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Abstract

Costa and Shrapnel [2016] have recently proposed an interventionist theory of

quantum causation. The formalism generalises the classical methods of Pearl

[2000] and allows for the discovery of quantum causal structure via localised

interventions. Classical causal structure is presented as a special case of this more

general framework. I introduce the account and consider whether this formalism

provides a causal explanation for the Bell correlations.
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1 Introduction

It is notoriously di�cult to apply causal theory to systems involving quantum

phenomena. Entanglement correlations between space-like separated systems seem to

defy causal explanation, and it seems near impossible to produce an account that avoids

the di�culties posed by non-locality, contextuality, and the measurement problem. In

the last thirty years or so, philosophers have advocated a number of fixes, arguing for

non-local common causes (Suárez and San Pedro [2011]; Egg and Esfeld [2014]),

non-screening o↵ common causes (Butterfield [1992]) and ‘uncommon’ common causes

(Hofer-Szabó et al. [2013]; Naeger [2015]). Others have argued for more exotic solutions

such as retro-causation (Evans et al. [2013]) and super-determinism (’t Hooft [2009]).

All of these approaches share a common theme. Roughly speaking, one starts with

quantum correlations (usually the Bell correlations), applies classical causal

methodology, identifies a contradiction and then decides what has to go. For

interventionist accounts, the dilemma is presented as a choice between relinquishing one

of two assumptions: the Causal Markov Condition or faithfulness (no-fine-tuning).1 The

unfortunate consequence of giving up such assumptions, however, is that it becomes

unclear why the resulting explanation ought to be thought of as causal.

Glymour [2006], Naeger [2015] and Wood and Spekkens [2015] have recently analysed

quantum correlations using classical causal modelling methods. Glymour considers the

problem to lie with the Causal Markov Condition, whereas Naeger takes aim at the

other pillar of causal modelling and advocates that we simply accept unfaithful causal

models. Wood and Spekkens suggest that rather than trying to modify one of the

existing assumptions, one should reject the classical causal methodology tout court and

instead focus on developing an explicitly quantum generalisation. We shall look more

1Roughly, the Causal Markov Condition states that the causal structure of a set of

variables entails a set of conditional independence statements satisfied by the joint

distribution over these variables. Faithfulness states that the joint probability

distribution satisfies only these conditional independencies.
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closely at these suggestions in Section 3.

When faced with the peculiarities of quantum correlations, a well worn alternative is

to consider how quantum theory forces one to think of the world, in more general terms.

Everett-style interpretations, de-Broglie-Bohm theory and Collapse models all fit within

this kind of approach: the aim is not to address certain preconceptions we may have

regarding causation, but rather certain preconceptions we may have regarding ontology.

For adherents to such interpretations, particularly in light of Russell’s eliminativist

attack on causation (Russell [1912]), the desire for a specifically causal explanation for

quantum correlations may perhaps seem a little unmotivated.2 However, for those

philosophers interested in interventionist conceptions of causation, the former approach

certainly remains worth investigating. It is clear that actual experimental and

theoretical practice in quantum physics utilises concepts of manipulation and control.3

Prima facie, it seems an account of quantum interventionist causation ought to be

possible. Thus, the question becomes whether one can in fact give a formal account of

interventionist causation that correctly accounts for quantum correlations. Ideally, one

which recovers classical interventionist causal structure in an appropriate limit. The

explanatory power of classical interventionist causal methodology can then be seen as a

special case of a more fundamental version, rather than something requiring direct

modification.

The recent work of Costa and Shrapnel [2016] is an attempt to provide a consistent

formalism that correctly captures quantum causal structure defined along such

interventionist lines. Whether this account gives one a causal explanation of the Bell

correlations depends, of course, on the manner in which one prefers to define causal

relations. Nonetheless, understanding what quantum mechanics has to teach us about

2Although, Brown and Timpson [2014] discuss an Everettian interpretation of the

Bell experiment that is local, using non-separability to retain the spirit of Reichenbach’s

common cause principle.

3See, for example, (Wiseman and Milburn [2010]).
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causation has inspired much hair pulling on the part of both philosophers and physicists

in the past: here, at the very least, is a fresh perspective on this old problem.4

On a more cautionary note, it is worth saying at the outset that this paper is not an

attempt to present a particular metaphysical view of fundamental physics. There are

many philosophers who believe that physics in general is inhospitable to the existence of

causal relations. Problems include the fact that the variables of fundamental physics are

not coarse-grained (Woodward [2007]), that physical theories are time symmetric (Farr

and Reutlinger [2013], Russell [1912]) and that fundamental physics aims at

universality. Roughly speaking, this Russellian view comes in two flavours: (i) those

who think there is no room for causation in the fundamental physical ontology of the

world, but concede that causal talk is used, and indeed useful, and (ii) those

eliminativists who think fundamental physics leaves no room for the existence of causal

facts simpliciter. I believe the second view can be challenged by a mature theory of

interventionism and convincing counterarguments have already been presented. Frisch

[2014] has recently produced a book-length defence of the utility of causal talk in the

practice of fundamental physics, and Ismael [forthcoming] also takes a broadly

anti-eliminativist line on causation and physics. Having said that, those looking for

detailed arguments for, or against, the Russellian view will not find them here.

The paper is structured as follows: First, I present the interventionist account of

causal explanation and discuss how the formalism (as it currently stands) fails to

explain quantum phenomena. Second, I consider why one may wish to produce a causal

account of quantum phenomena. Third, I introduce the quantum causal modelling

framework of Costa and Shrapnel [2016]. Finally, I consider the implications this has for

a causal understanding of the Bell correlations.

4A roughly similar approach is taken by Fenton-Glynn and Kroedel [2015]: they

extend a particular philosophical theory of causation (the Lewisian counterfactual

account) to provide a causal account of the Bell correlations. These authors conclude,

contra the finding of this paper, that there is a direct causal relationship between

space-like separated wings of a Bell experiment.
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2 Classical causal models.

In virtue of what, exactly, is a causal model a representation of causal structure? For

many interventionists this is primarily a pragmatic matter. Causal models enable one to

identify e↵ective strategies by distinguishing between probabilistic correlations that are

due to causes and those that are merely accidental. Nancy Cartwright [1979] was

arguably the first to clearly articulate the importance of this distinction in her paper

‘Causal Laws and E↵ective Strategies’. She was arguing against the eliminativist

element of Russell’s argument: for her “causal laws cannot be done away with, for they

are needed to ground the distinction between e↵ective strategies and ine↵ective ones”

(p420). For example, knowing that the mercury level and the onset of snow are

correlated does not tell us whether turning the thermometer upside down will prevent

snow. It is causal information that allows us to determine the right action in this

situation.

In the last thirty years this basic idea has developed into a sophisticated account of

causation known as interventionism. What distinguishes causal from merely

correlational relations, is that the former can be modified via localised interventions.

Roughly, C is a cause of E when manipulating C in the right way can bring about a

change in E (or the probability distribution of E). The representational tool of choice

for the computer scientists, statisticians and philosophers who utilise this theory is the

causal model, a graphical structure that has found application across a wide range of

disciplines.

For the interventionist, causal models are vehicles for learning about the manipulable

elements of the world. It is therefore relevant to ask how one ought to think of the

relations and relata of these models. Are they to be considered merely as

agent-dependent projections (Price [2013])), inherently perspectival (Price [2007]) and

ontologically deflationary (Price and Menzies [1993])? Or is it possible to maintain an

objective, agent-independent account (Woodward [2003], [2007]) and suggest that

causal models may have some (however thin) ontological significance (Woodward

[2015])? While disparate positions have recently been brought somewhat closer (Ismael
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[2015]), these kinds of metaphysical questions are far from settled.

A number of authors have contributed in important ways to the development of

causal modelling, notably Spirtes et al. [2000], Woodward [2003] and Pearl [2000]. We

shall follow the physicists here and use Pearl’s account to focus our discussion. The

relata of causal models are typically classical random variables X1, .., Xn. It is assumed

that each variable can be associated with a range of ‘values’: properties that we can

unambiguously reveal by measurement or direct observation. Such variables can be

binary and used to represent the occurrence or otherwise of an event, can take on a

finite range of values or have values that are continuous.5 It is generally assumed that

the properties that these values represent are non-contextual (in the sense of quantum

contextuality) and exist prior to, and independently of the act of measurement or

observation.6 7 Ultimately, these values represent the point of contact between the

model and the world.

It is assumed that the joint probability distribution taken over the variables of the

system is generated by its ‘causal structure’, with the structure formed by deterministic

causal mechanisms acting between variables, plus some added noise. Such causal

structure is represented via a directed acyclic graph (DAG), where the structure of the

DAG is assumed isomorphic to the network of autonomous causal mechanisms. When

one passively observes the system (collects data samples without setting variables to

particular values), one is given a window into certain aspects of this structure; when one

intervenes on the system (some of the data instances correspond to cases where

5As is the convention, capital letters (X1, X2...) will be associated with particular

variables, and lower case letters with particular variable values (xi, xj...).

6Very roughly, contextuality means that the value of the observed property depends

on the way it is observed, or on which other properties are observed together with it.

See (Kochen and Specker [1967]) for an introduction to quantum contextuality and

(Spekkens [2005]) for a more modern perspective.

7Clearly, this very intuitive starting point is deeply problematic in the quantum case.
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particular variables in the network are set to specific values) typically one gains further

information about the structure. It is the latter possibility of causal discovery via local

interventions that ties the causal modelling framework to Cartwright’s original insight.

The ultimate goal of such models is to give the user a handle on the manipulable

elements of the world: to provide a guide to future action. These ideas are made more

precise via the Causal Bayesian Networks (CBN) formalism.

A CBN is an ordered triple hV,G, P i. V is the set of variables, G a DAG and P a

joint probability distribution over the variables V . The graph captures the causal

relationships between the variables, with the nodes of the graph being the variables in

V and the arrows between them representing causal mechanisms.8 The CBN is defined

by a list of conditional dependencies, one for each variable given its graphical parents

(P (Xi|Pa(Xi)). These conditional distributions are sometimes known as the ‘causal

parameters’ of the graph and are considered to be generated by the autonomous causal

mechanisms acting between variables, plus some unmodelled noise. Parentless variables

are associated with marginal distributions.

A CBN is associated with a joint probability distribution taken over all the model

variables by applying the product rule to these local conditional distributions:

P (X1, ..Xn) =
Y
i

P (Xi|Pa(Xi)) (1)

Sometimes equation 1 is called the Causal Markov Condition. However, there is no

reason to suppose that such a factorisation would result in any specifically causal

information, unless one commits to the existence of autonomous causal mechanisms and

the possibility of discovery (and verification) of causal structure via local intervention.

So, whilst the CMC is often represented mathematically as equation 1, the causal

8Some basic terminology is useful: a variable A is a ‘parent’ of B when there is a

single arrow from A to B. In such a situation B is a ‘child’ of A. A is an ‘ancestor’ of B

when there is a ‘directed path’ of several linked arrows from A to B, in such a case B is

a ‘descendant’ of A.
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information of a DAG is perhaps better encoded in the conditional probability:

P (x1, . . . , xn|i1, . . . , iN) =
nY

j=1

P (xj|paj, ij), (2)

where ij represents the values of (external) intervention variables used to test the causal

structure. Equation 2 reduces to equation 1 when Ij = idle for all j. That is, for the

observational, ‘naturally generated’ distribution.

Defining the assumptions required to discover causal structure when one can’t

condition on experimental interventions has been a core focus for the last two decades.

In many situations, intervening is di�cult for pragmatic or ethical reasons but one may

nonetheless still wish to answer interventional queries. In such situations, two key

assumptions underly the methods used to learn causal structure from observational

data: the Causal Markov Condition (CMC) and faithfulness.

Recall, the Causal Markov Condition states that the causal structure of a set of

variables entails a set of conditional independence statements satisfied by the joint

distribution. When a causal structure is represented graphically via a directed acyclic

graph (DAG), and satisfies the CMC, children are conditionally independent of their

non-descendants, given their parents. One can think of it as a generalisation of

Reichenbach’s ‘screening o↵’ condition (Reichenbach [1956]).

Faithfulness, on the other hand, states that the joint probability distribution satisfies

only these conditional independencies. Also known as ‘no fine-tuning’, faithfulness

implies that the only conditional independencies in the distribution are those that hold

for any set of causal parameters. The idea here is that one does not wish to allow for

‘accidental’ independencies that are created when causal paths cancel, or when certain

symmetries exist for a subset of particular causal parameters.9 An alternative way to

understand the importance of faithfulness is to consider that for any distribution it is

possible to construct a complete graph (where every node is connected to every other

9See (Eberhardt [2013]) for some good examples of unfaithful models, and (Zhang

and Spirtes [2015]) for a taxonomy of various varieties and recent progress.
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node) that is Markovian to the distribution, by fine-tuning the causal parameters. To

avoid such possibilities one asks that the graph is both Markov and faithful to the

distribution.10

Pearl has developed two well known algorithms that take as input a list of conditional

independencies (found in a joint distribution over a given set of variables) and return a

set of DAG’s as output. The IC algorithm will return a DAG, under the assumptions of

causal Markovianity, faithfulness and causal su�ciency (no unmeasured common

causes). The IC* algorithm does not require the assumption of causal su�ciency, but

will in general only return a partial ancestral graph (PAG): a DAG with any number of

undirected edges. Including the possibility of latent variables (unmeasured common

causes) significantly complicates the task of discovering causal structure from empirical

sets containing purely observational data.11

Underlying Pearl’s picture of causation is the further assumption that joint

probability distributions that do not permit a Markovian, faithful representation are

always a consequence of unmeasured common causes (latent variables). In principle,

locating and measuring such variables ought to restore Markovianity to the model for

some causal structure. Pearl sees this as a significant strength of the formalism:

The Markov condition guides us in deciding when a set of parents Pa(Xi) is

considered complete, in the sense that it includes ALL the relevant

immediate causes of Xi. It permits us to leave some of the causes out of

10Some authors ask that the graph be Markov and faithful to the distribution, others

that the distribution be Markov and faithful to the graph. The distinction is irrelevant

for what I have to say, and merely reflects the di↵erent directions in which one can

apply the methods: one can start with empirical data and attempt to construct a

graph, or start with a graph and check that the statistics match.

11In simultaneous and independent work, Peter Spirtes and Clarke Glymour

developed equivalent algorithms to IC and IC*: the PC and FCI algorithms. See

(Glymour [2016]) for a short and accessible history of the field.
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Pa(Xi) (to be summarised as probabilities), but not if they also influence

other variables modelled in the system. If a set Pa(Xi) is too narrow, there

will be disturbance terms that influence several variables simultaneously,

and the Markov property will be lost. Such disturbances will be represented

as latent variables. Once we acknowledge the existence of latent variables

and represent their existence explicitly as nodes in a graph, the Markov

property will be restored. (Pearl [2009], p. 44)

To retain the connection with autonomous mechanisms and intervention there is the

implicit assumption that one could (in principle, if not in practice) always intervene on

these latent variables in order to empirically verify the correct causal structure.

Let us take a step back, and look at two general features of this formalism. Firstly,

what are the points of contact between such causal models and the world? Roughly

speaking there are two: the data that underlies the variable ‘values’, and (in the case

where interventions are possible) the data that we use to characterise the local

interventions. It is worth noting here that both kinds of data are not explicitly included

in the final model: it is the axioms of probability theory that connect the data instances

to the final model.

The second important feature to note is that the twin assumptions of the causal

Markov Condition and faithfulness provide a means for associating observational data

to causal structure, but don’t always result in the discovery of a unique DAG.12

Crucially, the equivalence set of causal structures generated under these assumptions is

deemed causal by virtue of the underlying interpretation: autonomous causal

mechanisms exist that (i) generate the conditional distributions, and (ii) can be

modified through external intervention. On this view, there is only one correct causal

structure: the one that is, in principle, verifiable via local interventions (Korb [2006]).

Given classical causal modelling methodology, we can now suggest some desiderata

we may wish a quantum causal modelling framework to satisfy:

12See (Zhang and Spirtes [2015]) for some examples.
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1. The formalism should allow for the discovery of causal structure from empirical

data. At a minimum, such discovery should be possible using interventionist data

(data instances where local events are under external control). It would be an

advantage if causal structure could also be discovered in situations where

interventionist information was incomplete.

2. All correlations between empirically derived data should be accounted for via

notions of direct, indirect or common cause relations, i.e. there should be no

‘unexplained’ correlations. In situations where all correlations between empirically

derived data can not be accounted for via direct, indirect or common cause

relations, there should exist a method for extending the model to include possible

unobserved, or ‘latent’, nodes in order to account for the correlations.

3. Classical causal models should be recovered as a limiting case of quantum ones.

3 What’s the (quantum) problem?

In general, philosophers take Bell inequality violating correlations to be the focus point

for discussions about quantum causation. Although the physical setup of the Bell

experiments are relatively straightforward, a great deal of controversy surrounds the

appropriate way to interpret the empirical results. These experiments were inspired by

Bell’s theorem, originally presented in his 1964 paper (Bell [1964]), and written in

response to Einstein’s 1935 thought experiment (Einstein et al. [1935]). Roughly, the

EPR argument was presented as a reductio: if one assumes locality (space-like

separated systems cannot influence each other), completeness (quantum mechanics is

descriptively complete, and reality (as described below), then, coupled with the

empirical results of quantum experiments, one arrives at a contradiction. The reality

assumption was defined as follows:

If, without in any way disturbing a system, we can predict with certainty

(i.e. with probability equal to unity) the value of a physical quantity, then
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there exists an element of physical reality corresponding to this physical

quantity. (Einstein et al. [1935], p. 77)

For Einstein et. al., quantum mechanics refers to such elements of reality via the so

called ‘eigenvalue-eigenvector link’: an eigenvalue of a quantum system prepared in the

relevant eigenstate will result in an outcome that can be predicted with probability one.

In the face of the trilemma, EPR advocate we give up completeness, in order to save

locality and reality.

Bell’s theorem (in its various forms, see Bell [1964], Bell [1971] and Bell [1976]) can be

understood as refuting this move. The standard interpretation of Bell’s various writings

then (in the philosophical literature, at least) is that any theory that can account for

(i.e. explain) the empirical predictions of quantum mechanics must be non-local. So,

roughly, one faces a choice between giving up locality or giving up explanation.

Bell wrote many papers regarding the philosophical consequences of quantum theory,

and much ink has been spilled over the various philosophical assumptions and

implications of his work.13 The recent fifty year celebrations of his famous 1964 paper

have inspired another burst of academic activity, and this work suggests that it is not

entirely straightforward to gauge exactly what Bell meant by his various

characterisations of locality and local causality. Indeed, intelligent and careful analysis

has resulted in (sometimes alarmingly) disparate positions (see, for example, Werner

[2014a], [2014b]; Maudlin [2014b], [2014b]; Wiseman [2014], [2015]; Norsen [2015]). I

suspect this reflects, to some extent, that Bell recognised the philosophical di�culties

that confound a precise characterisation of both causation and causal explanation, and

was honest about his various qualms. Broadly speaking, his work shows that the

connections between the various concepts involved (e.g. instantaneous

action-at-a-distance, locality, local causality and agency) are far from obvious.

For our purposes, it is relevant to consider some of Bell’s comments in light of our

13For a comprehensive collection of Bell’s papers, see ‘Speakable and Unspeakable in

Quantum mechanics’ (Bell [1990]).
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characterisation of interventionist causation in Section 1. Most pertinent are two of his

later papers: ‘The theory of local beables’ and ‘La Nouvelle Cuisine’ (Bell [1976] and

Bell [1990]). I take the view that these papers nicely capture the elements of

interventionist thinking that often underly our intuitive notion of causation and causal

explanation.14 Bell’s notion of ‘local causality’ (and, indirectly, causal explanation) is

first introduced in ‘The theory of local beables.’ This paper is also where he generalises

his approach to include stochastic theories, which is the setting on which we shall focus

here.15 In part, the aim of this paper was to make explicit some notions that Bell felt

were already implicit in ordinary quantum mechanics. The job of his ‘beables’ was to

recast quantum mechanics in terms of the physical properties with which we are already

familiar, rather than the more abstract Hermitian operators associated with quantum

observables. Bell suggests such beables should satisfy a number of desiderata, but most

importantly beables should correspond to something ‘physical’, in order to distinguish

variables that can be associated with ‘real physical’ values from those that pertain to

abstracta. For Bell, the latter ought to be excluded tout court from any causal

considerations.

As an example:

The beables must include the setting of switches and knobs on experimental

equipment, the currents in coils and the reading of instruments. (Bell [1976],

p. 57)

Of particular concern are local beables: variables that can be assigned to a particular

space-time region. Local causality is then defined with respect to such local beables.

14The details I present here are simply those that most closely align with

interventionist causation, for a more detailed analysis of these papers see, for example,

those papers cited in the previous paragraph and (Brown and Timpson [2014]).

15See (Brown and Timpson [2014]) and (Wiseman and Cavalcanti [2015]) for a

discussion on the relationship between the deterministic background assumptions of

(Einstein et al. [1935]); (Bell [1964]) and this later work of Bell’s.
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Figure 1: Bell correlations A and B are beables associated with space-like separated
regions 1 and 2, N denotes a complete specification of all the beables belonging to the
overlap of the backward light cone of the two regions, O and M refer to the beables in the
remainder of the two light cones for the two regions associated to A and B respectively.

Prima facie, the idea of beables aligns fairly nicely with Pearl’s causal relata: classical

random variables.

Bell goes on to define local causality in terms of these beables by introducing his

famous factorisability condition. Consider two space-like separated beables, A and B

associated with space-like separated regions 1 and 2. Let N denote a complete

specification of all the beables belonging to the overlap of the backward light cone of 1

and 2 (Fig.1). Let O and M refer to the beables in the remainder of the two light cones

for A and B respectively. Then, if one assumes that the joint probability

(A,B|O,M,N) factorises into (A|O,N)(B|M,N), one can use expectation values to

derive an inequality (a version of the CHSH inequality), which is violated by quantum

mechanics.16 For Bell, this factorisation property “says simply that correlations between

A and B can only arise because of common causes N”. For many, factorisation here just

is Bell’s notion of local causality.

The overall idea then, is that even by adding in putative hidden beables that may

exist in the joint past of beables A and B, one still cannot explain their correlation in

16An example of this is considered below.
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locally causal terms. Thus the ‘incompleteness’ escape from non-locality suggested by

EPR is blocked.

In the final section of ‘The theory of local beables’, Bell considers that despite the

suggestion that nature is causally non-local, we nonetheless cannot use such

non-locality to signal faster than light. By separating beables into two classes, those apt

for human manipulation (e.g. settings) and those that are not manipulable (e.g. the

outcomes), he shows that in “this human sense relativistic quantum mechanics is locally

causal” [p64]. That is, according to quantum theory we are forbidden from

manipulating one variable to induce changes in a di↵erent, space-like separated variable.

Of course, this ‘human sense’ of causation is pretty close to what interventionists use to

characterise causal relations. Although, as we saw in section 2, it is not simply a matter

of changing one variable here, and seeing if another variable changes there, but rather

causal relations are thought to be relative to a number of other specific assumptions.

In the closing paragraphs of ‘The theory of local beables’ Bell reminds us of one

further assumption required to derive the inequality: marginal independence of the

settings.

It has been assumed here that the settings of instruments are in some sense

free variables - say at the whim of the experimenters – or in any case not

determined in the overlap of the backward light cones. Indeed, without such

freedom I would not know how to formulate any idea of local causality, even

the modest human one.

For the interventionist, such ‘free variables’ correspond to intervention variables. The

key point is not that they are somehow uncorrelated with anything, but rather that

they are not directly correlated with any variables in the model other than their causal

target. Woodward’s four criteria for an ideal intervention (Woodward [2003]) and

Pearl’s ‘surgical interventions’ (Pearl [2000]) neatly capture this requirement.

It should, by now, be fairly obvious that several of Bell’s 1976 assumptions fit nicely

with the interventionist framework of Section 1. Interestingly, his concerns regarding

the a priori distinction between ‘controllable’ and ‘uncontrollable’ variables and also his
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worry that causation may require a notion of agency are still live debates in the

interventionist literature per se (for example, see (Price [2013]); (Woodward [2015]);

(Ismael [2015])). It is intriguing that such concerns, at least in the context of

interventionist causation, seem to be pertinent to characterisations of causation, rather

than due to the peculiarities of quantum mechanics.

Also relevant for our current purposes, is the final caveat Bell adds regarding his own

particular characterisation of causal explanation:

Of course, the assumptions leading to [the inequality] can be challenged.

Equation 22 [factorisation] may not embody your idea of local causality.

You may feel that only the ‘human’ version of the last section is sensible and

may see some way to make it more precise.

The causal modelling formalism of Costa and Shrapnel [2016] is an attempt to pursue

this route. The more precise ‘human’ version of causation is a generalisation of

interventionist causation, that allows for the use of representational devices that go

beyond the more familiar classical random variables. Whether this requires one to

abandon the notion of ‘beables’ will be addressed in due course.

We next look at a specific example of the CHSH inequality to bring the association

between Bell’s characterisation of local causality and modern interventionist causal

methods into sharper focus. Two parties are able to perform local measurements on a

physical system received from a distant source. The same source is used for the systems

received by both parties, and the two systems are emitted simultaneously. The parties

randomly choose from one out of two possible measurements A and B (the ‘settings’).17

These measurements reveal one out of two possible outcomes, labelled X and Y . A

latent variable � represents the physical conditions in the shared past of the two

systems. A first pass at a plausible DAG structure might be that of Figure 2. The two

wings are set up to be space-like separated, so the omitted edges between (i) the

17Some authors consider the three setting case, others consider the two setting CHSH

inequality. The di↵erences are irrelevant for what I say here.
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outcomes, (ii) the settings, and (iii) each setting and its opposite outcome are (in the

first place) assumed due to relativistic constraints.

X

A

Y

B

�

Figure 2: A possible DAG for the Bell experiment. A and B are random variables
representing the settings at each wing, andX and Y are the random variables representing
the corresponding outcomes. � captures the physical conditions occurring in the joint
past of the two systems (initiated from the source).

For the interventionist, the aim is to produce a causal DAG that can explain the

correlations between the variables. There are two possible avenues to pursue. One can

postulate a plausible graph structure (as in figure 2) and check if the experimental data

does in fact display the statistical patterns implied by the graph. That is, that the

distribution is Markov and faithful to the graph. Alternatively, one can start with the

empirical data and use the statistical patterns to construct the appropriate graph.

Glymour [2006] was the first to analyse the Bell correlations in terms of the CMC

and faithfulness. He argues that constructing a causal graph that satisfies the CMC not

only forces one to accept fine-tuning of the causal parameters, but also to accept that

the fine-tuned causal influences in question can violate relativity. Broadly speaking,

Glymour’s position is to advocate a re-think of the Causal Markov condition.

Wood and Spekkens [2015] have also recently analysed the Bell correlations using

classical causal modelling methodology. For these authors, a key message is that any

causal model that reproduces the observed statistics of the Bell correlations must be

unfaithful (equivalently, fine-tuned). Using only marginal independence of the settings

and no-signalling as input to Pearl’s discovery algorithms, Wood and Spekkens [2015]

(henceforth WS) show that even if one allows for the existence of latent variables, one

must permit fine-tuning of the causal parameters to both explain Bell inequality
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violations and still observe the no-signalling conditional independencies. In this case,

applying the principle of faithfulness to the observed independencies implies the lack of

superluminal causal influence that is the hall-mark of Bell’s local causality.

A very nice feature of this paper is that the authors are able to show that several

popular interpretations of quantum mechanics postulate fine-tuning in order to explain

the Bell correlations: de Broglie-Bohm theory, superdeterminism and retrocausal

interpretations all require fine-tuning of one sort or another. Additionally, it seems clear

that in such cases there are no known local interventions that can break the fine-tuning

and discover the ‘correct’ causal structure. Thus, such interpretations cannot be

considered to give a causal interpretation of the Bell experiments in the interventionist

sense.18 Finally, Wood and Spekkens note that their no-go result only holds in the

framework of classical causal modelling. The take home message, therefore, is that one

ought to reject the framework of classical causal modelling, in particular the use of

random variables for common causes and the use of classical probability theory, in

favour of an explicitly quantum generalisation.

On the strength of such work, Naeger [2015] advocates we give up faithfulness in

order to provide a causal explanation for the Bell correlations. In contrast to Glymour

[2006], Naeger suggests that rather than giving up on the CMC in the face of the Bell

correlations, the better approach is to accept fine-tuned causal models. Recall, however,

in Pearl’s formalism, faithfulness only carries weight as a restriction on Markovian

models: if we give up Markovianity we lose the value of faithfulness into the bargain. If

we give up faithfulness wholesale, we lose the possibility of causal discovery. It seems

neither approach a↵ords us a causal explanation worthy of the title.

All three of these modern takes on causal explanation take the position that the data

gathered in the Bell experiments ought to be thought of as observational : we lack the

right kind of interventionist access and so must fall back on the usual CMC and

18Of course, if new experimental evidence comes to light that violates no-signalling,

then these results will need to be reconsidered. For many, including myself, this seems

rather unlikely.
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faithfulness constraints in order to tell a causal story about the correlations. The causal

modelling framework of Costa and Shrapnel [2016] takes a quite di↵erent route. By

starting with plausible notions of interventions and causal mechanisms, that are

inspired by the way physicists represent manipulation of quantum systems, they build a

theory of quantum interventionist causation from the ground up. Their models satisfy

the desiderata of Section 1., and as classical causal structure is recovered in a suitable

limit, one is not forced into relinquishing classical interventionism, with all its intuitive

appeal.

4 Quantum causal models: why bother?

At this point it is worth pausing to consider why we should wish to characterise

quantum causal models. Apart from foundational concerns, is there likely to be any

pragmatic advantage to the overall project? After all, the philosophical value of causal

modelling is almost always defended on pragmatic grounds. And the situation in the

special sciences seems, prima facie, quite di↵erent to the situation in physics. In the

special sciences we typically wish to use causal discovery because we have incomplete

knowledge of the relevant laws (if indeed such laws exist). For example, we wish to

know whether smoking causes cancer, whether inflation causes economic depression,

whether increased carbon emission causes climate change. In contrast, for quantum

systems it seems we do in fact posses the required knowledge: given initial states, the

Hamiltonian for the system and the Schrodinger equation, can we not calculate exactly

how things will behave? It would seem that any information gained via causal

modelling would, in some sense, be redundant.19

There is an important misconception that lies at the heart of this objection. That is,

the idealisation of a closed system, for which we can give a perfect Hamiltonian

representation and evolve initial states according to global law. It is important to

remember that for many real world applications, such an idealised situation is fiendishly

19Thanks to an anonymous referee for identifying this issue.
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di�cult to achieve. We typically assume that there are no initial correlations between

the environment and the system of interest, and furthermore that the environment does

not act as a ‘memory’ for the duration of the experiment under consideration. Perfectly

isolated experiments where one knows (and can control) all the causally relevant

degrees of freedom (i.e. one does not have to contend with potentially causally relevant

noise) is certainly the exception, rather than the rule. Open quantum systems research

recognises this fact, and it is no accident that the causal modelling formalism presented

here uses the language of this field. Condensed matter physics, quantum information

and quantum technology all utilise systems that comprise many degrees of freedom,

with many and varied interactions. Identifying when a system has a Markovian, causal

representation is often a di�cult task. So in a sense, discovery of causal relations in the

special sciences and in physics is perhaps not so di↵erent after all. In both situations,

causal modelling is useful when we have a multitude of interacting components with

only limited access and control.

The second point of note is simply pragmatic. As engineered quantum networks

become increasingly complex, the task of characterising the order in which quantum

events take place will become increasingly important (and di�cult).20 Current

tomographic methods do not provide a method for determining such an order: if one

does not know a priori whether one has measurements on two halves of a bipartite

system, for example, or on a single system at two distinct times, then one does not

know whether to apply state or process tomography. By contrast, the Quantum Causal

Modelling framework works in the absence of such knowledge.

20Classical distributed computing currently uses specific protocols to keep track of the

order between local operations (e.g. Lamport time-stamps and vector clock methods).

We currently have no analagous methods for characterising the order of quantum

operations.
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5 Markov Quantum Causal Models

The notion of quantum intervention used to define the Quantum Causal Models (QCMs)

of Costa and Shrapnel [2016] matches the way certain physicists represent manipulation

and control of quantum systems. Thus the central claim of interventionist causation is

retained: the quantum causal models help identify the manipulable elements of the

world. From here, they build up a theory of quantum causal structure in much the same

way as Pearl builds a notion of classical causal structure. The mathematical structures

of this theory are not the joint and conditional probability distributions of Pearl’s

formalism, but rather those utilised by quantum open systems research.

The QCMs are defined by sets of possible spatio-temporally local quantum operations

(graphically represented as nodes) and sets of quantum channels that represent the

causal influences acting between the nodes (graphically represented as edges). Causal

structure can be discovered using a general notion of intervention which is defined as a

choice of a quantum ‘instrument’ (a particular set of quantum operations). Using these

objects one can define direct, indirect and common cause relations. One can also show

that by defining a quantum Markov condition, it is possible to identify when a causal

graph is incomplete, in the sense that there is an unmodelled (latent) common cause.

Extending the model to include such nodes restores the Markov property to the causal

graph, and an analogue definition of faithfulness is also possible. Finally, it is also

possible to recover classical causal structures, as a limiting case where all local

operations are diagonal in a fixed basis.

These definitions are all fairly technical, and to the uninitiated rather daunting.

Rather than simply reproduce the results of the paper here, I shall try to focus on those

di↵erences between the classical and quantum causal modelling formalisms that are

likely to be of most interest to philosophers (but see Appendix A for technical

definitions and Shrapnel [2016] for a more detailed philosophical presentation).

It is most instructive to compare each of the components of the QCM formalism to

its classical counterpart. For classical models, each variable (graphically, node)

represents a possibility space, defined by a set of possible values or events. For the
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quantum models, the nodes are also associated to a possibility space, although in this

case defined by a set of completely positive maps (CP maps).21 Each map can be given

a classical label and for a single run of an experiment a single map is assumed to

represent a quantum event occurring in the spatio-temporal region associated to the

relevant node. These maps provide a possibility space for the many ways a quantum

state may change as a result of a local intervention.

In the classical case, interventions can be ‘ideal’, where a single value is chosen with

probability one, or ‘generalised’, where the intervention rather induces the value to

respond in a probabilistic manner. Such ‘probabilistic choosing’ more accurately

represents intervening in most experimental situations, where perfect control is merely

an idealisation.22 In the QCM framework, interventions correspond to this more general

kind: an intervention chooses only probabilistically among a set of CP maps (in

quantum information language, an intervention corresponds to a ‘quantum

instrument’). Such quantum interventions are associated to completely positive trace

preserving maps (CPTP maps), formed by summing the individual CP maps. The

trace-preserving property is due to the fact that we assume that with certainty at least

one of the events represented by a particular CP map will occur.

The story already seems to involve quite a departure from the classical causal

modelling paradigm. In the QCM formalism we assume that all quantum events are

associated with a change or process (CP maps are used to characterise evolution of a

quantum state). It is not obvious how one ought to relate this to the classical idea of

values or events determined by the kind of ‘passive measurement’ assumed in Pearl’s

formalism. It seems plausible however, to consider that even classical measurements can

be considered as resulting in a process, or change in the state of the system being

measured. Advances in the philosophy of measurement theory suggest our epistemic

access to measurement outcomes is a rather convoluted and model-based a↵air. We

21Note, individual CP maps need not be trace-preserving.

22Korb [2006] calls such interventions ‘imperfect’, Pearl [2000] calls them ‘generalised’.
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ought not to think of measurements as simply providing an outcome that is directly

isomorphic to an underlying physical state. As Tal [2013] reminds us, “measurement

consists of two levels: (i) a concrete process involving interactions between an object of

interest, an instrument, and the environment; and (ii) a theoretical and/or statistical

model of that process, where “model” denotes an abstract and local representation

constructed from simplifying assumptions.” Associating events with possible processes

rather than static values is perhaps not as counterintuitive as at first it may seem.23

Recall, for classical causal models, the edges of the causal graph correspond to the

causal mechanisms responsible for determining the statistical correlations that exist

between events at di↵erent nodes. In the quantum causal models, we assume the

functional relationships between the nodes are determined by quantum systems passing

between di↵erent spatio-temporal regions (nodes), possibly interacting with an unknown

environment. In accordance with classical models, we call such functional relationships

quantum causal mechanisms and depict them graphically via edges. Such connecting

mechanisms are also represented via CP maps that sum to CPTP maps (although in

this case there is a slightly di↵erent representation, amounting to a partial transpose).

In the classical case, autonomous causal mechanisms are considered to be responsible

for the probabilistic correlations of a causal network, and it is the autonomy of the

mechanisms that allows for the possibility of so-called ‘surgical’ interventions. This

leads us to consider the relationship between interventions and mechanisms in the

23This is somewhat related to the question of whether there is either a ‘realist’ or

‘operationalist’ stance in lurking in the background of the QCM formalism. In terms of

standard conceptions of the terms, the formalism most naturally fits within an

operationalist paradigm. The quantum interventions are most easily understood as

being associated with choices we make in the lab, and we do not make use of the

eigenvector-eignavalue link. Having said that, one is also free to understand the CP

maps as attaching to single quantum events, and so understood from the perspective of

a process ontology, it may well be possible to consider the QCMs as a↵ording a kind of

realist interpretation.
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quantum case. A deterministic quantum mechanism in this formalism would correspond

to a unitary map, relating the output space of one node to the input space of another.

Recall in the classical case any unmodelled noise is assumed to be uncorrelated, thus

ensuring the autonomy of the mechanisms and underpinning the relevance of the Causal

Markov condition. In the quantum case, external noise leads to the use of the more

general CPTP map, rather than a unitary map to represent the mechanism.24

Using these basic ingredients, Costa and Shrapnel [2016] are able to build an

interventionist theory very close in spirit to the classical interventionist theory of Pearl.

Discovery of causal structure from empirical data is made possible via a quantum

Markov condition and a requirement of faithfulness that is analogous to the classical

version. Importantly, it is also shown that classical causal structure (with the usual

screening o↵ properties) can be recovered by assuming local operations to be diagonal

in a fixed basis. There is, however, nothing in the paper to suggest what drives such a

limiting case:

Whether this condition is enforced by decoherence (Zurek [2014]), collapse

models (Ghirardi [1985]), ‘fuzzy measurements’ (Peres [1992]), or in other

ways, will not be discussed here. Rather, it will be shown that, provided the

transition to classicality takes place, Markov quantum causal models reduce

to classical ones.

6 The Bell experiment

The formalism of Costa and Shrapnel [2016] is designed to define causal relations

between multiple quantum systems of arbitrary dimensions. As such, when applied to

the Bell correlations, the results seem almost trivial. The experimental statistics will

decompose according to the Quantum Causal Markov Condition to satisfy a simple

24One can also use CPTP maps to describe irreducible noise such as that arising in

dynamical collapse models. We do not need to commit to that particular interpretation

here.

24



common cause structure. There is no causal relation between the wings of the

experiment, but rather the source acts as a common cause. Whilst it is tempting to

argue then, that Costa and Shrapnel have developed somewhat of a sledgehammer to

crack a nut, without a formalism that generalises to multiple systems of arbitrary

dimensions, one would be hard-pressed to claim that it is a complete causal theory that

can provide adequate causal explanations.

7 Bell’s objections

Now we have a basic understanding of the formal structure of the quantum causal

models, we can review some philosophical implications. For many, the key question is

whether the models do in fact provide a causal explanation for the Bell correlations.

Recall the historical trajectory:

1. EPR suggest that quantum correlations force a choice between non-locality

(causal influence between space-like separated events) and completeness,

2. Bell shows that if causal influence is defined along classical interventionist lines,

adding further hidden variables does not circumvent the need for non-locality:

that is, one cannot save locality by assuming incompleteness,

3. Wood and Spekkens show that even if one allows for non-local influences, the

resulting causal explanation is flawed (due to the presence of fine-tuning). One

cannot save causal explanation by allowing for non-local causal influences.

The quantum causal modelling framework presented in (Costa and Shrapnel [2016])

assumes it is the characterisation of causation and causal explanation that is at fault,

and seeks to provide an alternative. The alternative presented is complete, in the sense

that all empirically derived statistics can be explained by common cause, direct cause or

indirect cause relations. If such an explanation is not possible, then this signals the

existence of hidden causes and an extended model that does correctly characterise the

empirical statistics can be formed. The formalism recovers the classical modelling

formalism as a limiting case, thus we do not need to entirely give up on the
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interventionist account, with all its intuitive appeal. Rather, it is seen as an

approximation of something deeper.

Regarding locality, direct causal influence in these models is always consistent with

relativistic constraints by virtue of its consistency with quantum mechanics. Thus,

empirically derived statistics can always be explained using such models without

postulating non-local causal influence (direct causal mechanisms acting between

space-like separated regions).

From the perspective of the Bell literature, there are some obvious objections. Recall,

Bell was uncomfortable with including a ‘human’ element within an account of

causation: correctly capturing possible signalling relations did not seem, for Bell, to be

an apt characterisation of causation. We saw in Section 1 that this charge has also been

levelled at interventionist accounts of causation: whether interventionist causation

reduces to agency is a hotly debated question. The interesting point however, is that

this problem does not seem to be peculiar to the quantum characterisation. It seems to

me that one could argue against the need for agency along exactly the same lines as the

standard interventionist response (Woodward [2003]). That is, we observe certain

regularities in experimental situations (where we have an element of control) that allow

us to infer particular causal relations between naturally occurring events (which we do

not control).

The question of how the QCM’s relate to Bell’s notion of beables is less clear.

Certainly, the models are connected to empirical evidence gathered from “the setting of

switches and knobs on experimental equipment, the currents in coils and the reading of

instruments.” However, if Bell’s aim was to use beables in order to expunge the use of

any mathematical representational devices that move beyond classical random

variables, then clearly the QCM’s fail in this respect.

As I see it, if one believes that interventionism is the correct way to think about

causation, then the empirical results of quantum experiments force one of three choices:

(i) dub the quantum world as mysteriously acausal, (ii) abandon the interventionist

account as the preferred account of causation and look for an alternative causal theory
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that can explain quantum correlations, or (iii) generalise the interventionist account so

that it can account for both classical and quantum causal relations. The QCM’s of

Costa and Shrapnel [2016] represent an attempt at the third path.
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8 Appendix

The following definitions are taken from (Costa and Shrapnel [2016]). For a more

comprehensive list, with illustrative examples, see both (Costa and Shrapnel [2016]) and

(Shrapnel [2016]).

Definition 1. Quantum event

A quantum event is represented by a completely positive (CP) map M : AI ! AO,

where input and output spaces are the spaces of linear operators over input and output

Hilbert spaces, AI ⌘ (HAI ), AO ⌘ (HAO), respectively. Note, a CP map can be

represented as a matrix by using the Choi-Jamio lkowski isomorphism:

MAIAO =
P

j l |lihj|AI ⌦ ⇥M(|jihl|)AO
⇤T

, (3)

M(⇢)AO =
⇥
trAI

�
⇢AI ⌦ 1AO ·MAIAO

�⇤T
, (4)

where {|ji}dAI
j=1 is an orthonormal basis in HAI and T denotes transposition in that basis.

Definition 2. Local region

The space of potential events is called a local region and is identified with the set of

CP maps between an input (AI) and an output (AO) space, which is isomorphic to the

space AI ⌦ AO. Input and output spaces can be identified with the past and the future

space-like boundaries of the space-time region where the event takes place.

Definition 3. A quantum causal mechanism maps the output space of a local

region to the input space of another one. The analogue of a deterministic mechanism is

a unitary. External noise can be described by an interaction with an environment which

is then traced out: the most general definition of a mechanism is a CPTP (completely

positive trace preserving) map.

Definition 4. A quantum intervention represents the collection of all possible events

that can be observed given a specific choice of probing the system. An intervention is
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defined as a choice of quantum instrument. For a local region AI ⌦ AO, an instrument

is a set of CP maps that sum up to a CPTP map:

J =
�
MAIAO

x

 m

x=1
, MAIAO

x � 0,

trAO

mX
a=1

MAIAO
x = 1AI .

(5)

(The trace-preserving condition for the sum guarantees that probabilities sum up to 1.)

Definition 5. Quantum Process Rule

To describe an experiment consider a set of local regions L = {Lj = Ij ⌦Oj}nj=1,

representing n disjoint space-time regions, each bounded by two space-like surfaces. In

an individual run of an experiment, instruments J L1
1 , . . . ,J Ln

n are implemented in these

local regions and the corresponding events recorded. The events are described by CP

maps ML1
1 , . . . ,MLn

n . It is possible to prove that the probability for such events to occur

is given by the Quantum Process Rule (Oreshkov et al. 2012, Shrapnel and Costa 2017):

P (ML1
1 , . . . ,MLn

n |J L1
1 , . . . ,J Ln

n ) = tr
⇥
ML1

1 ⌦ · · ·⌦MLn
n ·WL1...Ln

⇤
, (6)

where WL1...Ln � 0 is called the process matrix and represents the information about the

outside world available in the local regions.25

Definition 6. Given a set of local regions L = {Lj = Ij ⌦Oj}nj=1and a process matrix

WL1...Ln, a region Lh represents a direct cause for a region Lk 6= Lh if, for any

possible set of instruments
n
J Lj

j

o
j 6=k

, there exist instruments J Lk
k and fJh

Lh
such that

P (MLk
k |J L1

1 , . . . ,J Lk
k , . . . ,J Lh

h , . . . ,J Ln
n )

6= P (MLk
k |J L1

1 , . . . ,J Lk
k , . . . ,fJh

Lh
, . . . ,J Ln

n ). (7)

Definition 7 (MQCM). Given a set of local regions L = {Lj = Ij ⌦Oj}nj=1, a Markov

quantum causal model (MQCM) is a pair hG,W i, where

25This rule is also known as the generalised Born rule.
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1. G = hL, Ei is a DAG that has the local regions as vertices;

2. to each edge e 2 E is associated a space Se such that Oj =
N

e2outj
Se,

j = 1, . . . , n, where

outj := {e 2 E|e = (Lj, Lk)} (8)

is the set of edges departing from the vertex Lj;

3. W is a process matrix of the form

WL1...Ln =
nO

j=1

T
PSjIj
j ⌦ 1OD , (9)

where OD :=
N

k2D Ok is the output space of the regions with no outgoing edges,

D := {k|outk = ?}; PSj :=
N

e2inj
Se is the parent space associated with region

Lj, with

inj := {e 2 E|e = (Lk, Lj)} (10)

the set of incoming edges to Lj; and

T
PSjIj
j � 0, trIj T

PSjIj
j = 1PSj , j = 1, . . . , n. (11)

Definition 8. Latent regions and extended models

A local region in which the events are not observed will be called latent. A

Markovian causal explanation for a process matrix WL1...Ln is an MQCM
D
G,fWE

,

where G is a DAG with vertices containing L1, . . . , Ln, and possibly latent regionseL =
n
L̃1, . . . , L̃m

o
, such that

W = tr eL

h
C L̃1

1 ⌦ · · ·⌦ C L̃m
m ·fWL1...LnL̃1...L̃m

i
(12)

for some CPTP maps C L̃1
1 , . . . , C L̃m

m , where tr eL denotes the partial trace over all the

regions in eL. W is called reduced process matrix and provides a full description of the

physical situation for the observed regions, once the instruments in the latent regions are
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fixed; fW is an extension of W .
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