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Abstract

In a series of recent papers, two of which appeared in this journal, a group of
philosophers, physicists, and climate scientists have argued that something they call
the ‘hawkmoth effect’ poses insurmountable difficulties for those who would use non-
linear models, including climate simulation models, to make quantitative predictions
or to produce ‘decision-relevant probabilites.’ Such a claim, if it were true, would
undermine much of climate science, among other things. Here, we examine the two
lines of argument the group has used to support their claims. The first comes from a
set of results in dynamical systems theory associated with the concept of ‘structural
stability.’ The second relies on a mathematical demonstration of their own, using
the logistic equation, that they present using a hypothetical scenario involving two
apprentices of Laplace’s omniscient demon. We prove two theorems that are relevant
to their claims, and conclude that both of these lines of argument fail. There is nothing
out there that comes close to matching the characteristics this group attributes to the
‘hawkmoth effect.’
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1 Introduction

In a series of recent papers1, two of which appeared in this journal2, Roman Frigg, Leonard
Smith, Erica Thompson, and others3, warned of the skeptical implications of what they
have termed “the hawkmoth effect.” Nowhere is the hawkmoth effect precisely defined, but
whatever it is, it is a very very bad thing. It is a “poison pill” that “pulls the rug from
underneath many modeling endeavors”. It undermines the quantitative predictive power
of almost all non-linear models and makes them incapable of producing “decision-relevant
predictions” and “decision-relevant probabilities”.

The LSE group has been primarily concerned with climate science, and in particular
with the use of climate models to produce probabilities of future climate outcomes from
initial conditions. Their conclusions are highly skeptical, arguing that the only trustworthy
source of quantitative knowledge concerning the climate system comes from non-dynamical
equilibrium models. Importantly, Winsberg and Goodwin (2015) have argued for several
ways in which a ‘hawkmoth effect,’ even were it to exist, would not pose an epistemological
threat to climate projections. In particular, they have pointed out that climate projections
are meant to be independent of any knowledge of initial conditions. They are instead intended
to determine what changes will befall the statistical averages of system properties under
various forcing scenarios. This is unlike weather forecasting, which does depend on the
initial conditions.

Here, we make the complementary point: there is no phenomenon, mechanism, or effect
in the neighborhood of what the LSE group call a ‘hawkmoth effect’ that poses a threat to
initial-condition-dependent predictions such as the predictions made in weather forecasting.
We will argue that there are two ways in which the LSE group try to motivate a fear of the
hawkmoth effect: the first by appealing to a family of mathematical results having to do
with “structural stability,” and the second by demonstrating an illustrative example. We
argue that both of these attempts to motivate involve misunderstandings and that they fail
to reveal what the LSE group claims they reveal.

1. (Smith, 2002), (Frigg et al., 2013a), (Frigg et al., 2013b), (Bradley et al., 2014), (Frigg et al., 2014),
(Thompson, 2013).

2. By far the most detailed and prominent of these papers, “Laplace’s demon and the adventures of his
apprentices” (Frigg et al, 2014), was published in Philosophy of Science.

3. Hereafter referred to as the “LSE group”.
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2 What do the LSE group claim and how do they argue for it?

Before we proceed, we should give the reader a bit of background on the nature of the
LSE group’s claims, with an eye to answering two questions. First, just how skeptical are
the worries that the LSE group are motivating? And second, what arguments do they use
to motivate those worries? With respect to the second question, how important to their
arguments are the “hawkmoth effect” and their claims about structural stability?

A. How skeptical are their conclusions and worries?4

In some places, the LSE group members suggest that the quantitative predictive power of
all non-linear models is threatened by their arguments. If this is their intended scope, then
not only would the most basic results of contemporary climate science—that the climate is
changing as a result of human activity and will continue to do so—be cast under suspicion,
but so too would most scientific modeling endeavors. They claim to have established that
the combination of non-linear mathematical models with structural model error is a “poison
pill” that “pulls the rug from underneath many modeling endeavors” (Frigg et. al., 2013a,
p. 479). Since most mathematical models of interest in science are non-linear, and few of
them can be expected to be free from all structural model error, it is supposed to follow
from their argument, interpreted broadly, that any “probabilities for future events to occur”
or “probabilistic forecasts” (Frigg et. al., 213a, p. 479) derived from such models cannot
be trusted. Still, all is not lost, because the authors are willing to concede that, “not all
the models underlying these forecasts are useless” (Frigg et. al., 2014, p. 57). This is
because it is possible for a model that has been shown to be “maladaptive” for “quantitative
prediction” (which is presumably what their argument establishes) to be “an informative
aid to understanding phenomena and processes” (Frigg et. al., 2014, p. 48). In other words,
mathematical models can be qualitatively informative in spite of the fact that they are not
quantitatively trustworthy.

It is true that that in many places they are more circumspect, merely urging the use of
caution in interpreting the “high resolution predictions out to the end of the century” (Frigg
et. al. 2013b, p. 886) regarding the climate generated by one particular study. But there
are two important points to be made here. The first, of course, is that merely because they
sometimes make the explicitly weaker claim, they do not therein cancel the stronger claims.
But the more important point is that even if the the weaker claims did cancel the stronger
ones, these would be empty assurances. Their arguments do not have the finesse to establish
the weaker claims without establishing the stronger ones. The arguments are not nuanced
enough to allow for us to differentiate the high resolution from the low resolution, or the end
of the decade from the end of the century from the end of the millennium. We will see that
this is so in due course.

To be fair, we should also remind our readers that in most of their papers, the group offer
assurances that their views are not climate skeptical. It is clear they do not want to be seen
as climate skeptics. Appended to the very paragraph within which they consider whether or
not “science [is] embroiled in confusion,” they include a footnote with the reassuring claim
that this, “casts no doubt on the reality or risks of anthropogenic climate change, for which

4. Most of this subsection follows (Winsberg and Goodwin, 2015). All the quotations in the subsection
appear there as well.
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there is evidence from both basic physical science and observations” (Frigg et. al., 2014, p.
48). There are two extremely important points to make here. The first is that whatever
they say in the footnote, the consequences of their strongest claims, and of the arguments
they offer (were they to be sound) are what they are. The second is that, even when they
are trying to be reassuring, they do so in a way that continues to undermine the methods
and practices that are in fact crucial to climate science. The assurance they offer is that we
can find our evidence for “the reality or risks of anthropogenic climate change” in “basic [i.e.
non-inclusive of non-linear-modeling] physical science and observations.”

Would that we could be so sanguine. According to the IPCC, establishing the reality
of anthropogenic climate change requires both detecting and attributing climate change.
Detecting a change in the climate, based on observations (of roughly the weather), requires
determining that “the likelihood of occurrence by chance due to internal variability alone
. . . is small” (Bindoff et. al., 2014, 872). This, in turn, requires an estimate of internal
variability, generally derived from a “physically based model” (Bindoff et. al., 2014, 873).
Furthermore, going on to attribute the detected change to a specific cause (such as human
activity) typically involves showing that the observations are, “consistent with results from
a process-based model that includes the causal factor in question, and inconsistent with
an alternate, otherwise identical, model that excludes this factor”5 (Bindoff et. al., 2014,
872). Indeed the authors of the IPCC report are quite clear that, “attribution is impossible
without a model” (Bindoff et. al., 2014, 874). And the reasons for this are ones that should
be quite familiar to philosophers of science: establishing or evaluating causal claims requires
deciding how a system would have been different had things been otherwise; furthermore, in
complex systems where multiple causal factors are at play, there is no ‘basic physical science’
that is capable of answering these modal questions. As the IPCC authors put it:

We cannot observe a world in which either anthropogenic or natural forcings
are absent, so some kind of model is needed to set up and evaluate quantitative
hypotheses: to provide estimates of how we would expect such a world to behave
and to respond to anthropogenic and natural forcings. (Bindoff et. al., 2014,
873).

Even if one takes the view of the IPCC to be controversial (full disclosure: we do not,
and we would contradict the IPCC on a point like this only with the greatest caution),
and one thinks as Frigg et al say, that “there is evidence from both basic physical science
and observations,” for the reality of anthropogenic climate change, it does not follow that
undercutting model-based evidence—the only evidence that exists for identifying the relative
strength of contributors to current changes in climate—“casts no doubt on the reality or
risks of anthropogenic climate change.” Undercutting some of the evidence obviously casts
some doubt. Their arguments, in other words, are quite provocative. They don’t just
undermine prediction about regional climate in a hundred years, they undermine the most
basic conclusions of contemporary climate science, at least as those conclusions are now
established.

B. How important are results having to do with structural stability to their
arguments? Don’t they have other, stronger arguments to rely on?

5. This is what is famously known as ‘fingerprinting’
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Needless to say, therefore, it behooves anyone interested in securing the epistemic foun-
dations of many, if not all, of the core claims of the IPCC from the skepticism in the LSE
group’s papers to thoroughly rebut their arguments. Their mere assurances that the IPCC’s
main claims are safe would not be enough if in fact their arguments were sound. So what are
their arguments? We claim that they have two, and exactly two, lines of argument. Both
involve the alleged existence of a “hawkmoth effect”. The first line involves exhibiting a
purported example of the hawkmoth effect, and arguing, by analogy, that climate models
are likely to behave in a similar way. But they admit this is a weak argument. The second
involves claiming that the generality of the effect they describe is secured by a set of math-
ematical results from the topology of dynamical systems related to the notion of “structural
stability.”

One might think that the importance of the structural stability arguments to their overall
project could be downplayed and treated as a distraction.6 Our sole interest here is securing
the epistemic foundations of climate science and other instances of non-linear modeling—not
in claiming any mathematical novelties.7 So we should give some textual evidence for our
claim that they have two, and exactly two, lines of argument:

1. An argument by analogy from an example that involves the logistic equation and a
permutation of it (the “demon example”), and

2. an “analysis” of the mathematical literature on structural stability.

If we look at the structure of, for example, “Laplace’s Demon and the Adventures of his
Apprentices,”8 what we find is this:

1. an illustration of the effect, using the demon example,

• an admission that the illustration is not, by itself, very persuasive,

2. and finally the claim that the real argument is via mathematical results related to
structural stability.

Textual evidence for this, from an article in this journal, is unequivocal:

An obvious line of criticism would be to argue that the problems we
describe are specific to the logistic map and do not occur in other systems. So
the question is, how general are the effects we have discussed in the last
section? To answer this question we review a number of mathematical
results about the structural stability of dynamical systems. Our conclusion

6. Indeed an anonymous referee expressed the worry thusly: “I take the stuff the LSE group say about
“structural stability” to be a bit of a distraction, and [the authors of this paper] show pretty comprehensively
that they shouldn’t have argued that way anyway.”

7. One could certainly object that nothing we say in this paper is mathematically interesting or novel. We
do not disagree. But given that the LSE group is relying on what they claim are mathematical results, it is
important to bring clarity regarding them to the philosophical community. We are solely interested in the
foundations of climate science and non-linear modeling generally.

8. We focus on this paper both because it is the most detailed and because it appeared in this jounal.
There is nothing relevantly different to find in any of the other papers.
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will be sober. There are special cases in which the above effects do not occur, but
in general there are no such assurances. Not only are there no general stability
results; there are in fact mathematical considerations suggesting that the effects
we describe are generic. (Frigg et al, 2014, p.45, emphasis added).

Lest anyone think we are putting too much emphasis on one passage, we can assure
the reader that many public discussions with the authors have involved them emphasizing
that the structural stability results are the foundation of their arguments. They insist that
anything that might be mistaken for having been an argument that they gave, if it wasn’t
based on the structural stability results, was in fact only intended to be an illustrative
example—not an actual argument.9

3 What is a hawkmoth effect supposed to be?

So let us begin in earnest. The main argumentative thrust of all the papers is that the
absence of structural stability displays a number of inter-related features: it gives rise to a
“hawkmoth effect” whose power is exhibited in the demon example; it is underwritten by
results in the topology of dynamical systems; and it is a close cousin of the butterfly effect.
Indeed, nothing captures their intuitive idea of a hawkmoth effect better than the Miller
analogy:

Butterfly Effect : Initial Conditions :: Hawkmoth Effect : Model Structure

The more technical term for the “butterfly effect,” of course, is “sensitive dependence
on initial conditions” (SDIC). The definition of SDIC can be formulated in a variety of
ways, but two in particular bring out especially salient features. A third definition picks
out a related property that is in the family of properties associated with chaotic systems:
topological mixing.

Definition 1. For a state space X with metric d, say that the behavior of a dynamical system
(R, X, φ) with time-evolution function φ : R × X → X is sensitive to initial conditions to
degree ∆ if for every state x ∈ X and every arbitrarily small distance δ > 0, there exists a
state y within distance δ of x and a time t such that d(φ(t, x), φ(t, y)) > ∆.10

9. See, for example, the question and answer period that occurs at the end of this lecture, during which
Frigg and Smith both press this point: https://www.youtube.com/watch?v=qE7wpZ6t6Ts.

10. We take this definition almost verbatim from (Werndl, 2009) and (Mayo-Wilson, 2015) which also
appeared in this journal. One small difference is that we have moved from a definition that applies to maps
to one that applies to flows. (Crudely, a map is a function that we iterate to find a system’s trajectory and
a flow tells us what happens after a real-numbered value of time. The difference is discussed more formally
below.) Both definition 1 and 2 can be converted from a flow-based definition to a map-based definition with
ease. It is worth pointing out that talking about SDIC to degree “∆” is very weak since it says nothing at
all about how fast you need to get there and since it demands only that some state y near x, rather than
that almost all states y near x, have the property. We use it for two reasons. One is that we are continuing
a conversation in the pages of this journal that begins with (Frigg et al, 2014) and continues with a response
to them from Mayo-Wilson. The second is that a maximally weak notion of SDIC is maximally favorable to
the LSE group since it sets the bar maximally low for them.
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Informally this says that a system exhibits weak sensitivity to initial conditions if: no
matter the true initial state x, there is an arbitrarily close state y such that, if y had been
the initial state, the future would have been radically different (to the degree ∆). We could
also strengthen the definition of sensitivity to initial conditions to require that almost all
such states have this property.

Definition 2. For a state space X with metric d, say that the behavior of a dynamical system
(R, X, φ) is exponentially sensitive to initial conditions if there exists λ > 0 such that for any
state x ∈ X, any δ > 0, and all times t, almost all elements y ∈ X satisfying 0 < d(x, y) < δ
are such that d(φ(t, x), φ(t, y)) > eλtd(x, y).11

Intuitively, not only does exponential SDIC allow you get to arbitrarily far away (subject
to the boundedness of your dynamics) from where you would have gone by changing your
initial state just a very small amount, but this definition requires that you be able to get
there very fast. More precisely, it says that there will be exponential growth in error—that
every 1/λ units of time (called the “Lyapunov time”) the distance between the trajectories
picked out by the two close-by initial states will increase by a factor of e. We assume that
exponential SDIC is “strong,” that it also requires that almost all the points near x take you
there, not just one. Strong, exponential SDIC is what people usually have in mind when
they talk about the butterfly effect.

Definition 3. A time-evolution function φ is called topologically mixing if for any pair
of non-empty open sets U and V , there exists a time T > 0 such that for all t > T ,
φ({t} × U) ∩ V 6= ∅.

Informally, topological mixing (a crucial ingredient of chaos) occurs if, no matter how
arbitrarily close I start, I will eventually be driven anywhere in the state space that I like.

It stands to reason, then, that the hawkmoth effect, if it exists, should involve a clus-
ter of properties of dynamical systems that parallels the above three, but where the notion
of two states being close is replaced with the notion of two equations of evolution being
close. We will call making this kind of replacement a “lepidopteric permutation” of a defi-
nition associated with the butterfly effect because the hawkmoth and the butterfly are both
Lepidoptera.

Definition 3 is the easiest of the three on which to perform the lepidopteric permutation,
because it is topological, and topology is the natural domain in which to study families
of dynamical systems (whose members do not have a natural metric between them). In

11. Note that this definition talks of “almost all” states, without there being specific mention of a measure.
This is fairly standard; the reader is free to interpret them as either conditional on a specified metric or, as
we more naturally intend it, as presupposing the Lebesgue measure, a standard practice in discussions of the
state space of classical systems. Of course this is a significant problem, as we will see, for the LSE group,
since there is no similarly natural measure on the space of evolution functions. Finally, just as the reader
can easily convert either definition back and forth between a map and a flow, she can also convert them back
and forth from being what is sometimes called a “strong” version (where the claim is about almost all nearby
states) and a “weak” version (where the claim is about at least one nearby state). We have chosen to follow
Mayo-Wilson and Werndl in giving Definition 1 a “weak” form but we have given definition 2 a “strong”
form. Only strong versions of such definitions, obviously, require a measure, but only strong versions are
usually taken to have strong epistemological consequences, since they are likely to produce error.
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fact, Conor Mayo-Wilson12 has come up with a reasonable candidate for a hawkmothified
version of definition 3. In parallel with the notion of topological mixing, he calls it structural
mixing. We do something similar by taking definition 3 and replacing the neighborhood of
initial states with a neighborhood of evolution functions:

Definition 3*. Let Φ be a space of time-evolution functions with metric δ, φ ∈ Φ, U be
a non-empty open subset of X, and ε > 0. Furthermore, for any time t, set Bε(φ)(t, x) =
{φ′(t, x) | δ(φ, φ′) < ε}. We say that Φ is structurally mixing at φ if for any state x ∈ X,
there is a time T such that for all t > T , Bε(φ)(t, x) ∩ U 6= ∅.

This definition uses a metric to pick out the preferred topology on the space of evolution
functions, but it makes more sense to relax it to an arbitrary topology.

Definition 3**. Let Φ be a space of time-evolution functions, φ ∈ Φ, U be a non-empty
open subset of X, and V be a non-empty open subset of Φ (in the appropriate topology)
containing φ. Furthermore, for any time t, set V (t, x) = {φ′(t, x) | φ′ ∈ V }. We say that Φ
is structurally mixing at φ if for any state x ∈ X, there is a time T such that for all t > T ,
V (t, x) ∩ U 6= ∅.

Definition 1 can also be finessed into a structural equivalent. Now we absolutely need
a metric of distance between two evolution-specifying functions. We are of course free to
pick one, but it is worth keeping in mind that in many cases there will be no natural
choice. We would get a notion of “sensitive dependence on model structure to degree ∆”
and define it roughly as follows (We use the “strong” version of Definition 1 since that is the
epistemologically interesting version of SDIC):

Definition 1*. Let Φ be a space of time-evolution functions with metric δ, φ ∈ Φ, and
ε > 0. We say that Φ is sensitively dependent on model structure to degree ∆ at φ if for any
state x ∈ X, there is a time t such that for almost all φ′ ∈ Φ satisfying δ(φ, φ′) < ε, we have
d(φ′(t, x), φ(t, x)) > ∆.

The reader can easily construct a weak version of this for herself.
Definition 2 is a definition on which it is very hard to see how to perform a lepidopteric

transformation, because definition 2 gives a requirement in terms of an exponential growth
in a single quantity: the distance of separation between nearby states, as the system evolves
in time. We are already brushing under the rug the fact that 1* and 3* are assuming the
existence of a metric of distance between evolution functions. But in a hawkmoth version
of definition 2, unlike in the butterfly version, there is no single quantity that can grow in
time. A hawkmoth version would have to relate model distance with state space distance. It
would have to coordinate a metric of model structure distance with a metric of state space
distance. This will turn out, we will see, to actually be even more challenging than it seems.

That the two above definitions should at least be considered to be in the right neigh-
borhood of what a hawkmoth effect should involve is well motivated by the Miller analogy

12. (Mayo-Wilson, 2015) Our definition 3* is similar to and inspired by his attempt to capture one aspect
of what the LSE group might mean by the hawkmoth effect, but we also emphasize that topological mixing
is only one aspect of chaos. It happens not to be the feature of chaos, moreover, that is usually associated
with the butterfly effect. And finally, in so far as one is looking for the lepidopteric analog of topological
mixing, which is a purely topological notion, definition 3** makes the most sense, since it is also topological.
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argument. But that is not the only reason for thinking what we have above captures the
spirit of what the LSE group are keen to convince us that the hawkmoth effect can do.

We can also look at some of the claims that they make about the epistemological conse-
quences of a hawkmoth effect. They claim that 1) the hawkmoth effect ruins the closeness-to-
goodness rule, which suggests that a close-by model is a reasonably good model for produc-
ing forecasts, 2) the hawkmoth effect causes a fast growth in entropy, and 3) the hawkmoth
effect is an underappreciated cousin of the butterfly effect with similar epistemological con-
sequences. And they show pictures like figure 1. Finally, and most importantly, if the
hawkmoth effect does not have this cluster of properties, it is hard to see why anyone should
think that the demon case is a reasonable illustration of it, or that it poses the kinds of
epistemological challenges that the LSE group claims it does.

Figure 1: A visual representation of the hawkmoth effect, or lack of structural stability, from
Thompson and Smith.14

It should be reasonably clear that figure 1 is a good depiction of what we have called
sensitive dependence on model structure to degree ∆, as defined in 1*, and vice versa—if
∆ represents roughly the distance between the two blue sets on the right. All of the above
paint a picture in which we can imagine the following dialog taking place:

Peter is annoyed with the Weather Channel because their forecasts are never accurate
beyond 10 days into the future. He goes to a public outreach meeting and demands that the
Weather Channel produce longer term forecasts of greater accuracy.

Jessica the meteorologist explains that the butterfly effect makes this impossible. She
explains that the Lyapunov time of a planetary atmosphere like our own is about 3 days.
This means that any errors there are in our knowledge of the present conditions of the
atmosphere will, after 3 days, have grown to about 3 times their present size. After 6 days,
to 9 times, after 9 days to 27 times, and after 12 days, to 81 times the present degree of error.
She explains that once initial condition uncertainty has grown that large, basic qualitative
conclusions we try to draw from the data like the probability of rain have little value.

Everything the LSE group has written about the hawkmoth effect suggest that if a
representative of their group were at the meeting, she would raise her hand and try to add

14. Source: http://www.lse.ac.uk/CATS/Talks and Presentations/Posters/Thompson-
TheHawkmothEffect-LSEResearchFestival2014.pdf
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the following claim: “Jessica, everything you say about the butterfly effect is true, but you
have neglected an equally important part of the picture. Just as your knowledge of the
present conditions is imperfect, so is your knowledge of the best model of the climate. And
just as a small error in the initial conditions will blow up to a forecast-destroying level
after 12 days, so will a small error in your knowledge of the correct model produce similar
consequences—perhaps even on similar time scales.”

All of this is further reason to think that if a hawkmoth effect exists, it has to involve
something like a cluster of properties that are the analogs of the 3 properties, above, that we
associated with the butterfly effect and with chaos. We note, however, that we are already
in trouble because a relevant analog of property 2 is lacking.

4 Two routes to a hawkmoth effect

So much for what a hawkmoth effect should be like. What reason is there for thinking that
there is such a thing? More precisely, what reason do these authors have for thinking that
very many non-linear systems, including, importantly, the atmosphere-ocean-earth system,
are best modeled by dynamical systems that exhibit it? The answer to this question is
clearly given in the passage from the “demon” paper that we quoted at the end of section
2. The LSE group try to motivate the worry that the hawkmoth effect affects many such
systems in two different ways.

The first argument comes in the form of an appeal to a variety of previously known
mathematical results associated with the phenomenon of structural stability. And the second
is their (in)famous demon’s apprentice example. As we have already remarked, they usually
insist that the first argument for the hawkmoth effect is the only argument they mean to
offer, while the second is only meant as an illustrative example of something whose existence
is established by the first argument. Still, we should look at each one carefully. After all,
even if the first argument fails to show that a large class of systems should be expected to
be hawkmothish, the demon’s apprentice example might show that hawkmoth behavior is
still a danger to be reckoned with.

5 The structural stability route

The closest the LSE group come to giving a definition of the hawkmoth effect is in (Thomp-
son, 2013). Indeed, in what might be considered the flagship hawkmoth paper (published in
this journal) Frigg et al (2014) what passes for a definition is: “Thompson (2013) introduced
this term in analogy to the butterfly effect. The term also emphasizes that SME yields a
worse epistemic position than SDIC: hawkmoths are better camouflaged and less photogenic
than butterflies.” (p.39)

Looking in (Thompson, 2013) we find the following:

In this chapter I introduce a result from the theory of dynamical systems
and demonstrate its relevance for climate science. I name this result, for ease of
reference, the Hawkmoth Effect (by analogy with the Butterfly Effect). (p. 211)

and
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The term “Butterfly Effect” has greatly aided communication and under-
standing of the consequences of dynamical instability of complex systems. It
arises from the title of a talk given by Edward Lorenz in 1972: “Does the flap of
a butterfly’s wings in Brazil set off a tornado in Texas?”.

I propose that the term “Hawkmoth Effect” should be used to refer to structural
instability of complex systems. The primary reason for proposing this term is to
continue the lepidoptera theme with a lesser-known but common member of the
order. The Hawkmoth is also appropriately camouflaged, and less photogenic.
(Thompson, 2013, p. 213, emphasis added.)

Interestingly, the term “structural instability” doesn’t seem to appear very much in the math-
ematical literature. Nowhere is it described as producing an “effect.” In fact, the discussion
that we find in both (Thompson, 2013, “5.2.2 Identifying structurally stable systems”, p.
214-215), and even more so (Frigg et al, 2014, “4. From Example to Generalization”, p.
45-47) are clearly influenced by (Pugh and Peixoto, 2008)15 and though the word “stabil-
ity” appears 65 times in the above mentioned piece, the word “instability” does not appear
even once. Nor does the word “unstable.” If you search for it, you can find the occasional
article with “structural instability” in the title, but the results one finds in them are always
discussed in terms of the presence or absence of structural stability.

Why does this matter? It matters because structural stability does not have a comple-
ment with substantial features of its own, and the term “structural instability” suggests an
overly close analogy to chaotic instability that no one in the mathematical literature ever
had in mind. We can see why if we look closely at the notion of structural stability.

The first thing we should notice is that they are definitions of ways of guaranteeing to
stay arbitrarily close. And failure to stay arbitrarily close is not the same thing as being
guaranteed to go arbitrarily far. But in analogizing absence of structural stability to SDIC,
the LSE group are engaging in exactly this conflation.

Take an early definition of structural stability in two dimensions due to Andronov and
Pontrjagin as it is explained in Pugh and Peixoto. They consider dynamical systems of the
form

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (1)

defined on the disc D2 in the xy-plane, with the vector field (P,Q) entering transversally
across the boundary ∂D2.

Definition 4. Let p and q be vector fields on D2. We say that such a system is structurally
stable (or “rough”, as Andronov and Pontrjagin put it) if, given ε > 0, there exists δ > 0
such that whenever p(x, y) and q(x, y), together with their first derivatives, are less than δ

15. Neither Thompson nor Frigg et al. list the Pugh and Peixoto as a work cited, but both of them follow
Pugh and Peixoto’s discussion very closely, as can easily be verified. We make this point only to assuage a
possible concern on the part of the reader that we are not talking about exactly the same notion of structural
stability as they are, or that they are appealing to results not covered by Pugh and Peixoto. We don’t believe
that any of the LSE group could object to us using Pugh and Peixoto as an authoritative reference, since
the references in that piece are exactly the same ones we find in all the LSE group’s papers (including two
classic papers by Peixoto himself).
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in absolute value, then the perturbed system

dx

dt
= P (x, y) + p(x, y),

dy

dt
= Q(x, y) + q(x, y) (2)

is such that there exists an ε-homeomorphism h : D2 → D2 (h moves each point in D2 by
less than ε) which transforms the trajectories of the original system to the trajectories of the
perturbed system.

Intuitively, this definition says of a particular evolution function that no matter how
ε-close to the trajectory of that evolution function I want to stay for its entire history, I can
be guaranteed to find a δ such that all evolution functions within δ of my original one stay
ε-close to the original trajectory—where δ is a measure of how small both the perturbing
function and their first derivatives are. This is an incredibly stringent requirement.

When an evolution function fails to obtain such a feature, therefore, it is as perverse to
call it “structurally unstable” as it is to talk about a system being insensitively dependent on
initial conditions, or to describe a function that fails to have a particular limit as “unlimited.”
It is a perversion that conflates the following two sorts of claims.

1. You can’t be guaranteed to stay arbitrarily close by choosing an evolution function
that is within some small neighborhood.

2. Small changes in the evolution function are sure to take you arbitrarily far away.

Absence of structural stability in the sense of definition 4 gives you the first thing, but
nothing anywhere near approximating the second thing. But to claim that absence of struc-
tural stability is an analog of SDIC is to suggest that absence of structural stability gives
you the second thing. It is the second thing, moreover, that we concluded that a hawkmoth
effect should ensure when we formulated definitions 1* and 3* above using the lepidopteric
transformation of definitions 1 and 3. That, moreover, is just the first difference. Notice
that 1*, in order to be the analog of strong SDIC, has to say “for almost any φ ∈ Φ”. But
absence of structural stability in the Andronov and Pontrjagin sense requires nothing of the
sort. It only requires that, for each δ, one trajectory in the entire set δ-close trajectories be
deformed by more than ε. (See figure 2.)

And notice, by the way, that it would be impossible to even formulate a useful definition
of structural instability that required that something like “almost all” the nearby models
diverge. That’s because there is no natural measure over the models. The state space of a
classical system has an obvious measure: the Lebesgue measure. So it is easy to say things like
“almost all the nearby states have such and such property.” But spaces of diffeomorphisms
have no such measure.16

16. In reading some of their papers, and in conversation, one sometimes gets the impression that they
think the result of Smale, which they summarize as follows “Smale, 1966, showed that structural stability is
not generic in the class of diffeomorphisms on a manifold: the set of structurally stable systems is open but
not dense,” can stand in for a claim about the likelihood of a system being structurally stable. Or maybe of
the likelihood of a nearby model being close if the first one is not structurally stable. This is the only thing
we can find in the results they review about structural stability after they make the claim that “there are
in fact mathematical considerations suggesting that the effects we describe are generic.” (Frigg et al, 2014,
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Figure 2: An example of a map that is not structurally stable. When a small perturbation
turns the map on the left into the map on the right, we get two maps that cannot be smoothly
deformed into each other. The key feature is this qualitative dissimilarity between the two
maps, and not any metrical difference. (Source: Pugh and Peixoto, 2008)

This is what happens when you take the complement of a definition. Definition 4 is
“strong.” It requires that not a single trajectory diverge by more than ε. But when you take
the complement of a strong definition you get a weak one (among other problems). Here,
the complement of structural stability only requires that, for each closeness threshold δ, one
trajectory go astray.

To put the point simply, absence of structural stability in the Andronov and Pontrjagin
sense is much much weaker than either definitions 1* or 3*. It’s weaker in two ways: rather
than requiring that most trajectories (indeed as we have seen there is no coherent notion of
“most” here) go far away, it only requires that one trajectory go more than a very small
epsilon away. And hence it is much weaker than the LSE group or the hawkmoth analogy
suggest.

We still haven’t talked, moreover, about definition 2 of SDIC and the idea of exponential
error growth, which is so fundamental to the epistemological impact of chaos. If we think
back to the exchange between Peter, Jessica, and the representative of the LSE group, we
realize that even more than 1* and 3* would be needed to underwrite the existence of a
hawkmoth effect. We would need to formulate a definition that captured the idea that
the small error in a model could grow very fast—indeed we would need something akin to

p. 57) But first, climate models are not likely to be diffeomorphisms, so that’s not the relevant universality
class. Second, and more importantly, density is not a measure-theoretic notion, it is a topological one. A
set can be dense and have measure zero (think of the rationals in the real number line—the rationals are of
course not generic in the real line). There are even nowhere-dense sets that have arbitrarily high measure
in the reals. There is a general point here: all the relevant notions associated with structural stability are
topological, and they provide no information about likelihoods, or genericness. This is again because there
is no natural measure on the space of equations of evolution.

13



definition 2 that would allow us to calculate, as Jessica did with the butterfly effect, how soon
a forecast would become useless given a certain amount of model structure uncertainty. But
this looks unlikely for the case of failure of stability in the sense of Andonov and Pontrjagin.
The reason is that in definition 4, the metric of model distance does not live in the same
space as where the metric of state space distance lives. It would be strange and confusing
to relate these two metrics in a single equation.

And things get even worse if we move from what Pugh and Peixoto call the “pre-history”
of structural stability to its modern formulation. In the modern formulation, no metric is
specified—neither between two different diffeomorphisms, nor between two trajectories.

The modern formulation of structural stability goes as follows:

Definition 5. If D is the set of self-diffeomorphisms of a compact smooth manifold M , and
D is equipped with the C1 topology then f ∈ D is structurally stable if and only if for each
g in some neighborhood of f in D there is a homeomorphism h : M → M such that f is
topologically conjugate to each nearby g. In other words, that

M
f−−−→ M

h

y yh
M

g−−−→ M

(3)

commutes, that is, h(f(x)) = g(h(x)) for all x ∈M .

Definition 5 makes it clear that the most general formulation of it is not metrical at all. It
is topological. It says nothing at all about diffeomorphisms that are “a small distance away”.
It talks about diffeomorphisms that are in topological neighborhoods of each other. And it
doesn’t talk at all about trajectories taking you some distance away. It talks about there
being a homeomorphism (a topology preserving transformation that cares nothing about
distances) between the two trajectories. Using the analogy of a rubber sheet that is often
used to explain topological notions, it roughly says, intuitively, that if you replace f by any
of the diffeomorphisms g in some neighborhood of f then the new entire statespace diagram
of g will be one that could have been made just by stretching or unstretching (by deforming
it in the way one can deform a rubber sheet without tearing it) the statespace diagram of f .

This is not, moreover, incidental—or a pointlessly abstract formalism. Some structural
stability results have been achieved in which the relevant topological conditions are spelled
out in terms of a topology that is provably not metrizable.17 And so in fact, in some cases,
structural stability tells you nothing at all, let alone anything strong enough, about how far
away a slightly perturbed model will take you. It simply supplies no metrical information.

So let’s review what it amounts to for a system defined by a diffeomorphic map f , applied
to a manifold, to fail to be structurally stable. It means that if you look at the space of
diffeomorphisms around f , you will be unable to find a neighborhood around f that is guar-
anteed not to contain a single other diffeomorphism g that is qualitatively different than f in
essentially the following sense: that you cannot smoothly deform f into g. The Father Guido
Sarducci version of what we have learned so far is this: You don’t get structural ‘instability’

17. Recall that this is possible because every metric picks out a topology, but the reverse is not true.
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just by replacing “small changes in initial conditions” in SDIC with “small changes in model
structure” because, both with regard to how much error you can get, and with respect to how
many nearby trajectories will do it, SDIC says things are maximally bad, while structural
instability merely says they will not be maximally good. And SDIC includes metrical claims,
while its incoherent for structural stability to be given a metrical form.

Let us put this another way. Absence of structural stability is an incredibly weak con-
dition on three dimensions: it need not take you far (the relevant notion is defined in the
absence of any metric at all), it need not take you there at all fast, and there only needs to
be one model in your entire neighborhood that does it. So absence of structural stability
has no interesting consequences for the predictive power of a model, even in the presence of
model structure uncertainty—so long as you are not interested in infinitely long predictions
(the second dimension) that are topologically exact (the first dimension) and underwritten
by mathematical certainty (the third dimension), rather than, say, overwhelming probability.
Let that sink in: you could know for a fact that your model is structurally unstable, know for
a fact that you had some small amount of stuctural model error, and still have it be the case
that your model would not introduce more than an arbitrarily small amount of error for an
arbitrarily long time. And it could still be overwhelmingly likely (no matter what measure
you preferred on the model space) that it would introduce virtually no error at all.18 Nor,
by the way, do any of the results having to do with structural stability make any mention at
all of non-linearity. Non-linearity is a red herring. There is no hawkmoth effect.

We should acknowledge that none of this is intrinsically newsworthy. But we believe
it is worth clearing all of this up given some misleading claims that have been made in
the philosophical literature in general and in this journal in particular: that the absence of
structural stability is in any way analogous to a butterfly effect; that it (in anything like
the normal cases) does something akin to what we see in figure 1; that it undermines the
predictive capacity of nonlinear science; and that it undermines the capacity of the same
to produce decision relevant probabilities. And that applies, inter alia, to the way in which
that is done both in weather prediction and in climate projection. And as we will see, it is
also misleading to suggest that the LSE group’s famous demon’s apprentice example in any
way illustrates the typical effects of the absence of structural stability.

But what about the demon example itself? Doesn’t it provide its own cautionary tale,
irrespective of the epistemological import of structural stability considerations? Doesn’t
it do this given that figure 1 does seem to capture well what happens in the demon case?
Doesn’t it do this given that it seems to show that very nearby models can take a probability
distribution over some relatively small set of initial conditions and very quickly drive that
set into very different regions of state space? We turn to this question in the next section.

18. This is all of course because structural stability was a notion developed by people interested in achieving
the mathematical certainty of proof while using perturbations—they were not interested in finding predictive
accuracy. After all, they were studying the solar system. No one was worried that, until they found
stability results for the solar system, its dynamical study would be embroiled in confusion or maladapted to
quantitative prediction.
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6 The demon’s apprentice route

In (Frigg et al., 2014), the LSE group postulate the existence of a demon that is omniscient
regarding the exact initial conditions of a given system, the true dynamical model of the
system, and the computational output of such a model at any future time, for any initial con-
ditions, to arbitrary precision. Such a demon also has two apprentices: a senior apprentice,
who has omniscience of computation and dynamics yet lacks that of initial conditions, and
a freshman apprentice, who has computational omniscience but not that of model structure
nor initial conditions.

The problems of the senior apprentice can be overcome by Probabilistic Initial Condition
Ensemble Forecasting (PICEF). In PICEF, instead of using a single point in the state space
as the initial conditions for the dynamical system, we substitute in a probability distribu-
tion over the entire state space. In this way, the practical limitations of initial condition
uncertainty can be mitigated: A point prediction for the state of the system in the future
is replaced by a distribution over possible future states which may still inform practical
considerations.

According to Frigg et al., however, there is no such solution for the freshman’s ignorance.
Aside from the initial condition uncertainties which reduce the precision of a system’s trajec-
tories, the freshman apprentice is beset by unreliability in the very dynamics by which initial
states are evolved. This unreliability, they claim, is not easily resolved nor easily dismissed.
And its consequences, they hold, are severe.

To illustrate this severity, et al. consider the logistic map, defined below, and a “similar”
equation that represents the true model of some physical system. They show that, given
enough time, the two equations evolve the same distribution of initial conditions to very
different regions of state space. We’ve already seen that the absence of structural stability is
not, in general, as severe as the results of the demon’s apprentice example suggest. Absence
of structural stability does not generally lead to wide divergence, nor does its absence imply
anything about the majority of nearby models (see section 4). It only takes one stray model
in the neighborhood to violate the definition. But we can still ask whether the demon
example is at least a possible illustration of the absence of structural stability. And we can
still ask if it provides a worthwhile cautionary tale of its own. The answers to both of these
questions, alas, is “no.”

Why is the demon example not a possible illustration of the absence of structural sta-
bility? To see why, we need to review some conceptual distinctions relevant to dynamical
systems. We can start with the logistic equation, which is part of the demon example:

xt+1 = 4xt(1− xt). (4)

Notice that this is a dynamical system specified with an equation of evolution that lives
in discrete time. This needs to be contrasted with dynamical systems specified with time-
dependent differential equations, like the Lorenz model

dx

dt
= σ(y − x),

dx

dt
= x(ρ− z)− y, dz

dt
= xy − βz. (5)

In the formalisms used to discuss structural stability, dynamical systems like the logistic
equation are specified by maps: functions from a manifold onto itself; and those like the
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Lorenz model by flows: a map from a manifold (state space) crossed with the real number
line (a time variable) onto the manifold: φ : M × R→M .

Definition 5 gave us the definition of structural stability for a map, and the definition of
structural stability for a flow is:

Definition 6. If X is the set of smooth vector fields on a manifold M equipped with the C1

topology, then the flow generated by x ∈ X is structurally stable if and only if for each y in
the neighborhood of x in X there is a homeomorphism h : M → M that sends the orbits of
x to the orbits of y while preserving the orientation of the orbits.

But notice that definition 5 does not apply to any old map. The definition only applies
if the map is a diffeomorphism. To be a diffeomorphism, a map has to have some added
conditions:

1. The map has to be differentiable.

2. The map has to be a bijection (its inverse must also be a function).

3. The inverse of the map has to be differentiable.

The obvious problem is that the logistic map is not a bijection! Every number other than
1 has two preimages. For example, both .3 and .7 map to .84. So .84 has no unique preimage
and there is no function that is the inverse of equation 4. But this means that the logistic
map isn’t even the right category of object to be structurally stable or not.19 Of course we
are free to make up our own definition of structural stability that applies to all maps. But
if we do, if we expand our model class beyond the space of diffeomorphisms to the space of
all maps, then the very notion of structural stability becomes empty. You simply won’t find
many structurally stable maps on this definition. Consider the simplest map there is:

xi = C for all i and some constant C. (6)

This map is simple but, of course, not a bijection. Yet it also would not come out as
“structurally stable” on our new definition. According to the definition we require all g in
some neighborhood to satisfy h(f(x)) = g(h(x)). But if f is constant, h(f(x)) is constant,
so g(h(x)) has to be constant for the definition to hold. But that condition is easy to
violate with many of the g’s in any neighborhood of f . But this means that the logistic
map is no more “structurally unstable” than the function given by equation 6 is. Which

19. There are other nearby puzzles about what the LSE group could possibly have thought they were on
about: the best model climate science could write down—that is the real true, partial-differential-equation-
specified, undiscretized model—would have the form φ : M × R → M . It might or might not meet the
additional criteria for being a flow, but it is certainly not of the form φ : M → M , which is the general
form of a map. Once we start to think about a discretized model, however, the model does take the form
φ : M → M . Even if we had the perfect climate model and it were a flow, a discretization of it (in time)
would necessarily have the form of a map. And no map is in the right universality class—for purposes of
structural stability—of a flow. In the sense relevant to structural stability, its simply a category error to
ask if a discretization of a dynamical system of the form φ : M × R → M is “nearby to” the undiscretized
system. Climate models run on computers are all imperfect, but they don’t live in the same universe of
functions as the “true” model of the climate does.
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means whatever the demon example illustrates, it actually has nothing at all to do with
non-linearity. Technically, of course, equation 6 isn’t linear. But its also not exactly what
people have in mind when they think of non-linearity! And of course, once you open up
the model class to non-diffeomorphisms, f(x) = 3x (an obviously linear map) will also be
structurally unstable.

So when Frigg et al (2014) write, “The relation between structural stability and the
Demon scenario is obvious: if the original system is the true dynamics, then the true dy-
namics has to be structurally stable for the Freshman’s close-by model to yield close-by
results,”(p.47) they are saying something very misleading. In fact, the relation between
structural stability and the demon is at best murky–because the logistic equation is not even
a candidate for structural stability. And as we have seen, it is simply false that a model has
to be structurally stable for a nearby model to produce nearby results. That is straightfor-
wardly a misreading of the definition. And it is straightforwardly misleading to suggest that
non-linearity is the culprit. If you open up the definition to include arbitrary maps, all kinds
of incredibly simple maps become “structurally unstable.” If you think absence of structural
stability is the hawkmoth effect, and if you think the logistic equation (despite not being a
diffeomorphism) displays the hawkmoth effect, then neccessarily you will have to say that
xi = C displays the hawkmoth effect too. This is not a happy outcome.

Okay, but still, even if the logistic map is not a candidate for structural stability, surely
the demon example still shows that two very nearby models can lead to radically different
PICEF predictions, right? We saw in section 5 that structural stability and its absence did
not underwrite what is depicted in figure 1. But surely the demon example does, right?
This, after all, we can see with our own eyes in the Frigg et al (2014) paper. Not so fast.
Let’s look carefully at the two models in the example: the freshman apprentice’s model and
the demon’s model.

xt+1 = 4xt(1− xt) (7)

x̃t+1 = (1− ε)4x̃t(1− x̃t) +
16ε

5

[
x̃t(1− 2x̃2t + x̃3t )

]
(8)

Equation 8 is the demon’s and senior apprentice’s model, the “true” model in this sce-
nario, and equation 7 is the freshman apprentice’s model, the “approximate” model.

On first glance, these equations do not look very similar. But the LSE group argue
that they are in fact similar. They argue this by arguing that the appropriate metric of
similarity should be based on an output comparison of the two models over one timestep:
Call the maximum difference that the two models can produce for any arbitrary input ε,
the maximum one-step error. If ε is sufficiently small, then the two models can be said,
according to the LSE group, to be very similar. Here, we argue that this is much too weak
of a condition for considering two models similar. We also note, as we already did above,
that it is not for nothing that the modern literature on structural stability is topological
and not metrical. There just isn’t anything sufficiently general and sufficiently natural to
say about how to measure the distance between two models, two diffeomorphisms, or two
flows. The model of equation 7 and the model of equation 8 are not appropriately similar for
drawing the conclusions that the LSE group draw. We begin by proving a theorem (proofs
of theorems can be found in the Appendix):
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7 Small arbitrary model perturbations

Suppose we are given a difference equation of the form

xn+1 = f(xn), (9)

where xi ∈ R and f : A → B is an arbitrary function from the bounded interval A ⊂ R
into the bounded interval B ⊂ R. Note that the logistic map takes this form with f(xn) =
4xn(1− xn). Then we have the following result:

Theorem 1. Given any function g : A → B and ε > 0, there exists δ > 0 and η > 0 such
that the maximum one-step error of

x′n+1 = ηf(x′n) + δg(x′n), (10)

from (13) is at most ε and x′n+1 ∈ B.

Observe that (8) takes the form of (10) with f(x′n) = 4x′n(1−x′n), g(x′n) = (16/5)[x′n(1−
2x′n

2+x′n
3)], η = 1−ε, and δ = ε. There are at least two ways in which this result undermines

the claim that the demon’s apprentice example demonstrates the existence of a hawkmoth
effect which is an epistemological analog of the butterfly effect.

The existence of small arbitrary model perturbations demonstrated in the above theorem
for first-order difference equations, of which the logistic map is an example, shows that the
perturbation presented in the demon example is only one possible perturbation amongst
the infinite space of admissible perturbations that are close to the logistic map under the
maximum one-step error model metric. In fact, as the argument demonstrates, we can
perturb our model in any way we wish and still remain as close to the initial model as
desired. It should therefore be no surprise that we can find models close to the logistic
map that generate trajectories in the state space vastly diverging from the logistic map over
certain time intervals; indeed, we should expect to find nearby models that exhibit essentially
any behavior we want, including some which vastly deviate from the logistic map across any
given time interval and others which remain arbitrarily close to the logistic map for all future
times. In particular, there is no a priori reason we should expect that the modified logistic
map is an example of a commonly occurring small model error. The butterfly effect is so
important because numerically small difference between the true value of a system variable
and its measured value are absolutely common and normal. But what reason is there to think
that climate scientists make mistakes about the order of the polynomials their models should
have? Or that they sometimes write down exponential functions when they should have
written down sinusoidal ones? Corollarily, what reason is there to think that small model
errors of the kind we would expect to find in climate science, atmospheric science, and other
domains of non-linear modeling will normally produce deviations on such short timescales as
they do in the demon example? Why would we let such a weirdly concocted example do any
“burden of proof shifting” of the kind the LSE group demand of us? Consequently, at the
very least, the demon example only retains its relevance as evidence for the epistemic force
of the so-called hawkmoth effect if it is accompanied by a strong argument showing how it
is precisely this sort of perturbation which is often encountered when constructing weather
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forecasting models. But there may be good reasons to think this is not the case (see the
next point as well as Section 10).

More generally, Theorem 1 indicates that the maximum one-step error metric is quite
simply too easily satisfied and does not really get at what makes two models similar or
close.20 It would be difficult indeed to argue that the difference equations

xn+1 = 2xn and xn+1 = 2xn + .004exn − .03 sinxn

are highly similar and ought to be considered “close” in model space simply because after
one time step they do not yet produce significantly diverging trajectories in state space—the
newly added sinusoidal and exponential terms behave so differently from the linear term
present in the original equation that we would certainly not want to call these two models
“close”. Furthermore, we would in particular definitely not expect to be able to predict
well the long-term behavior of a physical system using both of these equations since the
perturbations introduced in the second equation model entirely different physical dynamics.

8 Small polynomials on [0,1]

The astute reader might notice the following thing: in Frigg et al’s demon example, they get
a maximum one-step error between the freshman and senior apprentices of .005, and they do
this with a value of ε of 0.1. Using the proof of theorem 1, you can calculate what value of ε
the theorem guarantees will give you a maximum one-step that they achieve, (.005), and it
is the relatively small number of .0025. But they achieve their result with a relatively large
value of ε of .1.21 What explains this? Is the measure of model closeness reasonable if we
disallow overly small values of ε? The very small value of epsilon that our proof produces is
sufficient, but doesn’t seem to be necessary. Is it in fact us that is making a misleading case
here?

No. Let f(x) and g(x) be the polynomials on [0, 1] underlying 7 and 8, respectively. Then
we have

|f(x)− g(x)| =

∣∣∣∣∣4x(1− x)−
[
(1− ε)4x(1− x) +

16ε

5

[
x(1− 2x2 + x3)

]]∣∣∣∣∣
20. In addition to the evidence of theorem 1, we also offer the following anecdotal evidence that maximum

one-step error is not a particularly robust measure of model closeness. It happens that in one of the many
papers published by the LSE group on this topic, (Frigg et al., 2013(a)), they use an ever-so-slightly different
version of the perturbation than they do in their other papers. In place of the function in equation 8 they
instead used

p̃t+1 = 4p̃t(1− p̃t)
[
(1− ε) +

4

5
ε(p̃2t − p̃t + 1)

]
(11)

What is interesting is that, like in (Frigg et al, 2014), they report in this paper that for this different
perturbation, at ε = .1, the maximum one-step error (relative to the standard logistic equation) is .005. But
this is wrong. The small change in the equation makes the maximum one step error skyrocket to .04, for the
same value of ε. We can think of no better anecdotal demonstration of how artificial the maximum one-step
error is as a metric of model distance than the fact that the authors took themselves to be presenting the
same perturbation twice, and it happened to differ on that metric by a factor of 10.

21. Note that there is still a similarly large discrepancy even if one folds the multiplicative factor 16/5 into
the ε term for the purposes of comparison with Theorem 1.
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=

∣∣∣∣4εx(1− x)− 16ε

5

[
x(1− 2x2 + x3)

]∣∣∣∣
=

∣∣∣∣∣ε
(

4− 16

5

)[
x(1− x)− x(1− 2x2 + x3)

]∣∣∣∣∣
=

4ε

5

∣∣x− x2 − x+ 2x3 − x4
∣∣

=
4ε

5

∣∣x2 − 2x3 + x4
∣∣ ,

and therefore sup |f(x) − g(x)| < sup |x2 − 2x3 + x4| = .0625. This observation, that there
is a polynomial with “large” coefficients that is approximately 0 on [0, 1], in fact points to
the existence of a whole space of such polynomials:

Theorem 2. For all ε > 0 and 1 > δ > 0, there exists an infinite set of polynomials
g : [0, 1]→ [0, 1], written

g(x) = αnx
n + αn−1x

n−1 + · · ·+ αk+1x
k+1 + αkx

k,

such that
min{|α0|, |α1|, . . . , |αn|} > 1− δ and sup |g(x)| < ε. (12)

This explains why, in the demon case, it is possible to use a relatively large value of ε.
While theorem 7 shows that maximum one-step error is a poor metric of model closeness, and
in fact, provides a method of “cheating” this metric, theorem 8 shows that in certain spaces
of polynomials, we don’t need to use the theorem 7 cheat, since there are other resources
for doing so. Both theorems, however, illustrate the same underlying fact. What are in fact
large perturbations, can be made to look very small under the right constraints. Theorem
8, when we are restricted to polynomial space, is actually the more powerful cheat, as can
be seen by looking at the two plots in Figures 3 and 4. They clearly show that freshman
demon’s perturbation is not at all small, even though its maximum value on the interval
[0,1] is very small.

If this is right, then it suggests that the demon example is highly atypical in its ability
to exhibit what looks like fast divergence in the trajectories given small maximum one-step
error and a relatively large perturbation constant. It is doubly atypical, in fact, in just the
ways discussed above. (It uses both the theorem 7 cheat and the theorem 8 cheat.)
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Figure 3: This is a plot of the size of the freshman demon’s perturbation evaluated on the
interval [0,1]

Figure 4: This is a plot of the size of the freshman demon’s perturbation evaluated on the
interval [-2,3] You can no longer even see the hump at 0.5.

9 A skeptical kernel?

Is there, nevertheless, a skeptical kernel of the hawkmoth papers that survives all of our
arguments? Are we overstating how much of the LSE group’s bundle of claims ought to
be rejected? Some have expressed this worry. The alleged kernel goes something like this:
we presumably don’t have a model of the climate that captures “the true dynamics” of
the climate system. Even if we are “nearby” the true dynamics, the ensemble distribution
produced by our nearby model might differ from the “actual probabilities” that would have
been produced by the true model. So decision making on the basis of model-probabilities
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might be dangerous. It’s now up to us to find a way round this. Either find a way to get
“close enough” or close in the right way so that the model distribution is guaranteed to track
the true distribution, or find a way of generating decision relevant probabilities some other
way. What the LSE group have shown is just that we can’t just assume that the model
probabilities will be decision relevant.22

Set aside, for the moment, that (Winsberg and Goodwin, 2015) already showed that this
concern is completely misplaced vis. a vis. climate science, because climate science makes
projections and not predictions, and projections are not conditional on “actual probabilities”
of initial states that can be right or wrong. Here we are concerned with a more general point
that is independent of the practice of climate science and of the distinction between prediction
and projection.

But we are not sure along which of two possible dimensions this interlocutor thinks the
kernel survives:

1. That the ensemble distribution might differ from the “actual probabilities” by a small
amount, even if there is no hawkmoth effect to make it deviate by a large amount.

or

2. That the ensemble distribution produced by the slightly wrong model might differ (sig-
nificantly? by an important amount?) from the ”correct” one even if point projections
don’t differ (significantly? by an important amount?) from their real values.

If the skeptical kernel is just (1) that a nearby model might produce a slightly different
probability distribution, then this is of course correct. But this kernel of skepticism will
not undermine the ‘decision relevance’ of any probability distributions produced by models
that are “very nearby” to the real model, in any sense of “nearby” that is broached by any
of the LSE groups arguments. And we needn’t have a ‘guarantee’ that things will not go
wrong. The skeptical kernel needs to be much stronger than this for it to have any policy
implications at all, or for it to be anything stronger than ordinary scientific fallibilism.

If the skeptical kernel is (2), and the notion of “significance” or “important amount” is
replaced by “decision relevant amount,” then there are two obvious responses to anyone who
continues to believe in this kernel.

A) What arguments are supposed to support that kernel? There are exactly two lines
of argument that the LSE group give, and one depends on convincing us that the two
apprentices’ models are “nearby” and the other depends on their mis-characterizations of
the structural stability results. There simply are no other arguments in their papers.

B) How could this be? A nearby model will only move an ensemble distribution far away
if it moves point predictions far away. The one is parasitic on the other. And it will only
do that if there is a hawkmoth effect. The whole point of the hawkmoth was that it could
do to distributions what the butterfly effect could not, because the butterfly effect doesn’t
prevent you from getting from an exact initial condition to an exact final condition, and so
it leaves probability distributions intact—even when there is uncertainty about the initial
condition. But if the ‘hawkmoth effect’ (such as it actually is) is so much weaker than the

22. An anonymous referee posed something like this worry to us, and we have heard it elsewhere.
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butterfly (as we have shown it is in three ways) for point predictions, there is no effect at all
on the decision relevance of ensembles.

The only skeptical kernel that remains is the one that was obvious all along: a small error
in your model is likely to produce a small error in your ensemble. There is no lepidopteric
mechanism for turning the small error into a large one.

10 Conclusion

In the above, we have argued that there is no hawkmoth effect that generally plagues non-
linear modeling. There is not one that accompanies the absence of structural stability, and
there is not a ubiquitous feature of non-linear models that is highlighted by the demon
example. (Indeed we have seen that the obsession with non-linearity by the LSE group is
mysterious, since it does not figure in their arguments at all.) But it would be wrong to
interpret us as pollyannaish about climate modeling and its epistemological pitfalls. We
understand that climate modeling is hard, and it is fraught with many possible sources of
error. Even our very best models of the climate are currently unsuitable for making some of
the projections that important policy decisions might be sensitive to. We are not unaware
of this, nor do we deny it. But the reasons for this have to do with the fact that some of
the features of our climate system are poorly understood or poorly parameterized. Regional
projections are particularly difficult because of the coarse graining of the globe’s topography
in global simulations, and other domain-specific features of global climate models. None of
this has anything to do with arbitrarily small possible model errors.

Nevertheless, there is a significant difference between known inadequacies in a model
that are the result of idealization: both “dynamical” (not accounting for e.g. turbulence, the
biosphere, relativistic effects, etc.) and computational (discretization, parametrization, etc.),
and the possibility of infinitesimally small structural errors. The former is a known problem,
and climate scientists and the IPCC alike are deeply concerned with eliciting the best possible
estimate of the degree of uncertainty that arises from these sources. On the other hand, so
far we have seen no reason to believe that the the latter, as we have demonstrated via our
arguments in the previous sections, produce any significant decision-relevant uncertainties.

We would further add that we have no a priori opposition to exploring the possible
consequences of a phenomenon in the general vicinity of a hawkmoth effect. It might very
well be the case that small model errors could have outsized impacts (relative to the size
of the model error) on our predictions and projections, broadly construed. But a research
program that was serious about exploring that question would need to be much more serious
about two or three questions:

• What is the universality class (or model space) for a given physical system, e.g. Earth’s
climate? It seems safe to at least assume that the functions defining physical models
are continuous, but could we go further? Perhaps all such functions are also differen-
tiable or even smooth (infinitely differentiable); could they also necessarily be analytic?
Maybe we can even rule out specific types of functions, e.g. logarithmic or exponential
functions, and argue that a given physical system must be modeled by equation(s)
involving only closed-form or algebraic expressions, or something far more restrictive,
such as only polynomials of degree 2 or less. At the very least, it seems potentially too
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bold, and certainly unsubstantiated, to assert that the universality class is as large as
the space of continuous functions. If the model space is more restricted, the impact of
“small model error” could very well begin to disappear because model perturbations
that don’t substantially affect the predictions or projections that interest us could be
far more common, perhaps even the norm.

• What is the right metric of distance? i.e. what characteristics make one model nearby
to another? The kind of answer we give to this question might be rather different if
the question is genuinely epistemological, rather than topological.

• If toy models are going to be used in a research program like the one that the LSE
group want to conduct, what kinds of toy models are suitable? And what toy models
produce idiosyncratic features like the ones we have pointed out, in sections 6 and 7,
the logistic map suffers from?

But in any such research program, like any program in the philosophy of science, we believe
the cardinal rule should be: do no harm. Wildly skeptical scenarios (“poison pills,” and the
like) about a scientific program with serious policy implications should be advanced only
with the greatest possible care.

In “Probabilistic Forecasting: Why Model Imperfection Is a Poison Pill,” the LSE group
recommends that further research be devoted to finding an antidote for the ‘poison pill’
(Frigg, 2013a, p. 488). Climate models continue to be imperfect in a variety of ways that
matter to policy making and decision support. But we consider this paper to be an antidote
for hawkmoths.

11 Appendix A: Proof of Theorem 1

Theorem 1. Suppose we are given a difference equation of the form

xn+1 = f(xn), (13)

where xi ∈ R and f : A→ B is an arbitrary function from the bounded interval A ⊂ R into
the bounded interval B ⊂ R. Then given any function g : A → B and ε > 0, there exists
δ > 0 and η > 0 such that the maximum one-step error of

x′n+1 = ηf(x′n) + δg(x′n), (14)

from (13) is at most ε and x′n+1 ∈ B.

Proof. Set δ and η such that

|δ| 6
∣∣∣∣ ε

2 sup{g(xn)}

∣∣∣∣ and |η − 1| 6
∣∣∣∣ ε

2 sup{f(xn)}

∣∣∣∣ ,
where sup{f(x)} denotes the supremum23 of f over all x ∈ R. Note that the suprema exist24

because f and g are bounded. Since the one-step error is

|x′n+1 − xn+1| = |ηf(xn) + δg(xn)− f(xn)|

23. Essentially, for sufficiently “well-behaved” functions, the maximum value.
24. That is, the suprema are finite.
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= |(η − 1)f(xn) + δg(xn)|,

by the triangle inequality, the maximum one-step error is

sup{|x′n+1 − xn+1|} = sup{|(η − 1)f(xn) + δg(xn)|}
6 sup{|η − 1||f(xn)|+ |δ||g(xn)|}

6 sup

{∣∣∣∣ ε

2 sup{f(xn)}

∣∣∣∣ |f(xn)|

}
+ sup

{∣∣∣∣ ε

2 sup{g(xn)}

∣∣∣∣ |g(xn)|

}

=

∣∣∣∣ ε sup{f(xn)}
2 sup{f(xn)}

∣∣∣∣+

∣∣∣∣ ε sup{g(xn)}
2 sup{g(xn)}

∣∣∣∣
=
ε

2
+
ε

2
= ε,

as desired.

12 Appendix B: Proof of Theorem 2

Theorem 2. For all ε > 0 and 1 > δ > 0, there exists an infinite set of polynomials
g : [0, 1]→ [0, 1], written

g(x) = αnx
n + αn−1x

n−1 + · · ·+ αk+1x
k+1 + αkx

k,

such that
min{|α0|, |α1|, . . . , |αn|} > 1− δ and sup |g(x)| < ε. (15)

Proof. Let 0 6 e2(n − k)/ε < k < n 6 1/δ, where e = 2.71828 . . . is Euler’s constant, and
define αk, . . . , αn by setting

n∑
i=k

αi = 0, |1− |ai|| < δ, and |αi+1 + αi| <
ε

n− k
(16)

for all k 6 i 6 n. Then since

sup |g(x)| = sup |αnxn + αn−1x
n−1 + · · ·+ αk+1x

k+1 + αkx
k|

6 sup |αnxn + αn−1x
n−1|+ · · ·+ sup |αk+1x

k+1 + αkx
k|,

it suffices to determine the extrema of gi(x) := αi+1x
i+1 + αix

i for all k 6 i 6 n − 1. In
that direction, note that the extrema of a function occurs either where that function’s first
derivative vanishes or at the end points. Thus, the possible maxima are gi(0) = 0,

|gi(1)| = |αi+1 + αi| <
ε

n− k
,

by (16), and, since

0 =
dgi(x)

dx
= xi(αi+1x+ αi)
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= ixi(αi+1x+ αi) + αi+1x
i

= iαi+1x
i+1 + (iαi + αi+1)x

i

= xi(iαi+1x+ iαi + αi+1)

has solutions at x = 0 and x = −(iαi + αi+1)/iαi+1,∣∣∣∣∣gi
(
−iαi + αi+1

iαi+1

)∣∣∣∣∣ =

∣∣∣∣∣αi+1

(
−iαi + αi+1

iαi+1

)i+1

+ αi

(
−iαi + αi+1

iαi+1

)i∣∣∣∣∣
=

∣∣∣∣∣(−1)i+1αi+1(iαi + αi+1)
i+1

(iαi+1)i+1
+ (−1)i

αi(iαi + αi+1)
i

(iαi+1)i

∣∣∣∣∣
=

∣∣∣∣∣αi+1(iαi + αi+1)
i+1 − iαiαi+1(iαi + αi+1)

i

(iαi+1)i+1

∣∣∣∣∣
=

∣∣∣∣∣α2
i+1(iαi + αi+1)

i

(iαi+1)i+1

∣∣∣∣∣ .
Applying (16), the definition of k and n, and the well-known inequality (1 + 1/i)i 6 e, we
have ∣∣∣∣∣gi

(
−iαi + αi+1

iαi+1

)∣∣∣∣∣ < ii(1 + δ)i

ii+1αi−1i+1

=
(1 + δ)i

i(1− δ)i−1
6

(1 + 1/i)i

i(1− 1/i)i−1
6
e2

k
<

ε

n− k
.

Hence, after summing over all i, we conclude that sup |g(x)| < ε. Since the first inequality
in (15) holds by definition, and there exist an uncountable infinity of coefficients αk, . . . , αn
satisfying (15), this yields the desired result.
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