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Abstract. In his classic Savage (1954, 1972) develops a formal system of rational
decision making. It is based on (i) a set of possible states of the world, (ii) a set of
consequences, (iii) a set of acts, which are functions from states to consequences,
and (iv) a preference relation over the acts, which represents the preferences of
an idealized rational agent. The goal and the culmination of the enterprise is a
representation theorem: Any preference relation that satisfies certain arguably ac-
ceptable postulates determines a (finitely additive) probability distribution over
the states and a utility assignment to the consequences, such that the preferences
among acts are determined by their expected utilities. Additional problematic
assumptions are however required in Savage’s proofs. First, there is a Boolean
algebra of events (sets of states) which determines the richness of the set of acts.
The probabilities are assigned to members of this algebra. Savage’s proof requires
that this be a σ-algebra (i.e., closed under infinite countable unions and intersec-
tions), which makes for an extremely rich preference relation. On Savage’s view
we should not require the probability to be σ-additive. He therefore finds the
insistence on a σ-algebra, peculiar and is unhappy with it. But he sees no way of
avoiding it. Second, the assignment of utilities requires the constant act assumption:
for every consequence there is a constant act, which yields that consequence in
every state. This assumption is known to be highly counterintuitive. The present
work includes two mathematical results. The first, and more difficult one, shows
that the σ-algebra assumption can be dropped. The second states that, as long
as utilities are assigned to finite gambles only, the constant act assumption can
be replaced by the plausible, much weaker assumption that there are at least two
non-equivalent constant acts. The paper discusses the notion of “idealized agent”
that underlies Savage’s approach, and argues that the simplified system, which is
adequate for all the actual purposes for which the system is designed, involves a
more realistic notion of an idealized agent.

Keywords. subjective probability, expected utilities, Savage axioms, realistic de-
cision theory, partition tree, Boolean algebra.

0. Introduction

Ramsey’s groundbreaking work “Truth and Probability” (Ramsey, 1926) estab-
lished the decision theoretic approach to subjective probability, or, in his termi-
nology, to degree of belief. Ramsey’s idea was to consider a person who has to
choose between different practical options, where the outcome of the decision
depends on unknown facts. One’s decision will be determined by (i) one’s prob-
abilistic assessment of the facts, i.e., one’s degrees of belief in the truth of various
propositions, and (ii) one’s personal benefits that are associated with the possible
outcomes of the decision. Assuming that the person is a rational agent – whose
decisions are determined by some assignment of degrees of belief to propositions
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and utility values to the outcomes – we should, in principle, be able to derive
the person’s degrees of belief and utilities from the person’s decisions. Ramsey
proposed a system for modeling the agent’s point of view in which this can be
done. The goal of the project is a representation theorem, which shows that the
rational agent’s decisions should be determined by the expected utility criterion.

The system proposed by Savage (1954, 1972) is the first decision-theoretic sys-
tem that comes after Ramsey’s, but it is radically different from it, and it was that
system that put the decision-theoretic approach on the map.1 To be sure, in the
intervening years a considerable body of research has been produced in subjec-
tive probability, notably by de Finetti (1937a,b), and by Koopman (1940a,b, 1941),
whose works are often mentioned by Savage, among many others. De Finetti
also discusses problems related to expected utility. Yet these approaches were
not of the decision-theoretic type: they did not aim at a unified account in which
the subjective probability is derivable from decision making patterns. It might
be worthwhile to devote a couple of pages to Ramsey’s proposal, for its own
sake and also to put Savage’s work in perspective. We summarize and discuss
Ramsey’s work in Appendix A.

The theory as presented in Savage (1954, 1972) has been known for its compre-
hensiveness and its clear and elegant structure. Some researchers have considered
it the best of the decision-theoretic systems. Thus Fishburn (1970) has praised it
as “the most brilliant axiomatic theory of utility ever developed” and Kreps (1988)
describes it as “the crowning glory of choice theory.”

The system is determined by (I) The formal structure, or the basic design,
and (II) The axioms the structure should satisfy, or – in Savage’s terminology –
the postulates. Savage’s crucial choice of design has been to base the model on
two independent coordinates: (i) a set S of states, (which correspond to what in
other systems is the set possible worlds), and (ii) a set of consequences, C, a new
abstract construct, whose members represent the outcomes of one’s acts. The
acts themselves, whose collection is denoted here as A, constitute the third major
component. They are construed as functions from S into C. The idea is simple:
the consequence of one’s act depends on the state of the world. Therefore, the
act itself can be represented as a function from the set of states into the set of
consequences. Thus, we can use heuristic visualization of two coordinates in a
two-dimensional space.

S is provided with additional structure, namely, a Boolean algebra B of subsets
called events (which, in another terminology, are propositions). The agent’s subjec-
tive, or personal view is given by the fourth component of the system, which is a
preference relation, ≽, defined over the acts. All in all, the structure is:

(S, C,A,≽,B)
We shall refer to it as a Savage-type decision model, or, for short, decision model.
Somewhat later in his book Savage introduces another important element: that of
constant acts. It will be one of the focus points of our paper and we shall discuss it
shortly. (For contrast, note that in Ramsey’s system the basic component consists
of propositions and worlds, where the latter can be taken as maximally consistent
sets of propositions. There is no independent component of “consequences”.)

1“Before this [Savage’s 1954 book], the now widely-referenced theory of Frank P. Ramsey (1931) was
virtually unknown.” (Fishburn, 1970, p. 161)
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Savage’s notion of consequences corresponds to the “goods” in VNM – the
system presented in von Neumann and Morgenstern (1944).2 Now VNM uses
gambles that are based on an objective probability distribution. Savage does not
presuppose any probability but has to derive the subjective probability within his
system. The most striking feature of that system is the elegant way of deriving
– from his first six postulates – a (finitely additive) probability over the Boolean
algebra of events. That probability is later used in defining the utility function,
which assigns utilities to the consequences. The definition proceeds along the
lines of VNM, but since the probability need not be σ-additive, Savage cannot
apply directly the VNM construction. He has to add a seventh postulate and the
derivation is somewhat involved.

In this paper we assume some familiarity with the Savage system. For the sake
of completeness we include a list of the postulates in Appendix B.

As far as the postulates are concerned Savage’s system constitutes a very suc-
cessful decision theory, including a decision-based theory of subjective proba-
bility. Additional assumptions, which are not stated as axioms, are however
required both (i) in Savage’s derivation of subjective probability and (ii) in his
derivation of subjective utility. These assumptions are quite problematic and our
goal here is to show how they can be eliminated, and how the elimination yields
a simpler and more realistic theory.

The first problematic assumption we address in this paper is the σ-algebra as-
sumption: In deriving the subjective probability, Savage has to assume that the
Boolean algebra, B, over which the probability is to be defined is a σ-algebra (i.e.,
closed under countable infinite unions and intersections). Now Savage insists
that we should not require that the probability be σ-additive. He fully recog-
nizes the importance of the mathematical theory of probability, which is based
on Kolmogorov’s axioms, according to which B is a σ-algebra and the probability
is σ-additive. But he regards it as a mathematical theory, and σ-additivity – as a
sophisticated mathematical concept. Being a rational agent should not require
the capacities of a professional mathematician. In this, Savage follows de Finetti
(both made important mathematical contributions to mathematical probability
theory). It is therefore odd that the Boolean algebra, over which the finitely addi-
tive probability is to be defined, is required to be a σ-algebra. Savage notes this
oddity and justifies it on grounds of expediency, he sees no other way of deriving
the quantitative probability that is needed for the purpose of defining expected
utilities

It may seem peculiar to insist on σ-algebra as opposed to finitely
additive algebras even in a context where finitely additive mea-
sures are the central object, but countable unions do seem to be
essential to some of the theorems of §3 – for example, the terminal
conclusions of Theorem 3.2 and Part 5 of Theorem 3.3. (Savage,
1972, p. 43)

The theorems he refers to are exactly the two places (see Savage, 1972, p. 37–38)
where his proof relies on the σ-algebra assumption. Assuming the σ-algebra as-
sumption he shows the existence of a unique finitely additive numeric probability
in systems that satisfy his axioms. He also shows that this probability satisfies a

2At the time Savage served as chief “statistical” assistant to von Neumann.
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certain property, let us call it “completeness”.3 Completeness guarantees that the
probability can serve as a basis for assigning utilities to the consequences, so that
the expected utilities play their usual role. Using again the σ-algebra assumption
he shows that the probability he defined is complete.

We eliminate the σ-algebra assumption first by pointing a way of defining
probabilities, in systems satisfying Savage’s axioms, which does not rely on the
σ-algebra assumption. This is the hard technical core of this paper and about a
third of it. We develop, for the purpose of the proof a new technique based on
what we call tri-partition trees. This is done in Section 2.

We also show that there is a condition weaker than completeness, call it “al-
most completeness” that is sufficient for assigning utilities to consequences, and
that the probabilities we construct are almost complete. We show also that, with-
out the σ-algebra assumption, there is no way of getting complete probabilities,
but under the σ-algebra assumption every almost complete probability is com-
plete. Thus Savage was right when he thought that the the σ-algebra assumption
is necessary for “the terminal conclusions of Theorem 3.2”. He was also right that
without the σ-algebra assumption there is no way of getting the result of part 5 of
Theorem 3.3. But Part 5 is not the final part, and Savage was wrong in thinking
that the terminal conclusion of Part 7 requires the σ-algebra assumption.

The second problematic assumption concerns constant acts, where an act f is
constant if for some fixed consequence a ∈ C, f (x) = a, for all x ∈ S. Let ca
denote that act. Note that, in Savage’s framework, the utility-value of a conse-
quence depends only on the consequence, not on the state in which it is obtained.
Hence, the preorder of the constant acts, induces a preorder of the corresponding
consequences:

a ≥ b ⇐⇒ Df ca ≽ cb

where a, b range over all consequences for which there exist a corresponding
constant act for which cx exists. The Constant Acts Assumption (CAA) is:

CAA: For every consequence a ∈ C there exists a constant act ca ∈ A.

Savage does not state CAA explicitly, but it is clearly implied by his discussion
and it is needed in his proof of the representation theorem. Note that if CAA
holds then the above induced preorder is a total preorder of C.

In what follows a simple act is an act with a finite range of values. The term
used by Savage (1972, p. 70) is ‘gamble’; he defines it as an act, f, such that, for
some finite set, A, f−1(A) has probability 1. It is easily seen that an act is a
gamble iff it is equivalent to a simple act. ‘Gamble’ is also used in gambling
situations, where one accepts or rejects bets. We shall use ‘simple act’ and ‘gam-
ble’ interchangeably. Using the probability that has been obtained already, the
following is derivable from the first six postulates and CAA.

Proposition 0.1 (Simple Act Utility). We can associate utilities with all conse-
quences, so that, for all simple acts the preference is determined by the acts’
expected utilities.4

3 This is not Savage’s terminology; he does not give this property a name.
4In order to extend that proposition to all acts, Savage adds his last postulate, P7. See also Fishburn
(1970, Chapter 14) for a detailed presentation.
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CAA has however highly counterintuitive implications, a fact that has been
observed by several scholars.5 The consequences of a person’s act depend, as a
rule, on the state of the world. More often than not, a possible consequence in
one state is impossible in another. Assume that I have to travel to a nearby city
and can do this either by plane or by train. At the last moment I opt for the plane,
but when I arrive at the airport I find that the flight has been canceled. If a and b
are respectively the states flight-as-usual and flight-canceled, then the consequence
of my act in state a is something like ‘arrived at X by plane at time Y’. This
consequence is impossible – logically impossible, given the laws of physics – in
state b. Yet CAA implies that this consequence, or something with the same
utility-value, can be transferred to the state b.6 Our result concerning CAA shows
that it can be avoided at some price, which – we later shall argue – is worth
paying. To state the result, let us first define feasible consequences: A consequence
a is feasible if there exists some act, f ∈ A, such that f−1(a) is not a null event.7 It
is not difficult to see that the name is justified and that unfeasible consequences,
while theoretically possible, are a pathological curiosity. Note that if we assume
CAA then all consequences are trivially feasible. Let us replace CAA by the
following much weaker assumption:

2CA: There are two non-equivalent constant acts ca and cb.
(Note that 2CA makes the same claim as postulate P5; but this is misleading.
While P5 presupposes CAA, 2CA does not.) Having replaced CAA by 2CA we
can prove the following:

Proposition 0.2 (Simple Act Utility*). We can associate utilities with all feasible
consequences, so that, for all simple acts, the preference is determined by the acts’
expected utilities.

It is perhaps possible to extend this result to all acts whose consequences are
feasible. This will require a modified form of P7 (there is a natural candidate
for the role, which we have not tried yet). But our proposed modification of the
system does not depend on there being such an extension. In our view the goal
of a subjective decision theory is to handle all scenarios of having to choose from
a finite number of options, involving altogether a finite number of consequences.
(Simple Act Utility*) is therefore sufficient. The question of extending it to all fea-
sible acts is intriguing because of its mathematical interest, but this is a different
matter.

The rest of the paper is organized as follows. In what immediately follows we
introduce some further concepts and notations which will be used throughout

5Fishburn (1970) who observe that CAA is required for the proof of the representation theorem, has
also pointed out its problematic nature. This difficulty was also noted by Luce and Krantz (1971),
Pratt (1974), Seidenfeld and Schervish (1983), Shafer (1986), Joyce (1999), among others.
6 Fishburn (1970, p. 166-7), went into the problem at some detail. He noted that, if W(x) is the set of
consequences that are possible in state x, then we can have W(s) ̸= W(s′), and even W(s)∩W(s′) = ∅.
He noted that, so far there is no proof that avoids CAA, and suggested a line of research that would
enrich the set of states by an additional structure, (see also Fishburn, 1981, p. 162). The decision model
in Gaifman and Liu (2015) (also sketched in Section 3) avoids the need for an additional structure, as
far as simple acts are concerned.
7A null event is an event B, such that, given B, all acts are equivalent. These are the events whose
probability is 0. See also Appendix B.
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the paper. Section 1 is devoted to the analysis of idealized rational agents and what
being “more realistic” abut it entails. We argue that, when carried too far, the
idealization voids the very idea underlying the concept of personal probability
and utility; the framework then becomes, in the best case, a piece of abstract
mathematics. Section 2 is devoted to the σ-algebra assumption. It consists of a
short overview of Savage’s original proof followed by a presentation of the tri-
partition trees and our proof, which is most of the section. In Section 2.3, we
outline a construction by which, from a given finite decision model that satisfies
P1-P5, we get a countable infinite decision model that satisfied P1-P6; this model
is obtained as a direct limit of an ascending sequence of finite models. In Section 3,
we take up the problem of CAA. We argue that, as far as decision theory is
concerned, we need to assign utilities only to simple acts. Then we indicate the
proof of Proposition 0.2. To a large extent this material has been presented in
Gaifman and Liu (2015), hence we contend ourselves with a short sketch.

Some Terminologies, Notations, and Constructions. Recall that ‘≽’ is used for the
preference relation over the acts. f ≽ g says that f is equi-or-more preferable to g;
≼ is its converse. ≽ is a preorder, which means that it is a reflexive and transitive
relation; it is also total, which means that for every f , g either f ≽ g or g ≽ f . If
f ≽ g and f ≼ g then the acts are said to be equivalent, and this is denoted as
f ≡ g. The strict preference is defined by: f ≻ g ⇐⇒ f ≽ g and g ̸≽ f ; its
converse is ≺.

For a given consequence a, ca is the constant act whose consequence is a for all
states. This notation is employed under the assumption that such an act exists.
If ca ≽ cb then we put: a ≥ b. Similarly for strict preference. Various symbols
are used under systematic ambiguity, e.g., ‘≡’ for acts and for consequences, ‘≤’,
‘<’ for consequences as well as for numbers. Later, when qualitative probabilities
are introduced, we shall use ⪰ and ⪯, for the “greater-of-equal” relation and its
converse, and ≻ and ≺ for the strict inequalities.

Note. Following Savage, by a numeric probability, we mean in this paper a finitely
additive probability function. If σ-additivity is meant this will be explicitly indi-
cated.

Cut-and-Paste: If f and g are acts and E is an event then we define

( f |E + g|E)(s) =Df

{
f (s) if s ∈ E
g(s) if s ∈ E,

where E = S − E is the complement of E.8.

Note that f |E + g|E is obtained by “cutting and pasting” parts of f and g, which
results in the function that agrees with f on E, and with g on E. Savage takes it
for granted that the acts are closed under cut-and-paste. Although the stipulation
is never stated explicitly, it is obviously a property of A. It is easily seen that by
iterating the cut-and-paste operations just defined we get a cut-and-paste that
involves any finite number of acts. It is of the form:

f1|E1 + f2|E2 + . . . + fn|En, where {E1, . . . , En} is a partition of S.

8Some writers use ‘ f ⊕E g’ or ‘( f , E, g)’ or ‘ f Eg’ or ‘
[

f on E, g on E
]
’.
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1. The Logic of the System and the Role of “Idealized Rational Agents”

The decision theoretic approach construes a person’s subjective probability in
terms of its function in determining the person’s decision under uncertainty. The
uncertainty should however stem from lack of empirical knowledge, not from
one’s limited deductive capacities. One could be uncertain because one fails to
realize that such and such facts are logically deducible from other known facts.
This type of uncertainty does not concern us in the context of subjective prob-
ability. Savage (1972, p. 7) therefore posits an idealized person, with unlimited
deductive powers in logic, and he notes (in a footnote on that page) that such a
person should know the answers to all decidable mathematical propositions. By
the same token, we should endow our idealized person with unlimited computa-
tional powers. This is of course unrealistic; if we do take into account the rational
agent’s bounded deductive, or computational resources, we get a “more realistic”
system. This is the sense that Hacking (1967) meant in his “A slightly more real-
istic personal probability”; a more recent work on that subject is Gaifman (2004).
But this is not the sense of “realistic” of the present paper. By “realistic”, we mean
conceptually realistic; that is, the ability to conceive impossible fantasies and treat
them as if they were real.

We indicated in the introduction that CAA may give rise to agents that have
such extraordinary powers of conceiving. We shall elaborate on this sort of unre-
alistic abilities shortly. The σ-algebra assumption can lead to even more extreme
cases in a different area: the foundation of set theory. We will not go into this
here, since this would require too long a detour, but we shall discuss it briefly in
Section 2.1.

It goes without saying that the extreme conceptual unrealism, of the kind we
are considering here, has to be distinguished from the use of hypothetical mun-
dane scenarios – the bread-and-butter of every decision theory that contains more
than experimental results. Most, if not all, the scenarios treated in papers and
books of decision theory are hypothetical, but sufficiently grounded in reality.
The few examples Savage discusses in his book are of this kind. The trouble is
that the solutions that he proposes require that the agent be able to assess the
utilities of physical impossibilities and to weigh them on a par with everyday
opportunities.

Let us consider a simple decision problem, an illustrative example proposed
by Savage (1972, p. 13-14), which will serve us for more than one purpose. We
shall refer to it as Omelet. John (in Savage (1972) he is “you”) has to finish making
an omelet began by his wife, who has already broken into a bowl five good eggs.
A sixth unbroken egg is lying on the table, and it must be either used in making
the omelet, or discarded. There are two states of the world good (the sixth egg is
good) and rotten (the sixth egg is rotten). John considers three possible acts, f1:
break the sixth egg into the bowl, f2: discard the sixth egg, f3: break the sixth
egg into a saucer; add it to the five eggs if it is good, discard it if it is rotten. The
consequences of the acts are as follows:

Omelet is one of the many scenarios in which CAA is highly problematic. It
requires the existence of an act by which a good six-egg omelet is made out of
five good eggs and a rotten one.9 Quite plausibly, John can imagine a miracle

9“Omelet” obviously means a good omelet.
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f1(good) = six-egg omelet f1(rotten) = no omelet and five
good eggs wasted

f2(good) = five-egg omelet and
one good egg wasted

f2(rotten) = five-egg omelet

f3(good) = six-egg omelet and a
saucer to wash

f3(rotten) = five-egg omelet and a
saucer to wash

by which a six-egg omelet is produced from five good eggs and a rotten one;
this lies within his conceptual capacity. But this would not be sufficient; he has
to take the miracle seriously enough, so that he can rank it on a par with the
other real possibilities, and eventually assign to it a utility value. This is what
the transfer of six-egg omelet from state good to state rotten means. In another
illustrative example (Savage, 1972, p. 25) the result of such a transfer is that the
person can enjoy a refreshing swim with her friends, while in fact she is “...sitting
on a shadeless beach twiddling a brand-new tennis racket” — because she bought
a tennis racket instead of a bathing suit — “while her [one’s] friends swim.” CAA
puts extremely high demands on what the agent, even an idealized one, should
be able to conceive.

CAA is the price Savage has to pay for making the consequences completely
independent of the states.10 A concrete consequence is being abstracted so that
only its personal value remains. These values can be then smoothly transferred
from one state to another. Our suggestion for avoiding it is described in the
introduction. In Section 3 we shall argue that the price one has to pay is worth
paying.

Returning to Omelet, let us consider how John will decide. It would be wrong
to describe him as appealing to some intuitions about his preference relation, or
interrogating himself about it. John determines his preferences by appealing to
his intuitions about the likeliness of the states and the personal benefits he might
derive from the consequences.11 If he thinks that good is very likely and washing
the saucer — in the case of rotten — is rather bothersome, he will prefer f1 to the
other acts; if washing the saucer is not much bother he might prefer f3; if wasting
a good egg is no big deal, he might opt for f2.

If our interpretation is right, then a person derives his or her preferences by
combining subjective probabilities and utilities. On the other hand, the represen-
tation theorem goes in the opposite direction: from preference to probability and
utility. As a formal structure, the preference relation is, in an obvious sense, more

10This price is avoided in (Ramsey, 1926) because for Ramsey the values derive from the propositions
and, in the final account, from the states. CAA is also avoided in Jeffrey (1965, 1983), because the
Jeffrey-Bolker system realizes, in a better and more systematic way, Ramsey’s point of view. That
system however is of a different kind altogether, and has serious problems of its own, which we shall
not address here.
11 The preference relation is not “given” in the same way that the entrenched notion of probability,
with its long history, is. The preference relation is rather a tool for construing probability in a deci-
sion theoretic way. John can clarify to himself what he means by “more probable” by considering its
implications for making practical decisions. In a more operational mood one might accord the prefer-
ence relation a self-standing status. Whether Savage is inclined to this is not clear. He does appeal to
intuitions about the probabilities; for example, in comparing P6

′ to an axiom suggested by de Finetti
and by Koopman, he argues that it is more intuitive, (and we agree with him). This is even clearer
with regard to P6 — the decision-theoretic analog of P6

′ which implies P6
′.
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elementary than a real valued function. If it can be justified directly on rationality
grounds, this will yield a normative justification to the use probability and utility.

The Boolean algebra in Omelet is extremely simple; besides S and ∅ it consists
of two atoms. The preference relation implies certain constraints on the probabil-
ities and utility values, but it does not determine them. This, as a rule, is the case
whenever the Boolean algebra is finite.12 Now the idea underlying the system is
that if the preference relation is defined over a sufficiently rich set of acts (and
if it satisfies certain plausible postulates) then both probabilities and utilities are
derivable from it. As far as probability is concerned, the consequences play a mi-
nor role. We need only two non-equivalent constant acts, say ca, cb, and we need
only the preferences over two-valued act, in which the values are a or b. But B has
to satisfy P6

′, which implies that is must be infinite, and – in Savage’s proof – it
should be a σ-algebra, which implies that its cardinality is 2ℵ0 at least, and it can
be quite a complicated structure. Our result makes it possible to get a countable
Boolean algebra, B, and a decision model (S, C,A,≽,B) which is a direct limit of
an ascending sequence of substructures (Si, C,Ai,≽i,Bi), where the Si’s are finite,
and where C is any fixed set of consequences containing two non-equivalent ones.
This construction is described briefly at the end of the next section.

2. Eliminating the σ-Algebra Assumption

2.1. Savage’s Derivation of Numeric Probabilities. Savage’s derivation of a nu-
meric probability comprises two stages. First, he defines, using P1-P4 and the
assumption that there are two non-equivalent constant acts, a qualitative probabil-
ity. This is a binary relation, ⪰ , defined over events, which satisfies the axioms
proposed by de Finetti (1937a) for the notion “X is more-than-or-equi probable
than Y”. The second stage is devoted to showing that if a qualitative probabil-
ity, ⪰ , satisfies certain additional assumptions, then there is a unique numeric
probability, µ, that represents ⪰, that is, for all events E, F:

E ⪰ F ⇐⇒ µ(E) ≥ µ(F) (2.1)

Our improvement on Savage’s result concerns only the second stage. For the sake
of completeness we include a short description of the first.

2.1.1. From Preferences over Acts to Qualitative Probabilities. The qualitative proba-
bility, ⪰, is defined by:

Definition 2.1. For any events E, F, say that E is weakly more probable than F,
written E ⪰ F (or F ⪯ E), if, for any ca and cb satisfying ca ≻ cb, we have

ca|E + cb|E ≽ ca|F + cb|F. (2.2)

E and F are said to be equally probable, in symbols E ≡ F, if both E ⪰ F and F ⪰ E.

Savage’s P4 guarantees that the above concept is well defined, i.e., (2.2) does
not depend on the choice of the pair of constant acts. The definition has a clear in-
tuitive motivation and it is not difficult to show that ⪰ is a qualitative probability,
as defined by de Finetti:

12This is the case even if the number of consequence is infinite. There are some exceptions: if ca and
cb are non-equivalent and if E and E′ are two events then the equivalence: ca|E + cb|E′ ≡ cb|E′ + ca|E
implies that E and E′ have equal probabilities. Using equivalences of this form makes it possible to
determine certain probability distributions over a finite set of atoms.
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Definition 2.2 (Qualitative probability). A binary relation ⪰ over B is said to be
a qualitative probability if the following hold for all A, B, C ∈ B:

i. ⪰ is a total preorder,
ii. A ⪰ ∅,

iii. S ≻ ∅,
iv. if A ∩ C = B ∩ C = ∅ then

A ≻ B ⇐⇒ A ∪ C ≻ B ∪ C. (2.3)

where ≻ is the strict (i.e., the asymmetric) part of ⪰.

For a given a decision model, which satisfies P1-P4 and which has two non-
equivalent constant acts, the qualitative probability of the model is the qualitative
probability defined via Definition 2.1. If that qualitative probability is repre-
sentable by a quantitative probability, and if moreover the representing proba-
bility is unique, then we get a single numeric probability and we are done.13

The following postulate ascribes to the qualitative probability the property which
Savage (1972, p. 38) suggests as the key for deriving numeric probabilities.

P6′: For all events E, F, if E ≻ F, then there is a partition {Pi}n
i=1 of S such

that E ≻ F ∪ Pi for all i = 1, . . . , n.
P6

′ is not stated in terms of ≽, which is a preference relation over acts. But, given
the way in which the qualitative probability has been defined in terms of ≽, P6

′ is
obviously implied by P6 (see Appendix B). As Savage describes it, the motivation
for P6 is its intuitive plausibility and its obvious relation to P6

′.
Before proceeding to the technical details that occupy most of this section it

would be useful to state for comparison the two theorems, Savage’s and ours, and
pause on some details regarding the later use of the probabilities in the derivation
of utilities.

Overview of the Main Results. We state the results as theorems about qualitative
probabilities. The corresponding theorems within the Savage framework are ob-
tained by replacing the qualitative probability ⪰ by the preference relation over
acts ≽, and P6

′ – by P1-P6.

Theorem 2.3 (Savage). Let ⪰ be a qualitative probability defined over the Boolean
algebra B. If (i) ⪰ satisfies P6

′ and (ii) B is a σ-algebra, then there is a unique
numeric probability µ, defined over B, which represents ⪰. That probability has
the following property:

(†): For every event, A, and every ρ ∈ (0, 1), there exists an event B ⊆ A
such that µ(B) = ρ · µ(A).

Theorem 2.4 (Main Theorem). Let ⪰ be a qualitative probability defined over the
Boolean algebra B. If ⪰ satisfies P6

′, then there is a unique numeric probability µ,
defined over B, which represents ⪰. That probability has the following property:

(‡): For every event, A, every ρ ∈ (0, 1), and every ϵ > 0 there exists an
event B ⊆ A, such that (ρ − ϵ) · µ(A)) ≤ µ(B) ≤ ρ · µ(A).

13Some such line of thought has guided de Finetti (1937a). Counterexamples were however found
of qualitative probabilities that are not representable by any quantitative one. First to be found were
counterexamples in which the Boolean algebra is infinite. They were followed by counterexamples
for the finite case, in particular, a counterexample in which the qualitative probability is defined over
the Boolean algebra of all subsets of a set consisting of 5 members, (cf. Kraft et al., 1959).
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Remark 2.5. (1) In the Introduction we used “complete” for characterizing Boolean
algebras satisfying (†) and “almost complete” for those satisfying (‡).

(2) Given a numeric probability µ, let a ρ-portion of an event A be any event
B ⊆ A such that µ(B) = ρ · µ(A) . Then (†) means that, for every 0 < ρ < 1,
every event has a ρ-portion. (‡) is a weaker condition: for every A, and for
every ρ ∈ (0, 1), there are ρ′-portions of A, where ρ′ can be < ρ and arbitrary
near to it.

(†) – for the case A = S – implies that the set of values of µ is the full
interval [0, 1]. But (‡) only implies that the set of values is dense in [0, 1].
Obviously, the satisfaction of P6

′ implies that the Boolean algebra is infinite,
but, as indicated in Section 2.3 it can be countable, in which case (†) must fail.

(†) is stated as one of the claims of Theorem 2 in Savage (1972, p.34); it is
later used when, on the basis of the probability, utilities are assigned to the con-
sequences, so as to yield eventually the expected utility theorem. The proof of
(†) relies crucially on the σ-algebra assumption. Indeed, we have shown (by con-
structing a counterexample) that without the σ-algebra assumption (†) can fail.
Yet, as we will show in Section 3, we can assign utilities to the consequences if
we have (‡). The proof of (‡) is given in Section 2.2.4 and, as we shall see, it does
not rely on the σ-algebra assumption.

2.1.2. Savage’s Proof. The proof is given in the more technical part of the book
(Savage, 1972, p. 34-38). The presentation seems to be based on working notes,
reflecting a development that led Savage to P6

′. Many proofs consists of num-
bered claims and sub-claims, whose proofs are left to the reader (some of these
exercises are difficult). Some of the theorems are supposed to provide motivation
for P6

′, which is introduced (on p. 38) after the technical part: “In the light of
Theorems 3 and 4, I tentatively propose the following postulate ...”. Some of the
concepts that Savage employs have only historical interest. While many of these
concepts are dispensable if P6

′ is presupposed, some remain useful for clarifying
the picture and are therefore used in later textbooks, (e.g., Kreps, 1988, p. 123).
We shall use them as well.

Definition 2.6 (fine). A qualitative probability is fine if for every E ≻ ∅ there is a
partition S = P1 ∪ ... ∪ Pn such that E ≻ Pi, for every i = 1, ..., n.

Another useful concept is tight:

Definition 2.7 (tight). A qualitative probability is tight, if whenever E ≻ F, there
exists C ≻ ∅, such that E ≻ F ∪ C ≻ F.

Obviously (fine) is the special case of P6
′, where the smaller set is ∅. It is easy

to show that P6
′ ⇐⇒ (fine) + (tight). In this “decomposition” (tight) is “exactly”

what is needed in order to pass from (fine) to P6
′.

Remark 2.8. Savage’s definition of “tight” (p. 34) is different from our tight, it
is more complicated and has only historical interest, although the two are equiv-
alent if we presuppose (fine). Let us say that the probability function µ almost
represents ⪰ (in Savage’s terminology “almost agrees with” ⪰) if, for all E, F

E ⪰ F =⇒ µ(E) ≥ µ(F) (2.4)
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Since E ̸⪰ F ⇒ F ≻ E it is easily seen that if µ almost represents ⪰ then it
represents ⪰ iff

E ≻ F =⇒ µ(E) > µ(F) (2.5)

Savage’s proof presupposes (fine), and its upshot is the existence of a unique
µ that almost represents ⪰. Now (fine) implies that if E ≻ ∅, then µ(E) > 0.
(Let P1, ..., Pn be a partition of S such that Pi ⪯ E for all i = 1, ..., n. For some i,
µ(Pi) > 0, otherwise µ(S) = 0. Hence µ(E) > 0). With (tight) added, this implies
(2.5). Hence, under P6

′, µ is the unique probability representing ⪰.

Savage’s proof can be organized into three parts. Part I introduces the concept
of an almost uniform partition, which plays a central role in the whole proof, and
proves the theorem that links it to the existence of numeric probabilities. Before
proceeding recall the following:

Definition 2.9. (i) A partition of B is a collection of disjoint subsets of B, re-
ferred to as parts, whose union is B. We presuppose that the number of
parts is > 1 and is finite and that B is non-null, i.e., B ≻ ∅.

(ii) It is assumed that no part is a null-event, unless this is explicitly allowed.
(iii) By an n-partition we mean a partition into n parts (this is what Savage calls

n-fold partition).
(iv) We adopt self-explanatory expression, such as, “a partition A = A1 ∪ ... ∪

An”, which means that the sets on the right-hand side are a partition of A.

Definition 2.10. An almost uniform partition of an event B is a partition of B into a
finite number of disjoint events, such that the union of any r+1 parts has greater
or equal qualitative probability than the union of any r parts. An almost uniform
n-partition of B is an n-partition of B which is almost uniform.

The main result of Part I comprises what in Savage’s enumeration are Theorem
1 and its proof, and the first claim of Theorem 2 (on the bottom of p. 34), and its
proof. The latter consists of steps 1-7 and ends in the middle of p. 36. All in all,
the result in Part I is:

Theorem 2.11. If for infinitely many ns there are almost uniform n-partitions of
S, then there exists a unique numerical probability, µ, which almost represents ⪰.

The proof of this result consists mainly of direct computational/combinatorial
arguments; it is given with sufficient details and does not use the σ-algebra as-
sumption. We shall take the theorem and its proof for granted.

Part II consists in showing that (fine) and the σ-algebra assumption imply that
there are almost uniform n-partitions for infinitely many ns (together with the
theorems of part I this yields a unique probability that almost represents the
qualitative one). This is done in Theorem 3. The theorem consists of a sequence
of claims, referred to as “parts”, in which later parts are to be derived from earlier
ones. The arrangement is intended to help the reader to find the proofs. For the
more difficult parts additional details are provided. Many claims are couched
in terms that have only historical interest. For our purposes, we need only to
focus on a crucial construction that uses what we shall call “iterated 3-partitions”
and to which we shall shortly return. This construction is described in the proof
of Part 5 (on the top of p. 35). As a last step it involves the crucial use of the
σ-algebra assumption.
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Part III of Savage’s proof consists in the second claim of the aforementioned
Theorem 2. It asserts that the numeric probability, which is derivable from the
existence of almost uniform n-partitions for arbitrary large ns, satisfies (†). The
proof consists in three claims, 8a, 8b, 8c, the last of which relies on on the σ-
algebra assumption. The parallel part of our proof is the derivation of (‡), without
using that assumption.

2.1.3. Savage’s Method of Iterated 3-Partitions. In order to prove Part 5 of Theorem
3, Savage claims that the following is derivable from the laws of qualitative prob-
abilities and (fine).

Theorem 2.12 (Savage). For any given B ≻ ∅ there exists an infinite sequence of
3-partitions of B: {Cn, Dn, Gn}n, which has the following properties:14

(1) Cn ∪ Gn ⪰ Dn and Dn ∪ Gn ⪰ Cn
(2) Cn ⊆ Cn+1 , Dn ⊆ Dn+1, hence Gn ⊇ Gn+1
(3) Gn − Gn+1 ⪰ Gn+1

These properties imply that Gn becomes arbitrary small as n → ∞, that is:
(4) For any F ≻ ∅, there exists n such that Gm ≺ F for all m ≥ n.

Note. Condition (3) in Theorem 2.12 means that Gn is a disjoint union of two
subsets, Gn = Gn+1 ∪ (Gn − Gn+1), each of which is ⪰ Gn+1. In this sense Gn+1
is less than or equal to “half of Gn”. Had the probability been numeric we could
have omitted the scare quotes; it would have implied that the probabilities of
Gn tend to 0, as n → ∞. In the case of a qualitative probability the analogous
conclusion is that the sets become arbitrary small, in the non-numerical sense.

Savage provides an argument, based on (fine), which derives (4) from the pre-
vious properties. The argument is short and is worth repeating: Given any F ≻ ∅,
we have to show that, for some n, Gn ≺ F. Assume, for contradiction, that this is
not the case. Then F ⪯ Gn, for all ns. Now (fine) implies that there is a partition
S = P1 ∪ ... ∪ Pm such that Pi ⪯ F, for i = 1, ..., m. If F ⪯ Gn, then P1 ⪯ Gn, hence
P1 ∪ P2 ⪯ Gn−1, hence P1 ∪ P2 ∪ P3 ∪ P4 ⪯ Gn−2, and so on. Therefore, if 2k−1 ≥ m,
then S ⪯ G1, which is a contradiction.

Definition 2.13. Call an infinite sequence of 3-partitions of B, which satisfies
conditions (1), (2), (3), a Savage chain for B. We say that the chain passes through a
3-partition of B, if the 3-partition occurs in the sequence.

We presented the theorem so as to conform with Savage’s notation and the
capital letters he used. Later we shall change the notation. We shall use ordered
triples for the 3-partition and place in the middle the sets that play the role of the
Gns. The definition just given can be rephrased of course in terms of our later
terminology.

14The proof of the existence of such a sequence is left to the reader. Fishburn (1970, pp.194-197)
reconstructs parts of Savage’s work, filling in missing segments. Part 5 of Theorem 3 is among the
material Fishburn covers. Fishburn presupposes however a qualitative probability that satisfies P6

′

(F5 – in his notation). Therefore his proof cannot be the one meant by Savage; the latter uses only
(fine). We believe that it should not be too difficult to make such a proof, or to modify Fishburn’s
proof of part 5, so as to get a proof from (fine) only. The matter is not too important, since the problem
of the σ-algebra assumption concerns qualitative logic that satisfies P6

′. Besides, we can trust Savage
that his claims are derivable from (fine) alone.
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Figure 2.1. Savage’s error reducing partitions

Figure 2.1 is an illustration of the construction of a Savage chain. Presenting
the Savage chain as a sequence of triples with the Gns in the middle, makes for
better pictorial representation. And it is essential when it comes to trees.

The fact that Dn ∪ Gn ⪰ Cn, Cn ∪ Gn ⪰ Dn, and the fact that Gn becomes arbi-
trary small suggest that Gn plays the role of a “margin of error” in a division of
the set into two, roughly equivalent parts. Although the error becomes arbitrary
small, there is no way of getting rid of it. At this point Savage uses the σ-algebra
assumption, he puts:

B1 =
∪
n

Cn and B2 =
(∪

n
Dn

)
∪
(∩

n
Gn

)
. (2.6)

Remark 2.14. The rest of Savage’s proof is not relevant to our work. For the sake
of completeness, here is a short account of it. B1, B2 form a partition of B, and∩

n Gn ≡ ∅. Assuming P6
′, one can show that B1 ≡ B2; but Savage does not use

P6
′ (a postulate that is introduced after Theorem 3), hence he only deduces that

B1 and B2 are what he calls “almost equivalent” – one of the concepts he used
at the time, which we need not go into. By iterating this division he proves that,
for every n, every non-null event can be partitioned into 2n almost equivalent
events. At an earlier stage (Part 4) he states that every partition of S into almost
equivalent events is almost uniform. Hence, there are almost uniform n-partitions
of S for arbitrary large ns. This together with Theorem 2.11 proves the existence
of the required numeric probability.

We eliminate the σ-algebra assumption by avoiding the construction (2.6). We
develop, instead, a technique of using trees, which generates big partitions, and
many “error parts”, which can be treated simultaneously. We use it in order to
get almost uniform partitions.
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2.2. Eliminating the σ-Algebra Assumption by Using Tripartition Trees. So far,
trying to follow faithfully the historical development of Savage’s system, we pre-
supposed (fine) rather than P6

′. Otherwise the proof will be burdened by various
small details, and we prefer to avoid this.15 From now on, in order to simplify
our proofs, we shall presuppose P6

′.16

First, let us give the 3-partitions that figure in Savage’s construction a more
suggestive form, suitable for our purposes:

Definition 2.15 (Tripartition). A Savage tripartition or, for short, a tripartition of a
non-null event, B, is an ordered triple (C, E, D) of disjoint events such that:

i. B = C ∪ E ∪ D
ii. C, D ≻ ∅,

iii. C ∪ E ⪰ D and E ∪ D ⪰ C.
We refer to E as the error-part, or simply error, and to C and D as the regular parts.

We allow E to be a null-set, i.e., E ≡ ∅, including E = ∅. The latter constitutes
the extreme case of a tripartition, where there the error is ∅. In diagrams, ∅
serves in this case a marker that separates the two parts.17

2.2.1. Tripartition Trees. Recall that a binary partition tree is a rooted ordered tree
whose nodes are sets, such that each node that is not a leaf has two children that
form a 2-partition of it.

By analogy, a tripartition tree is a rooted ordered tree such that: (1) The nodes
are sets, which are referred to as parts, and they are classified into regular parts,
and error parts. (2) The root is a regular part. (3) Every regular part that is not a
leaf has three children that constitute a tripartition of it. (4) error-parts have no
children.

Note. No set can occur twice in a partition tree. Hence we can simplify the
structure by identifying the nodes with the sets; we do not have to construe it as
a labeled tree. Later, in special occasions, the empty set can be an error-part and
it can occur more than once among the leaves of the tree. This should not cause
any confusion.

Figure 2.2 provides an illustration of a top-down tripartition, written top down,
in which the root is the event A, and the error-parts are shaded.

Additional Concepts, Terminology, and Notations.
1. The levels of a tripartition tree are defined as follows: (i) level 0 contains the

root; (ii) level n+1 contains all the children of the regular nodes on level n; (iii)
if level n+1 contains regular nodes, then it contains all error nodes on level n.

2. Note that this means that, once an error-part appears on a certain level it keep
reappearing on all higher levels that contain regular nodes.

15Under P6
′, E ≡ ∅ implies A ∪ E ≡ A; if only (fine) is assumed this need not hold , but it is still true

that A ∪ E can be made arbitrary small, by making A arbitrary small.
16Our result still holds if we presuppose (fine) only, provided that the unique numeric probability is
claimed to almost represent, rather than represent, the qualitative one. See (2.4) in Section 2.1.2 and the
discussion there.
17 Under the P6

′ the case E ≡ ∅ can, for all purposes, be assimilated to the case E = ∅, because we
can add E to one of the regular parts, say C, and C ∪ E ≡ C. But under (fine) non-empty null-sets
cannot be eliminated in this way.
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3. A tripartition tree is uniform if all the regular nodes that are leaves are on the
same level. From now on we assume that the tripartition trees are uniform,
unless indicated otherwise.

4. The height of a finite tree is n , where n is the level of the leaves that are regular
nodes. If the tree is infinite its height is ∞.

5. A subtree of a tree, T , is a tree consisting of some regular node (the root of the
subtree) T and all its descendants.

6. The truncation of a tree, T , at level m, is the tree consisting of all the nodes of
T whose level is ≤ m. (Note that if m ≥ height of T , then truncation at level
m leave is the same as T .)

7. Strictly speaking, the root by itself does not constitute a tripartition tree. But
there is no harm in regarding it as the truncation at the 0 level, or as a tree of
height 0.

Remark 2.16. (1) An ordered tree is one in which the children of any node are or-
dered (an assignment, which assigns to every node an ordering of its children,
is included in the structure). Sometimes the trees must be ordered, e.g., when
they are used to model syntactic structures of sentences. But sometimes an
ordering is imposed for convenience; it makes for an easier location of nodes
and for a useful two-dimensional representation. In our case, the ordering
makes it possible to locate the error-parts by their middle positions in the
triple.18

(2) The main error part of a tree is the error part on level 1.
(3) It is easily seen that on level k there are 2k regular parts and 2k − 1 error-

parts. We use binary strings of length k to index the regular parts, and binary
strings of length k−1 to index the error-parts, except the the main error-part.
Figure 2.1 shows how this is done. The main error-part of that tree is E. We
can regard the index of E as the empty binary sequence.

(4) We let T range over tripartitions trees, and TA — over tripartition trees of
A. We put T = TA in order to say that T is a tripartition tree of A . To
indicate the regular and error parts we put: TA = (Aσ, Eσ), where σ ranges
over the binary sequences (it is understood that the subscript of E ranges over
sequences of length smaller by 1 then the subscript of A.) To indicate also the
height k, we put: TA,k = (Aσ, Eσ)k. Various parameters will be omitted if they
are understood from the context.

Definition 2.17 (Total error). The total error of a tree T , denoted E(T ), is the union
of all error-parts of T . That is to say, if T = TA = (Aσ, Eσ), then E(T ) =Df

∪
σ Eσ.

If T is of height k then E(T ) is the union of all error-parts on the k-level of T .
This is obvious, given that all error-parts of level j, where j < k, reappear on level
j+1. For the same reason, if j < k, then the total error of the truncated tree at
level j is the union of all error-parts on level j.

18Yet, the left/right distinction of the regular parts is not needed. Formally, we can take any regular
part, B, which is not a leaf, and switch around the two regular parts that appear in its tripartition:
from Bl B Br to Ar B Al , switching at the same time the subtrees that are rooted in Al and Ar . The
switch can be obtained by rotating (in a 3-dimensional space) the two subtrees. Such a switch can
be considered an“automorphism” of the structure: Our tripartition trees can be viewed as ordered
trees, “divided” by the equivalence that is determined by the automorphism group generated by these
rotations. All the claims that we prove in the sequel hold under this transformation group.
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Figure 2.3. Claim in the proof of Theorem 2.18

Now, recall that a Savage tripartition (C, E, D) has the property that C ∪ E ⪰ D
and C ⪯ E ∪ D (cf. Definition 2.15). This property generalizes to tripartition trees:

Theorem 2.18. Let TA be a partition tree of A of height k, then, for any regular
parts Aσ, Aσ′ on the kth level, the following holds;

Aσ ∪ E(TA) ⪰ Aσ′

Aσ′ ∪ E(TA) ⪰ Aσ
(2.7)

Proof. We prove the theorem by induction on k. For k = 1 the claim holds since
(A0, E, A1) is just a Savage tripartition. For k > 1, let T ∗

A = (Aσ, Eσ)k−1 be the
truncated tree consisting of the first k− 1levels of TA. By the inductive hypothesis,,
for all regular parts Aτ , Aτ′ on the k−1 level of T ∗

A ,

Aτ ∪ E(T ∗
A ) ⪰ Aτ′

Aτ′ ∪ E(T ∗
A ) ⪰ Aτ

(2.8)

The rest of the proof relies on the following claim.

Claim. Assume that the following holds, as illustrated in Figure 2.3:

A1 ∪ E1 ⪰ B1 B1 ∪ E1 ⪰ A1

A2 ∪ E2 ⪰ B2 B2 ∪ E2 ⪰ A2
(2.9)

and (
A1 ∪ E1 ∪ B1

)
∪ E ⪰

(
A2 ∪ E2 ∪ B2

)
(

B2 ∪ E2 ∪ A2

)
∪ E ⪰

(
A1 ∪ E1 ∪ B1

) (2.10)

Then C1 ∪ (E1 ∪ E ∪ E2) ⪰ C2 where C1 is either A1 or B1 and C2 is A2 or B2.

Proof of Claim. WLOG, it is sufficient to show this for the case C1 = A1 and C2 =
A2. Thus, we have to prove:

A1 ∪ (E1 ∪ E ∪ E2) ⪰ A2. (2.11)

Now, consider the following two cases:

(1) If B1 ⪰ A2, then we have

(A1 ∪ E1) ∪ E ∪ E2 ⪰ B1 ∪ E ∪ E2 ⪰ A2 ∪ E ∪ E2 ⪰ A2.
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(2) Otherwise B1 ≺ A2, we show that the claim also holds under this assumption.
Suppose, to the contrary, that (2.11) fails, that is, A2 ≻ A1 ∪ (E1 ∪ E ∪ E2).
Since A1, E1, E, E2, A2, B2 are mutually exclusive, we have, via (2.3),

A2 ∪ B2 ≻ A1 ∪ (E1 ∪ E ∪ E2) ∪ B2

⪰ A1 ∪ E1 ∪ E ∪ A2

≻ A1 ∪ E1 ∪ E ∪ B1.

The second inequality holds because E2 ∪ B2 ⪰ A2 in (2.9) and the third holds
because the assumption in this case is that A2 ≻ B1. But, again from (2.9), we
have that A1 ∪ E1 ∪ E ∪ B1 ⪰ A2 ∪ E2 ∪ B2 ⪰ A2 ∪ B2, a contradiction. Hence,
it must be that (2.11) holds.

By symmetry, other cases hold as well. This completes the proof of the Claim.

Getting back to the proof of the theorem, assume WLOG that in (2.7) Aσ is to
the left of A′

σ. Now each of them is a regular part of a tripartition of a regular
part on level k − 1. Consider the case in which Aσ appears in a tripartition of
the form (Aσ, Eλ, Bσ) and A′

σ appears in a tripartition of the form (Bσ′ , Eλ′ , Aσ′).
There are other possible cases, but the argument in each case is of the same kind.
We get:

Aσ ∪ Eλ ⪰ Bσ Bσ ∪ Eλ ⪰ Aσ

Aσ′ ∪ Eλ′ ⪰ Bσ′ Bσ′ ∪ Eλ′ ⪰ Aσ′ .
(2.12)

Since Aσ ∪ Eλ ∪ Bσ and Aσ′ ∪ Eλ′ ∪ Bσ′ are regular parts on the k−1 level of TA,
the inductive hypothesis, (2.8) implies:(

Aσ ∪ Eλ ∪ Bσ

)
∪ E(T ∗

A ) ⪰
(

Aσ′ ∪ Eλ′ ∪ Bσ′

)
(

Aσ′ ∪ Eλ′ ∪ Bσ′

)
∪ E(T ∗

A ) ⪰
(

Aσ ∪ Eλ ∪ Bσ

)
.

(2.13)

Clearly, (2.12) and (2.13) are a substitution variant of (2.9) and (2.10). Therefore
the Claim implies:

Aσ ∪
(
E(T ∗) ∪ Eλ ∪ Eλ′

)
⪰ Aσ′

Aσ′ ∪
(
E(T ∗) ∪ Eλ ∪ Eλ′

)
⪰ Aσ.

(2.14)

Since E(T ) is disjoint from Aσ and Aσ′ and E(T ∗) ∪ Eλ ∪ Eλ′ ⊆ E(T ), we get
(2.7). □

2.2.2. The Error Reduction Method for Trees. Note that trees that have the same
height are structurally isomorphic and there is a unique one-to-one correlation
that correlates the parts of one with the parts of the other. We have adopted a
notation that makes clear, for each part in one tree, the corresponding part in the
other tree. This also holds if one tree is a truncation of the other, The indexing
of the regular parts and the error parts in the truncated tree is the same as in the
whole tree.

Definition 2.19 (Error Reduction Tree). Given a tree, TA = (Aσ, Eσ)k, an error-
reduction of T is a tree with the same root and the same height T ′

A = (A′
σ, E′

σ)k,
such that for every σ, Aσ ⊆ A′

σ. We shall also say in that case that T ′ is obtained
from T by error reduction.



20 HAIM GAIFMAN AND YANG LIU

Remark 2.20. (1) Obviously, if all regular parts increase the total error must de-
crease, that is: For all σ, Aσ ⊆ A′

σ =⇒ E(T ′) ⊆ E(T ). Thus, the term
‘error-reduction’ is justified. The reverse implication is of course false in gen-
eral. The crucial property of error-reducing is that, in the reduction of the
total error, every regular part (weakly) increases as a set.

(2) The reduction of E(T ) is in the weak sense: that is, E(T ′) ⊆ E(T ). The strong
sense can be obtained by adding the condition E(T ′) ≺ E(T ). But, in view of
our main result, we shall not need it

(3) Error reductions of tripartitions is the simplest case of error reduction of trees:
each of the two regular parts weakly increases and the error part weakly
decreases. Note that this is the error reduction in trees of height 1.

(4) It is easily seen that if T ′ is an error-reduction of T and T ′′ is an error-
reduction of T ′, then T ′′ is an error-reduction of T .

The proof of our central result is that, given any tripartition tree, there is an
error-reduction of it in which the total error is arbitrarily small; that is, for every
non-null set F, there is an error-reduction tree of total error ⪯ F. The proof is
based on a certain operation on tripartition trees, which is defined as follows.

Definition 2.21 (Mixed Sum). Let TA = (Aσ, Eσ)σ and T ′
A′ = (A′

σ, E′
σ)σ be two

tripartition trees of two disjoint events (i.e., A ∩ A′ = ∅), of the same height, k.
Then the mixed sum of TA and T ′

A′ , denoted TA ⊕ T ′
A′ , is the tree of height k,

defined by:
TA ⊕ T ′

A′ = (Aσ ∪ A′
σ, Eσ ∪ E′

σ)σ (2.15)
The notation TA ⊕ T ′

A′ is always used under the assumption that A and A′ are
disjoint and the trees are of the same height.

Lemma 2.22. (1) TA ⊕ T ′
A′ is a tripartition tree of A ∪ A′ whose total error is

E(TA) ∪ E(T ′
A′).

(2) If T ∗
A and T +

A′ are, respectively, error reductions of TA and T ′
A′ , then T ∗

A ⊕
T +

A′ is an error reduction of TA ⊕ T ′
A′

Proof. The operation ⊕ consists in taking the union of every pair of corresponding
parts, which belong to tripartitions of two given disjoint sets. Therefore, the first
claim follow easily from the definitions of tripartition trees and the laws of qual-
itative probability (cf. Definition 2.2). For example, for every binary sequence, σ,
of length < height of the tree, we have Aσ,0 ∪ Eσ ⪰ Aσ,1 and A′

σ,0 ∪ E′
σ ⪰ A′

σ,1.
In each inequality the sets are disjoint, and every set in the first inequality is dis-
joint from every set in the second inequality. Hence, by the axioms of qualitative
probability we get: (

Aσ,0 ∪ A′
σ,0

)
∪
(
Eσ ∪ E′

σ

)
⪰

(
Aσ,1 ∪ A′

σ,1
)

The second claim follows as easily from the definition of error-reduction and the
laws of Boolean algebra. □

Theorem 2.23 (Error Reduction). For any tripartition tree TA and any non-null
event F, there is an error-reduction tripartition T ∗

A such that E(T ∗
A ) ⪯ F.

Proof. We prove the theorem by induction on k, where k = height of TA. If k = 0,
then formally TA consists of A only. Hence the base case is k = 1, and the only
error part is on level 1. Let the tripartition on level 1 be (A0, E, A1). We now use
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a result that is implied by Fishburn’s reconstruction of the proofs that Savage did
not include in his book:19

Claim. Given any tripartition (C0, E0, D0), there is a sequence of tripartitions
(Cn, En, Dn), n = 1, 2, ... that constitute a Savage chain such that (C1, E1, D1) is an
error reduction of (C0, E0, D0).

Applying this Claim, we first get an error reduction of (A0, E, A1), then continue
to reduce the error via the Savage chain until, for some n, En ⪯ F. This proves
the base case.

Before proceeding, observe that, for any integer m > 1, every non-null event F
can be partitioned into m disjoint non-null events. This is an easy consequence of
(fine).20 In what follows we use a representation of ordered partition trees of the
form:

[TB1 , ..., TBm ]

where m > 1 and the Bis are disjoint non-null sets. This includes the possibility
that some TBi s are of height 0, in which case we can replace TBi by Bi. The root of
the tree is the union of the Bis, the Bi’s are its children, ordered as indicated by
the indexing. The whole tree is not a tripartition tree but each of the m subtrees
is. For example, [B, B′, TC, TD] denotes a partition tree in which (B, B′, C, D) is a
4-partition of the root, the root being the union of these sets, B and B′ are leaves,
and C and D are roots of the tripartition trees TC and TD.

Assume now that the induction hypothesis holds for k and let TA be a triparti-
tion tree of height k + 1. Then, treating TA is of the form:

(TBl , E, TBr )

where TBl and TBr are of height k. Next, partition the given F into 5 non-null
events: F1, F2, F3, F4, F5; as observed above this is always possible.

If E is a null set, then we apply the induction hypotheses to each of TBl and
TBr , get error-reductions in which the total errors are, respectively, less-that-or-
equal-to F1 and F5, and we are done. Otherwise we proceed as follows.

Using Savage’s theorem, we can replace E by Cl , E∗, Cr, where E∗ ⪯ F3. Ignor-
ing for the moment the role of E∗ as an error part, we get:

[TBl , Cl , E∗, Cr, TBr ]

Note that in this partition the root, which is A, is first partitioned into 5 events;
Bl and Br are roots of tripartition trees of height k, and Cl , E∗, and Cr are leaves.
Using the induction hypothesis, get an error-reduction T ∗

Bl
of TBl and an error-

reduction T ∗
Br

of TBr , such that E(T ∗
Bl
) ⪯ F1, and E(T ∗

Br
) ⪯ F5. Get an arbitrary

tripartition TCl of Cl , and an arbitrary tripartition TCr of Cr each of height k
(every non-null set has a tripartition tree of any given height). Using again the
inductive hypothesis, get error-reductions, T ∗

Cl
and T ∗

Cr
, such that E(T ∗

Cl
) ⪯ F2,

and E(T ∗
Cl
) ⪯ F4. This gives us the following partition of A:

[T ∗
Bl

, T ∗
Cl

, E∗, T ∗
Cr

, T ∗
Br
]

19See the proof of C8 (and the claims that lead to it) in Fishburn (1970, p.195-198)
20 Since F ≻ ∅ there exists a non-null subset F1 ⊆ F such that F ≻ F1 ≻ ∅. This is established by
considering an n-partition S = S1 ∪ ... ∪ Sn such that Si ≺ F for all i = 1, ..n, and observing that there
must be two different parts, say Si , Sj, whose intersections with F are ≻ ∅; otherwise, F ≼ Sk , for
some k, which is a contradiction. Put F1 = F ∩ Si then F1 and F − F1 are non-null, and we can apply
the same procedure to F − F1, and so on.
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Now, put TA0 = T ∗
Bl
⊕ T ∗

Cl
and TA1 = T ∗

Br
⊕ T ∗

Cr
, then

(TA0 , E∗, TA1)

is a tripartition tree of A of height k + 1. Call it T ∗
A . By Lemma 2.22, E(TA0) ⪯

F1 ∪ F2 and E(TA1) ⪯ F4 ∪ F5. Since E∗ ⪯ F3, together we get: E(T ∗
A ) ⪯ F. □

Note. In a way, this theorem generalizes the construction of monotonically de-
creasing sequence of error-parts in Theorem 2.12. But, instead of reducing a
single error-part (the shaded areas in Figure 2.1), the method we use reduces
simultaneously all error-parts in a tripartition tree.

2.2.3. Almost Uniform Partition. Recall that a partition {Pi}n
i=1 of a non-null event

A is almost uniform if the union of any r members of the partition is no more
probable than the union of any r + 1 members. In Theorem 2.11 we rephrased
a result by Savage, which claims that if, for infinitely many ns, there are almost
uniform n-partitions of S, then there is a unique numeric probability that almost
represents the qualitative one. We noted that Savage’s proof requires no further
assumptions regarding the qualitative probability, and that if we assume P6

′ then
the probability (fully) represents the qualitative one (cf. Remark 2.8 above). It
therefore remains to show that, using Theorem 2.23, which we have just proved,
we can derive the existence of almost uniform partitions of S of arbitrary large
size (number of parts). The derivation is based on repeated error reduction in
tripartition trees.

Definition 2.24. Given C ≻ ∅, let us say that B ≪ 1
n C if there is a sequence

C1, C2, ...Cn, of n disjoint subsets of C, such that C1 ⪯ C2 ⪯ · · · ⪯ Cn and B ⪯ C1.

The following are some simple intuitive properties of ≪. The first two are
immediate from the definition, and in the sequel we shall need only the first.

Lemma 2.25. (1) If B ≪ 1
n C, and if A ⪯ B ≪ 1

n C ⊆ D then A ≪ 1
n D.21

(2) If B ≪ 1
n C then B ≪ 1

m C for all m < n.
(3) For any C, D ≻ ∅, there exists n such that, for all B,

B ≪ 1
n

C =⇒ B ⪯ D. (2.16)

Lemma 2.26. Let T = (Aσ, Eσ) be a tripartition tree of height k, then, given any
n and any regular part Aσ on the kth level of T , there is an error reduction T ′ of
T such that

E(T ′
A) ≪

1
n

A′
σ (2.17)

where A′
σ is the part that corresponds to Aσ under the structural isomorphism of

the two trees.

Proof. Fix Aσ and let {Ci}n
i=1 be a disjoint sequence of events contained in it as

subsets, such that C1 ⪯ C2 ⪯ . . . ⪯ Cn. Applying the Error Reduction Theo-
rem 2.23, get a tree T ′ such that E(T ′) ⪯ C1. Consequently, E(T ′

A) ≪
1
n Aσ. Since

the parts are disjoint and under the error reduction each regular part in T is a

21Note however that from B ≪ 1
n C and C ⪯ D we cannot infer B ≪ 1

n D. The inference is true if we
assume C ≺ D; this can be shown by using the numeric probability that represents the qualitative one
— whose existence we are about to prove. There seems to be no easier way of showing it.
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subset of its corresponding part in T ′, A′
σ is the unique part containing Aσ as a

subset, the required result then follows. □
Lemma 2.27. Given any tripartition tree T = (Aσ, Eσ) of height k and given any
n, there is an error reduction T ′ = (A′

σ, E′
σ) of T such that, for every regular part

A′
σ on the kth level, E(T ′) ≪ 1

n A′
σ.

Proof. Apply Lemma 2.26 repeatedly 2k times, as σ ranges over all the binary
sequences of length k. Since the regular parts can only expand and the total error
can only contract, we get at the end an error reduction, T ′, such that E(T ′) ≪
1
n A′

σ, for all σ. □
Remark 2.28. Say that a property of a tripartition tree is persistent if whenever it
holds for a tree T it also holds for every error reductionof T . Then the property
proved in Lemma 2.27 is persistent because, by our definition of error reducing
refinement, all the regular parts can only expand and the total errors can only
shrink. This implies that, for all refinements T ′′ of T ′, we have E(T ′′) ≪ 1

n A′′
σ .

Theorem 2.29. Let T be a tripartition tree of height k, then there is an error
reductionT ′ of T such that if Ξ1 and Ξ2 are any two sets of regular parts of the
kth level of T ′ that are of equal cardinality r (< 2k−1) and if A′

τ is any regular
part on the kth level that is not in Ξ1 or Ξ2, then we have∪

A′
σ∈Ξ1

A′
σ ∪ E(T ′) ⪯

∪
A′

σ∈Ξ2

A′
σ ∪ A′

τ . (2.18)

Proof. WLOG, assume that Ξ1 ∩ Ξ2 = ∅ (otherwise, common members can be
canceled out). Apply Lemma 2.27 for the case where n = 2k−1, then we get a
reduction tree T ′ of T such that E(T ′) ≪ 1

2k−1 A′
σ for all regular parts A′

σ on the
kth level of T ′. Let Ξ1 and Ξ2 and A′

τ be as in the statement of the theorem, then
we have

E(T ′) ≪ 1
2k−1 A′

τ .

By Definition 2.24, this means there is a disjoint sequence {Ci} of subsets of A′
τ

of length 2k−1 such that

E(T ′) ⪯ C1 ⪯ C2 ⪯ · · · ⪯ Cr ⪯ Cr+1 ⪯ · · · ⪯ C2k−1

2k−1∪
i=1

Ci ⊆ A′
τ

(2.19)

where r is the cardinality of Ξ1 and Ξ2 and r < 2k−1.
Now, let A1, A2 . . . , Ar and B1, B2 . . . , Br be enumerations of members of Ξ1

and Ξ2, respectively. Obviously, we have E(T ′) ⪯ Ai and E(T ′) ⪯ Bi for all
(i = 1, . . . , r). And since E(T ′) ⪯ C1, apply Theorem 2.18, we get, via (2.19), that

Ai ⪯ Bi ∪ E(T ′) ⪯ Bi ∪ Ci for all i = 1, . . . , r.

Further, since all parts considered here are disjoint, we get
∪r

i=1 Ai ⪯
∪r

i=1 Bi ∪∪r
i=1 Ci, that is, ∪

A′
σ∈Ξ1

A′
σ ⪯

∪
A′

σ∈Ξ2

A′
σ ∪

r∪
i=1

Ci. (2.20)
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On the other hand, from (2.19), we have E(T ′) ⪯ Cr+1 ⪯ · · · ⪯ Ct. Again, since
all parts are disjoint, then we get

∪
A′

σ∈Ξ1

A′
σ ∪ E(T ′) ⪯

∪
A′

σ∈Ξ2

A′
σ ∪

r∪
i=1

Ci ∪ Cr+1

⪯
∪

A′
σ∈Ξ2

A′
σ ∪

2k−1∪
i=1

Ci ⪯
∪

A′
σ∈Ξ2

A′
σ ∪ A′

τ

(2.21)

which is what we want. □

Remark 2.30. Let T be any tripartition tree of height k, the proceeding theorem
shows that there exists an error reduction tree T ′ of T for which (2.18) holds.
Suppose that Ξ is a union of r many regular parts on the kth level of T ′, and Ξ′

is a union of r + 1 many regular parts of the same kind, then we have∪
A′

σ∈Ξ

A′
σ ∪ E(T ′) ⪯

∪
A′

σ∈Ξ′
A′

σ. (2.22)

It is now easily seen that an almost uniform partition can be formed by joining
E(T ′) to any regular part of the highest level of T ′.

As we have remarked earlier, once the existence of an almost uniform partition
is proved, numeric representation of ⪰ can be established by following Savage’s
methods (cf. Theorem 2.11 above). This completes our construction of numeric
probability without the σ-algebra assumption by using tripartition trees.

2.2.4. The Proof of the (‡) Condition. Next we demonstrate that the (‡) condition
holds. As we shall show in Section 3, this property will play a crucial role in
defining utilities for simple acts without the σ-algebra assumption.

Theorem 2.31. Let µ be the probability that represents the qualitative probability
⪰. Assume that P6

′ holds.22 Then, for every non-null event, A, every ρ ∈ (0, 1)
and every ϵ > 0 there exists an event B ⊆ A, such that (ρ − ϵ) · µ(A) ≤ µ(B) ≤
ρ · µ(A).

Proof. As shown by Savage, there is a Savage chain for A, that is, an infinite
sequence of 3-partitions of A: (A′

n En A′′
n)n, n = 1, 2, ... such that:

(i) A′
n ∪ En ⪰ A′′

n and A′
n ∪ En ⪰ A′′

n
(ii) (A′

n+1 ⊇ A′
n), (A′′

n+1 ⊇ A′′
n), hence En+1 ⊆ En

(iii) En − En+1 ⪰ En+1.
Consequently we get:

(1) µ(A′
n) + µ(En) ≥ µ(A′′

n) µ(A′′
n) + µ(En) ≥ µ(A′

n), which implies:
(a) |µ(A′

n)− µ(A′′
n)| ≤ µ(En).

(2) µ(En+1) ≤ (1/2) · µ(En), which implies:
(b) µ(En) ≤ (1/2)n−1.

Since µ(A) = µ(A′
n) + µ(En) + µ(A′′

n), we get from (a) and (b):

µ(A′
n) −→ 1/2 · µ(A), µ(A′′

n) −→ 1/2 · µ(A).

22 Actually (fine) is sufficient.
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Since both A′
n and A′′

n are monotonically increasing as sets, µ(A′
n) and µ(A′′

n)
are monotonically increasing. Consequently, we get: µ(A′

n) ≤ 1/2 · µ(A) and
µ(A′′

n) ≤ 1/2 · µ(A). All these imply the following claim:

Claim 1. Let A be a non-null set. Then, for every ϵ > 0, there are two disjoint
subsets of A, A0 and A1, such that, for i = 0, 1:

1/2 · µ(A)− ϵ ≤ µ(Ai) ≤ 1/2 · µ(A).

Call such a partition an ϵ-bipartition of A. Call ϵ the error-margin of the bi-
partition. We can now apply such a bipartition to each of the parts, and so on.
By “applying the procedure” we mean applying it to all the non-null minimal
sets that were obtained at the previous stages (the inductive definition should be
obvious).

Claim 2. Let A be any non-null set. Then for every k > 1 and every ϵ > 0, there
are 2k disjoint subsets of A, Ai, i = 1, ..., 2k, such that:

1/2k · µ(A)− ϵ ≤ µ(Ai) ≤ 1/2k · µ(A).

(This claim is proved by considering k applications of the procedure above, where
the error-margin is ϵ/k.)

Now, note that since Claim 2 is made for any ϵ > 0, and any k > 1, we can
replace ϵ by ϵ/2k · µ(A). Thus, the following holds:

(+) For every ϵ > 0, k > 1, there are 2k disjoint subsets, Ai, of A, such that:

1/2k · µ(A)− ϵ/2k · µ(A) ≤ µ(Ai) ≤ 1/2k · µ(A)

The following is a different form of (+)
(∗) For every ϵ > 0, k > 1, there are 2k disjoint subsets, Ai, of A, such that:

µ(Ai) ∈
[
1/2k · (µ(A)− ϵ), 1/2k · µ(A)

]
Now the (‡) condition can be put in the form

(∗∗) Fix any non-null set A. Then for every ρ < 1, and any ϵ′ > 0, there is a
set B ⊆ A, for which µ(B) ∈ [(1 − ϵ′) · µ(A), µ(A)]

All the subsets that are generated in the process above are subsets of A. (A plays
the role of the “universe”, except that its probability can be < 1.) It is not difficult
to see that, depending on the given ρ and ϵ′, we can chose (in (∗)) our ϵ small
enough and k large enough, so as to get sufficiently many disjoint sets whose
conditional probabilities µ(·|A) sum up to a number in the interval [(1 − ϵ′), 1].
This concludes the proof of (‡). □
Remark 2.32. It’s worth repeating that (‡) does not rely on the σ-algebra assump-
tion, but (†) does.

2.3. Countable Models. The σ-algebra assumption implies that the Boolean alge-
bra of events has at least the cardinality of the continuum. Its elimination makes
it possible to use a countable Boolean algebra. All that is needed is a qualita-
tive probability, ⪰, defined over a countable Boolean algebra, which satisfies P6

′.
There are more than one way to do this. Here is a type of what we shall call bot-
tom up extension. In what follows, a qualitative probability space is a system of the
form (S,B,⪰), where B is a Boolean algebra of subsets of S and ⪰ is qualitative
probability defined over B.
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Definition 2.33. Let (S,B,⪰) be a qualitative probability space. Then a normal
bottom up extension of (S,B,⪰) is a pair consisting of a qualitative probability
(S′,B′,⪰′) and a mapping h : S′ −→ S, of S′ onto S, such that for every A ∈ B,
h−1(B) ∈ B′ and A ⪰ B ⇐⇒ h−1(A) ⪰′ h−1(B).

Remark 2.34. The extension is obtained by, so to speak, splitting the atoms, (the
states in S) of the original algebra. This underlies the technique of getting models
that satisfy P6

′. In order to satisfy P6
′ we have, given A ⪰ B, to partition S into

sufficiently fine parts, Pi, i = 1, 2, ..., n, such that A ⪰ Pi for all Pi. If we start with
a finite Boolean algebra, the way to do it is to divide the atoms into smaller atoms.
The intuitive idea is that our states do not reflect certain features of reality, and
that, if we take into account such features, some states will split into smaller ones.

This picture should not imply that P6
′, which is a technical condition, should

be adopted. The intuitive justification of P6
′, which has been pointed out by Sav-

age, is different. But it can serve as a good background for repeated extensions.

We have shown that, starting from a finite qualitative probability space we can,
by an infinite sequence of normal extensions get a countable space (that is, both S
and B are countable) that satisfies P6

′. We can also get models with other desired
features.

Theorem 2.35 (Countable Model Theorem). (1) Let (S0,B0,⪰0) be a finite quali-
tative probability space and that the qualitative probability is representable by
some numeric probability. Then there is an infinite countable model, (S,B,⪰),
which forms together with a mapping, h : S → S0 , a normal extension of
(S0,B0,⪰0), and which satisfies P6

′.
(2) Let Ξ be any countable subset of (0, 1) and let µ be the numeric probability

that represents ⪰ (which exists by our results). Then we can construct the
model (S,B,⪰) in such a way that µ(A) /∈ Ξ for every A ∈ B.

This theorem implies, for example, that for all n, no number of the form 1/n,
where n > 1, and no number of the form (1/2)n, where n > 0, are among the
values of µ. Now de Finetti and Koopman proposed axiom systems for subjective
probability that included an axioms stating that there are partitions of S into n
equal parts for arbitrary large ns. Our theorem shows that without the σ-algebra
assumption this cannot be done. Savage found P6

′ more intuitive than their
axioms (and indeed it is), but was somewhat puzzled by the fact that it implies
their axioms. Although it is more intuitive it appears to be stronger. Our last
theorem solves this puzzle. It shows that without the σ-algebra assumptionit
does not imply their axioms.

Remark 2.36. So far we have been dealing with the Boolean algebra only. But in
order to state the results within the full perspective of Savage’s system, we shall
state them as results about decision models, that is, about systems of the form
(S, C,A,≽,B). This is done in the following theorem.

In what follows f ◦ g is the composition of the functions f and g, defined
by ( f ◦ g)(x) = f (g(x)). It is used under the assumption that the domain of f
includes the range of g.

Theorem 2.37. Let (S, C,A,≽,B) be a decision model that satisfies P1-P5 (where
P5 is interpreted as the existence of two non-equivalent constant acts, but with-
out assuming CAA). Assume that S is finite and there is a probability over
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B that represents the qualitative probability. Then there is a Savage system,
(S∗, C∗,A∗,≽∗,B∗), that satisfies P1-P6 and there is a function h that maps S∗

onto S such that the following holds:
(i) S∗ and B∗ are countable.

(ii) for all A ∈ B, h−1(A) ∈ B∗,
(iii) C∗ = C,
(iv) f ∈ A∗ iff f ◦ h ∈ A
(v) f ∗ ≽∗ g∗ iff f ◦ h ≽ g ◦ h.

The proofs of our last two theorems rely on repeated extension techniques that are
used in set theory. In our case, at every stage we have to ensure that a particular
instance of P6

′ should be satisfied. As the model grows, there are more cases to
take care of, but we can arrange these tasks so that after the infinite sequence of
extensions all are taken care of. We shall not go into more detail here.

3. A Simpler Utility Function for Simple Acts

In a section on extension of utility to more general acts, Savage made the
following remarks:

The requirement that an act has only a finite number of conse-
quences may seem, from a practical point of view, almost no
requirement at all. To illustrate, the number of time intervals
that might possibly be the duration of a human life can be re-
garded as finite, if you agree that the duration may as well be
rounded to the nearest minute, or second, or microsecond, and
that there is almost no possibility of its exceeding a thousand
years. More generally, it is plausible that, no matter what set of
consequences is envisaged, each consequence can be particularly
identified with some element of a suitably chosen finite, though
possibly enormous, subset. If that argument were valid, it could
easily be extended to reach the conclusion that infinite sets are
irrelevant to all practical affairs, and therefore to all parts of ap-
plied mathematics. (Savage, 1972, p. 76-77)

Savage however goes on to say that it is of high mathematical interests to gen-
eralize utility function for simple acts to all acts. We however take that, as far as
real world decision problems are concerned, simple acts are all it is needed. Es-
pecially in view of our discussion on conceptual realism, it is too high a demand
to require our agent to be a professional mathematician.

Now, if the decision problem is presented as a finite set of simple acts, we can
avoid both CAA and the σ-algebra assumption in defining utilities. The result is
a more simpler definition of utility function for simple acts. In what follows we
provide a sketch as to how this can be done.

Note that it is known, and anyone who follows Savage’s derivation can easily
check it, that in the Savage system all that is needed for defining the probabilities
are two non-equivalent constant acts.23 Instead of using CAA we posit 2CA,
i.e., there are two non-equivalent acts. Assume that they are c0 and c1 and that

23This observation is also noted in (Fishburn, 1981, p.161) where the author remarked that “[as far as
obtaining a unique probability measure is concerned] Savage’s C [i.e., the set of consequences] can
contain as few as two consequences” (see also Fishburn, 1982, p.6). Fishburn (1970, §14.1-3) contains
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their corresponding consequences are a0 and a1. Then Savage’s notion of “more
probable” in Definition 2.1 can be defined in terms of c0 and c1, hence (2.2) now
takes the form

c1|E + c0|E ≽ c1|F + c0|F. (3.1)

In what follows when we speak of subsets of S we assume, unless stated oth-
erwise, that they are members of B. We now assign utilities to simple acts as
follows. First, to fix a utility scale, we define:

U[c0] = 0 U[c1] = 1

where U[ f ] is the value, or utility of f . This means that u(a0) = 0 and u(a1) = 1,
where u(a) is the utility of the consequence a. It can be shown that, under P1-P6

and 2CA, the agent’s preference relation among simple acts can be represented
by a cardinal utility function U.

In what follows we first show how such a utility function can be constructed
under the (†) condition, then we indicate how the (‡) can be used to replace (†),
and hence get a proof without the σ-algebra assumption.

3.1. Constructing Utilities under the (†) Condition. Consider now any feasible
consequences, i.e., any a ∈ C for which there exists an act g such that g−1(a) is
not null. Let A = g−1(a) and let

c∗A =Df g|A + c0|A.

By definition, c∗A yields a if s ∈ A, status quo otherwise.
To define utilities, we compare c∗A with c0. If c∗A ≡ c0, we put u(a) = 0. Other-

wise there are three possibilities:

(i) c1 ≽ c∗A ≻ c0 (ii) c∗A ≻ c1 (iii) c0 ≻ c∗A

In each one of these possibilities, the utility of c∗A and that of a can be defined as
follows. Let µ be the numeric probability derived under the (†) condition. Then
for case (i), let

ρ = sup
{

µ(B)
∣∣∣ B ⊆ A and c∗A ≽ c1|B + c0|B

}
. (3.2)

Define

U[c∗A] = ρ and u(a) =
ρ

µ(A)
. (3.3)

For case (ii), let ρ = sup{µ(B) | B ⊆ A and c1 ≽ c∗A|B + c0|B}, define U[c∗A] = 1/ρ
and u(c) = 1/[ρ · µ(A)]. Case (iii) in which the utility comes out negative is
treated along similar lines and is left to the reader.

This assignment of utilities leads to a representation of the utility of any simple
acts, f , as the expected utilities of the consequences, that appear as values of the
act, where without loss of generality, we assume that each consequence a of f is
a feasible consequence.

a clean exposition of Savage’s proof of (2.1), and see especially §14.3 for an illustration of the role of
P1-6 played in deriving numerical probability.
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3.2. Constructing Utilities under the (‡) Condition. The construction above is
given using the (†) condition. But without the the σ-algebra assumption we need
to replace (†) with (‡) in our proof. Here we outline how this is done for the case
c1 ≽ c∗A ≻ c0.

To this end, let µ be the numeric probability derived under the (‡) condition,
i.e., through our tripartition tree method. Then, instead of (3.2), let

ρ = sup

{
µ(B)

∣∣∣∣∣ ∀ϵ > 0 ∃B′ ⊆ A
[
µ(B)− ϵ ≤ µ(B′) ≤ µ(B) and c∗A ≽ c1|B′+ c0|B′

]}
.

Define utilities of cA and a as in (3.3), then we are done.

Appendix A. Ramsey’s System

The following is an overview of Ramsey (1926). All page numbers refer to this
publication.

Ramsey was guided by what he calls “the old-established way of measuring
a person’s belief”, which is “to propose a bet, and see what are the lowest odds
which he will accept” (p. 170). He finds this method “fundamentally sound”, but
limited, due to the diminishing marginal utility of money (which means that the
person’s willing to bet may depend not only on the odds but also on the absolute
sums that are staked). Moreover, the person may like or dislike the betting activity
for its own stake, which can be a distorting factor. Ramsey’s proposal is therefore
based on the introduction of an abstract scale, which is supposed to measure true
utilities, and on avoiding actual betting. Instead, the agent is supposed to have
a preference relation, defined over gambles (called by Ramsey options), which are
of the form:

α if p, β if ¬p.
It means that the agent gets α if p is true, β otherwise; here p is a proposition and
α, β, . . . are entities that serve as abstract payoffs, due to their value for the agent.
Among the gambles we have: α if p, α if not-p, which can be written as: “α for
certain”. (Note that this does not imply that the agent gets the same value in all
possible worlds, because the possible world can carry by itself some additional
value.) If neither of the two gambles G1 and G2 is preferred to the other, the agent
is indifferent between them and they are considered to be equivalent.

Obviously, bets can be easily described as gambles of the above form. Ramsey
does not use the more general form (of which he was certainly aware) α1 if p1, α2
if p2,. . . , αn if pn because, for his purpose, he can make do with n = 2. When he
has to define conditional degrees of beliefs he uses gambles with n = 3.

Concerning propositions Ramsey tells us that he assumes Wittgenstein’s the-
ory, but remarks that probably some other theory could be used as well (p.177

footnote 1). As for α, β, . . . , his initial explanation is somewhat obscure.24 But
shortly afterwards it turns out that the values are attached to the possible worlds
and that they can be conceived as equivalence classes of equi-preferable worlds:

Let us call any set of all worlds equally preferable to a given world
α value: we suppose that if a world α is preferable to β any world
with the same value as α is preferable to any world with the same

24“[W]e use Greek letters to represent the different possible totalities of events between which our
subject chooses — the ultimate organic unities” (p.176-177).
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value as β and shall say that the value of α is greater than that of
β. This relation ‘greater than’ orders values in a series. We shall
use α henceforth both for the world and its value. (p. 178)

Obviously, the preference relation should be transitive and this can be imposed
by an axiom (or as a consequence of axioms). Also the equivalence relation men-
tioned above should have the expected properties.25 We thus get an ordering
of the values, which Ramsey denotes using the standard inequality signs; thus,
α > β iff α for for certain is preferred to β for for certain. He also uses the Greek
letters ambiguously; thus, if α for certain is equivalent to β for certain, this is ex-
pressed in the form: α = β. All in all, the Greek letters range over an ordered
set.

The main task now is to “convert” this ordered set into the set of reals, under
their natural ordering. Ramsey takes his cue from the historical way, whereby
real numbers are obtained via geometry: as lengths of line segments.26 This
requires the use of a congruence relation, say ∼=, defined over segments. In our
case, the line comes as an ordered set, meaning that the line and its segments are
directed; hence αβ ∼= γδ also implies: α > β ⇔ γ > δ. In Ramsey’s notation ‘=’
is also used for congruence; thus he writes: αβ = γδ. (This agrees with Euclid’s
terminology and notation, except that in Euclid capital roman letters are use for
points, so that, “AB is equal to CD” means that the segment AB is congruent
to the segment CD.) Under the identification of α, β, γ, δ, . . . with real numbers,
αβ = γδ, becomes α − β = γ − δ. Ramsey’s idea is to define αβ = γδ by means of
the following defining condition, where the agent’s degree of belief in p is 1/2.

Cong Segments: α if p, δ if ¬p is equivalent to β if p, γ if ¬p.

The underlying heuristics seems to be this: If α, β, γ, δ are identified with real
numbers and if (Cong Segments) means that the expected utilities of the two
gambles are the same, then an easy computation of expected utilities, for the case
in which p is believed to degree 1/2, shows that (Cong Segments) is equivalent
to: α − β = γ − δ. This reasoning presupposes however that the truth (or falsity)
of p does not have, by itself, any positive or negative value for the agent. Ramsey
calls such propositions ethically neutral. The precise, more technical, definition
is: an atomic proposition p is ethically neutral ”if two possible worlds differing
only in regard to the truth of p are always of equal value” (p. 177); a non-atomic
proposition is ethically neutral if all its atomic components are. Now, if p is
ethically neutral, then the agent’s having degree of belief 1/2 in p is definable by
the condition:

Deg Bel 1/2: For some α ̸= β, α if p, β if ¬p is equivalent to β if p, α if¬p.

Hence, (Cong Segments) can be used to define αβ = γδ, provided that p is an
ethically neutral proposition believed to degree 1/2.

Ramsey’s first axiom states that such a proposition exists. Using which, he
defines the congruence relation between directed segments and adds further ax-
ioms, including the axiom of Archimedes and the continuity axiom, which make

25For example, axiom 3 (p.179) says that the equivalence relation is transitive. Additional properties
are implied by the axioms, on the whole.
26Or rather, as the ratios of a line segments to some fixed segment chosen as unit.
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it possible to identify the values α, β, γ, . . . with real numbers. Applying sys-
tematic ambiguity, Ramsey uses the Greek letters also for the corresponding real
numbers (and we shall do the same).

Having established this numeric scale of values, Ramsey (p. 179-180) proposes
the following way of determining a person’s degree of belief in the proposition p:
Let α, β, γ be such that the following holds.

p(α, β, γ): α for certain is equivalent to β if p, γ if ¬p.27

Then the person’s degree of belief in p is (α−γ)/(β−γ). Of course, the definition
is legitimate iff the last ratio is the same for all triples (α, β, γ) that satisfy p(α, β, γ).
Ramsey observes that this supposition must accompany the definition, that is,
we are to treat it as an axiom. A similar axiom is adopted later (p.180) for the
definition of conditional degrees of belief, and he refers to them as axioms of
consistency.

Now the only motivation for adopting the consistency axiom is expediency.
The axiom states in a somewhat indirect way that the Greek letters range over a
utility scale. Consider the two following claims:

Consist Ax: There is x, such that, for all α, β, γ, p(α, β, γ) IFF (α − γ)/(β −
γ) = x.

Utility Scale: There is x, such that, for all α, β, γ, p(α, β, γ) IFF α = x · β +
(1 − x) · γ.

In both claims ’p’ is a free variable ranging over propositions, which has to be
quantified universally. The second claim states that the value scale established
using all the previous axioms is a utility scale—where the number x, which is
associated with the proposition p is its subjective probability; (i.e., there is no
problem of marginal utility and the acceptance of a bet depends only on the
betting odds). Now, by elementary algebra, the two claims are equivalent. This
means that the consistency axiom is a disguised form of the claim that there is
a function that associates with each proposition a degree of belief, such that the
value scale over which the Greek letters range is a utility scale.

Ramsey goes on to define conditional probability, using conditional gambles,
which comes with its associated consistency axiom. This is followed by a proof
that the degrees of belief satisfy the axioms of a finitely additive probability, and
some other properties of conditional probability.

To sum up, Ramsey’s goal was to show how subjective probabilities can, in
principle, be derived from betting behavior (where the stakes are are defined in
terms of a suitable utility scale). His excessively strong axioms are motivated
largely by this goal.

Appendix B. Savage’s Postulates

We provide a list of Savage’s postulates. They are stated using the concepts
and notations introduced in Section 0 and Section 2.1 together with the following
notions of conditional preference and null events:

Definition B.1 (Conditional preference). Let E be some event, then, given acts
f , g ∈ A, f is said to be weakly preferred to g given E, written f ≽E g, if, for all
pairs of acts f ′, g′ ∈ A, we have

27If p is not ethically neutral then the gamble is supposed to be adjusted already, so that β contains
the contribution of p and γ — the contribution of ¬p.
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(1) f agrees with f ′ and g agrees with g′ on E,
(2) f ′ agrees with g′ on E, and
(3) f ′ ≽ g′.

That is, f ≽E g if, for all f ′, g′ ∈ A,

f (s) = f ′(s), g(s) = g′(s) if s ∈ E
f ′(s) = g′(s) if s ∈ E.

}
=⇒ f ′ ≽ g′. (B.1)

In other words, the conditional preference of f over g on the occurrence of
event E is defined in terms of all unconditional preferences of f ′ over g′ under
the constraints that f ′ and g′ agree, respectively, with f and g on event E and
with each other on E, and that f ′ unconditionally and weakly preferred to g′.

Definition B.2 (Null events). An event E is said to be a null if, for any acts f , g ∈
A,

f ≽E g. (B.2)

That is, an event is null if the agent is indifferent between any two acts given E.
Intuitively speaking, null events are those events that the agent believes that it is
improbable that they will obtain.

Savage’s Postulates.
P1: ≽ is a weak order (complete preorder).
P2: For any f , g ∈ A and for any E ∈ B, f ≽E g or g ≽E f .
P3: For any a, b ∈ X and for any non-null event E ∈ B, ca ≽E cb if and only

if a ≽ b.
P4: For any a, b, c, d ∈ C satisfying a ≽ b and c ≽ d and for any events

E, F ∈ B, ca|E + cb|E ≽ ca|F + cb|F if and only if cc|E + cd|E ≽ cc|F + cd|F.
P5: For some constant acts ca, cb ∈ A, cb ≻ ca.
P6: For any f , g ∈ A and for any a ∈ C, if f ≻ g then there is a finite

partition {Pi}n
i=1 such that, for all i, ca|Pi + f |Pi ≻ g and f ≻ ca|Pi + g|Pi.

P7: For any event E ∈ B, if f ≽E cg(s) for all s ∈ E then f ≽E g.
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