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Abstract: Various results show the ‘formal equivalence’ of kin and group selec-
tionist methodologies, but this does not preclude there being a real and useful
distinction between kin and group selection processes. I distinguish individual-
and population-centred approaches to drawing such a distinction, and I proceed
to develop the latter. On the account I advance, the differences between kin and
group selection are differences of degree in the structural properties of popula-
tions. A spatial metaphor (‘K-G space’) provides a useful framework for thinking
about these differences: kin and group selection may be conceptualized as large,
overlapping regions of K-G space. I then consider some implications of the ac-
count, defend it from possible objections, and further argue that the structural
features characteristic of both kin and group selection may recur at multiple levels
of biological organization.
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1 Introduction

The relationship between kin selection and group (or multi-level) selection is a
longstanding source of controversy in the social evolution literature. In earlier
debates, biologists tended to regard kin and group selection as rival empirical
hypotheses (Maynard Smith, 1964, 1976; Dawkins, 1982). But many biologists
now regard them as ‘formally equivalent’ approaches, and see this equivalence as
implying that they are not competing empirical hypotheses after all (Marshall,
2011).1 Although there are high-profile dissenters from this equivalence claim2,
including Martin Nowak and Edward O. Wilson, it seems to be endorsed by a
majority of social evolution theorists.3

Yet the debate has long been hampered by insufficient attention to the distinc-
tion between statistics and causality (Birch and Okasha, 2015; Okasha, 2016). It
is crucial to distinguish between the formal equivalence of two statistical descrip-
tions of change and the causal equivalence (or otherwise) of two types of selection
process responsible for change. The former does not imply the latter. Indeed, my
claim in this article is that, although there is an important sense in which kin
and group selection are formally equivalent when conceived as statistical descrip-
tions of change, there is a real and useful—but not sharp—distinction between kin
and group selection conceived as causal processes responsible for change. The key
differences lie in their commitments regarding population structure.

Here is the article in outline. In the next section, I consider the ‘formal equiv-
alence’ results mentioned above, explaining why these results are compatible with
there being a biologically meaningful distinction between kin and group selection.
In Section 3, I set out two ways of making sense of this distinction. One ap-

1Here, and throughout the article, the type of group selection I have in mind is ‘MLS1’ in
the terminology of Heisler and Damuth (1987). In other words, it is group selection in which
the fitness of a group is defined as the average fitness of its members, rather than the number
of offspring groups it produces. I use the term ‘group selection’ in preference to ‘multi-level
selection’ because I see both kin and group selection as processes that can occur at multiple
levels of organization (see Section 7).

2For example, Traulsen (2010); Nowak et al. (2010) and van Veelen et al. (2012) depart from
this view in various ways. Sober and Wilson (1998) depart from it by regarding kin selection
as a special case of group selection. As will become clear in due course, I do not regard either
process as a special case of the other.

3For statements of the consensus view, see Wenseleers et al. (2010); Gardner et al. (2011);
Marshall (2015).
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proach, developed by Samir Okasha (2016), locates the difference in the causal
path at the individual level between an organism’s genotype and its fitness. I
highlight some problems with Okasha’s approach that, although not fatal, moti-
vate the development of an alternative. My favoured alternative, which I call the
‘population-centred’ approach, locates the difference in the structural features of
populations.

The rest of the article pursues the population-centred approach. In Section 4,
I draw inspiration from two sources: W. D. Hamilton’s (1975) views on the rela-
tionship between kin and group selection, and Peter Godfrey-Smith’s (2006; 2008)
recent work on the varieties of population structure. Section 5 combines these in-
fluences into a positive proposal. The intuitive idea is that kin selection occurs in
populations that are structured such that relatives tend to interact differentially,
whereas group selection occurs in populations in which there are stable, sharply
bounded and well-integrated social groups at the relevant grain of analysis. Some
populations have both features, but it is possible for one to occur without the
other. Since these structural features are matters of degree, a spatial metaphor
(‘K-G space’) is useful for thinking about the distinction.

The account also requires that rb , 0 as a precondition for both kin and group
selection; in Section 6, I explain and defend this requirement. In Section 7, I
discuss the relationship between the kin/group selection distinction and levels of
biological organization, arguing that both types of selection process can occur at
multiple levels. In Section 8, I conclude by setting out the key questions at stake,
by the lights of my account, when we ask whether a process is one of kin selection
or group selection.

2 Equivalence Results and Their Limitations

2.1 An example of an equivalence result

The best-known argument for the ‘formal equivalence’ of kin and group selection
involves comparing a generalized version of Hamilton’s rule (Queller, 1992a) with
the multi-level version of the Price equation (Price, 1972), and noting that both
provide correct conditions for positive gene frequency change in a group-structured
population, given some fairly minimal assumptions. I will not recount the details
of the argument here (for details, see Marshall 2011; Frank 2013; Birch and Okasha
2015; Okasha 2016), but I will briefly explain the source and nature of the equiv-
alence result.

The route to the generalized version of Hamilton’s rule, in the case of a social
trait controlled by a single allele, involves mathematically decomposing the overall
change in allele frequency between ancestral and descendant populations (such as
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two consecutive generations of a discrete generations model) into a ‘direct’ and an
‘indirect’ component:4

∆p =

direct fitness effects︷       ︸︸       ︷
−cVar(pi)

w
+

indirect fitness effects︷      ︸︸      ︷
rbVar(pi)

w
(1)

Here, pi denotes the individual gene frequency, with respect to the allele of
interest, of the ithindividual in the population; and Var(pi) is the variance of pi
in the ancestral population.5 ∆p is the change in the frequency of the allele be-
tween the ancestral and descendant populations, and w is the mean fitness in the
ancestral population, where the ‘fitness’ of an individual is defined as the number
of descendants it contributes to the descendant population. r is the coefficient of
relatedness, defined, as in Queller (1992a), as a measure of the statistical asso-
ciation between the genotypes of social partners.6 c and b are, respectively, the
coefficients of cost and benefit, defined, as in Queller (1992a), as partial regression
coefficients in a regression model of fitness.

The key point to note about r, b and c is that they are population statistics,
quantifying the overall associations in the population between the genotypes of
social partners (r), one’s own genotype and one’s fitness (c) and one’s social part-
ners’ genotypes and one’s fitness (b). With respect to r in particular, I should
emphasize that it is a measure of genotypic assortment, which may or may not be
attributable to kinship. As Hamilton (1975) stressed, there are sources of geno-
typic assortment that do not rely on kinship, including shared habitat preference,
and so-called ‘greenbeard’ phenomena in which altruists (or bearers or some other
social trait) recognize each other by means of a phenotypic marker (Dawkins, 1976;
Gardner and West, 2010).

The above decomposition implies the following condition for positive change,
which is a standard formulation of Hamilton’s rule:

∆p > 0 ⇐⇒ rb > c, provided Var(pi) , 0 (Hamilton’s rule)

Let us now compare this with a maximally general formulation of group selec-
4The same decomposition can be obtained for the change in a polygenic character, but in

this case we should interpret pi as a breeding value rather than an individual gene frequency
(Queller, 1992a; Falconer and Mackay, 1996; Frank, 1998; Marshall, 2015). Here I focus on the
single allele case.

5An individual’s gene frequency is the number of copies of the allele it possesses at the
relevant locus in its genome, divided by its ploidy (Price, 1970). For a haploid organism, pi = 1
if the individual has the allele and pi = 0 otherwise.

6Formally, r is defined as the regression coefficient when we regress pi on p′i , where p′i denotes
the average p-value of the ithindividual’s social partners Grafen (1985); Queller (1992a).
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tion theory: the multi-level Price equation (Price, 1972).7 This provides an alter-
native mathematical decomposition of change that applies whenever a population
is group-structured. It partitions change into a ‘between-group’ and ‘within-group’
component:8

∆p =

between-group︷          ︸︸          ︷
Cov(Wk ,Pk )

w
+

within-group︷                   ︸︸                   ︷
Ek [Covk (w j k ,p j k )]

w
(2)

Here, w j k and p j k denote the fitness and individual gene frequency (respec-
tively) of the jthmember of the kthgroup; while Wk and Pk denote (respectively) the
mean fitness and group gene frequency (respectively) of the kthgroup. Cov(Wk ,Pk ),
then, captures the covariance between a group’s gene frequency and its mean fit-
ness, while Ek [Covk (w j k ,p j k )] captures the average across groups of the within-
group covariance between an individual’s gene frequency and its fitness.

This decomposition also implies a condition for positive change, which we might
call ‘Price’s rule’:

∆p > 0 ⇐⇒ Cov(Wk ,Pk ) + Ek [Covk (w j k ,p j k )] > 0 (Price’s rule)

The argument for the ‘equivalence’ of the two conditions relies on the fact
that both are derived from the Price equation (Price, 1970) with few additional
assumptions. Both derivations assume that the allele is transmitted without bias.
The only additional assumptions required for the derivation of Hamilton’s rule
are that Var(pi) , 0 and that pi and p′i are not collinear, so that the cost and
benefit coefficients are well-defined. The only additional assumption required for
the derivation of Price’s rule is that the population is group-structured. In all
populations that satisfy the assumptions of both derivations (that is, in all group-
structured populations in which alleles are transmitted without bias, pi and p′i are
not collinear, and Var(pi) , 0) both decompositions are correct and the following
equivalence holds (Marshall, 2011; Frank, 2013; Birch and Okasha, 2015; Okasha,

7This way of formulating group selection is favoured by some theorists (such as Gardner
and Grafen, 2009; Marshall, 2011; Gardner, 2015; Birch and Okasha, 2015; Okasha, 2016) and
rejected by others in favour of an alternative approach known as contextual analysis (Heisler
and Damuth, 1987; Damuth and Heisler, 1988; Goodnight et al., 1992; Goodnight, 2013). Here
I take the multi-level Price equation as my focal example of a multi-level approach; but, as I
explain in the next subsection, the same general point could be made using contextual analysis
as our focal example. The point of this section is simply that there is a close formal relationship
between kin selectionist and multi-level methods, and the formal relationship is even closer if we
take contextual analysis as our focal example of a multi-level method (see Okasha 2016, p. 440).

8The ‘Cov’ in Cov(Wk ,Pk ) and the ‘E’ in Ek

[
Covk (w jk ,pjk )

]
should be interpreted as ‘size-

weighted’ functions in the sense of Price (1972); otherwise we need the further assumption that
all groups are equal in size.
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2016):

∆p > 0 ⇐⇒ rb > c ⇐⇒ Cov(Wk ,Pk ) + Ek
[
Covk (w j k ,p j k )

]
> 0 (3)

To understand the intuitive rationale for this, imagine the typical circumstances
under which each condition would be satisfied for an altruistic trait controlled by
a single gene. First, consider what is required for rb > c. It must be that bearers
of the gene cluster together, so that the benefits of altruism fall differentially on
bearers of the gene. Second, consider what is required for the selection against
the trait within groups to be outweighed by selection for the trait between groups.
Again, it must be that bearers of the gene cluster together, so that the heritable
variation in fitness within groups is suppressed and the heritable variation in fitness
between groups is boosted. Both approaches can thus be seen as alternative ways
of capturing the fundamental requirement that bearers of the gene for altruism
interact differentially with each other.

2.2 Limitations

The result in (3) is plainly an equivalence result of a sort. But we should be
clear about what it does and does not show. Four main limitations are worth
spelling out. Firstly, the result holds only in populations with a particular type
of structure: group structure. Not all populations are group-structured, and the
multi-level Price equation can be applied in the absence of group structure only
by assigning organisms to groups arbitrarily, which deprives it of biological signif-
icance. I think the importance of this qualification has been understated in the
literature (Godfrey-Smith 2006, 2008 is an important exception; see Section 4).

Secondly, the result involves comparing highly abstract, purely genetic formu-
lations of kin selection and group selection theory, ignoring the complications that
arise when we want to apply one of these approaches to analyse change in a partic-
ular ecological scenario. For example, in both the kin selectionist and multi-level
modelling traditions, theorists tend to use phenotypic rather than genetic pre-
dictors of fitness when they have empirical applications in mind, since hypothe-
ses about phenotypic selection gradients are easier to test empirically (Grafen,
1984; Queller, 1992b; Frank, 1998; Goodnight and Stevens, 1997; McGlothlin et al.,
2014). In fact, formal equivalence results can still be derived in relation to pheno-
typic versions of the two approaches, provided like is compared with like (Queller,
1992b; Birch and Marshall, 2014).

Thirdly, not all group selection theorists accept that the multi-level Price equa-
tion succeeds in separating the effects of selection at the group and individual lev-
els. There is a prominent alternative—contextual analysis—advanced by Lorraine
Heisler and John Damuth (Heisler and Damuth, 1987; Damuth and Heisler, 1988)
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and by Charles Goodnight and colleagues (Goodnight et al., 1992; Goodnight and
Stevens, 1997; Goodnight, 2013). The clash between contextual analysis and the
multi-level Price equation is long-running, and I do not aim to weigh into that
debate here.9 It is sufficient to note that contextual analysis involves decomposing
change in a very similar way to the generalized version of Hamilton’s rule: here too
we decompose fitness using a regression model, but rather than taking the average
genotype of the focal individual’s social partners as a predictor, we take properties
of the focal individual’s social group (Heisler and Damuth, 1987). Thus the formal
relationship between kin selectionist and multi-level methodologies would be even
closer if we were to take contextual analysis as our flagship example of a multi-level
approach, and it would become even clearer that the methodological differences
between these traditions reflect divergent modelling preferences and explanatory
interests rather than divergent empirical commitments (Okasha, 2016, p. 440).10

Fourthly, and most fundamentally, neither the generalized Hamilton’s rule nor
Price’s rule, taken in isolation, says much about the causal processes driving evo-
lutionary change. Like the Price equation itself, these rules are highly abstract,
statistical results, compatible with a wide range of underlying causal explanations
of change. There are many different causal explanations for the satisfaction of
Hamilton’s rule (for reviews, see West et al., 2007; Bourke, 2011). The same goes
for Price’s rule: it provides a different way of carving up the change in gene fre-
quency, but it too does so without implying anything in particular about the causes
of change. It would therefore be a mistake to infer the identity of kin and group
selection, conceived as causal processes responsible for change, from an equivalence
result that merely concerns the relationship between two statistical conditions for
change.

Of course, if we were to stipulate that by the term ‘kin selection’ we mean
Hamilton’s rule and by the term ‘group selection’ we mean Price’s rule, evading
the issue of causality, then there would be little to add to the equivalence result in
(3). But I doubt whether this is the most useful way to employ these terms. After
all, these terms intuitively refer to kinds of causal process—to things that actually
happen in natural populations, and that feature in causal explanations—and not
to formal methods, modelling traditions, or statistical conditions for change. I

9See Okasha (2006) for an overview of the issues.
10Goodnight (2013) suggests two ways in which the explanatory interests of the kin selectionist

and contextual analysis traditions diverge: contextual analysis focusses on phenotypes whereas
kin selectionist approaches tend to focus on genotypes (although many models in the kin selec-
tionist tradition also focus on phenotypes, such as Queller, 1992b; Frank, 1998; McGlothlin et al.,
2014); and contextual analysis focusses on away-from-equilibrium change whereas kin selection-
ist approaches tend to focus on finding equilibria (although many models in the kin selectionist
tradition also focus on away-from-equilibrium change, such as Hamilton, 1964; Queller, 1992b).
These differences indicate different modelling preferences and explanatory interests, not deep
disagreements about the causes of evolution.
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think we should hold on to that intuition. I contend that the right moral to draw
from the formal equivalence of Hamilton’s rule and Price’s rule, and other similar
equivalence results, is not that kin and group selection are identical causal pro-
cesses, but rather that purely statistical formalisms lack the resources to capture
the causal distinction between them.11

3 Individual- and Population-Centred Approaches

Broadly speaking, there are two approaches one can take to capturing the causal
distinction. One is an individual-centred approach that explicates the distinction
in terms of differences in the causal path that runs from a focal individual’s genes
to its fitness. The other, which I will develop in this article, is a population-
centred approach that explicates the distinction in terms of structural properties
of populations. To provide a rationale for pursuing the second approach, I should
comment briefly on the first.

Samir Okasha (2016) has recently pursued the first approach, drawing on the
notion of a causal graph (see Spirtes et al., 2000; Pearl, 2009). Okasha suggests
that, in paradigm cases of group selection, a causal path runs ‘upwards’ from the
individual gene frequency of a focal individual (pi) to the local group’s gene fre-
quency (Pi), then through the group gene frequency to the group mean fitness
(Wi), and finally ‘downwards’ from group mean fitness and an ‘allocation mecha-
nism’ to the focal individual’s fitness (wi) (see Figures 8 and 9 in Okasha, 2016).
In paradigm cases of kin selection, by contrast, there is no causal path running
via the group means and no allocation mechanism. Instead, we have a causal path
running directly, at the individual level, from the genes of one individual, via its
own behaviour, to the fitness of another individual, and the fitness of the group is
determined by the individual fitness of its members (see Figure 6 in Okasha, 2016).
Figure 1, reprinted from Okasha (2016), depicts the relations between individual
and group fitness in the two cases, without including genotypes (see Okasha, 2016,
for more detailed figures).

Okasha’s graphs for paradigm cases of group selection posit ‘bottom-up’ causal
relationships between individual gene frequencies and the group gene frequency
and ‘top-down’ causal relationships between the group mean fitness and individual
fitness values. I am uneasy with this aspect of the proposal, because I do not see
the relationship between a set of individual properties and the group mean of those
properties as one of causation. It strikes me as more accurate to describe this as a
relationship of supervenience, because two groups cannot differ in their mean value
of some property unless there is at least one difference between their respective
sets of individual values.

11A point also stressed by Birch and Okasha (2015); Okasha (2016), and Lehtonen (2016).
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Figure 1: An illustration of the causal graphs approach. Case (a) is a paradigm case
of kin selection; case (b) is a paradigm case of group selection. The mathematical
relation between group fitness (Wi) and individual fitness (wi) is the same in both
cases: Wi is the group mean of wi. However, in case (a) the individual fitness
values metaphysically determine the group mean; whereas in case (b) the group
mean, in conjunction with an allocation mechanism, metaphysically determines
the individual fitness values (Figure reprinted from Okasha, 2016, Figure 4).

Foreseeing this problem, Okasha argues that, although these relationships would
not normally be considered causal, they ‘can be depicted as if [they] were causal
without violating the principles of causal modelling’ (Okasha, 2016, p. 449). How-
ever, this ‘as if’ move leads to a concern about whether the direction of these
arrows is adequately constrained by the causal facts. In all cases, Wi supervenes
on the set of wi values. In some cases, Okasha draws a causal arrow from wi to Wi;
in other cases, he draws a causal arrow from Wi to wi. Why is the same relation-
ship of supervenience to be represented in some cases by a top-down causal arrow
and in other cases by a bottom-up causal arrow, and what constrains this choice?

Okasha’s view is that the choice depends on the ‘direction of metaphysical
determination’ between wi and Wi, which may be ascertained using ‘modal intu-
itions, empirical knowledge of the system being modelled, or both’ (p. 451). For
example, Okasha suggests that, if wi depends on the sharing of a group payoff,
such as a large animal carcass, then it accords with intuition to say that the in-
dividual fitness values are metaphysically determined by the group mean fitness;
whereas, if wi depends only on payoffs obtained separately by individuals, such as
smaller animals they have hunted individually, then it accords with intuition to
say that the group mean fitness is metaphysically determined by the individual
fitness values.

I do not share these intuitions: my intuition, for what it’s worth, is that a group
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mean is always metaphysically determined by the individual values over which it
averages, and that this remains the case even when the individual fitness values
are causally explained by the sharing of a group resource. If this is right, then
the arrow between wi and Wi should always be a bottom-up arrow, and never a
top-down arrow. However, I take it that intuitions on this question will differ, as
will opinions regarding the evidential weight such intuitions merit. The deeper
concern here is that Okasha’s picture makes the classification of a process as one
of kin or group selection dependent on such intuitions. This, I suggest, motivates
the development of an alternative approach that can classify a process on the
basis of its empirically observable features, without relying on intuitions about the
direction of metaphysical determination that are subject to interpersonal variation.

A related but subtly different problem for Okasha’s graphs concerns the arrow
at the group level that runs from Pi to Wi. If we accept that the true relationship
between a set of individual properties and the group mean of those properties is
one of supervenience rather than causation, we run into traditional philosophical
concerns about the causal efficacy of supervenient properties. Can group means
cause other group means, or can the appearance of a causal relationship between
two group means be explained away as a by-product (i.e. an ‘epiphenomenon’)
of causation at the level of individual properties? So-called ‘causal exclusion’
arguments, a staple of the philosophy of mind for several decades, seem to have
some purchase here (Kim, 2005).

This is not the place for a lengthy discussion of such arguments, or of the
numerous responses to them (for a review of this area, see Robb and Heil, 2014).
Okasha is right, I think, to set this issue to one side for his purposes. However,
the way in which he does so leads to a problem. After acknowledging that the
question of causal exclusion is a ‘controversial metaphysical issue that is better
not to prejudge’ (p. 450), Okasha aims to sidestep the question by explicating
the meaning of causal arrows between group variables in terms of hypothetical
interventions on the supervenient property and its lower-level supervenience base:

[T]he following convention is adopted here: in a causal graph in which
one variable supervenes on others, when we consider hypothetically
intervening on the supervenient variable we do not hold fixed the vari-
ables on which it supervenes, but rather alter them to preserve consis-
tency. Modulo this convention, causal arrows going out of supervenient
variables, if any, can be understood in the usual way. (Okasha, 2016,
p. 450)

Thus, we are to interpret a causal arrow running from Pi to Wi as implying that
a counterfactual intervention on Pi and the individual gene frequencies over which it
averages would lead to a change in Wi. This renders such arrows neutral regarding
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the causal exclusion problem, since even a sceptic about full-blooded causation
between group means should not object to the metaphysically thin relations of
counterfactual dependence Okasha takes the group-level arrows in his graphs to
imply. The trouble with this manoeuvre is that this thin sort of counterfactual
dependence holds even in cases in which there is intuitively no group selection at
work.

Consider G. C. Williams’s (1966) famous example of a population of deer,
structured into herds. Herds containing faster deer are more successful than those
containing slower deer, but only because faster individuals are more successful
at evading predators than slower individuals. This is usually considered a case
in which there is no genuine group selection—only covariance between a group’s
mean running speed and its mean fitness caused by natural selection acting on
individuals (Okasha, 2006, Ch. 3). Yet if one were to intervene on the mean
running speed of a herd of deer, altering the individual running speeds of the group
members to preserve consistency, this would make a difference to the group mean
fitness. Okasha cannot consistently omit a causal arrow from Pi to Wi in such cases
(as in Figure 5 in Okasha, 2016), given his apparent interpretation of the meaning
of such an arrow.

I do not see these as fatal objections to the individual-centred approach Okasha
pursues, but they are enough to motivate the development of an alternative. There
are two key ideas at the heart of my approach that mark important departures
from Okasha’s. First, I see the causal differences between kin selection and group
selection as differences of degree, not all-or-nothing differences explicable in terms
of the presence or absence of certain causal relationships. Second, I take it that
the degree to which a selection process resembles a paradigm case of kin selection
or group selection depends primarily on the structure of the population. Okasha’s
graphs implicitly make assumptions about population structure (for example, a
graph containing a ‘group gene frequency’ variable implicitly assumes the existence
of groups), but they do not give population structure a central role. I favour
an approach that explicitly accounts for the differences between kin and group
selection in terms of the structural features of populations, bringing the role of
population structure to the fore.

4 Two Influences: Hamilton and Godfrey-Smith

Before setting out the details of my proposal, I want to acknowledge (and highlight
the insights of) two important influences. First, here are W. D. Hamilton’s (1975)
own views on the relationship between kin and group (multi-level) selection:

If we insist that group selection is different from kin selection the term
should be restricted to situations of assortation definitely not involving
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kin. But it seems on the whole preferable to retain a more flexible use of
terms; to use group selection when groups are clearly in evidence and to
qualify with mention of ‘kin’ (as in the ‘kin group’ selection referred to
by Brown), ‘relatedness’ or ‘low migration’ (which is often the cause of
relatedness in groups), or else ‘assortation’, as appropriate. The term
‘kin selection’ appeals most where pedigrees tend to be unbounded and
interwoven, as is so often the case with humans. (Hamilton, 1975, p.
337)

Although Hamilton in this passage initially sounds sceptical of there being a useful
distinction between kin and group selection, he then proceeds to set out a nuanced
way of thinking about that distinction. As I read it, he takes the view that the
terminology of ‘kin selection’ and ‘group selection’ does track real and biologically
important differences, but the differences that matter are differences of degree
in aspects of population structure. The degree to which groups are ‘clearly in
evidence’ matters, as does the degree to which assortment is explained by kinship.
But the distinction is not clean or neat; it is not a dichotomy.

A second inspiration is Peter Godfrey-Smith’s (2006; 2008) work on the va-
rieties of population structure. Godfrey-Smith contrasts group-structured pop-
ulations with what he terms ‘neighbour-structured’ populations. In the former,
social interactions are contained within sharply bounded, well-integrated groups
in which everyone interacts with everyone else. In the latter, every individual in-
teracts with its nearest neighbours, but there are no well-defined groups: there
are only continuously overlapping networks centred on individuals. As Godfrey-
Smith notes, one way to conceptualize the difference between these structures is in
terms of the transitivity (or otherwise) of connections in social neighbourhoods. In
the paradigm case of a group-structured network, the relation of fitness-affecting
interaction is perfectly transitive (if A affects the fitness of B, and B affects the
fitness of C, then A affects the fitness of C). By contrast, in the paradigm case
of a neighbour-structured network—one in which each individual interacts with
its four adjacent ‘von Neumann neighbours’ on a square lattice—the relation is
perfectly intransitive: if A affects the fitness of B, and B affects the fitness of C,
then A does not affect the fitness of C, assuming A , C. These should be seen as
extreme cases: real social networks are likely to be neither perfectly transitive nor
perfectly intransitive, but will instead have some intermediate level of transitivity.

The mathematical literature on network analysis gives us some formal tools
with which to quantify the extent to which a network approximates these extreme
cases. Network analysis has grown rapidly in recent years, and a great deal of work
in this area has concentrated on the problem of identifying communities within
networks (reviewed by Fortunato 2010). The starting point for any approach
to this problem is to represent the whole-population social network as a graph
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in which the individuals are the vertices (or nodes) and social interactions are
the edges (or connections) between the vertices. Social neighbourhoods of focal
individuals can then be represented as subgraphs. The vertices to which a focal
vertex (vi) is directly connected by an edge are known as its adjacent vertices. The
subgraph N [vi], comprising vi and all vertices adjacent to vi is known as the closed
neighbourhood of vi. This gives us the basic framework we need to start thinking
more formally about the structure of social neighbourhoods.

One formal tool that is particularly useful for our purposes is the relative
density of a social neighbourhood. Informally, the relative density compares the
number of ‘inner’ connections joining up the members of a social neighbourhood to
the number of ‘outer’ connections linking the members to other organisms outside
the neighbourhood. Formally, the relative density is defined in terms of two other
concepts: the internal and total degree of a subgraph. Consider the subgraph N [vi],
representing the closed neighbourhood of a focal vertex. The internal degree of
an arbitrary vertex v j in N [vi] is the number of edges directly linking v j to other
vertices within N [vi]; the external degree of v j is the number of edges directly
linking it to vertices outside N [vi]; and the total degree of v j is the sum of its
internal and external degrees. The internal degree of the subgraph N [vi] is then
defined as the sum of the internal degrees of its vertices, and the external and total
degrees of the subgraph are likewise defined as the sum of the external and total
degrees (respectively) of its vertices. The relative density of N [vi] is the ratio of
its internal degree to its total degree (Fortunato, 2010, p. 85).

In Godfrey-Smith’s paradigmatic neighbour-structured population, in which
each organism interacts with its four von Neumann neighbours on a square lattice,
the subgraph defined by a focal individual and its von Neumann neighbourhood
has a relative density of 2/5 (0.4): the internal degree is 8 and the total degree
is 20. By contrast, the subgraph defined by an hermetically sealed social group,
with no outward connections, has a relative density of 1. An intermediate case is a
square lattice in which each individual interacts with its eight ‘Moore neighbours’
(including, in addition to its four von Neumann neighbours on each side, the four
neighbours on the corners between these sides): the internal degree is 40 and the
total degree is 72, implying a relative density of 5/9 (0.55).

The relative density is very sensitive to isolation—a subgraph with some inter-
nal connections and no outward connections will always have a relative density of
1, no matter how poorly integrated it is—but, for any subgraph with some outward
connections, it is also sensitive to the extent to which the subgraph is internally
joined-up. For these reasons, the relative density provides an attractive way of
quantifying the extent to which well-defined groups are ‘clearly in evidence’ in a
population.
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5 K and G

My proposal is that we conceptualize the distinction between kin and group se-
lection in terms of gradated differences in two key structural properties of popu-
lations. I will label these properties as K (for ‘kin-structure’) and G (for ‘group-
structure’).13 Kin selection, roughly speaking, is selection on indirect fitness differ-
ences (rb , 0) that occurs in a high-K population (a population with a high degree
of kin-structure); whereas group selection, roughly speaking, is selection on indi-
rect fitness differences (rb , 0) that occurs in a high-G population (a population
with a high degree of group-structure).

To be clear, this proposal is not intended to capture all current usages of the
terms ‘kin selection’ and ‘group selection’. Rather, it is a proposal about how
these concepts should be used, if we want them to mark a real and evolutionarily
significant distinction among selection processes. It is to some extent a revision-
ary proposal, although, as I have been emphasizing, I see it as well-aligned with
Hamilton’s own views on how the distinction should be drawn.

Before explaining K and G, let me stress the condition that, for either kin or
group selection to occur, it must be the case that rb , 0 in the population as a
whole. In other words, both kin and group selection act on indirect fitness differ-
ences, and therefore rely on the presence of positive genotypic assortment. The
requirement may be less restrictive than it initially appears, since, as I emphasized
in Section 2, positive genotypic assortment can arise from sources that do not rely
on genealogical kinship, such as shared habitat preference and greenbeard effects.
If rb = 0, then the selection process at work relies on direct fitness effects alone,
and I claim that to count such a process as one of kin or group selection unhelpfully
obscures this fact. If what is on offer is a direct fitness explanation, we should not
invoke these concepts. While I hope this sounds reasonable on first hearing, many
group selection theorists allow that group selection can occur when rb = 0, so I
will comment further on this issue below (in Section 6).

12But note that, if a group is isolated but poorly connected internally, this will tend to show
up in lower relative densities for the social neighbourhoods of individuals at the periphery of
the group. For example, imagine a subgraph comprising a central individual and its four von
Neumann neighbours that has no outward connections to the rest of the population. The cen-
tral individual’s social neighbourhood has a relative density of 1, but, for the four peripheral
individuals, the relative density of their social neighbourhood is 0.4. For this reason, the aver-
age relative density over all neighbourhoods will tend to be quite low when groups are poorly
integrated internally, even if the groups are isolated from each other.

13This form of labelling is inspired by that of Godfrey-Smith (2009).
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5.1 K

K , the degree of kin-structure in a population, is intended to capture the overall
extent to which genealogical relatives interact differentially with respect to the
character of interest. Accordingly, I will refer to populations in which there is
a high degree of differential interaction between relatives as ‘high-K ’ populations;
and I will refer to populations in which there is no tendency for relatives to interact
differentially as ‘zero-K ’ populations.

I do not intend to commit to a single quantitative measure of K , firstly because I
want to allow that different measures may be appropriate in different contexts, and
secondly because I do not need to commit to a measure in order to use K to make
qualitative comparisons among populations (cf. Godfrey-Smith, 2009; Queller and
Strassmann, 2009). However, for the purpose of fixing ideas, it may be helpful to
think of K as the correlation between social partner genotypes (with respect to the
character of interest) that would obtain in the absence of any kinship-independent
sources of such correlation, such as greenbeard effects.14

How high does the degree of differential interaction between relatives have to be
before we have a case of kin selection? Because we are dealing with a continuum of
cases here, any cut-off will be a pragmatic choice, and it is arguably best to avoid
any such cut-off. Following Godfrey-Smith (2009), I prefer to talk of ‘marginal’
and ‘paradigm’ cases. Paradigm cases of kin selection occur in high-K populations.
When we have non-zero rb but very low K , either because r is very low or because
it is largely generated by kinship-independent mechanisms, we have at best a
marginal case of kin selection, and such a selection process is probably more aptly
described in other terms. Human evolution may be an example of a marginal case,
since estimates based on studies of modern hunter-gatherers suggest a value of
genetic relatedness of around 0.05 in such societies (Hill et al., 2011; Bowles and
Gintis, 2011).

One might ask: why does K matter? Why is this a structural property worth
estimating? Why are comparisons among populations, in regard to their degree
of K , worth making? My answer is that kin-structure has a special role to play
in generating the conditions for the evolution of stable altruistic or spiteful be-
haviour. Genetic correlations can certainly arise without kinship, as shown by
greenbeard phenomena (Hamilton, 1975; Dawkins, 1976). But there is a standard
concern regarding greenbeard effects: altruism that relies on this mechanism will
be stable only if, for some reason, the expression of the altruistic behaviour can-
not be suppressed without also suppressing the phenotypic marker (in Dawkins’s
famous example, a literal green beard) that attracts benefits from others. If this
selective suppression is possible, then it will pay to be a ‘falsebeard’: an organism

14In cases where kinship-independent sources are actually absent, this is related to r but not
identical to it, since r is a regression coefficient rather than a correlation coefficient.
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who expresses the marker without expressing the altruism. By contrast, genetic
correlations generated by kinship-dependent mechanisms are not so easy to sub-
vert, because kinship generates genetic correlation at every locus in the genome
(Ridley and Grafen, 1981; Okasha, 2002; Gardner and West, 2010).

5.2 G

G, the degree of group-structure in a population, is intended to capture the over-
all extent to which a population contains well-defined social groups, at the right
grain of analysis for generating non-zero rb, that are stable over the course of the
life-cycle. A ‘high-G’ population is one in which groups are well-integrated, highly
stable and effectively insulated from other groups, with no room for ambiguity
regarding group membership. John Maynard Smith’s (1964) haystacks model, in
which we imagine social interaction and reproduction occurring in isolated sub-
populations (envisioned as haystacks inhabited by mice), with occasional mixing
events, is a good example of this.15 A ‘low-G’ population is one in which, although
interaction is locally structured to some extent, there are no discrete, well-defined
social groups to speak of, because—as in the von Neumann neighbour-structured
populations of Godfrey-Smith (2008)—social neighbourhoods blur continuously
into one another. A ‘zero-G’ population is one in which we do not even have
neighbour-structure: individuals interact with social partners drawn from the pop-
ulation as a whole, with no regard to their spatial location.

The qualification ‘at the right grain of analysis for generating non-zero rb’ mer-
its emphasis. For example, one might worry that all populations of multicellular
animals are ultimately high-G populations: after all, there is always group struc-
ture if one looks at a fine enough grain of analysis, because one can always describe
individual animals as groups of cells. However, this sort of ‘group-structure’ is at
the wrong grain of analysis if we want to explain the evolution of an organism-level
social phenotype manifested in interactions between organisms. The right grain
of analysis is that of the organism-level social network defined by fitness-affecting
interactions with respect to the phenotypic character of interest. The population
is ‘high-G’ if that network can be subdivided into sharp and stable social groups.

As with K , I do not intend to commit to a single quantitative measure of G. I
suspect there is no perfect measure, and that the most appropriate measure will
depend on the context, because the relative importance of the different properties
that contribute to G—internal integration, external isolation, and stability over
time—will depend on the context. But again, for the purpose of fixing ideas, it
may be helpful to have a possible measure in mind. One possible measure with

15The place of a haystacks model on the K-axis depends on the parameter vaues: the size of
the founding population, the assortativity of group formation and the time of isolation.
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attractive features is the average, taken over all individuals in the population and
over an appropriate time period, of the relative density of a focal individual’s
social neighbourhood. As we saw in Section 4, this ranges between 0 and 1, and
places von Neumann neighbour-structure at 0.4, Moore neighbour-structure at
0.55, and perfectly integrated, hermetically sealed groups at 1. The range 0 to
0.4 is occupied by social structures in which the average social neighbourhood
has a greater external degree than we see in a von Neumann neighbour-structured
population, without displaying significantly more internal integration.16 The range
0.55 to 1 is occupied by social structures that display less internal integration
and/or external isolation than in the idealized extreme case, but more internal
integration and/or external isolation than we see in a Moore neighbourhood.

The relative density is well suited to measuring internal integration and ex-
ternal isolation of social neighbourhoods, but less well suited to measuring their
stability, underlining the point that there is probably no single perfect measure of
G. However, the time-average of the relative density over an extended time period
will convey something about the stability of groups over that time period: if well-
defined groups are ephemeral and dissolve soon after forming, the relative density
will be high while they exist but lower once they have dissolved, resulting in a lower
time-average than in a population with more stable group-structure. So, while the
relative density is not intended as a measure of group stability, time-averages of
the relative density may sometimes be useful for that purpose.

As with K , one might ask: why does G matter? Why is this a structural
property worth measuring? Why are comparisons among populations, in regard
to their degree of G, worth making? My answer to this question is to point to
the special role of high-G populations in evolutionary transitions in individuality.
A population that is high-G contains identifiable, stable, bounded, higher-level
entities—namely, social groups—formed of collections of lower-level entities. These
groups are not automatically higher-level individuals. I take it that higher-level
individuality requires some process of collective reproduction (see Godfrey-Smith,
2009), as well as the presence of mechanisms that suppress selection within (or,
in Godfrey-Smith’s memorable terminology, ‘de-Darwinize’) the groups (Michod,
1999; Godfrey-Smith, 2009; Queller and Strassmann, 2009; Clarke, 2013). Nev-
ertheless, group-structure is clearly an important precondition for the evolution
of higher-level individuals. When we identify a population as high-G, we cannot
conclude that a transition is underway, but we can conclude that an important
precondition for such a transition has been met.

16For example, imagine a structure in which every individual has five social partners drawn
at random from a very large population. This is likely to result in social neighbourhoods with
relative densities of around 1/3.
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5.3 K-G space

K and G can be imagined as the axes of a two-dimensional space, and we can think
of kin selection and group selection as large, overlapping regions of that space.
Paradigm cases of kin selection occur in high-K populations: they are cases in
which we find selection on indirect fitness differences in a population with a fairly
high degree of relatedness between social partners, and with kinship-dependent
mechanisms serving as the main source of this relatedness. Paradigm instances
of group selection occur in high-G populations: they are cases in which we find
selection on indirect fitness differences in a population in which social interaction is
structured by stable, well integrated and sharply bounded groups. The distinction
is not sharp, but nor is it merely arbitrary or conventional.

Figure 2: K-G space. Kin selection and group selection can be conceptualized as
overlapping regions of a 2D space defined by the variables K and G. Locations of
points are approximate and for illustration only (see the main text for commentary
on some of the points).
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Figure 2 provides a visualization of K-G space, illustrated with some notable
cases. The placement of the points is not exact and is open to debate: the aim
is simply to provide an intuitive visualization. In the bottom-left corner, we have
populations that are low-K and low-G—populations with neither kin-structure
nor group-structure. An important class of examples are so-called ‘well-mixed’
populations in which individuals interact at random such that no pair of individuals
is any more likely to interact than any other. These are populations in which
neither kin nor group selection can be said to occur, since the required structural
features are entirely lacking.

As we move up the K-axis, we come to populations in which organisms still
interact with sets of individuals drawn from the whole population with no regard to
their spatial location, rather than interacting in structured local neighbourhoods,
but in which there is some greater-than-chance probability of interacting with a
relative (e.g. a sibling). Models of this sort have a long history in social evolution
theory and continue to be studied (e.g. Queller, 1984; Allen and Nowak, 2015).
These are aptly described as cases of kin selection, but, since interactions are not
contained within localized social groups, they are not aptly described as cases of
group selection.

As we move along the G-axis, we come to Godfrey-Smith’s neighbour-structured
populations, in which there are discernible local neighbourhoods that structure in-
teraction, but nothing yet resembling well-defined social groups. A square lattice
in which organisms interact with their von Neumann neighbours and are assigned
to vertices at random, with no limited dispersal, is a zero-K version of this. As
we go up the K-axis here, introducing differential interaction between kin due to
limited dispersal, we arrive at populations that are high-K but still fairly low-G.
Models of so-called viscous populations that make use of von Neumann neigh-
bourhoods and similar structures, such as the models of D. S. Wilson et al. (1992),
belong in this area; their precise position will depend on the parameter values. In
models of haploid organisms, very high levels of relatedness can be attained due to
limited dispersal from the birth site (in one of the simulations discussed by Wilson
et al. 1992, r = 0.59), and this is reflected in the figure in the value of K . Moving
further along the G-axis, we arrive at the discrete ‘trait-groups’ of D. S. Wilson
(1975), which are externally isolated and fairly well integrated (at least with re-
spect to the trait of interest) while they exist, but which are not stable for long
periods and are typically outlived by their members. These can be anywhere on
the K-axis depending on the role of kinship in generating assortative grouping,
but for illustrative purposes I have put them at low-K .

In the bottom-right corner, there are populations that are low-K and high-
G. Here, groups are ‘clearly in evidence’ but groups are not composed of close
kin. Bowles and Gintis’s (2011) models of human evolution belong in this region.
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Bowles and Gintis assume that early human populations were structured into
well-defined, stable groups with low relatedness. Finally, as we go up the K-axis
to the top-right, we arrive at populations that are high in both K and G. These
are the cases for which Hamilton favoured the term ‘kin-group selection’. In these
populations, there is sharp and stable group structure and a high degree of genetic
correlation between social partners due to kinship-dependent mechanisms.

The evolution of multicellularity is a source of extreme cases in this corner
(Maynard Smith and Szathmáry, 1995; Michod, 1999). Consider colonial algae
such as Gonium: the colonies are clonal, implying high K , and the group structure
is sharp and stable over the course of the life-cycle, implying high G. There is
little to be gained by arguing over whether the selection processes that operate in
these populations are cases of kin or group selection, because they have the core
structural features of both. The term ‘kin-group selection’, which removes the
misleading appearance of competing hypotheses, seems apt for processes in this
region of the space.

6 The rb , 0 Requirement

The proposal I have advanced includes the requirement that, for either kin or
group selection to occur, it must be the case that rb , 0. I noted above that this
requirement, traditionally associated with kin selection, might prove controversial
as a requirement on group selection, and it is now time to elaborate further on the
consequences of, and justification for, this requirement.

Let us first consider some of its implications. One is that not all processes of
natural selection occurring in populations that contain groups will qualify as cases
of group selection. Consider again G. C. Williams’s scenario in which a group
containing fast-running deer outperforms a group containing slower-running deer
because the faster deer, as individuals, evade predators more easily. This is not
group selection on my account, assuming the trait’s advantage arises entirely from
its direct fitness effects (Okasha, 2006). The intuitive motivation for excluding
these cases is that, although a form of group-structure is present, it plays no role in
explaining the selection for fast running. Similarly, processes of natural selection
that involve interactions among relatives do not qualify as kin selection if the
interactions fail to generate non-zero rb, perhaps because the interactions are not
fitness-affecting, or because social partners, though related, are not differentially
related relative to the population average.

Awkward cases arise when, although rb = 0, intergroup conflict plays an essen-
tial role in the generation of a direct fitness benefit. Sterelny’s (2013) hypothesis
regarding the evolution of hierarchy in early Holocene human societies provides
an interesting example. Sterelny proposes that ruling elites were tolerated by the
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majority because the intense and frequent intergroup warfare of the early Holocene
put a fitness premium on strong and centralized military leadership. Groups with
strong leaders were more successful in warfare, causing traits associated with hier-
archy to spread. Is this is a group selection hypothesis? In one sense it is, because
the advantage of acquiescing to the demands of an elite depends on the existence
of intergroup conflict. But on my proposal, it is not, because the explanation on
offer is a direct fitness explanation. Norms of acquiescence evolve because, at an
individual level, it pays in direct fitness terms to adopt them; there is no require-
ment here that rb > 0. Not a lot hangs on how we classify these cases, and I
propose that we resist the urge to describe them as cases of group selection. In so
doing, however, we should take care not to forget that direct fitness explanations
can still appeal to intergroup conflict as a source of direct fitness benefit.

If rb , 0, must we conclude that one or other of kin and group selection is
at work? Not necessarily, for recall that the requirement is intended as a nec-
essary but not sufficient condition. Consider greenbeard effects. Populations in
which the only genetic correlations between social partners are owed to greenbeard
phenomena belong in the bottom-left quadrant of Figure 2. They do not require
group-structure, provided we assume that bearers of the greenbeard marker can
still seek each other out successfully in a non-group-structured population, but nor
do they rely on differential interaction between genealogical kin, since bearers of
the greenbeard gene need not be kin in this sense.

Gardner et al. (2011) regard greenbeard effects as a form of kin selection,
broadly construed. I would say that these are, at most, marginal cases. It is impor-
tant to distinguish clearly between cases in which genealogical kinship is pivotal, as
in paradigm cases of kin selection, and marginal cases in which kinship-dependent
mechanisms are a minor or negligible contributor to r. In microbes, gene mobility
provides another source of locus-specific genetic correlation that does not rely di-
rectly on identity of alleles by virtue of descent, as noted by Rankin et al. (2011),
Mc Ginty et al. (2013) and Birch (2014). Rankin et al. (2011) suggest that this
too can be regarded as a form of kin selection, but I regard it as a highly marginal
case. Note that, in some cases, kinship-independent mechanisms may operate in
conjunction with kinship-dependent mechanisms, such that both contribute to the
value of r. We therefore have a continuum here—not a dichotomy—ranging from
highly marginal cases of kin selection in which shared ancestry is wholly unimpor-
tant to paradigm cases in which it is essential.

The main reason I anticipate resistance to the idea that group selection re-
quires rb , 0 is that rb , 0 is neither necessary nor sufficient for there to be
variation in fitness between groups. Non-zero rb is unnecessary because, as in the
aforementioned cases of Williams’s fast-running deer and Sterelny’s explanation
for acquiescence to hierarchies, there can be fitness variation between groups even
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though direct fitness effects fully account for this variation. However, as noted
above, I think it is unhelpful to classify these as cases of group selection. Non-
zero rb is insufficient due to the possibility of soft selection with local population
regulation, as discussed by Heisler and Damuth (1987); Goodnight et al. (1992)
and Okasha (2006). In such cases, we have a group-structured population, but
each group makes the same, fixed contribution to the next generation, and all
fitness variation occurs within groups. Yet grouping is assortative—altruists inter-
act differentially with other altruists—leading to non-zero rb. This population is
high-G, suggesting a paradigm case of group selection by the lights of my account,
but there is no variation in fitness between groups.

If one takes variation in fitness between groups to be the mark of group selec-
tion, then one should take Cov(Wk ,Pk ) , 0, not rb , 0, as the minimal statistical
requirement all cases of group selection must satisfy. This would add an extra
layer of complexity to the account, since kin and group selection would then differ
in their minimal statistical requirements as well as in their commitments regard-
ing population structure. However, I resist this amendment, because I do not see
a compelling case for regarding variation in group fitness as necessary for group
selection. If well-defined group-structure is implicated in generating non-zero rb,
I take the view that the selection process can be aptly described as one of group
selection, even if groups do not vary in mean fitness.17

Why insist that group selection must require fitness variation between groups?
I see two main motivations. One is a desire that the conditions for group selection
should be directly analogous to the conditions for natural selection in a population
of individuals, but with ‘groups’ substituted for ‘individuals’. The conditions for
natural selection include fitness variation among individuals, so group selection
must require fitness variation among groups for a direct analogy to hold.

I reply that, although a direct analogy between the conditions for individual
and group selection would be elegant, it does not deserve high priority. It is helpful
here to invoke Heisler and Damuth’s (1987) MLS1/MLS2 distinction, and to recall
that the type of group selection at issue in this article is the MLS1 type. In MLS2,
groups are higher-level individuals or proto-individuals, reproducing in their own
right. In this context, a direct analogy between the conditions for individual and
group selection seems important, because ‘group selection’ in this sense is simply

17My position here is well-aligned with what Okasha (2006) calls the ‘neighbour approach’
of Nunney (1985), which diagnoses group selection in a group-structured population whenever
there is positive rb. This is closely related to, although not identical to, the ‘contextual approach’
of Heisler and Damuth (1987). Both approaches decompose change using regression models
of fitness. The difference is that the contextual approach uses regression models that take
group characters (e.g. group gene frequencies) as predictors, whereas the neighbour approach
uses neighbourhood characters (e.g. the average gene frequency of the focal individual’s social
partners). The latter corresponds to the partition of change represented in Hamilton’s rule.
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a higher-level form of individual selection. In MLS1, by contrast, groups structure
interaction at the lower-level but do not reproduce in their own right, making
the need for a direct analogy seem less pressing (Okasha, 2006). The priority, in
my view, is that the category of group selection demarcates (albeit not sharply)
a real and evolutionarily significant class of selection processes—a class that is
worth distinguishing from the class of kin selection processes. On my account,
it does this: the distinction between kin and group selection highlights real and
evolutionarily significant differences in population structure within the class of
indirect fitness explanations of change.

A second motivation is that group selection should be apt to generate group
adaptation, and there can be no group adaptation without fitness variation be-
tween groups (Gardner and Grafen, 2009). I reply that, although the connection
between group selection and group adaptation is important, especially in the con-
text of evolutionary transitions, there should be no requirement that group selec-
tion must be apt to generate group adaptation in all cases. It is enough that this
can happen under some further conditions—conditions that will include variation
in fitness between groups. To insist that group selection must require variation
in fitness between groups is, I think, to insist on too close a link between group
selection and group adaptation.

7 Levels of Organization

One final clarifying remark deserves special emphasis: both kin-structured (high-
K) and group-structured (high-G) populations can occur at multiple levels of bio-
logical organization. If we take a group-structured population of base-level entities
and ‘frameshift’ up a level to consider the population of groups, this higher-level
population will itself have a position in K-G space.

The population of groups may have higher-order group-structure: there may be
sharply bounded meta-groups, or groups of groups, defined by patterns of social
interaction. This may lead to higher-level group selection. For example, there
might be higher-level group selection for genes that promote cooperation among
members of the same meta-group who are located in different first-order groups.

The population of groups may also be kin-structured. This will be the case if
groups form well-defined lineages, and if groups that are closely related genealog-
ically are more likely to interact with each other than groups that are not. This
may lead to a higher-level form of kin selection. For example, if nearby groups
tend to be ‘offspring’ groups of the same ‘parent’ group, there might be higher-
level kin selection for genes that promote cooperation among nearby groups. This
may occur even if the population of groups is simply a viscous population, with
no well-defined meta-groups.
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These ideas may sound strange at first hearing, but they are simply unusual
ways of describing something familiar. From the point of view of social evolution
theory, multicellular organisms can be regarded as particularly well-integrated so-
cial groups of cells (Queller and Strassmann, 2009; Bourke, 2011). From this per-
spective, populations of animals are populations of groups of lower-level entities,
and standard cases of kin selection and group selection occur in such populations.

This should alert us to the possibility of kin and group selection occurring at
higher levels of biological organization than we usually envisage: that is, in kin-
or group-structured populations of groups of organisms. For example, in many
ant species we find ‘supercolonies’, each consisting of multiple distinct nests. This
leads to the idea that supercolonies may be created and maintained by group
selection acting on groups of nests—a possibility highlighted by Bourke (2011)
and investigated by Kennedy et al. (2014). Moreover, dispersal of offspring nests
from parental nests is limited within supercolonies, raising the possibility that,
within a supercolony, kin selection at the level of the nest favours cooperation
between adjacent nests—a possibility discussed by Chapuisat et al. (1997).

8 The Key Substantive Questions

Debates surrounding kin and group selection are easily derailed by semantic confu-
sion. This, combined with the plethora of ‘equivalence results’ described in Section
2, gives rise to the suspicion that there are no worthwhile debates to be had here at
all: that all the disputes on these issues are merely verbal disputes. But I think this
suspicion is misplaced. By identifying kin and group selection with overlapping
regions of K-G space, we make room for worthwhile debates about the resemblance
of a given selection process (such as early human evolution, or social evolution in
microbes, or the evolution of eusociality in insects) to a paradigm case of kin or
group selection. A population’s position in K-G space will depend on the answers
to the following questions:

1. How high is K in the population? That is, how strong are the genetic cor-
relations between social partners, and how important are kinship-dependent
sources, as opposed to greenbeard effects and other kinship-independent
sources, in generating those correlations?

2. How high is G in the population? That is, how internally integrated, sharply
bounded and stable is the group-structure at the relevant grain of analysis?

These are substantive, empirical questions: questions it takes empirical inquiry,
and not just stable semantic conventions, to settle. Moreover, the position of a
population in K-G space has significant consequences for its evolutionary fate: K
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makes a difference to the long-term stability of altruism in the population, while
G makes a difference to its chances of undergoing an evolutionary transition in
individuality. So, although the distinction between kin and group selection is not
sharp, these concepts can still provide a useful way of framing meaningful debates
about the importance of kin-structure and group-structure in real processes of
social evolution. Kin and group selection correspond to large, overlapping regions
of a space of population structures, and real populations can be found throughout
these regions.
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