , is the metalanguage, the one which provides, according to Omnès,
the empirical meaningful propositions and by means of which we start thinking
about the subject; see [8] again for more discussions on this topic.

Consistency is a term that has an intuitive appeal, and it seems that it is
in this sense that it is used in physics, but adquires a precise meaning only
inside a formal system whose language comprises a negation symbol ¬. Thus,
we can say that a theory T is consistent in two ways: syntactical consistency
means that there is no formula α such that T ` α (α is deduced in T ) and
T ` ¬α; semantic consistency (stronger that the syntactic version) means that
T has a model, that is, there is an interpretation of its non-logical symbols that
make the non-logical axioms true or, alternatively, theorems of the metatheory
(which without loss of generality can be assumed to be a set theory, such as the
system ZFC — Zermelo-Fraenkel set theory with the axiom of choice. For the
differences between these alternatives, see [8]).

But these definitions apparently are much for Omnès requirement. What
he is supposed to require is that there should be no discrepancies between the
language of the theory and the language which expresses its empirical proposi-
tions. And it will be in this sense that we shall consider the case study of this
paper. We take LT as the standard Hilbert space formalism for non-relativistic
quantum mechanics, and for LM the metamathematical language of ZFC, where
we express the space-time counterpart of this theory (see the Appendix to un-
derstand how space and time enter the quantum formalism).

Non-relativistic quantum mechanics (QM) is grounded on ‘classical’ con-
cepts of space and time. In short, and without going to a precise description
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[10, Chap.17], [12], the space and time setting can be identified with the R4

Euclidean manifold. In this framework, due to its topological characteristics, if
we have two distinct objects, they can be located into two disjoined open sets
and this provides them an identity : we can call Peter the first object and Paul
de second one, and if it is Peter who is in the first open set, then Paul is not
there, so they present a property not shared by the another and, so, by one
of the fundamental rules of classical logic, namely, Leibniz’s Principle of the
Identity of Indiscernibles, they are different (not equal, not the same object).1
Furthermore, if we move Peter, say by an orthogonal transformation or if we
translate it, or both,2 we can always recognize that it was Peter who has being
moved, for we can trace back the motion (the transformations are invertible)
and identify the object by the open set it belonged to. To make an analogy
which will be useful later, we can say that every object in this manifold (that
is, every object represented in such a mathematical framework) has an identity
cart, a document that enables us to identify the object as such in whatever
situation or context. We shall say that it is an individual. An individual, thus,
is something that has identity, in the sense of possessing an identity card. The
particular object is the unique one with such an identity card, and every other
object presents a distinction from it, for this object has at least one property
shared by no other object, namely, its identity. The underlying logic is Leib-
nizian: there are no distinct indiscernible objects. Indiscernible objects (objects
partaking all their properties) are identical, are the very same object. This is
classical logic, this is classical mathematics, this is NST.

In other words, classical logic, standard mathematics (say, that mathematics
that can be developed in a set theory such as the Zermelo-Fraenkel (ZF) set
theory) and classical mechanics are Leibnizian in this sense. In classical physics,
even entities like electrons, yet having the same characteristics, don’t lose their
identity, for they have different and impenetrable trajectories which serve to
identify them in every instant of time. They have that what Post has termed
transcendental individuality (see [11] and [3, p.11]).

Quantum mechanics, it is agreed by most physicists and philosophers, is
different. As Landau and Lifshitz have said (adapting), due to the uncertainty
principle, if the position of an electron is exactly known in a given instant,
its coordinates have no definite values even at the next instant: “by localizing
and numbering the electrons at some instant, we make no progress towards
identifying them at subsequent instants; if we localize one of the electrons, at
some other instant, at some point of space, we cannot say which of the electrons
has arrived at this point." [6, p.227] (see also the quotation at the end of this
paper).

But wait! How can we not be able to identify the particles if they are
represented in classical space and time? How can we explain this fact? Here we
propose a situation that serves for the analysis of this puzzle. The core idea is

1By the way, this is the meaning of numerical identity: numerically identical objects are
not different objects, but the very same one.

2The composition of a translation with an orthogonal transformation is called a rigid
motion, and they are typical of Euclidian geometry and of classical mechanics.
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that once we assume that quantum systems are not mere mathematical entities,
there cannot be identity (in the standard sense of numerical identity) provided
to them by NST. In other terms, when physics enter the scenario and provide
situations which are not purely mathematical (and I suppose we all agree that
physics is not mathematics),3 we need to take into account the ‘second language’
mentioned by Omnès, namely, the language of physics properly speaking (in
distinction from its mathematical language), the situation changes so that we
cannot say that the distinctly located quantum systems possesses identity.

To analyse the situation, we consider what is perhaps the most limit case
where apparently there would be no doubt about the identity of the quantum
systems, namely, two infinite potential wells with one particle each, the particles
being of the same species (‘identical’ in the physicists’s jargon). By supposing
that the particles cannot scape the wells, their positions in space would serve
to provide them an identity card, an identity. We shall see that this conclusion
cannot be reached so easily in ‘real’ physical situations, so there is an appar-
ent contradiction between that what QM says and that what its underlying
mathematics enables us to do (specially ‘classical’ space and time). So, Om-
nès two languages are, in this case, not mutually consistent. We conclude with
foundational considerations of both physics and logic.

2 Two wells and ‘classical’ identity
The situation we shall consider is formed by two infinite potential wells located
at a great distance from one another so that we can suppose that there are no
interactions between them. Inside the wells there are two particles of identical
kind, say two electrons. That is (see Figure 1),

V (x) =

{
0 x1 − ε < x < x1 + ε and x2 − ε < x < x2 + ε

∞ otherwise,

where x1 and x2 (x1 6= x2) are the centers of the wells (each of length 2ε > 0) in
the x axis. We can separately solve the independent of time Schrödinger equa-
tions for the two wells and get the corresponding wave-functions that describe
the energies of the particles in the wells, one for each well [4, p.24ff]. But these
wave-functions can also be used for granting us the existence of the two parti-
cles at those distinct locations (being x1 + ε≪ x2 − ε). Due to the topological
structure of this T2 space-time manifold, we can find two disjoined open sets
A and B containing the space regions corresponding to the wells, so that we
can surely say that the particles belong to disjoined open sets in the manifold.
Thus, we conclude grounded in classical logic, they are different.

3But we may recall Max Tegmark’s suggestion that the universe is a mathematical struc-
ture, the mathematical universe hypothesis, or MUH (see the Wikipedia entry on MUH). It
should be observed, despite this subject is out of the aims of this paper, that this thesis has
problems as the following one: if MUH is correct, then the mathematical structure needs to be
constructed in some mathematical apparatus. Which one? Furthermore, which mathematical
structure is the universe?
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Figure 1: Two infinite potential wells. Are they conferring identity to the particles described
by ψ1 and ψ2?

But, what does different mean? Let us have a look on the underlying concept
of identity before we continue with the discussion about the wells.

3 Identity
We have an intuitive idea of identity and difference. Identical things are the very
same thing; two or more things are different things. This belief is grounded on
a metaphysical assumption that goes back at least to the Stoics (cf. [5, pp.339])
but had its fortification with Leibniz’s principle mentioned above. The main
philosophical question is this: if there is a difference between two objects, where
this difference resides? The answers belong to one of the two main ‘theories of
individuation’, substratum theories and bundle theories. The first ones assume
the existence of some kind of substratum underlying the thing’s properties. This
mysterious substratum receives different names, but with the same main charac-
teristics: haecceity, primitive thisness, quid, etc. So, two things may partake all
their properties or characteristics, but differ in what respects their substratum,
something that cannot be described by (or reduced to) properties. The prob-
lems regarding such a view in quantum mechanics can be seen in [15], the main
one being the difficulty of explaining what should be such a substratum, since it
cannot be described by means of properties. Bundle theories dispense any kind
of substratum; the identity of a thing is given only by its properties, either one
property or a collection of them. This view also presents some problems; let us
mention one, perhaps the most important one. The question is this: how can
we be sure that there are no two or more things partaking the same collection of
characteristic properties? The answer is that we don’t know; we need to assume
this idea or reject it based on metaphysical groundings. Leibnizian metaphysics
takes this hypothesis, and it has been incorporated to our preferred pantheon
of assumptions.

Classical logic and standard mathematics are Leibnizian in this sense, which
means that the thesis that distinct things have distinct properties is a logical
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fact. Really, take a standard set theory (the mathematical framework where
NST is developed). Give any object a (described in such a set theory), we can
define the ‘property’ of being identical to a as follows: Ia(x) ↔ x ∈ {a}, by
considering that the unitary set of a can be formed in the theory for any a.4
Thus, the only object with this property is a itself, so it presents a property
shared with no other object.

This Leibnizian notion of identity is extensional in the following sense: two
sets are identical (are the very same set) if and only if they have the same
elements. Two ur-elements are identical if and only if they belong to the same
sets. In other terms, a set, or a context (whatever it is) changes if a thing
belonging to it is exchanged by a thing not belonging to it. We can express this
idea by the following theorem of extensional set theories (theories encompassing
an Axiom of Extensionality):

x ∈ A ∧ y /∈ A→
(

(A− {x}) ∪ {y}) 6= A
)
. (1)

In quantum mechanics, apparently things don’t run this way. Think of ion-
ization. Let A be an atom whatever in its fundamental state (for instance, an
Helium atom). We can ionize the atom by realizing an electron and getting a
positive ion, A+. After some time, we can make the ion absorbs an electron
again, turning to be a neutral atom once more. Questions: is the ‘new’ neutral
atom the same as the ‘old’ one? Are the realized electron and the absorbed
electron the same electron? Obviously that these questions cannot be answered
out of serious conceptual doubts. In fact, we cannot say that we are realizing
this or that electron, but just one electron; the same concerning the absorbed
electron. The intuitive notion of identity seems to be not applicable in this do-
main. Electrons, atoms and other quanta don’t have identity cards. And, more
importantly, they don’t acquire identity even after being realized, for once the
electron merges the environment, it5 becomes tangled up with ‘other’ electrons,
so that we cannot identify it ever more.

It seems to me, as we have discusses elsewhere (see [1, 3]), that the better and
fair idea is to say that the neutral atoms are indiscernible or indistinguishable
from one another (see below), so as are the two electrons. Physicists surely will
agree, saying that this is the obvious conclusion to be made. But we remark
that this is not so obvious as it seems: in classical logic (set theory included),
indiscernibility entails identity, for the very notion of identity is introduced by
means of indiscernibility (Leibniz’s Law): two things are identical if and only
if they share all their properties. But, in the permutation of quantum entities,
what we are looking for is something like the equivalence indicated bellow, where
≡ stands for a relation of indiscernibility and x and y stand for the realized and
the absorbed electrons and A is the neutral atom:

(A− {x}) ∪ {y}) ≡ A, (2)
4Thus result holds even if a is an ur-element, that is, an entity that is not a set but which

can be member of sets.
5In so far as we can speak of it and others — see below how to make language precise.
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but we neither have true conditions for asserting that electron x belongs to the
atom nor that electron y does not. In A we just have a kind of weight of energy
which enables us to say that there is a certain number of electrons there (in
the He atom, for instance, there are two electrons, but we cannot count them6),
but never that this or that electron belongs to it.7 Interesting enough, there is
a mathematics grounding in the theory of quasi-sets which makes the trick of
separating the notions of identity and indiscernibility so that the equivalence
(2) is a theorem of the theory [3, §7.2.6]. In this theory, we can speak at most
in collections having a certain cardinal (termed quasi-cardinal) but without
providing them an identity. So, to make the above informal language precise,
we can say that the collection (quasi-set) of the electrons of the neutral atom A
is two, while the quasi-cardinal of the ion A+ is one. But this theory is not the
story to be told here. So, let us go back to the wells.

4 Back to the wells
Let us consider again the wave functions ψ1 and ψ2 of the two wells, which
we call well 1 and well 2, and of course suppose that the experience can be
performed (infinite potential wells are idealizations). As said before, these wave
functions describe the stationary states of the wells, but shall be read also as
marking that there are two particles, one in each well.

The question is: representing the two wells in the standard space and time
setting, does this attribute identity to the particles? I don’t think so, and let
me explain why. As said before, to have identity means to have an identity
card, a something which enables us to distinguish the entity in other situations.
Furthermore, this identity is extensional in the sense explained earlier: the
contexts change when different (here this notion makes perfect sense) things are
interchanged. Quantum particles don’t have identity in this sense. Although
trapped in the infinite wells, they have only what Toraldo di Francia termed
mock individuality, and individuality (and ‘identity’) that is lost as soon as the
wells are open or when another similar particle is added to the well (if this
was possible). There is no identity card for quantum particles. They are not
individuals, yet can be isolated by trapping them for some time.

Some time ago I wrote a paper contesting the idea that Hans Dehmelt’s
positron Priscilla is an individual on the same grounds [7]. Any positron could
act as Priscilla as well, while no other person could substitute Donald Trump
(I suppose that no one could say what he says and think as he thinks). Trump
is supposed to be an individual, Priscilla surely is not.

But let us explore the argumentation a little bit deeper. Suppose we aim at
to describe the two particles at once, one in each well. Since they are ‘identical’,

6By ‘counting’, we mean the definition of a bijection between the collection of the two
electrons and the von Neumann ordinal number 2 = {0, 1}. Really, to which electron should
we attribute the number 0?

7Some authors think that since the cardinal of the collection is greater than one, the
elements of the collection are necessarily distinct. The existence of quasi-set theory shows
that this hypothesis can be discussed.
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we need to use (anti-)symmetric wave functions, something like (let us consider
the anty-symmetric case)

ψ12(a, b) =
1√
2

(
ψ1(a)ψ2(b)− ψ1(b)ψ2(a)

)
(3)

in the Hilbert space H1⊗H2 where the sub-indexes name the wells and a and b
‘name’ the particles. Important to recall that the use of (anti-)symmetric vectors
intend precisely to make these labels not conferring identity to the particles.

Thus,

|ψ12(a, b)|2 =
1

2

(
|ψ1(a)ψ2(b)|2 + |ψ1(b)ψ2(a)|2−2Re

〈
ψ1(a)ψ2(b)

∣∣∣ψ1(b)ψ2(a)
〉)
.

Let us consider the interference term. We have that

〈
ψ1(a)ψ2(b)

∣∣∣ψ1(b)ψ2(a)
〉
H1⊗H2

= 〈ψ1(a)|ψ1(b)〉H1
· 〈ψ2(b)|ψ2(a)〉H2

= 0

since ψ1(b) = ψ2(a) = 0 for b is out of well 1 and a is out of well 2. Hence
the interference term is null and this is interpreted as saying that there is no
interaction between the particles. But note that this reasoning demands that
we are able to identify the particles a and b, and we can do this only by the
reference to the wells: particle a is that one which is in well 1. But, if the
particles are indistinguishable, how can we known which particle is in well 1?
Without identity, the most we can say is that we have two wells (mathematically
seen as disjoined sets) with cardinal 1 each, and so that their elements are
indistinguishable. So far, so good. Some remarks are in order, for physics need
to enter the discussion.

As said before, infinite potential wells are idealizations. They don’t exist
and cannot be constructed. The most we can say is that we have two very
hight wells, which despite the great potential involved, do not avoid tunneling
and perhaps nonlocal interactions between the wells. So we really cannot say
that the particles are in fact non interacting. But let us continue with the
mathematical description as a Gedankenexperiment.

Since the interference term is null, the state (3) is separable, so the proba-
bilities, then, result from the probabilities of the wells separately. That is, we
have

|ψ12(a, b)|2 =
1

2

(
|ψ1(a)ψ2(b)|2

)
+

1

2

(
|ψ1(b)ψ2(a)|2

)
. (4)

Interpretation Let’s read the second member of this equality as indicating
that we have the sum of the probability of particle a be in well 1 and particle b
in well 2 (let us call α this case), and the probability of particle b be in well 1
and particle a be in well 2 (call β this assumption).

What about the first member? To give it an interpretation, we recall that one
of the postulates of the calculus of probability says that P (α∪β) = P (α)+P (β)
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if α and β are mutually exclusive events, which is the case, since we have assumed
that the interference term is null. So, the first member of (4) can be read as
indicating that we have a probability of particle a be in well 1 and particle b
in well 2, or particle b be in well 1 and particle a be in well 2. In reading
the equality this way, it results that there is no way to know which particle is
which! Summing up, there is no identity attributed to the particles. I recall
once more that one thing is to individuate an object, put it in isolation from
others. Another one is to confer it an identity.

In other words, the physics does not enable us to identify the particles, even
if metamathematically they can be separated and provided with an identity by
their space location. Thus, we have here a typical case where the language of
the mathematics of the theory and the language of physics do not conform each
other. And, as far as a logic comprises a semantics [2], a physical theory cannot
rest on pure mathematics. And in the quantum case, when this happens, there
appears a conflict between the mathematics used (NST) and the physics.

To reinforce that, perhaps we can recall how space and time enters in the
formalism of orthodox quantum mechanics. We shall see in the Appendix that it
does not enter in the formalism (axioms) directly, but in the standard formalism
it runs in parallel with it, as a kind of step theory, being subsumed into the set
theoretical framework, in the sense of Suppes’ axiomatization [14, Chap.12], [8].

5 The (supposed) right answer
I shall propose here a very short answer to the question posed in the title of
this note, namely, "Do ‘classical’ space and time provide identity to quantum
particles?". As for the wells, from the physical point of view the right answer
would be NO, for the experiment of confining a particle in an infinite poten-
tial well cannot be performed in practice. So, even by assuming that quantum
particles exist, either in orthodox quantum mechanics or as field excitations in
a quantum field theory, infinite potential wells do not confer identity for the
particles, for they do not exist. But, by considering the problem as a Gedanken-
experinent, in considering space and time location, mainly spatial location, the
answer is NO again. The reasons are, first, that particles (seen either as point
particles in non-relativistic quantum mechanics or in quantum field theories)
don’t have well defined positions, but position-states, and the position operator
doesn’t have eingenfunctions in the standard sense. The use of distributions in
a rigged Hilbert space just provide an approximation for the positions, and in
reality we should go to quantum field theories, where space and time become
(Minkowskian) spacetime but the problem of identity doesn’t desapear. To see
why this is so in this case, perhaps the best thing is to read the quotation
below, taken from Viktor Toth’s answer to "Do subatomic particles have solid
surfaces?" on Quora [16], which helps in enlighten the point:

Question: Do subatomic particles have solid surfaces?

Answer: "No. Subatomic particles are not like anything you expe-
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rience in the classical world. In particular, they are not miniature
cannonballs or planets or whatever.

In a quantum particle theory, elementary particles are point-like.
However, these points do not usually have a classically defined loca-
tion, not unless they interact with other things (e.g., an instrument)
that confines them to a location. This is why, instead of a position
coordinate, the particle’s location is described by its wave-function,
which basically provides a probability field, assigning to each loca-
tion of space a probability of finding the particle at that location.

But quantum particle theories are, in fact, inadequate when it comes
to describing particles: they have trouble dealing with relativity, and
they are especially incapable of describing the creation and annihila-
tion of particles (e.g., when an electron emits or absorbs a photon.)
That’s why, somewhat paradoxically, our best particle theory is not
a particle theory at all: it is quantum field theory.

In a quantum field theory, there are no particles, only ever-present
fields. For instance, there is the one and only electromagnetic field.
But this field cannot just be in any state. It being a quantum field,
its excitations come in set units (quanta). It is these unit excitations
that we associate with the concept of particles. So you see, ‘parti-
cles’ are really not particles at all! These excitations, however, may
be confined to a small volume, in which case they indeed exhibit
particle-like behavior (which can be seen, e.g., in particle colliders
that can trace particle paths.)

But no matter how you look at it, there are no solid surfaces or
indeed, other classical behavior or properties in the quantum world.
Don’t even try to imagine them? If you do, you are already on
the wrong track. Sadly, this also means that intuition can be an
obstacle (or worse yet, can be grossly misleading) when it comes to
the quantum world; for a solid understanding, the mathematics is
unfortunately essential."

In short, contrary to Quine, we can say that quantum mechanics presents
us entities with no identity, and quasi-se theory is a mathematics able to deal
with them.

6 Appendix:
How space and time enter the quantum schema

We shall use the Hilbert space formalism, most common in most philosophical
discussions. From a technical point of view, we can assume that we shall be
working with the resources of ZFC. So, let us introduce the following definition
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(more details in [8]), which follows the style presented in [14, Chap.12]:8

Definition 6.1 A non relativistic quantum mechanics is a 5-tuple of the form

Q = 〈S, {Hi}, {Âij}, {Ûik},B(R)〉, with i ∈ I, j ∈ J, k ∈ K

where:

1. S is a collection whose elements are called physical objects, or physical
systems.

2. {Hi} is a collection of mathematical structures, namely, complex separable
Hilbert spaces whose cardinality is defined by the particular application
of the theory.

3. {Âij} is a collection of self-adjunct (or Hermitian) operators over a par-
ticular Hilbert space Hi.

4. {Uik} is a collection of unitary operators over a particular Hilbert space
Hi

5. B(R) is the collection of Borel sets over the set of real numbers.

In order to connect the formalism with experience, we construct a mathe-
matical framework for representing experience. Important to remark that this
is another theoretical (abstract) construction: there is no connection, out of the
informal one, of the formalism with reality per se. In order to do it, we need to
elaborate reality, turning it a mathematical construct too. So, to each quantum
system s ∈ S we associate a 4-tuple

σ = 〈E4, ψ(x, t),∆, P 〉,

where E4 is the Newtonian spacetime [10, chap.17], where each point is denoted
by a 4-tuple 〈x, t〉 where x = 〈x, y, z〉 denote the coordinates of the system and
t is a parameter representing time, ψ(x, t) is a function over E4 called the wave
function of the system, ∆ ∈ B(R) is a Borelian, and P is a function defined, for
some i (determined by the physical system s), inHi×{Âij}×B(R) and assuming
values in [0, 1], so that the value P (ψ, Â,∆) ∈ [0, 1] is the probability that the
measurement of the observable A (represented by the self-adjunct operator Â)
for the system in the state ψ(x, t) lies in the Borelian set ∆.9

Summing up: using standard mathematics, and classical space and time
setting, this is all we can do, and it works! Physics can be made within such a
framework, but philosophically we can raise questions such as those posed above
(and below). Let us see something more on this respect.

8Here we introduce a set S for the quantum systems being considered, which is not useful in
the standard presentations. The aim is to question either such a collection can be considered
as a set of standard set theories, since the quantum systems may be indiscernible. But this
point will be not discussed here — see [1].

9Of course if we have a system with n elements, the dimension of the space must be 3n
(here, roughly, E4 = R3 × R, and in the case with n systems, we shall have R3n × R).
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7 Foundations
What should we do when we realize that the theory does not conform with
the (perhaps Gedanken) experiments? What did Einstein when he realized
that the Newtonian space and time did not conform with the proposed ideas
of the special relativity? What did von Neumann and Birkhoff when they re-
alized that the ‘logic’ of quantum mechanics didn’t conform to classical logic?
Cases like these could be mentioned to exhaustion. Well, Einstein proposed to
change the notions of space and time, and we got the sole notion of spacetime
(Minkowski); von Neumann and Birkhoff proposed that quantum logic should be
non-distributive, hence not classical. The reasons they had are of deep nature,
and we all know about the consequences.

What to say about the above discussion involving classical space and time
and the very nature of quantum particles, at least in what concerns their proper-
ties mentioned in the previous sections? It seems to me that in ignoring physics
and paying attention just to the underlying mathematics, for example in say-
ing that the standard Newtonian space and time framework provide identity to
quantum objects when they are separated in space (let me for a moment call
this thesis Thesis of Identity, TI), conflicts with the physics, for as we have seen
that from the physical point of view there are no perfect separated quantum
objects. To assume TI without considering physics is similar to consider a logic
without paying attention to its semantic aspects. In the same vein that a logic
comprises not only its syntactical aspects, but also its semantics, a physical
theory cannot be grounded only in its mathematics; physics, that is, physical
suppositions, need to be also considered.

This was what motivated above mentioned authors (Einstein, von Neumann
and Birkhoff) to depart from classical frameworks and propose radically different
bases. The same seems to be happing here. Newtonian space and time and the
TI thesis, at least to me, conflict with quantum mechanics. I still don’t know
what kind of space and time or spacetime should be the right one, perhaps
a Minkowskian is enough, but I still don’t know. But it seems clear to me
that there is a contradiction, at least at the metalevel, between non-relativistic
quantum mechanics and its underlying mathematics also in this respect (for
another kind of discrepancies, see [3], [1] where the discrepancies of the classical
mathematical and logic notion of individual conflicts with the non-individuality
of quantum objects).
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