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Abstract

It has recently been argued by Stevens (2015) that Harvey Brown and Oliver

Pooley’s ‘dynamical approach’ to special relativity should be understood as

what might be called an ontologically and ideologically relationalist approach

to Minkowski geometry, according to which Minkowski geometrical structure

supervenes upon the symmetries of the best-systems dynamical laws for a

material world with primitive topological or differentiable structure. Fleshing

out the details of some such primitive structure, and a conception of laws

according to which Minkowski geometry could so supervene, has been referred

to by some as the ‘constructivist project’. Here, it is explained that Nick

Huggett’s work on ‘regularity relationalism’ provides a framework for such

an approach, and a relativistic version of Huggett’s regularity relationalism

is outlined for that purpose. Finally, by way of examples, it is shown that

this approach fails in the simplest cases. Still, reasons are given for which

this should not necessarily discourage an advocate of this interpretation of

the dynamical approach.



1 Introduction

In Physical Relativity (2005), Harvey Brown promotes an unorthodox interpretation

of special relativity, which has since been referred to as the ‘dynamical approach’.

In his recent review, Stevens (2015) explains that the dynamical approach argues

for the priority of dynamics over geometry in the context of explanation, even

claiming that Minkowski geometrical structure itself is explained by the fact that the

dynamical laws governing the behavior of material objects are Lorentz-covariant. He

also argues that the dynamical approach must therefore be what might be called an

ontologically and ideologically relationalist approach to Minkowski geometry.1 Like a

traditional relationalist approach, it must provide a material ontology that excludes

Minkowski spacetime. But unlike other traditional relationalist approaches, it must

also provide a spatiotemporally scant ideology, the spatiotemporal components of

which do not constitute Minkowski geometry. Then, with respect to some such

metaphysics, it must be shown that Minkowski geometry is derivative of facts about

the symmetries of the dynamical laws.

This, then, is the ‘constructivist’ project of the dynamical approach: to specify a

primitive spatiotemporal structure which, while not constituting Minkowski geome-

try itself, could somehow support the use of Lorentz-covariant laws in systematizing

material objects’ degrees of freedom. This would seem to require that the dynamical

laws be written in terms of more geometrical structure than is ascribed primitively

to the material world. Stevens has reminded us of proposals that this might be

1Following Stevens (2015), Quine’s terminology will be used, according to which

the ontology lists the entities to whose existence the theory is committed, and the

ideology lists those entities’ primitive properties or relations (Quine 1951).



accomplished with a ‘liberalized’ humean conception of laws. Below, it will be

explained how Nick Huggett’s work on ‘regularity relationalism’ sets the stage

for such a project, and a relativistic version of Huggett’s regularity relationalism

will be outlined for that purpose. Finally, it will be shown that this project fails

in the simplest contexts, but reasons are given for which the advocate of this

interpretation of the dynamical approach might trust in more complex supportive

examples.



2 Huggett’s Regularity Relationalism

Nick Huggett has promoted ‘regularity relationalism’ as a way to overcome the

problems faced by a Leibnizian relationalist in a Newtonian world (2006). Leibnizian

relationalism assumes a material ontology, and the spatiotemporal components of its

ideology are only those relations encoded by Leibnizian spacetime: a ‘simultaneity’

equivalence relation; a temporal metrical relation on the space of simultaneity

slices; and a spatial metrical relation on pairs of points in each simultaneity slice.2

The trouble for Leibnizian relationalism is that this amounts to only part of the

apparent geometrical structure of a world in which Newton’s laws hold. Instead, the

full geometrical structural presupposed by Newton’s laws is captured in Galilean

(or Neo-Newtonian) spacetime.3 As illustrated in Figure 1, the latter is more

structured—i.e. less symmetric—than Leibnizian spacetime.

For present purposes, the salient difference is Galilean spacetime’s affine, or

inertial, structure. By not underwriting any affine structure, Leibnizian relations

do not account for the full geometrical structure assumed by Newton’s laws.

A more formal way of expressing this problem is to say that Galilean spacetime

is symmetric under translations, boosts, and static rotations, whereas Leibnizian

spacetime is symmetric under those same transformations as well as accelerations

2This presentation of Leibnizian and Galilean spacetime symmetries draws on

Earman’s (1989, §§2.2–2.4).

3Or, if gravity is taken into account, the apparent geometrical structure is

captured by Newton–Cartan spacetime. See recent work by Knox (2013) or Pooley

[2013, §6.1.1].



Figure 1: Following Earman’s terminology (1989, ch.2), Galilean spacetime has the same spatial
(d) and temporal (t) metrical structure as Leibnizian spacetime. But in addition, it also has an
affine structure, with respect to which lines are found to be or not to be straight.

and time-dependent rotations.

Sg : r̄ ′ = Rr̄ + tv̄ + c̄ ; t′ = t+ d

Sl : r̄ ′ = R(t)r̄ + ā(t) ; t′ = t+ d

Now, in order to maintain that some world in which Newton’s laws hold has

less spatiotemporal structure than that of Galilean spacetime, the Leibnizian

relationalist must give an account for the fact that Sl is a supergroup of Sg. It

might be argued that the relationalist’s only forthright and honest response would

be: to posit a more robust ideology, which would result in fewer spatiotemporal

symmetries; or else to propose some new, empirically adequate dynamical laws

with a larger symmetry group, which would be written in terms of less spacetime

structure.4 But rather than take either of these approaches, Huggett proposes a

move that he calls ‘regularity relationalism’.

4Moves like this are evaluated by Maudlin (1993) and Pooley (2013).



Regularity relationalism is effectively a way to have one’s cake and eat it too.5

The idea is simply that the Leibnizian relationalist can refuse to budge on taking

only Leibnizian relations as primitive, by somehow explaining away the structural

deficiency introduced above. To do so requires that one adopt a form of Humean

supervenience, along with a ‘liberalized’ best-system conception of dynamical laws.

As for the former, consider the following summary by David Lewis.

Humean supervenience [...] is the doctrine that all there is to the world

is a vast mosaic of local matters of particular fact, just one little thing

and then another. [...] We have geometry: a system of external relations

of spatiotemporal distances between points. Maybe points of spacetime

itself, maybe point-sized bits of matter or aether or fields, maybe both.

And at those points we have local qualities: perfectly natural intrinsic

properties which need nothing bigger than a point at which to be

instantiated. For short: we have an arrangement of qualities. And that

is all. [...] All else supervenes on that.

(1986, pp. ix–x)

As Lewis makes clear, the fundamental ontology of Humean supervenience amounts

to the point-like parts of spacetime and/or physical fields, and the spatiotemporal

component of its fundamental ideology includes some geometrical structure. As

a form of relationalism, Huggett’s regularity relationalist would naturally strike

“points of spacetime itself” from the ontology, leaving the Humean mosaic to

5Huggett also hints at this kind of approach in an earlier publication (1999, pp.

22–3). The approach is referred to as ‘have-it-all’ relationalism by Pooley [2013,

§6.3].



comprise only “point-sized bits of matter”. But the more interesting and salient

characteristic of regularity relationalism comes up in its fundamental ideology.

For according to Huggett’s form of Humean supervenience, the full geometrical

structure required to make sense of the world’s dynamical laws is not taken as a

primitive feature of the Humean mosaic. That is, in Lewis’s quotation above, the

regularity relationalist would take “geometry”, “distances”, and “arrangement” to

mean only those constituted by a history of Leibnizian relations, which do not

underwrite the affine structure of Galilean spacetime.

Then, the ‘liberalized’ best-systems conception of dynamical laws is a version of

the Mill-Ramsey-Lewis approach, according to which dynamical laws are theorems

of the ‘best’ axiomatizations of the Humean mosaic (Lewis 1973, pp.72–7). The

basic view can be liberalized by taking into consideration those laws that are written

in terms of more geometrical structure than appears in the Humean mosaic. If the

equations of some such systematization have a better balance of simplicity and

strength than those written in terms of the mosaic’s primitive geometry, then they

are awarded the status of dynamical laws. Whatever extra geometrical structure

plays a role in the expression of those dynamical laws is simply claimed to be part

of the “all else” that supervenes upon the mosaic’s arrangement of qualities.6

6Similar ‘liberalizations’ of Humeanism have been promoted in the context of

quantum mechanics, in which Humean interpretations benefit from moving certain

elements out of a theory’s fundamental ontology and into a part of the ontology’s

best systematization. (Note, however, that in the present case, it is an element of

the fundamental ideology that is being so moved.) Elizabeth Miller, for instance,

promotes a Humean interpretation of Bohmian mechanics, according to which the



However controversial it may be, regularity relationalism is as helpful for an

advocate of the dynamical approach to special relativity as it is for the Leibnizian

relationalist in a Newtonian world. For note that the Leibnizian relationalist’s

troubling position is precisely that of the dynamical approach—namely, the position

of having admitted less primitive geometrical structure than that in terms of which

the dynamics is written, so that there is some work to be done in accounting for

the difference.

pilot wave itself becomes a part of the best systematization (2014). Similarly, Craig

Callendar (2015, esp. p. 3161) does so with classical and quantum wavefunctions

more generally. See also recent work by Michael Esfeld (2014), and by Harjit Bhogal

and Zee Perry (2015). (Personal acknowledgement to be added after blind review.)



3 The Dynamical Approach as a Form of Regu-

larity Relationalism

Huggett’s regularity relationalism may provide the conception of natural laws

necessary to understand the dynamical approach along the lines proposed here,

but whereas Huggett assumes an ontology of point particles, and an ideology the

spatiotemporal component of which comprises Leibnizian relations, Stevens has

argued (2015) that Brown seems to assume an ontology of material events and an

ideology having a spatiotemporal component that amounts to some sub-metrical

structure—arguably a topological or differentiable structure. Interestingly, Stevens

also points out John Norton’s acknowledgement that one way around his own

critiques of the dynamical approach might be to take a topologically structured

spacetime as primitive (Norton 2008, p.833), although no comments are made as to

whether that topological structure could instead be assigned to the material objects

themselves. A similar suggestion has also been made by Huggett in his review

of Brown’s book (Huggett 2009, p.418). And more recently, Oliver Pooley, who

coauthored with Brown two earlier presentations of the dynamical approach (1999;

2006), also argues that the dynamical approach could be construed as a relativistic

version of Huggett’s regularity relationalism (2013, pp.571–2). He proposes taking

a topological structure as primitive, and provides a simple illustration of how such

a project would go.

Pooley describes a single material entity with point-like parts, the degrees of

freedom of which can be modeled by a function into the reals—i.e. a single scalar

field. He assumes the entity to be extended in four dimensions, and to have a

structure that can be respected by some global mapping into R4—i.e. to have



Figure 2: Pooley’s material entity P , with a primitive Euclidean topological structure T (with
open sets T ). Its point-like parts have real-valued degrees of freedom, represented by f . A
homeomorphism φ is shown mapping T onto R, the latter being an open subset of R4 with respect
to the standard topology R4.

Euclidean topological structure.7 As in Figure 2, his example can be illustrated by

a topological structure T on a set P of field points, which together constitute a

topological space 〈P, T 〉. The topological structure and the field points’ degrees of

freedom can be illustrated by a homeomorphism φ : 〈P, T 〉 → R4 and a real-valued

function f : 〈P, T 〉 → R, respectively.

With that Humean mosaic in mind, Pooley’s liberalized best-systems approach

to dynamical laws is similar to Huggett’s. It can be outlined in further detail as

follows. First, note that mappings like φ provide coordinatizations according to

which the field points’ degrees of freedom might be given a mathematical description.

For instance, the values could be described by the function fφ = f ◦ φ−1, so that

different coordinatizations φ bring about different descriptions fφ. Now, suppose

that 〈P, T 〉 is such that given all homeomorphisms φ, there exists a collection S

of coordinatizations with respect to which each corresponding function fφ solves

some kind of equation. Then, suppose further that for some collection B ⊂ S,

the fφ all solve some particular equation L, which has a better combination of

simplicity and strength than the equations solved by the fφ corresponding to the

7Here, R4 is assumed to have the standard Euclidean topology, R4.



other coordinatizations in S. If L is Lorentz-covariant, meaning that it preserves

its form under elements of the Poincaré group, then Minkowski geometry could

be said to supervene upon L’s being the ‘best’ systematization of the field points’

values and topological structure. Put differently, if the coordinatizations φ ∈ B,

according to which the fφ solve L, are related to one another by elements of the

Poincaré group, then Minkowski geometry would be “grounded in the existence

of a proper subset of the coordinate systems adapted to the Leibnizian relations

[topological structure] with respect to which the description of the entire relational

history [topological space] is the solution of particularly simple equations” (Pooley

2013, pp.571–2, my strikeouts).

Pooley is right that this construal of the dynamical approach would support the

explanatory claims mentioned in §1, which are discussed in further detail by Stevens

(2015). It would also meet the other criteria outlined above: neither Minkowski

spacetime nor its point-like parts feature in the ontology; the spatiotemporal

components of the ideology do not constitute Minkowski geometry; and Minkowski

geometry codifies the behavior of material objects as described by the (liberalized

best-system) Lorentz-covariant dynamical laws. However, there is no doubt that

this proposal is somewhat bolder than Huggett’s. For whereas Huggett proposes an

account of Euclidean affine structure by taking as primitive material objects with

mass and charge and all the metrical relations encoded by Leibnizian spacetime,

Pooley proposes an account of the full metrical structure of Minkowski spacetime by

taking as primitive only a single set of scalar values endowed with mere Euclidean

topological structure, which is far more symmetric than Leibnizian spacetime. For

this reason, we might expect (like Pooley) that the constructivist project would

fail in the simplest of settings.



4 The Simplest Setting

It has been argued that Huggett’s work on ‘regularity relationalism’ provides

the framework in which the constructivist project of the dynamical approach

might be realized. Starting with set of field points endowed with some topological

structure, the exercise of determining the symmetry group of its ‘liberalized’ best

systematization has also been outlined. Thus the stage is set for case studies.

Now, a natural place to begin looking for a topological space 〈P, T 〉 of scalar

field values, for which there exists a coordinatization φ with respect to which the

corresponding fφ solves a Lorentz-covariant equation, would obviously be in the

space of solutions to familiar Lorentz-covariant scalar field equations. For example,

a solution to the Klein–Gordon equation, purged of all geometrical structure but

its induced Euclidean topology, is some such 〈P, T 〉. The question at hand, then,

is whether or not solutions to the Klein–Gordon equation, when considered up to

homeomorphism as 〈P, T 〉, admit any permissible recoordinatizations φ′, for which

the corresponding fφ′ solve any equations of a different covariance group.

In preparation for that exercise, this section gives a brief introduction to the

simplest solutions of the Klein–Gordon equation, and also to those of its non-

relativistic cousin, the Schrödinger equation. For as will be shown below, those

solutions are simple enough (and similar enough) that the constructivist project

fails in that context.

Recall, then, the time-dependent Schrödinger equation for a single, free, nonrel-

ativistic particle.8

i∂tψ + 1
2m∇

2ψ = 0 (1)

8∇ = ∂x + ∂y + ∂z; ∇2 = ∇ · ∇. Natural units are chosen, so that c = ~ = 1.



The Schrödinger equation is not Lorentz-covariant.9 But consider now the Klein–

Gordon equation for a single, free, relativistic particle.

− ∂2
t ψ +∇2ψ = m2

0ψ (2)

The Klein–Gordon equation is indeed Lorentz-covariant; unlike the Schrödinger

equation, it retains its form under any coordinate transformation that is an element

of the Poincaré group.

Now, despite their different covariance groups, these two equations both admit

solutions of the following form,

ψ = Aei(κ̄·x̄−ωt) (3)

where A is some scalar value.10 Solutions of this form describe a wave-like distribu-

tion of both real and imaginary scalar values, as illustrated in Figure 3.

Unless otherwise noted, ψ is used in the following sections to represent a solution

of this form—a complex-valued ‘planewave’ solution. Planewaves have constant

9The Schrödinger equation is sometimes called ‘Schrödinger-covariant’, where

the Schrödinger group is an adaption of the Galilean group. See discussions by

Lévy-Leblond [1963, §III; 1967, §II], and more recently by Brown and Holland

(1999).

10As above, natural units are being used. Recall that ω := 2πν is the angular

frequency of a wave, and that κ̄ is the wave-vector, which points in the direction

of the ‘phase velocity’ v̄p, the velocity of propagation of a single wave crest. The

angular wavenumber is κ = |κ̄| := ω/vp.



Figure 3: Real (in color) and imaginary (in grey) components of eiθ = cos(θ) + i sin(θ). As in
all illustrations to follow, unless otherwise noted, the vertical axis represents the magnitude of
the scalar function. For real-valued scalar functions, this magnitude corresponds to the color of
the curve.

amplitude A, constant angular frequency ω, constant wave-vector κ̄, and thus

constant phase velocity v̄p. They also have a constant magnitude in all spatial

directions orthogonal to the wavevector.

Now, despite their similarities in mathematical form, planewave solutions to

the Schrödinger and Klein–Gordon equations will differ precisely insofar as do the

equations’ so-called ‘dispersion relations’ between ω and κ. For solutions to the

Schrödinger equation, that dispersion relation is

ω = κ2

2m (4)

whereas another dispersion relation holds for solutions to the Klein–Gordon equa-

tion.

ω =
√
κ2 +m2

0 (5)

The differences in wave behaviour brought about by differences in these dispersion

relations will become clear below.

In closing, it should be noted that while imaginary numbers may appear in

ψ, they do not appear explicitly in the Klein–Gordon equation itself (Eqn.2),

whereas they do in the Schrödinger equation (Eqn.1). Thus while the Schrödinger



equation admits planewave solutions only in the form of Equation 3, the Klein–

Gordon equation also admits planewave solutions that are entirely real-valued.

Such solutions are still planewaves, in that they share the characteristics listed

above. Indeed, the real-valued planewave solutions to the Klein–Gordon equation

are nothing more than the real-valued components of the complex-valued planewave

solutions ψ. Thus they can be written as such.

ψ< = <
(
Aei(κ̄·x̄−ωt)

)
= A cos(κ̄ · x̄− ωt) (6)



5 A First Attempt

As mentioned before delving into the details of planewaves, the Klein–Gordon

equation is of interest as a Lorentz-covariant equation that is solved by a real-

valued scalar function. Might its solutions serve as a supportive example for the

constructivist project?

Complex-Valued Planewave Solutions

Let PC be the set of field points that constitute the physical field represented by a

complex-valued planewave solution ψ to the Klein–Gordon equation, as in Equation

3. When those field points are stripped of all geometrical structure but their

induced Euclidean topology T , there exists a homeomorphism φ : 〈PC , T 〉 → R4,

according to which fφ serves as the real-valued component of a planewave solution

to the Klein–Gordon equation.11 But is the Klein–Gordon equation the only way

to systematize 〈PC , T 〉? No: in fact, there are rival systematizations at play; the

Klein–Gordon equation is not the only equation solved by the fφ′ corresponding to

permissible coordinatizations φ′ of 〈PC , T 〉. For instance, there is a certain set of

permissible coordinatizations for which the corresponding fφ′ solve the Schrödinger

equation.

To see this, recall from above that both the Klein–Gordon and Schrödinger

11Note that Figure 2 falls short in this context, since a complex-valued solution

to the Klein–Gordon equation would have to be modelled by either two mappings,

ψ< : R4 → R and ψ= : R4 → R, or else by one mapping, ψC : R4 → C. For

simplicity, and for reasons outlined below, this discussion focuses primarily upon

the real-valued components.



equations admit planewave solutions ψ of the form of Equation 3, and that for

any given choice of amplitude A, mass m, and wavenumber κ, the planewave

solutions to these two equations will differ only insofar as do their dispersion

relations. And what kind of change in wave behaviour is effected by a difference in

dispersion relation? Obviously, wave equations with different dispersion relations

will have different angular frequencies ω for some given wavenumber κ. But another

difference follows: this change in angular frequency ω will not be accompanied by

a corresponding change in wavelength λ, because κ := 2π/λ, and no change in

wavenumber κ is being proposed. Rather, the difference in dispersion relation affects

a change in angular frequency that is accompanied by a change of phase velocity

v̄p, since vp = ω/κ.12 Both of these differences are illustrated in Figure 4, which

shows the real-valued components of planewave solutions to the Klein–Gordon and

Schrödinger equations with equal-valued wavenumbers κ. The difference in angular

frequency ω can be seen by the relative difference in the number of crests that

fit within some time, and the difference in phase velocity v̄p can be seen by the

relative difference in the ‘slope’ of the wavecrests.

The important point is that differences of this sort can be accommodated by

homeomorphisms of the field points’ Euclidean topology. Indeed, both can be

accounted for by one and the same uniform ‘stretching’ of the time coordinate. In

particular, if the time coordinate of Figure 4-ii were stretched by a small amount,

12As in footnote 10, vp = νλ = 2πν/κ = ω/κ. When the dispersion relation is

linear, a change in κ does not result in a change in vp, but merely in λ. Having

non-linear dispersion relations, the Klein–Gordon and Schrödinger equations are

examples of so-called ‘dispersive’ wave equations.



Figure 4: <(ψ), the real-valued component of a planewave ψ. For simplicity, A = m = ~ = 1
and κ = 3. Plots i and ii show <(ψ) for the dispersion relation of the Klein–Gordon equation,
while iii and iv show <(ψ) for that of the Schrödinger equation. Plots ii and iv reveal a difference
in v̄p, but not in λ.

the result would be the plot of Figure 4-iv.13 The upshot of all this is that for any

such 〈PC , T 〉, which by definition admits a coordinatization φ with respect to which

fφ serves as the real-valued component of a planewave solution to the Klein–Gordon

equation, there is a permissible alternative coordinatization φ′ with respect to which

fφ′ serves as the real-valued component of a solution to the Schrödinger equation.

What’s more, the same can be said about the imaginary components =(ψ) of these

complex-valued solutions. As illustrated in Figure 3, the magnitude of the imaginary

component of a complex-valued planewave is out of phase with, but otherwise equal

to, that of the real-valued component. Therefore the imaginary-valued component

of complex-valued solutions to these equations needn’t be given separate attention

when considering uniform coordinate transformations.14 But all of this is simply to

say that the 〈PC , T 〉 under consideration here is just as easily systematized by the

Schrödinger equation.

13Specifically, the time dilation is: t→ t′ =
√
κ2+m2

0
κ2/2m t.

14Note that the phase difference would also be preserved in such a transformation.

As illustrated in Figure 3, the real and imaginary components are out of phase by

one quarter of a wavelength, and as in the discussion surrounding footnote 12 on

page 16, no change in wavelength (wavenumber) is being proposed.



Following the programme laid out in §3, it now remains to be asked what the

covariance group is for the Schrödinger equation. For present purposes, suffice it

to say that it is not the Poincaré group; the Schrödinger equation is not Lorentz-

covariant.15 And because the Klein–Gordon equation does not systematize 〈PC , T 〉

in a way that is obviously simpler or in any way stronger than the Schrödinger

equation does, this does not bode well for finding a single planewave solution

to the Klein–Gordon equation that would serve as a supportive example of the

constructivist project. In fact, plenty of other equations might be given as rival

systematizations when dealing with such a simple example of 〈PC , T 〉. But of course

the Klein–Gordon equation admits not only complex-valued, but also real-valued

planewave solutions.

Real-Valued Planewave Solutions

Consider now some real-valued planewave solution ψ< to the Klein–Gordon equation,

as in Equation 6. As before, let P be the set of field points that constitute

the physical field, and purge those points of all but their induced Euclidean

topological structure T . Then once again, in order to determine whether the

best systematization of 〈P, T 〉 is a Lorentz-covariant equation, it must first be

determined whether there are any permissible recoordinatizations φ′ according to

which fφ′ solves another equation.

Because the Schrödinger equation does not admit real-valued planewave solu-

tions, it is not in the running for the best-systems dynamical law of 〈P, T 〉. Still,

this doesn’t ensure the title for the Klein–Gordon equation. In fact there are other

15See footnote 9 on page 12.



equations that admit real-valued solutions of this same form. And more importantly,

〈P, T 〉 does in fact admit permissible coordinatizations φ′ with respect to which

the fφ′ solve these other equations.

Consider for example what I will call the ‘Squaringer’ equation.16

∂2
t ψ + 1

4m2∇
4ψ = 0 (7)

Like the Klein–Gordon equation, this admits both complex- and real-valued

planewave solutions. For both, the dispersion relations match those of the Schrödinger

equation: ω = κ2/2m. And above, it was shown that complex-valued planewaves

with this dispersion relation are homeomorphic to solutions to the Klein–Gordon

equation. The same is therefore true of real-valued planewaves with this dispersion

relation. That is, when a single, real-valued planewave solution to the Klein–Gordon

equation is considered up to homeomorphism as 〈P, T 〉, there are permissible al-

ternative coordinatizations φ′ with respect to which fφ′ will solve the Squaringer

equation. And because the Squaringer equation is not Lorentz-covariant, it serves as

a threat to the claim that 〈P, T 〉 might be systematized best by a Lorentz-covariant

equation.17

16The name comes from its derivation. Following a common derivation of the

Schrödinger equation (see Wachter’s, for instance (2011, §1.1)), begin instead by

squaring the nonrelativistic energy–momentum relation: E = p2

2m −→ E2 = p4

4m2 .)

17The free-wave question would be another such threat: −∂2
t ψ +∇2ψ = 0. The

Squaringer equation has been chosen for its solutions’ similarity to the already-

familiar Schrödinger equation.



6 More General Solutions

It has been shown above that, as expected, both complex- and real-valued planewave

solutions to the Klein–Gordon equation, when considered ‘up to homeomorphism’

as 〈P, T 〉, admit permissible coordinatizations φ′ according to which the fφ′ solve

other, equally simple and strong equations with different covariance groups. But of

course a single planewave solution constitutes an extremely simple and symmetric

space of field points, and one ought not to be surprised if such a 〈P, T 〉 cannot

support a best-systems account of Minkowski geometrical structure.18

So, given that planewaves of the form of Equations 3 and 6 are not the most

general solutions to Klein–Gordon equation, might its solutions of a more general

form have characteristics such that the corresponding 〈P, T 〉 admit no permissible

recoordinatizations such that the fφ′ solve even the few rival equations introduced

above? That is, might some of the competition be eliminated by choosing a 〈P, T 〉

that comprises the point-like parts of a more complicated solution? This question

could be addressed in two ways: first, by considering more general solutions to the

Klein–Gordon equation as introduced above; second, by considering the solutions

to the more general form of the Klein–Gordon equation itself.

In the space provided, this section will address the question in only the first way.

18Indeed, for a single, real-valued planewave solution ψ< , certain permissible

coordinatizations of 〈P, T 〉 will yield no change in fφ′ along particular coordinates,

allowing for systematizations of fewer variables. For example, under a recoordinati-

zation φ′ according to which ∂tfφ′ = 0, it turns out that fφ′ solves the Helmholtz

equation: ∇2ψ = −m2
0ψ. However, this will no longer be the case for more general

solutions to the Klein–Gordon equation. (cf. fn.19, p.23.)



In doing so, it will be shown that by considering just slightly more complicated

solutions to the Klein–Gordon equation, it becomes much more difficult to find

permissible coordinatizations with respect to which the fφ′ solve any other equations

at all. Thus the onus falls on the critic of this interpretation of the dynamical

approach to show that some other non-Lorentz-covariant equation deserves the title

of ‘dynamical law’ for the systems under consideration. Granted, these examples

are still extremely simple in comparison with anything that might represent a

more realistic, specially relativistic world, but of course that would only bolster

the plausibility of the constructivist’s best-systems claim.

Linear Combinations of Planewave Solutions

It was reported in §4 that the Schrödinger and Klein–Gordon equations both admit

complex-valued planewave solutions ψ of the form of Equation 3. Being linear

equations, they also admit solutions of the form of any linear combination of its

planewave solutions. That is, any solution of the form

ψ =
∑
κ

Aκe
i(κ̄·x̄−ωκt)

will solve the Schrödinger equation (Eqn.1), so long as the dispersion relation

ωκ = κ2/2m holds for each of the summands. And of course, the same could be said

for the Klein–Gordon equation, but with two changes: first, the dispersion relation

that would have to hold for each of the summands is ωκ =
√
κ2 +m2

0; second, the

linear combination claim would also hold for real-valued planewave solutions ψ< .

What are the salient characteristics of linear combinations of real-valued

planewaves? As shown below, linear combinations of planewaves sometimes consti-

tute planewaves themselves, and at other times result in more complicated wave



(a) Three planewaves of equal κ̄, ω, and thus v̄p.

(b) Sum of the three planewaves above.

Figure 5: The linear combination of three real-valued, planewave solutions to the Klein–Gordon
equation (ω =

√
κ2 +m2

0), all with equal wavevectors κ̄, angular frequencies ω, and thus phase
velocities v̄p. The summands are shown in 5(a): plot i has an amplitude of A = 1, and therefore
matches Figure 4-i; plot ii differs from i by having a doubled amplitude, A = 2; and plot iii
differs from plot i by a phase shift of π2 . Their sum is shown in 5(b): plot i shows the summands
superimposed; plot ii shows their sum; plot iii shows their sum from above. As in earlier figures,
m0 = ~ = 1 and κ = 3.

configurations. Consider first an example of the former: a linear combination of

different planewaves, all of which have the same wavenumber κ, angular frequency ω,

and therefore phase velocity v̄p, the sum of which is another planewave. Figure 5(a)

illustrates three such planewave summands, all of which solve the Klein–Gordon

equation. From the discussion above, it should be clear by inspection that each

of the summands (i–iii) is homeomorphic to a solution to the Squaringer equa-

tion, introduced above. The three planewaves’ sum is illustrated in Figure 5(b).

There too, it should be clear by inspection that the resulting planewave is also

homeomorphic to a solution to the Squaringer equation. From this it follows that

a linear combination of planewave solutions to the Klein–Gordon equation, all

having equal wave vectors and angular frequencies, results in another solution to

the Klein–Gordon equation that, when taken up to homeomorphism as 〈P, T 〉,



Figure 6: The sum of two real-valued planewave solutions to the Klein–Gordon equation, for
which ω =

√
κ2 +m2

0. As above, A = m = ~ = 1, so that plot i matches Figure 4-i again. The
difference in the summands’ wavenumbers κ ensures that their sum is not a planewave.

admits alternative coordinate-dependent descriptions fφ′ from among which can be

found solutions to rival equations like the Squaringer.

But now consider a linear combination of planewave solutions to the Klein–

Gordon equation, the wavenumbers (and thus phase velocities) of which differ

from one another, and the sum of which is therefore not a planewave. Figure 6

illustrates two such planewaves.19 As before, it is clear by inspection that both of

the summands (i, ii) are homeomorphic to a solution to any of the rival equations

introduced above. However, it is less clear whether their sum (iii, iv), which is

another real-valued solution to the Klein–Gordon equation, is also homeomorphic

to solutions of those rival equations.

In fact it is. To see this for the Squaringer equation, consider what would result

from the following process: first, consider two planewave solutions to the Squaringer

equation with wave-vectors equal to those of the planewave summands illustrated

in Figure 6; then, consider the linear combination of those planewaves. This linear

combination is illustrated in Figure 7. By the fact that the summands (i, ii) solve the

19Note that for such solutions, the systematization mentioned in footnote 18 (p.

20) is no longer possible, as there are no dimensions along which the field values

are constant.



Figure 7: The sum of two real-valued planewave solutions to the Squaringer equation, for which
ω = κ2/2m. As above, A = m0 = ~ = 1. Note that plots i and ii have the same value for κ as the
corresponding plots in Figure 6.

Squaringer equation, it follows that the sum (iii, iv) does as well. Then, comparing

the sum to Figure 6-iv reveals that the two are indeed homeomorphic—i.e. their

differences can be accommodated by some permissible autohomeomorphism. To

see this, review the illustrations and the caption to Figure 10.

From this it follows that a linear combination of two real-valued planewave

solutions to the Klein–Gordon equation is no more viable as a supportive example

of the constructivist’s account of Minkowski geometry than a single planewave

solution was. However, things change quite quickly when the number of summands

increases. Consider the situation illustrated in Figure 8, which shows the linear

combination of three planewave solutions to the Klein–Gordon equation, all having

distinct wavenumbers. Is the sum homeomorphic to a solution to any of the three

rival equations introduced above? If it is, those solutions can not be found by the

process above, for the sum in Figure 8-iv is not obviously homeomorphic to what

results from the preceding operation of taking planewave solutions to, say, the

Squaringer equation, all having corresponding values for κ, and then taking their

linear combination. The result of that process is illustrated in Figure 9. To see what

the trouble is, consider the steps that would be involved in repeating the process

mentioned above, and outlined in Figure 10. After using a time dilation to transform

the first planewave summand into a solution to the Squaringer equation, it would



Figure 8: The linear combination of three planewave solutions to the Klein–Gordon equation,
for which ω =

√
κ2 +m2

0. As above, A = m = ~ = 1. Plots i and ii match those of Figure 6 in a
different scale.

Figure 9: The linear combination of three planewave solutions to the Squaringer equation, for
which ω = κ2/2m. As above, A = m = ~ = 1. Plots i and ii match those of Figure 7 in a different
scale.

once again be necessary to boost into the ‘rest frame’ of that planewave before

using another time dilation to transform the second summand into a solution to the

Squaringer equation. But when this process is attempted for the third summand,

trouble arises. There is no mutual ‘rest frame’ for the first and second summands,

from which one could carry out a time dilation on the third summand without

affecting what was accomplished in the previous two operations. The problem

is simply that there are now more planewaves than there are dimensions. Any

time dilation that transforms the third planewave summand into a solution of the

Squaringer equation will interfere with the dispersion relation of at least one of the

first two planewave summands.20

20Note that this claim is made in regard to two-dimensional examples. In taking

a four-dimensional topological structure as primitive, this would only be true in



Of course, it should be granted that this only shows that by taking up to home-

omorphism a linear combination of a sufficient number of real-valued planewave

solutions to the Klein–Gordon equation, all differing in wavenumber, there is no

combination of boosts (shearing transformations) and dilations (stretching transfor-

mations) under which 〈P, T 〉 would be recoordinatized so that fφ′ solves one of the

rival systematizations outlined above. Whether some other autohomeomorphism

of R4 might do the trick, or whether there may be alternative coordinatizations

φ′ according to which the fφ′ solve some other equations altogether, is an open

question. But for the time being, the lesson is simply that by taking a linear

combination of planewave solutions to the Klein–Gordon equation with different

wavenumbers, the obvious competition for the best-systems dynamical law of 〈P, T 〉

at least diminishes. Thus the onus is on the critic of the dynamical approach to

find an autohomeomorphism of R4 such that the corresponding fφ′ would solve

some otherwise-covariant equation, the simplicity and strength of which could rival

those of the Klein–Gordon equation.

7 Summary and Reflections

One of the goals of this paper has been to use solutions to the Klein–Gordon

equation as a case study in the constructivist’s best-systems account of Minkowski

spacetime structure. First, it was shown that the simplest, planewave solutions to

the Klein–Gordon equation can indeed be recoordinatized—without any violation to

the case of five or more planewave solutions to the Klein–Gordon equation, all

differing in wavenumber. A similar comment applies to the claim made in footnote

19 (p.23).



their topological structure—in such a way as to instantiate a solution to equations of

other covariance groups. However, it has also been shown that one needn’t venture

far into the more complicated solutions of the Klein–Gordon equation in order to

find candidate examples of 〈P, T 〉 or 〈PC , T 〉 for which rival systematizations are

not so easily found. Indeed, this was shown to be the case for linear combinations

of a small number of real-valued planewave solutions.

All of this would suggest that the constructivist’s best-systems claim is more

plausible than it might have seemed before considering some specific examples.

What’s more, it has been shown to be plausible in the relatively disadvantageous

context of taking Euclidean topological structure as primitive. The enormous sym-

metry group of R4 allows a great number of alternative coordinatizations φ′ to be

considered, making it infeasible to argue that all possible rival systematizations

have been considered. If a richer geometrical structure were taken as primitive, and

if its symmetry group could be outlined in terms of specific coordinate transforma-

tions, then it would be much easier for the constructivist to ensure that all rival

systematizations had in fact been considered. Alternatively, instead of enriching

the topological structure being taken as primitive, the constructivist project might

also be accomplished by considering a topologically structured set of scalar fields,

or a topologically structured set of vector fields or tensor fields. Such examples,

however, would require more room for discussion than allotted here.



Figure 10: The relationship between plots 6-iv and 7-iv. Plot i shows the former, and plots ii–v
show a series of transformations under which plot i comes to solve the Squaringer equation. That
is, plots ii–iv show a series of transformations under which Figure 6-iv becomes Figure 7-iv. In
reviewing these steps, it will be helpful to think of plot i in terms of the two planewave summands
illustrated in Figure 6. To begin, plot ii shows the result of the time dilation, mentioned earlier
(p.17), under which the first planewave summand shown in Figure 6-i would come to satisfy the
Squaringer equation. For this step, x→ x′ = x and t→ t′ = t

√
κ2 +m2

0/(κ2/2m), with κ = 3.
The following three steps must do the same for the second summand of Figure 6, but without
ruining the work accomplished so far. Toward that end, plot iii shows the result of boosting
into the ‘rest frame’ of the now-dilated first planewave summand. For this step, t′ → t′′ = t′,
and x′ → x′′ = x′ − vdt′, where vd = 1.5 is the phase velocity of the first planewave summand
after the aforementioned time dilation. Another time dilation can now safely be carried out
to transform the second planewave summand into a solution to the Squaringer equation. For
this step, x′′ → x′′′ = x′′, and t′′ → t′′′ = −1.3454t′′. (The decimal value can be solved for by
requiring that the final result of these steps be a solution to the Squaringer equation.) Finally,
plot v shows the result of boosting back, so as to undo the changes brought about in moving from
plot ii to plot iii. For this step, t′′′ → t′′′′ = t′′′, and x′′′ → x′′′′ = x′′′ + vdt

′′′. Plugging in values
for κ, ω, and vd, these steps combine to the overall transformation x → x′′′′ = x + 2.6149t′′′′
and t→ t′′′′ = −0.9454t, under which the exponents of both planewave summands of Figure 6
transform to satisfying the dispersion relation of the Squaringer equation (p.19).
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