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The popular impression of Bohmian mechanics is that it is standard quantum me-
chanics with the addition of some extra gadgets—exact particle positions and a
guiding equation for particle trajectories—the advantages being that the gadgets
pave the way for a resolution of the measurement problem that eschews state vector
reduction while restoring the determinism lost in standard quantum mechanics. In
fact, the Bohmian mechanics departs in significant ways from standard quantum
mechanics. By itself this is not a basis for criticism; indeed, it makes Bohmian
mechanics all the more interesting. But Bohmian mechanics is not, as the popular
impression would have it, empirically equivalent to standard quantum mechanics
in terms of probabilistic predictions for the outcomes of measurements of quan-
tum observables. Indeed, in physically important applications to systems for which
standard quantum mechanics delivers empirically well-confirmed probabilistic pre-
dictions, the sophisticated form of Bohmian mechanics designed to prove the global
existence of Bohmian particle trajectories fails to deliver unequivocal predictions—
of even a probabilistic variety—for the future behavior of said systems. Possible
responses to this lacuna are discussed.

1 Introduction

Popular presentations of Bohmian quantum mechanics (BQM) give the im-
pression that BQM is obtained from standard textbook quantum mechanics
(SQM) by means of a subtraction and an addition: the subtraction takes the
notorious von Neumann projection postulate (aka wave function collapse,
state vector reduction) off the table and allows Schrodinger evolution to
continue uninterrupted throughout a measurement procedure; the addition



comes in the form of adjoining to SQM “hidden variables” in the form of
exact particle positions together with an equation of motion for these vari-
ables, supposedly providing both for a fully deterministic interpretation of
the theory and a resolution of the measurement problem.!

We have three comments about this popular impression and about BQM
itself. First, this impression—for which the careful and scrupulous Bohmians
are not responsible—is badly misleading. Briefly put, although BQM helps
itself to the technical apparatus of Hilbert spaces, it is not a Hilbert space
theory in the sense that its ideology and ontology differ markedly from that
of SQM which takes the Hilbert space formalism seriously (all too seriously
according to the Bohmians). Here we hasten to add our second comment:
that BQM and SQM part company in significant ways in no measure di-
minishes the interest of BQM; indeed, to our minds it makes BQM all the
more interesting. But we also hasten to add our third comment. The ways
in which BQM differs from SQM make for difficult mathematical problems,
one in partial differential equations (pdes) and one in ordinary differential
equations (odes). The Bohmians have delivered a Beautiful Solution to this
pair of problems. But a careful look at their solution reveals that the success
comes at the price of introducing a new form of indeterminism or, perhaps
more felicitously, a new form of indeterminacy: without supplementation,
BQM offers no definite predictions, not even probabilistic predictions, about
physically important systems for which SQM has provided empirically well-
confirmed predictions. The purpose of this note is to develop and substantiate
our third comment.?

We begin in Section 2 with a brief review of the pop science story of how
BQM purportedly cures the indeterminism in SQM. The fuller and more in-
teresting story is outlined in Section 3. Sections 4 and 5 discuss the motion
of a particle in various singular potentials according respectively to SQM
and BQM. For a particle moving in the Coulomb potential, SQM delivers
deterministic evolution of the quantum state and, thus, deterministic predic-
tions of probabilities of outcomes of future measurements given the current
state; but for a particle moving strongly singular potentials it falters in fail-
ing to deliver deterministic evolution for the quantum state. By contrast,
in its attempt to deliver fully deterministic predictions, the BQM treatment

IThe focus of the present discussion is exclusively on ordinary non-relativistic QM. How
the issues discussed here carry over to relativistic QFT is a topic for another occasion.

2For recent authoritative overviews of BQM see Diirr and Teufel (2009) and Goldstein
(2013).



of particle motion in a Coulomb potential has the same faltering character
as the SQM treatment of strongly singular potentials. Possible reactions on
behalf of the Bohmians are discussed in Section 6. Conclusions are given in
Section 7.

2 Indeterminism in SQM and the purported
cure in BQM: the pop story

2.1 Determinism and indeterminism in SQM

Level 1 determinism Start with a classical mechanical system that ad-
mits a Hamiltonian formulation. Quantize in at least the minimal sense of
finding an appropriate Hilbert space H and an appropriate operator H with
dense domain D(H) C H corresponding to the classical Hamiltonian. Check
whether H is essentially self-adjoint, i.e. whether it has a unique self-adjoint
extension, namely, the closure H of H.> If so, exponentiate H to obtain
a strongly continuous one-parameter unitary group U(t) := exp(—ihHt),
t € R, which gives the deterministic Hilbert space dynamics: for any initial
state vector 1, € ‘H at t = 0, the state vector at any ¢ > 0 is ¢, = U(t)1,.
The infinitessimal version of this equation, viz.
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may be dubbed a Schrodinger equation, but (as will be explained shortly)
it has to be carefully distinguished from the wave equation that is more
commonly called the Schrodinger equation. Note that (1) is defined only for
vectors in D(H) whereas the relation v, = U(t)1), is valid for all ¢, € H.

If the quantization scheme produces an H that is not essentially self-
adjoint then matters become more complicated. For instance, H may still
admit self-adjoint extensions—any real symmetric operator does—but the
extensions may be highly non-unique. The physics of the situation may
point to one of these extensions as physically natural. In that case, choose
it and proceed as above. If there is no unique natural self-adjoint extension
then quantum dynamics is ambiguous. We will return to this point several
times with concrete examples.

3This check can be performed by applying von Neumann’s deficiency index criterion;
see Reed and Simon (1975, Sec. X.1) and the discussion below.
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It is worth noting that at Level 1 quantum dynamics may be more de-
terministic than its classical counterpart. Classical determinism can falter
for two sorts of reasons. (i) The initial value problem for the Newtonian
equations of motion may not have a unique solution even locally in time, as
is the case when Lipschitz continuity does not obtain.* (ii) The initial value
problem for the Newtonian equations of motion may have a unique solution
locally in time, but the solution may break down after a finite time. This
behavior can occur in Newtonian mechanics of point pass particles interact-
ing via a 1/r potential, either because of (a) a collision singularity or, more
exotically, (b) a non-collision singularity where all the particles run off to
spatial infinity in a finite time. All of these types of breakdown in classical
determinism can, in some instances, be overcome at Level 1 in SQM in that
the Hamiltonian operator for the quantum counterpart of the classically inde-
terministic system can be essentially self-adjoint so that any initial quantum
state leads to a unique global evolution. Examples of this phenomenon will
be given below.’

Level 2 determinism Needless to say, Level 1 determinism does not guar-
antee all of the determinism one might desire. For one thing, although Level
1 determinism gives a deterministic evolution of the quantum state, this
state does not fix a unique outcome of a measurement but only a probability
distribution (given by the Born rule) over the possible measurement out-
comes. And even worse there are “collapse interpretations” of QM according
to which the unitary evolution of the quantum state is interrupted during
measurement and the state vector jumps indeterministically into an eigen-
state of the operator being measured.® The motivation for introducing state
vector collapse is to explain how quantum measurements yield determinate
outcomes.

There are other interpretations of QM that offer alternative explanations
of measurement outcomes without invoking state vector collapse or a disrup-
tion of unitary evolution. In addition to BQM, there are various species of
many worlds interpretations and the family of modal interpretations.” No

4Norton’s (2008) dome example belongs to this class; see Sec. 4.2 below.

®See also Earman (2009) for additional examples.

6In some treatments this “state vector collapse” is taken as a primitive while in other
treatments a stochastic mechanism of collapse is offered, as in the GRW interpretation
(see Ghirardi 2011).

"For an overview of modal interpretations, see Lombardi and Dieks (2014); for the



attempt will be made here to compare the merits of the various no-collapse
interpretations. BQM aims to offer a fully deterministic explanation of mea-
surement outcomes by means of a two part strategy. The first part marks one
significant departure of BQM from SQM. SQM assumes that every observable
corresponds to a self-adjoint operator, with the correspondence much more
than an abstract mathematical association. In particular, SQM assumes that
(a) the range of possible values of an observable is given by the spectrum of
the corresponding self-adjoint operator, and (b) when an experiment reveals
that an observable takes on a value within a given range, what is revealed is
that the state of the system is an eigenstate of the projection operator which
belongs to the spectral decomposition of the corresponding self-adjoint oper-
ator and which projects onto the spectral range equal to the revealed value
range of the observable. BQM rejects this picture in favor of a radically in-
strumentalist interpretation of the Hilbert space operator formalism, and it
posits that every measurement can be reduced to a position measurement.
So, for example, the measurement of the spin of a particle is not to be con-
strued as the measurement of a spin operator but as a measurement of the
position of the particle, say, as it emerges from a Stern-Gerlach apparatus,
with emergence in the top channel signalling spin up and emergence in the
bottom channel signalling spin down. This aspect of BQM deserves detailed
scrutiny, but our focus here is on the second part of the strategy, which
entails another major parting of ways with SQM.

The second part of the strategy of BQM is (i) to posit that at every
moment a particle has a definite position so that a position measurement is
simply the recording of the preexisting value, not the creation of a value by
means of state vector collapse, and (ii) to supply a “guiding equation” for
the particle positions that, coupled with the Schrodinger equation, produces
a deterministic evolution for the total state consisting of the quantum state
plus the particle positions. How this is supposedly achieved is sketched in the
next subsection. Looking further ahead the irony will be that in its ambition
to achieve Level 2 determinism BQM undermines Level 1 determinism.

2.2 Determinism in BQM: the pop story

The story is illustrated for a system of N spinless particles moving in a
configuration space © and the Hilbert space is H = L?(Q,du(q)), q € Q.

many worlds interpretation see Vaidman (2014).



In the cases considered here 2 = RV (or some subset of RV4), where d is
the dimension of physical space and the measure du is Lebesgue measure.
From here on reference to the measure will be dropped. Assume that the
Hamiltonian operator has the Schrodinger form

2
Z—Zﬁ—AmLV(CI)y q € Q. (2)
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For a wide variety of potentials V', an H of this form will be essentially
self-adjoint. Assume for the moment that this is the case so that Level 1
determinism holds in SQM. The pop story about how BQM achieves Level
2 determinism goes as follows. Take a solution to the Schrodinger equation
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and plug it into the guiding equation for Bohmian particles whose positions
are labeled by X, k=1,2,...,N:

d X (1)
dt
where the velocity field on the rhs of (GE) is given by
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Now, the pop story continues, the guiding equation is a first-order ordinary
differential equation. Hence, given a solution (q,t) of (SE), the resulting
(GE) together with the positions X;(0) of the Bohmian particles at t = 0
uniquely fix the future (and past) positions. And since the Schrédinger equa-
tion leads to a deterministic evolution for the quantum state, given the to-
tal initial state at t = 0—the initial quantum state (¢, 0) and the initial
particle positions X;(0), X2(0), ..., Xy (0)—there is a unique joint solution
(Y(q,t), X1(t), Xa(t),..., Xn(t)) for all £ > 0 (and all ¢t < 0) of the coupled
(SE)-(GE) equations. Combining this result with the Bohmian doctrine that
all measurements reduce to position measurements yields Level 2 determin-
ism and a resolution of the measurement problem.
This scheme can be generalized in various ways, but the generality of
BQM is not our concern here; rather our concern is with what the pop story
hides and distorts.

= o} l—x (GE)




3 Determinism in BQM: the fuller story

3.1 The first problem

The infinitesimal version of the fundamental dynanical law of SQM given in
eq. (1) and the version of the Schrodinger equation given in (SE) are not
notational variants of one another but refer to different entities. The time
parameter “t” in eq. (1) appears as an index on v to emphasize that 1),
is not a function of ¢; rather 1, denotes a parameterized curve, each point
of which is a vector in Hilbert space H. By contrast, the (¢, ) in (SE)
is a function of t—specifically, it is a function from Q x R (the classical
spacetime over the configuration space €2) to C. Isn’t this simply pedantic
fuss over notation? Isn’t a solution ), of the fundamental dynamical law of
SQM related to a solution (g, t) of (SE) by the equality (E) ¥,(q) = ¥(q, ),
q € Q,teR? Yes, but only with the proper understanding of “=". Hilbert
space vectors are not wave functions (square integrable functions on ) but
equivalence classes of wave functions, where two wave functions are counted
as equivalent iff they are equal except for a set of Lebesgue measure zero.®
Choosing a value ¢ € R gives a vector 17(q), but setting 17(q) = ¥(q,?)
does not define a wave function (g, ¢) unambiguously for all ¢ € Q but
only up to equivalence. From now on when instantiations of (E) are used
this caveat has be understood. This is not pedanticism since in BQM the
different members of an equivalence class of wave functions can correspond to
physically distinct situations that have different implications for the motion
of Bohmian particles. In particular, it may be that equivalent wave functions
have different “nodes” (locations where they vanish), in which case BQM says
that the two wave functions differ on the possible locations for particles and

8To simplify the discussion consider a single spinless particle and take Q = R. Then
the relevant equivalence relation is defined as follows: for ¥ (z),p(z) € L*(R), z € R,
1 = @ iff they differ on a set of Lebesgue measure dx zero. This construal is forced by a
requirement on the inner product (-,-) for a vector space V and, thus, on the associated
norm ||v|| :== /(v,v); namely, for all v € V | (v,v) = 0 iff v = 0. Using the standard inner
product

(,9) = / o (@)(a)de

for wave functions, if the wave functions ¥ and ¢ are equivalent and if vectors are identified
with wave functions (rather than equivalence classes of them) it follows that (¢p—p, 1v—p) =
0 = ¢ — ¢ =0, yielding a contradiction when @ and ¢ are not equal at every point x €
R.



on locations where the guiding equation (GE) is well-defined.

It should also be kept in mind that a set of wave functions, even when
formed into equivalence classes, does not constitute a Hilbert space, which
must be closed in the norm induced by the inner product. But Bohmians may
resist taking the norm closure; for even if one starts with a set of “good” wave
functions that are sufficiently smooth so as to make (SE) and (GE) mean-
ingful and, thereby, enabling BQM to yield the desired results for Bohmian
particle trajectories, taking the norm closure can result in admitting “bad”
wave functions.

One consequence of the wave function ontology of BQM should now be
clear. In SQM the state space is Hilbert space, and as a result the initial
value problem for state evolution is automatically solved once H is shown
to be essentially self-adjoint or else H admits self-adjoint extensions and a
particular self-adjoint extension is chosen; then for any initial state a unique
solution exists for all times. In BQM the state space is not Hilbert space but
some space of wave functions that are sufficiently smooth so that (SE) and
(GE) make sense, and as a result the initial value problem for state evolution
now becomes a problem in pdes: For (g, 0) from a suitable class of initial
wave functions does a unique solution (g, t) of (SE) exist for all ¢ > 07 And
if so, is it the case that for each particular value t of ¢ the wave function
(g, t) belongs to the designated suitable class if 1)(g,0) does?

3.2 The second problem

The second problem for BQM is the existence and uniqueness for solutions
for the guiding equation (GE). A priori this second problem might seem less
difficult than the first since it concerns an ode rather than a pde; after all,
standard results for odes guarantee existence and uniqueness, at least locally
in time. But Bohmians are not satisfied with a determinism that falters after
a finite time and, thus, they must set their sights on demonstrating global
existence of Bohmian trajectories. In this regard there are three worries
to deal with. First, the Bohmian trajectory may fail to exist after a finite
time because Bohmian particles runs off to spatial infinity in a finite time,
as can happen with Newtonian particles. The second and third worries are
less exotic but even more pressing: a Bohmian particle can run into a node
of the wave function or into a point where the potential V' is singular and,
consequently, the wave function is not differentiable; in either of these cases
(GE) is not well defined. Since instantiations of the second two worries known
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to occur’, a positive solution to the second problem cannot be expected in
the form “For all initial particle positions ...” but at best in the form “For
almost all initial particle positions ... ”

The sophisticated Bohmians do shy away from problems, and they have
produced an impressive simultaneous solution to the two problems that chal-
lenge BQM.

3.3 The Beautiful Solution

Here we summarize the Beautiful Solution with some of the technical niceties
suppressed; none of the suppressed details affect the main points to me made
below. !

Concentrate on Hamiltonians of the Schrodinger form (2). Let Qpgar de-
note the configuration space for Bohmian mechanics consisting of the stan-
dard configuration space Qggrn = RY? with the points where the potential
V' fails to be smooth removed, e.g. with N = 1, d = 3, and V a central
potential a/r?, p > 1, the BQM configuration space is Qpon = R*\{0}."
The associated Bohmian Hilbert space is Hpgy = L?(Qpgar). This Hilbert
space is used as an auxiliary device by the Bohmians since it is not con-
sidered the physical state space. A Schrodinger Hamiltonian H is a sym-
metric operator on the domain C§°(Qpoar), which is dense in Hpgar; and
since H commutes with conjugation it has self-adjoint extensions (Reed
and Simon 1975, Thm X.3).2 Choose a self-adjoint extension H. Finally
define C°(H) := N®D(H™) where D(H™) is the set of all ¢ € Hpowm
for which_the the expectation value of the 2n-th power of His finite, i.e.
fQSQMw*H%wdq < 0o. This space C*°(H) is the state space for BQM, and
it may be considered as a set of wave functions or a set of vectors (i.e. equiv-
alence class of wave functions). The Bohmians prefer the former, but for sake
of definiteness we will construe C*°(H) as a set of vectors.

9For example, the hope that Bohmian trajectories would always miss nodes was dashed
by explicit counterexample; see Berndl (1996, 78).

0 Two different proofs of the Beautiful Solution are given in Berndl et al. (1995) and
Teufel and Tumulka (2005).

'1Tf the singularities of the potential are not removed from the configuration space then
the wave function can become non-differentiable, in which case neither (SE) nor (GE) is
well-defined.

1208°(2) denotes the the infinitely differentiable elements of L?(£2) with compact sup-
port on €.



The solution to the first problem (Section 3.1) is given in the follow-
ing form. For a large class of Schrodinger type Hamiltonian operators and
for any self-adjoint extension H of the BQM Hamiltonian operator from this
class, the physical state space C°°(H) is invariant under the unitary evolution
Ug(t) = exp(—ihiHt), ie. if 1y € C(H) then C(H) 3 1, = Ug(t)1, for
all £ € R.!3 Furthermore, let (g, 0) and v(q, t) be any wave functions corre-
sponding respectively to the vectors ¢, and v,. Then ¢(q,t) is C°(QpomxR)
almost everywhere (a.e.) relative to Lebesgue measure, and it is a.e. a solu-
tion to (SE).

The solution to the second problem (Section 3.2) is even more impressive
in controlling the possible ways in which global Bohmian trajectories can fail
to exist. Specifically, let (g, t) be the global solution to (SE) corresponding
to the initial state 1(g,0) where ||1/(q,0)|| = 1. Substitute (g, t) into the
guiding equation (GE). Then the set of initial particle positions at ¢ = 0
which fail to give rise to globally unique solutions to (GE) is of measure zero
relative to the measure p,(q) := |1(q,0)|>. Moreover, this notion of measure-
zero is time-independent because 11,(q) = |¢(q,t)|? for all t € R, where p,(q)
denotes the image of p, under the flow ¢(0) = X4(0) — q(t) = Xi (%)
defined by the solutions to (GE).

Actually, we have overstated the second part of the solution. It is con-
jectured that for any self-adjoint extension H of the BQM Hamiltonian the
solution v(q,t) = Ug(t)1(g,0) gives rise to global Bohmian trajectories (see
Berndl et al. 1995, 669-670), but the proof given does not show this. We will
return to this point later.

3.4 Comments

The Beautiful Solution is achieved with the help of what amounts to the pos-
tulation of a new law of physics to the effect that only wave functions that are
C® in the Hamiltonian are physically realizable.'* The Bohmians admit that

13 Hunziker (1966) showed that smooth solutions to (SE) are generated if the potential
is bounded and smooth and the initial wave function belongs to Schwartz space (smooth
functions whose derivatives vanish faster than any power of |z| as  — 00). The Bohmians
have improved on this result in that boundedness of the potential is not required in their
result.

4Why do the Bohmians need such a postulate? Lipshitz continuity for the velocity field
v}f = mik Im %%t) is sufficient for proving local uniqueness for solutions to the guiding

equation. But having smooth (C°°(R3xR)) solutions of (SE) plays a crucial role in the
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this is a strong restriction since although this set of wave functions is dense in
the Hilbert space it is “most likely not a residual set in the norm topology of
[Hpowm]” (Berndl et al. 1995, 669).'5 But, nevertheless, they justify it on the
grounds that only those wave functions satisfying said restriction can result
from physically possible preparation procedures: “No physicist believes that
a generic L?-wave function (in the residual sense) results from the ‘collapsed’
wave function from a preparation procedure” (Berndl et al. 1995, 669-670).
Of course, the real issue is not about what physicists believe or even about
what they can in fact produce by a preparation procedure but rather about
what Nature can present us with.'® These matters call for further discussion,
but we will not pause to provide it here.

Our main concern is with the price that apparently has to be paid for
achieving the Beautiful Solution: for the Coulomb potential—surely one
of the most important applications of ordinary non-relativistic QM—either
BQM must be supplemented if the Level 1 determinism achieved by SQM,
and along with it the successful probabilistic predictions of SQM, are not to
be abandoned. In short, the story that, in exchange for the addition of few
extra gadgets to SQM, BQM restores determinism is belied—or at the very
least, the story needs to be much more complicated.

4 Singular potentials in SQM

In order to appreciate how the vaulting ambitions of BQM lead to the loss of
Level 1 determinism in cases where SQM delivers it, it is helpful to contrast
how the two theories deal with singular potentials. The successes and failures
in SQM in this regard are reviewed in the present Section, and subsequently
in Section 5 are contrasted with the situation in BQM.

proof of the global existence of Bohmian trajectories, and something akin to the condition
that the initial wave function is C* in the Hamiltonian seems to be necessary to ensure
that the corresponding solution is smooth.

15 A residual set is a countable intersection of open dense sets.

16From the point of view of SQM, what a preparation procedure produces is a quantum
state, not a wave function. From this point of view the claim at issue would be that a
preparation procedure can produce a state of a system only if the equivalence class of wave
functions that constitutes said state contains an element that is C* in the Hamiltonian
of the system.
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4.1 The Coulomb potential in SQM

Atomic physics and chemistry are based largely on the Coulomb interaction.
This is fortunate for QM (and for us) since if Nature had chosen a different
form of interaction SQM might well be stymied. The point is brought out
by contrasting how SQM handles the Coulomb potential vs. more strongly
singular potentials.

For simplicity of presentation attention will be focused on a single particle
moving in a central Coulomb potential in d = 3 space, but similar conclusions
hold for N particles moving under pairwise Coulomb potentials. Units are
chosen so that the particle has mass 1/2 and the Hamiltonian operator has
the form H = —A + V(r). In this subsection we will be concerned with
the Coulomb potential V(r) = —1/r. The configuration space in SQM is
Qson = R3, and the Hilbert space is L?(R?). The Coulomb Hamiltonian
operator acting on the dense domain C§°(R?) C L?(IR?®) is essentially self-
adjoint (see Reed and Simon 1975, 186, Ex. 1). Thus, all of the apparatus of
SQM can be applied; in particular, for any initial state vector ¢, € L?(R3) at
t = 0 SQM gives an unambiguous prediction at any ¢t > 0 for the probabilities
of outcomes of the measurement of any observable at said time.

In outline form the proof of the essential self-adjointness of the Coulomb
Hamiltonian operator proceeds in three steps. First, it is shown that —A by
itself is essentially self-adjoint on C5°(R?). Next is shown that V(r) = —1/r
can be regarded as a “small perturbation” of —A in the following sense:

Def. Let A and B be densely defined operators with D(A) C
D(B). Then B is said to be A-bounded with relative bound a iff
for some a,b € R and all ¢ € D(A)

1Bo|* < allAg|[* + bl|o|[*

or equivalently for some 5,3 eR

|1Bg|| <allAdll + b9l

Finally, the following theorem is invoked:

12



Kato-Rellich Theorem (Reed and Simon 1975, Thm X.12). Sup-
pose that A acting on D(A) is self-adjoint, B is symmetric, and
B is A-bounded with relative bound a < 1. Then A + B is self-
adjoint on D(A) and essentially self-adjoint on a core of A.!7

Similar techniques can be applied to multiparticle systems with pairwise
Coulomb interactions in order to prove that the Hamiltonian operator is
essentially self-adjoint.

4.2 Repulsive potentials in SQM

Consider central potentials that have the form V(r) = ar® with @ > 0 and
£ > 0. All of the Schrédinger Hamiltonian operators with these potentials are
essentially self-adjoint on C§°(R?) (Simon 1973a). And this is so even though
for some values of 5 > 0 the derivative of the potential is discontinuous or
fails to exist at » = 0. In such cases the Newtonian equations of motion may
admit multiple solutions for a particle initially stationed at the origin (as in
Norton’s dome example where 5 = 3/2), and the Bohmian guiding equation
(GE) is mute about the fate of such a particle. But according to SQM there
is a unique evolution for any wave packet, e.g. a symmetric wave packet
centered at r = 0 at ¢t = 0 will diffuse symmetrically away from the origin.

4.3 Strongly singular potentials in SQM

So far SQM has shrugged off singularities in the potential to deliver Level 1
determinism. But now consider potentials of the form V(r) = —a/r? with
p > 2 and a > 0. An heuristic treatment of such potentials was given by
Case (1950), who found that when p > 2 or else p = 2 and « > 1/4 the gen-
eralized eigenfunctions of the Schrodinger H are “overcomplete” in the sense
that eigenfunctions corresponding to different energies are not necessarily or-
thogonal unless a phase factor in the eigenfunctions is held fixed across the
different energies.’® In 1950 Case did not have available the now standard

I"If A is a closed operator then a subset C'C D(A) is a core for A if Ajc = A.

18The rigorous discussion of generalized eigenfunctions requires rigged Hilbert spaces
since these functions are not elements of the original Hilbert space. A central result is
that for a self-adjoint operator A on H there is a rigging of H in which there is complete
orthonormal set of generalized eigenfunctions of A.

13



von Neumann analysis of self-adjointness, but in hindsight what he discov-
ered is this. The Hamiltonian operators in question are symmetric operators
on C5°(R3\{0}) which is dense in L?(R3\{0}), and since they commute with
complex conjugation they admit self-adjoint extensions.!” In the von Neu-
mann nomenclature, this means that the deficiency indices < n,m > (where
n and m are integers) of the operators are equal.?’ If n = m = 0 then the
operator is essentially self-adjoint, whereas if n = m > 0 then the operator
has an n-parameter family of self-adjoint extensions. What Case found is
that for the potentials in question n = m > 1 with one of the parameters in
the family of self-adjoint extensions corresponding to Case’s phase factor.?!

The different self-adjoint extensions of the Schrodinger Hamiltonians for
these strongly singular potentials produce different physics; in particular,
the energy eigenvalues and the unitary dynamics are both different for the
different extensions. The latter means that, until a particular extension is
chosen, SQM fails to provide unambiguous probabilistic predictions about
the future behavior of a system in a specified initial state if the interactions
in the system are mediated by strongly singular potentials. By means of
heuristic arguments Landau and Lifshitz (1977, Secs. 18 and 35) conclude
that for the potentials in question the energy is not bounded below and,
therefore, the particle moving in these potentials can “fall to the center.” Of
course, whether the particle will literally fall to the center—or execute any
other motion—cannot be treated quantum mechanically until a self-adjoint
extension of the Hamiltonian operator is chosen. But once the choice is made,
one knows in advance that even if a “fall to the center” takes place it will not
involve a catastrophe that prevents the solution from continuing after some
finite time.

Three broad options are available to deal with the failure of Level 1 deter-
minism for these strongly singular potentials. Option 1 is to add additional
principles or laws to SQM to single out or at least narrow down the infinite
class of self-adjoint extensions. Some physicists have a favorite method of
obtaining a specific extension, e.g. Schechter (2002, Sec. 4.2) favors the form

Y9The initial domain cannot be taken to be the test functions C§°(R?) since the poten-
tials at issue are not L? (R?®) and the operator defined by —Ap + Vi, ¢ € C5°(R3), is
not a densely defined operator in L?(R3).

20A specific example of the computation of deficiency indices, deficiency, spaces, etc.
will be given in the following section and the Appendix.

2L For a rigorous proof that the Schrodinger Hamiltonian operator with V (r) = —a/rP is
not essentially self-adjoint when o = 1 and p = 3 see Berezin and Schubin (1991, 157-159).
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sum extension, which is given by a specific and seemingly natural construc-
tion.?? For for semi-bounded operators the Friedrichs extension?®, which is
maximal among the semi-bounded self-adjoint extensions, also has its cham-
pions; but it is unavailable for the potentials now under consideration where
the Hamiltonian operator is not bounded below. In any case, no convincing
argument is given to support the idea that Nature herself must or does in
fact favor the extension given by one or another of these techniques, and it is
not easy to see what form such an argument would take. Option 2 is to ad-
mit that it is a matter of purely contingent fact which self-adjoint extension
Nature chooses. Experiments and inductive inference are thus required to
settle the matter, and only when it is settled is Level 1 determinism restored.
A fall-back Option 3 is to look for commonalities among all of the self-adjoint
extensions—this much the theory does unequivocally predict without having
to exercise either of the first two Options. But such commonalities may be
disappointingly meager.

Since none of these options is attractive, SQM would be in a bit of a
quandary if Nature were to mediate interactions via strongly singular poten-
tials. The Bohmiams are responsible for an analogous quandary of their own
making.

5 Singular potentials in BQM

5.1 The Coulomb potential in BQM

The treatment of the Coulomb interaction in BQM creates a situation that
SQM is forced to confront for strongly singular potentials. The Hamiltonian

1
operator —A — — is symmetric but not essentially self-adjoint on the domain
r

1
D(—A — =) = C5°(R*\{0}); indeed, even —A by itself is not essentially
T

22In rough outline, the construction goes as follows. Associated with a symmetric oper-
ator S with domain D(S) is a hermitian two-form h(¢, ) := (S¢,¢), ¢,v € D(S), which
in turn defines a norm |[€||, := v/h(§,§), & € D(S). Associated with the norm closure of
the two-form is a self-adjoint operator T', the form extension of S. If h; and ho are closed
two-forms then so is hq 2 := h1 + hg, and the operator 17 » associated with hq o is the form
sum of the operators T7 and T5 associated respectively with hy and hs.

23The Friedrichs extension of a positive symmetric S with domain D(S) is the form
extension with respect to the form hp(¢,v) = ((S + )¢, ), ¢, € D(S). For more
details about form sum and Friedrichs extensions see Faris (1975).
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self-adjoint on Cg°(R3*\{0}).2! To see this consider the case of zero angular
momentum where

¢ 2d
=—+-—— 4
dr? + rdr (4)
On a suitable domain A* = A, and with this ansatz we seek to find the
deficiency spaces by finding the solutions of

Ay, (r) = Fithy(r), ¢¥i(r) € LA(R\{0}). (5)
There are two linearly independent solutions
—(1+i
exp(%)

Velr) = —— (6)

An integration by parts argument shows that ¢, () € D(A*) (see Diirr and
Teufel 2005, Sec. 14.3). These solutions span the von Neumann deficiency
spaces 4+ where dim(k, ) = dim(x_) = 1, so there is a one-parameter infinity
of self-adjoint extensions. The isometries U, : k. — k_ are given by U, =
v_, |7] = 1. Thus, the domains of the self-adjoint extensions A, of A are
(see Reed and Simon 1975, Thm X.2)

D(A,) = {e+BY, + BU, |p € CR(R*\{0}), || =1} (7)
= {o+Bv, + Br_lp € CR(RN\{0}), 18] =1}

and the action of —A, on D(—A,) is given by

A (o + By +B_) = —Ap+ifd, —ifyw_ (8)
—(1+i)r —(1=adr
exp(——=")  exp(——=")
= —Ap+ifb( r\/i 7 rﬁ )

p € CrRR\{0}).

2 However, —A is essentially self-adjoint on C§°(R?\{0}) when d > 4. The reader is also
cautioned that the fact an operator A is not essentially self-adjoint on a domain does not
necessarily mean that A + B is not essentially self-adjoint on that domain (see following

subsection). But in the present case neither —A alone nor —A — — is essentially self-adjoint
r
on C&°(R3\{0}).
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It is tempting to think that the self-adjoint extensions of the Bohmian
Hamiltonian operator with Coulomb potential can now be obtained by ap-
plying the Kato-Rellich theorem (recall Section 4.1) to the previously found
self-adjoint extensions A, of A. However, in this instance the potential
is not a “small perturbation” of A, since D(A,) & D(V) = {¢ € H :

o0}

1 ® 1
e (r)e(r)rdr = [¢*(r)e(r)dr < co}. The operators A and — have a
o’ 0 r
1
common dense domain D(A) N D(-), which is in fact equal to D(A), but
r

1
D(A,) is not contained in D(-).
r

1
So to get the self-adjoint extensions of —A — — with initial domain

”
Cs°(R3\{0}) we need to employ a frontal attack and to find the deficiency
spaces by finding the solutions of

L 2d L dieh. 6. eM = LENO)).  (9)

dr? rdr r

The general solutions take the form

= erep(COED g LE
¢4(r) = crexp( 7 )M(1 2@’2’\@(1i))) (10)

—(1&d)r 14 .
T)U(1 - m,z\/éu +i)r))

where M (a,b, z) and U(a, b, z) are respectively the confluent hypergeometric
functions of the first and second kind (see Appendix) and ¢; and ¢, are
arbitrary constants. Since M and U are linearly independent the deficiency
spaces are two-dimensional so that the isometries between the spaces are no
longer the trivial multiplication by a phase factor, and the extended domains
become correspondingly more complicated than in the case of —A alone.
The singularity structure of the potential for a multiparticle system with
pairwise Coulomb interactions is yet more complicated, and correspondingly
the BQM configuration space and the self-adjoint extensions of the BQM
Hamiltonian operator for such a system are even more complicated.

+co exp(
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5.2 Repulsive potentials in BQM

For central potentials that have the form V(r) = ar® with a > 0 and with
£ > 0 the Schrodinger Hamiltonian operator is not essentially self-adjoint
on C§°(R*\{0}) but admits multiple self-adjoint extensions. Finding explicit
expressions for the self-adjoint extensions will not be attempted here. When
the exponent [ is chosen so that V(r) is not smooth, the application of
the Beautiful Result requires the use of the domain C§°(R*\{0}) in place of
Cee(R3).

It should be noted that mutilating the configuration space in the way re-
quired by BQM does not always wreck essential self-adjointness. For example,
the Schrodinger Hamiltonian operators for some singular repulsive potentials,
e.g. a/r? with a > 3/4, are essentially self-adjoint on C$°(R3*\{0}) (Simon
1973b)—intuitively, the strong repulsive force near the origin is sufficient to
prevent the particle from reaching the origin and, thus, to prevent probability
from leaking away.

5.3 Comments

A separate section on strongly singular potentials in BQM is not needed since
the treatment is substantially the same as in SQM.

One is immediately struck by how much extra work is needed in the BQM
treatment of the Coulomb potential and how complicated the results are. But
Bohmians are happy to take on the extra work and to deal with the com-
plications. What they should not be happy with is a strong disanalogy with
SQM. For Coulomb interactions SQM gives unequivocal probabilistic predic-
tions for the future behavior of a system once the initial state is specified.
By contrast BQM yields a treatment of Coulomb interactions that is similar
in crucial aspects to the SQM (and BQM) treatment of strongly singular
potentials: since the different self-adjoint extensions of the BQM Coulomb
Hamiltonian operator give rise to different dynamics, the upshot is that, even
with the initial state specified, BQM gives no unequivocal predictions for the
future behavior of the systems that are bread and butter of atomic physics
and chemistry.

An instructive toy example of the difference in dynamics for different
self-adjoint extensions of a non-essentially self-adjoint Hamiltonian operator
is the motion of a free particle on the positive half-line RT = (0, +00) (Reed
and Simon 1975, 144-145). The Hamiltonian operator —A, = —d?/dz? is
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symmetric on the domain C{°(R™) which is dense in L*(R"). There is a
one-parameter family of self-adjoint extensions —A, , with the parameter
a € RU{oo0}. An incoming wave function that can be approximated near
the origin by a plane wave e** with momentum k > 0 gets reflected at
the origin and becomes an outgoing plane wave de** with a change of phase
d(a, k) = (ik — a)/(ik + a). For a = oo the phase change 6(co, k) = —1 for
all k, as if the particle makes an elastic collision at x = 0.

We cannot supply such a neat example of how the different self-adjoint ex-
tensions of the Hamiltonian operator in the BQM treatment of the Coulomb
potential make for differences in scattering, but we can respond to the ques-
tion of whether or not the different dynamics will result in different Bohmian
particle trajectories. For the dynamics generated by two different self-adjoint
extensions the same initial state ¢(g,0) results in different solutions v, (q, t)
and 14(q,t) of (SE). The question is then whether the same initial Bohmian
particle positions X} (0) will lead to different Bohmian trajectories when the
two solutions ¥, (g, t) and 1,(q,t) are inserted into (GE), the answer being
affirmative iff the terms on the rhs of eq. (3) differ for the two solutions,

VQ/JI((L t) V%(C]a t)

ie. Im —————= # Im ————= for some ¢t > 0. The affirmative could be
77Z}l(q> t) ¢2(Q7 t)

demonstrated by direct calculation in concrete examples, but one can see in
the abstract that Bohmian trajectories must in general be different if (as the
Bohmians desire) global trajectories exist in said self-adjoint extensions for
almost any initial particle positions; for then, if the Bohmian trajectories
were the same for both extensions, the time independence of the equal initial
measures pj(q) := [¥1(g,0)|> and p2(q) := |1h5(q,0)|* under the configura-
tion space flow ¢ (0) = X (0) — qr(t) = Xk (t) generated by the Bohmian
trajectories would mean that u(q) = u?(q) and, thus, that |¢,(q,t)]* =
195(q, t)|? for all t € R. In sum, the different self-adjoint extensions produce
different physics for both the ontology of SQM and the ontology of BQM.

Returning to the toy example of the motion of a particle on the half-line,
it is known that for every self-adjoint extension —A, , of the free particle
Hamiltonian the resulting dynamics supports the existence of global Bohmian
particle trajectories (Berndl et al. 1995). Can the same be said of all of
the self-adjoint extensions found in the preceding subsection for the BQM
Schrodinger Hamiltonian operator with a Coulomb potential? The Bohmi-
ans have conjectured a positive answer but the proof of global existence for
Bohmian trajectories has only been given for the form sum extension.

The toy example of the motion of a free particle on the half-line also
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raises another issue. The Hilbert space L?(R™) for the motion on the half-
line has a natural embedding into the Hilbert space L*(R) for the motion of a
particle on the full real line: since C§°(R") and C§°(R) are dense respectively
in L2(RT) and L?(R) the inclusion map ¢ : CP(RT) — Cg°(R) extends
by linearity and continuity to an isometric map of L?(R™) into L?*(R).%
Given this natural identification of L?(R") as a subspace of L*(R), one can
ask whether some self-adjoint extension —A,, of —A, = —d*/dz? acting
on C¢°(RT) produces a unitary dynamics on L?(RT) that agrees with the
dynamics induced by the L?(R) unitary dynamics generated by the full-
line Hamiltonian A/ (the unique self-adjoint extension of —A, = —d?/dx?
acting on C§°(R)). Obviously not; indeed, the latter dynamics does not even
preserve L*(R*)—for any initial wave function ¢ (z,0) whose support lies
entirely in R¥, ¢(z,t) = U,s(t)¥(x,0) has support in R~ = (—o0,0) for
any t > 0, and for some 1 (x,0) whose support lies entirely in R*, ¢(z,t)
has as small a tail as you like in R™ for large values of . The analogous
question for the BQM vs. the SQM treatment of a particle moving in a
central Coulomb potential has a happier answer. Since C$°(R3*\{0}) is dense
in L*(R3), the inclusion map ¢ : C§°(R*\{0}) — C§°(R?) extends by linearity
and continuity to an isomorphism of L*(R3\{0}) onto L?(R3). Under this
identification some member H oum of the family of self-adjoint extensions for

1
the BQM Coulomb Hamiltonian operator —A — =~ acting on C§°(R3\{0})
T

will have a domain D(Hpoy) C L2(R3) that includes C5°(R®), and since if
two self-adjoint operators are equal if they agree when restricted to a core
of one of them, Hpgys equals the unique self-adjoint extension FSQ m of the
SQM Hamiltonian operator acting on C§°(R?).

6 Reactions

The sophisticated Bohmians are, of course, well aware of the situation de-
scribed in the preceding section. They have a forthright and characteristi-
cally bold two-fold response. First, they aver that “In Bohmian mechanics
there is no a priori reason to demand self-adjointness of the Hamiltonian”
(Berndl et al. 1994, 434) and “An axiom, or dogma, of self-adjointness of

250f course L?(R*) are L?(R) isomorphic since all infinite dimensional and separable
Hilbert spaces are isomorphic. But an arbitrary isomorphism will not agree with the
inclusion map of C§°(R™) into C§°(R).
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the Hamiltonian (or equivalently unitarity of the wave function evolution)
appears quite inappropriate from the Bohmian perspective” (Berndl et al.
1995, 669). We agree completely that the (essential) self-adjointness of the
Hamiltonian operator cannot be taken as an a priori axiom, whether in BQM
or SQM—the example of strongly singular potentials shows this for SQM (re-
call Section 4.3). But the point is that in SQM there is a natural sense in
which the Schrodinger Hamiltonian operator for a Coulomb potential is es-
sentially self-adjoint whereas this is not the case in BQM.

This leads to the second part of the Bohmian response: “It is now [in
the presence of multiple self-adjoint extensions for the BQM Hamiltonian
operator| a matter of physics of the system being described to choose the
right one” (Berndl et al. 1994, 434) and “the choice of the right self-adjoint
extension is a matter of physics” (Berndl 1996, 79).26 We do not know what
to make of the ‘It’s a matter of physics’ mantra except as a tacit appeal to
one of the Options (outlined in Sec. 4.3) that arose in SQM in reaction to
the failure of Level 1 determinism for strongly singular potentials.

Option 1 for BQM (add new principles/laws) is interesting in the light
of the fact that the global existence of Bohmian trajectories has not been
proved for all self-adjoint extensions of BQM Hamiltonian operators for the
Coulomb potential and other singular potentials, although as noted Bohmi-
ans have conjectured that global trajectories exist for all self-adjoint exten-
sions. If the conjecture fails then the existence of global trajectories could be
used as a selection principle to identify the physically permissible extensions.
Such a move strikes us as using circular reasoning that would not appeal to
anyone not convinced of the need for BQM in the first place. If the conjec-
ture is at least partially correct and multiple self-adjoint extensions support
global Bohmian trajectories then implementing Option 1 would require the
introduction of additional physical principles or laws—over and above the
requirement that global Bohmian particle trajectories exist—to single out a
unique self-adjoint extension. Bohmians have shown a willingness to postu-
late new laws restricting the permissible initial wave functions (recall Section
3), but what new laws would suffice for current purposes and how to justify
their law status remains to be seen.

Option 2 for BQM (claim that Nature makes the choice of self-adjoint

26Speaking of the fact that —A is not essentially self-adjoint on C§°(R?\{0}) Diirr and
Teufel (2005, 295) write: “There is of course no problem with that. It is a matter of
physics to select the correct ‘physical’ extension.”
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extension a purely contingent matter to be settled by experiment and in-
ductive inference) would be particularly interesting if there were a serious
possibility that Nature might choose one of the many self-adjoint extensions
of the Bohmian Hamiltonian operator (say, for the Coulomb potential) that
produces a dynamics that differs from the dynamics delivered by SQM. Then
BQM would be vindicated as an alternative to SQM. But if, as a straight
induction from all past experience indicates, Nature always chooses the self-
adjoint extension that agrees with the dictates of SQM, do the Bohmians
then say with a straight face, ‘That’s just the way things turned out,” or do
they harbor some doubts to the effect that ‘Carrying out our program has
led to the illusion that there are live physical possibilities (corresponding to
the infinity of self-adjoint extensions generated by our treatment) that have
to be adjudicated either by experiment or by new physical principles not
recognized by SQM’?

Option 3 (make do with the commonalities among the self-adjoint exten-
sions) is just as unattractive in the BQM treatment of Coulomb interactions
as it was in the SQM treatment of strongly singular potentials since the
commonalities are sparse.

If the Bohmians do not want to exercise any of these Options they can seek
to provide a different approach to proving the global existence of Bohmian
particle trajectories that avoids the problem that necessitates resort to the
unattractive Options. It is fruitless to speculate on the chances of success
of such an endeavour until a specific proposal is provided. Alternatively,
Bohmians could abandon the ambition of proving the global existence of
Bohmian particle trajectories and settle for local existence. But since in
BQM all measurements are supposed to reduce to position measurements,
such an abandonment would conjure the specter of a pervasive breakdown in
determinism for times which the local existence and uniqueness theorems fail
to reach. No doubt there are still other avenues the Bohmians can pursue,
and we would not be so rash as to predict that none of them will lead to an
attractive form of BQM. We do insist, however, that the case of the Coulomb
potential indicates that, without further tweaking, BQM in its present incar-
nation is not an attractive alternative to SQM.

An outside observer who is free of both Bohmian and anti-Bohmian preju-
dices might want to call a plague on both houses on the grounds that debate
about the correct treatment of Coulomb interaction is based on an illicit
idealization.

22



In any physical problem in which we express the interaction be-
tween two systems by means of a potential which becomes infinite
when the distance between them becomes zero, we are dealing
with an idealization. Thus, the Coulomb interaction between the
electron and the nucleus is not strictly proportional to 1/r all the
way down to r = 0. The finite size of the nucleus sets one limit.
Even for a single proton there is the probable finite radius of the
proton. (Case 1950, 797)

While we are cognizant of the danger that the use of idealizations can pro-
duce “effects” that are merely artifacts of the idealizations, we do not share
Case’s worries about the present instance. When physicists speak of the ra-
dius of the proton they do not mean to indicate there evidence that there is
a hard core of the proton in the sense of a cut off point » = ¢ > 0 beyond
which the wave function of the electron cannot penetrate the proton. But if
there were such a cutoff one would need a modification of the Coulomb law
to include a repulsive potential that becomes infinitely high at r = ¢, and
depending on the form of the repulsive potential there could be problems for
BQM similar to the ones discussed above. Our main point, however, is that if
the point particles—assumed in both SQM and BQM-—and the Coulomb po-
tential are idealizations then they are extraordinarily successful ones, at least
as deployed in SQM; indeed, since no gain in empirical accuracy promises to
be forthcoming in the non-relativistic regime by removing the alleged ideal-
izations, it could be argued that they are not, after all, idealizations in the
context of ordinary quantum mechanics.?”

7 Conclusion

Nothing in what we have said shows that BQM in not a viable alternative
to SQM in the non-relativistic regime. But it does show how complicated
and subtle the deployment of BQM is—far more nuances are required than
what the pop science presentations would lead one to believe. In particu-
lar, we want to underscore the main irony uncovered above: BQM aims to
give a fully deterministic interpretation of QM by inflating the ontology of

2T0Of course, these issues take on a different cast in relativistic QFT; but going in this
direction opens the topic of a Bohmian account of QFT, a matter that we cannot even
begin to treat here.
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SQM to include precise particle trajectories and assigning distinct physical
significance to wave functions that correspond to the same Hilbert space
vector; but implementing the BQM strategy in this inflated ontology seems
to undermine the Level 1 probabilistic determinism of SQM. For example,
without the help of supplementary physical principles BQM doesn’t give any
non-ambiguous prescription for the probabilities of future measurement out-
comes for a particle moving in a central Coulomb potential even when the
total Bohmian initial state (initial SQM state plus initial particle positions)
is specified. SQM does give unambiguous probabilistic predictions in this
case, and only an unregenerate inductive skeptic would deny that the mas-
sive evidence in favor of the empirical adequacy of SQM leaves little room to
doubt its predictions.

Acknowledgment: We are grateful to Anthony Anderson and Laura Ruetsche
for helpful suggestions. Needless to say, we alone are responsible for errors
and mistakes.
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Appendix

In solving eq. (10) consider the ¢, case omitting for brevity the subscript:

? 2d 1
2 4y =i Al
[dr2+rdr+r]¢ i¢ (A1)
For r — oo the inverse powers of r become negligible. So for “large values”
of r the solutions of (A1) will approximate the solutions to

d2
T i, (42
which are given by
(1434
belr) = exp =) (A3)

Now substitute ¢(r) = ¢, (r)¢(r) into (A1), and find that £(r) must
satisfy the equation
S ovan e S - varivD =0 ()

dr? r dr

Since we are only interested in solutions with r € (0,00) eq. (A4) can be
rewritten in the form

d? d
rd—7§+[2—\/5(1+z')r]d—f+[1—\/§+ix/§]g:o (A5)
With u := v/2(1 + i)r one has
d§ N3 zg A
so that (A5) becomes
d*¢ d¢ 1—1
S 2w —(1— = A
w2 =)~ (1= Se =0 (A7)
This last equation has the form
d*w d¢
= )= _qw = A
ot (b Z)du aw =0, (A8)
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which is known as Kummer’s equation or the confluent hypergeometric dif-
ferential equation. It has two linearly independent solutions M (a, b, z), con-
fluent hypergeometric functions of the 1st kind or Kummer’s function, and
U(a,b, z), confluent hypergeometric functions of the 2nd kind (see Abramowitz

1—1
and Stegun, 1972, 504). In our case a = 1 —
g ) Wi

and b = 2. So the general
solution to (A7) is

1—1 1—14

u)=ctM(1l— ——,2,u)+cU(l — ——,2,u A9
§(u) = crM( 23 ) + c2U( 23 ) (A9)
where ¢; and ¢y are arbitrary constants. Thus, the general solution to (A1)
Is

B R AV E v
o(r) = crexp( 7 )M(1 2\/5,2,\/5(1+ )r))  (A10)
—(1+9)r 1—i

\U(1 - ;,2,\/§<1 +i)r))

o exp(T W5
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