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ABSTRACT

The behavior of some systems is non-computable in a precise new sense. One
infamous problem is that of the stability of the solar system: Given the initial positions
and velocities of several mutually gravitating bodies, will any eventually collide or be
thrown off to infinity? Many have made vague suggestions that this and similar problems
are undecidable: no finite procedure can reliably determine whether a given
configuration will eventually prove unstable. But taken in the most natural way, this is
trivial. The state of a system corresponds to a point in a continuous space, and virtually
no set of points in space is strictly decidable. A new, more pragmatic concept is therefore
introduced: a set is decidable up to measure zero (d.m.z.) if there is a procedure to decide
whether a point is in that set and it only fails on some points that form a set of zero
volume. This is motivated by the intuitive correspondence between volume and
probability: we can ignore a zero-volume set of states because the state of an arbitrary
system almost certainly will not fall in that set. D.m.z. is also closer to the intuition of
decidability than other notions in the literature, which are either less strict or apply only to
special sets, like closed sets. Certain complicated sets are not d.m.z., most remarkably
including the set of known stable orbits for planetary systems (the KAM tori). This

suggests that the stability problem is indeed undecidable in the precise sense of d.m.z.
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Carefully extending decidability concepts from idealized models to actual systems, we
see that even deterministic aspects of physical behavior can be undecidable in a clear and

significant sense.
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INTRODUCTION

It is unphilosophical to suppose that, to any given question
(which has any clear meaning), investigation would not
bring forth a solution of it, if it were carried far enough.

Charles Sanders Peirce, “How to Make Our Ideas Clear”

0.1. The situation

Several authors have suggested that the very long-term behavior of certain
physical systems, or more precisely, theoretical models of physical systems, cannot be
predicted by any systematic calculation (Moser 1978, 67-68; Wolfram 1985; 2002, 755,
1138; Moore 1990, 1991; Pitowsky 1996; Sommerer and Ott 1996). These models are
deterministic and classical, i.e., non-quantum. Their future states are entirely determined
by their past states, and their supposed unpredictability is not due to any ontological
indeterminacy but only to the lack, and the supposed impossibility, of a systematic means
of calculation. Further, this supposed unpredictability is different from what is popularly
called chaos. Chaos means that we need extremely accurate knowledge of present
conditions in order to make even rough predictions of the finite future. The claim under
consideration here is that even perfect knowledge of the present would not enable us to
predict the infinite future—whether, for example, a planet will ever escape the solar

system. Inaccurate initial data are not to blame; there is just no adequate method of
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calculation, and none is even possible.

Such claims demand clarification, for taken in the most natural way they are
trivial. The states of the systems in question are represented by real numbers, or points in
a continuous space, and the non-computability claims concerning these systems reduce
claims that for some set of points that interests us, there is no method to determine
whether a given point is in that set. They are claims that some set of points is
undecidable. However, the most obvious notion of decidability for set of real numbers,
or of points in a continuous space, turns out to be almost unsatisfiable. As we will see,
only the most trivial sets—the empty set and the entire background space—are decidable
in the obvious sense. Most authors writing on decision problems in physics seem to have
overlooked this fact,' and as a result, it is not immediately clear what sort of non-trivial
undecidability, if any, the systems they discuss might suffer, nor what significance such
undecidability may have.

This raises a number of general questions. Are there inherently unsolvable
problems built into even our simplest deterministic theories of the world? Is the behavior
of some models undecidable in a meaningful sense? What after all is a decidable set of
real numbers? Is the idealized problem of the stability of the solar system undecidable, as
some have suggested (e.g., Moser 1978; Wolfram 1985, 2002)? Is undecidability only a
property of models, or could there be actual systems in the real world exhibiting, in some

sense, objectively undecidable behavior? Would this imply some form of non-

! Wolfram (2002, p. 1138) at least acknowledges the difficulty, and since he suspects that
space and time are ultimately discrete, for him there may be no such difficulty.
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determinism, at least for those who hold strongly empiricist or constructivist views, as
Pitowsky (1996) has suggested? Or is it only our knowledge that is limited? Are there,
in contradiction to remarks like Peirce’s above, questions about the world, with clear
meaning, to which no amount of investigation would ever bring forth a solution? These

are some of the broader questions that motivate the present investigation.

0.2. What is a decidable set of real numbers? A pragmatic approach

You are free, therefore choose—that is to say, invent.

Jean-Paul Sartre, Existentialism and Humanism

There are stories about Karl Popper’s brusque participation in seminars.
Apparently, when someone would announce a title of the form, “What is X,” Popper
would immediately interrupt, “ “What’ questions are completely wrong, misguided.”
This attitude seems only a little more dismissive than that of the later Wittgenstein, for
whom the philosophical “What is X ?”” could express little more than a mental discomfort,
best answered by displaying the grammar or use of ‘X’ (cf. Wittgenstein [1933-4] 1964,
pp. 1, 26). The present investigation is somewhat sympathetic to such views. When
philosophers approach a question like “What is a person?” or “What is art?” as a great
mystery merely because they can imagine cases that defy classification, and when they

seek the solution in some recondite essence, God-given demarcation criterion, or anything

? This is according to John Watkins, quoted in the popular book Wittgenstein’s Poker
(Edmonds and Eidinow 2001, 176).
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other than human conventions, they seem to make words their masters rather than their
tools.

However, we suppose here that merely identifying these pitfalls might not bring
philosophy to an end. Perhaps having skirted such traps we can proceed with valuable
philosophical work. After all, even distinctly philosophical “what is” questions are not
without motivations. They may express a reasonable desire to extend established
concepts, beliefs, and values to difficult cases.” To throw up our hands and deny that
such questions have any meaning at all would again be to fall slave to words, by
forgetting our power to give them meaning.* If an old concept does not fit a new case,
one option is to invent a refinement or modification of the concept, one that can either
solve practical problems or satisfy some curiosity more specific than the naive “what is”

question. Faced with a case where the question “Is a an X ?” seems to have no uniquely

? As examples, consider the practical implications of concepts like person and marriage
for current ethical and legal debates. Though it is a mistake to focus such debates on the
meanings of words, debates over the words reflect a need to clarify or reinvent concepts and
values.

* This remark is not aimed at Wittgenstein, for he writes, “[W]ords have those meanings
that we give them” ([1933-4] 1964, 27), and rather than deny that a question “What is X”” has any
meaning, he discusses the various uses of ‘X, and points out “family resemblances.” However,
he excludes conceptual engineering from philosophy. He tells us that philosophy “leaves
everything as it is” (1953, 49-50), and that it cannot or need not improve on ordinary language
(ibid.; [1933-4] 1964, 28). For Wittgenstein, philosophical work is finished when our present
usage has been laid bare and confusions removed. Such a strict /aisez-faire policy seems
somewhat arbitrary. Philosophers are entrusted with the tasks of evaluating science and relating
its technicalities to commonsense notions and traditionally philosophical issues like determinism
and predictability. Such duties are just as much “heirs of the subject which used to be called
‘philosophy’” (Wittgenstein [1933-4] 1964, 28) as Wittgenstein’s own investigations. It would
be impractical to separate these critical and interpretive duties from the constructive suggestions
that might arise from them, or that might even contribute to them by showing that more useful
concepts exist. Here we study and engineer precise mathematical concepts in hopes that they
may shed light on philosophical questions after all.
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correct answer, the philosopher might ask, “What would I really like to know about a?
What motivates the question?”” and define concepts accordingly. If these questions
cannot be answered, then perhaps there really is no problem to discuss.

In mathematics, the sort of conceptual engineering proposed here is fairly
common, as Lakatos illustrates ([1963] 1976). In an elaborate process of conjecture and
proof analysis, concepts are often retooled to support tidy and powerful theorems.
Summarizing and perhaps embellishing Lakatos’s account, Peter Smith states several of

the concerns that guide this investigation:

Definitions in mathematics get shaped by a number of pressures. We may start with a
cluster of informal basic results which we want our formal definitions broadly to sustain
(some of the intuitive results may be non-negotiable; others may be up for possible
revision). There is then, on the one hand, the desire for increasing generality,
inclusiveness, abstractness. But on the other hand, we also want the defined concepts to
feature in powerful theorems. Connectedly, we want there to be interesting relations to
(refinements of) other, well-entrenched, mathematical concepts. (Smith 1998, 174)
It is worth noting that among the factors contributing to the value of a concept are the
results that follow from it. The recovery of familiar results can show that a newly refined
or generalized concept has not been modified too much, but also, unexpected results may
attest to the importance of a modification. Even relatively simple results like those to be
presented in Chapters 4 and 5 can speak to the merits of a concept, especially if, as in this
case, they are applications to natural examples in other fields (here physics), and they

illustrate the distinctions between different refinements of an old concept.

For an investigation such as this one into mathematics and physics, then, the present

methodological preface might seem unnecessary. However, we are also concerned here with the
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notion of an effective procedure, a vague concept not far from the notion of rule following that
preoccupied Wittgenstein (1953, 80 ff.). It is hoped that our technical—i.e., careful and
detailed—investigations may shed some light on traditionally philosophical questions of
epistemology and the limitations of reason.

Moreover, there has been a tendency even in the “exact” sciences to overlook the tearing
and fraying that familiar concepts suffer when stretched beyond their usual applications, or to
feel that one mended concept is the only natural extension of the original. The latter tendency is
illustrated by the several nineteenth century mathematicians who, confronted with unexpectedly
strange geometric solids insisted that those figures were not really polyhedra (Lakatos [1963]
1976, 14-21). “Essentialism,” says Lakatos, “has been a permanent feature of definitional
quarrels” (18), while such quarrels have themselves been papered over by the efficient but
opaque Euclidean style of definition, theorem, and proof.’

The tendency to overlook conceptual fraying altogether is illustrated by physicists
such as Wolfram (1985), Moore (1990, 1991), and Sommerer and Ott (1996), who have
made claims of undecidability in classical physical systems without acknowledging that
this is either ambiguous or trivial, due to the fact that the most obvious notion of a
decidable set of real numbers is virtually unsatisfiable (see Sections 1.4.3 and 2.4).
Others have noticed this fact and devised various relaxed notions of decidable or
recursive set, as well as models of computation used to classify not only sets but real
numbers, functions, and other structures in continuous settings. As some of their titles

suggest, writings such as Blum et al.’s “Manifesto” (1996), Brattka’s “The Emperor’s

’ We of course employ this style in some places (Chapter 3 and the appendix), but in
light of and in service to the present pluralistic discussion of motivations.
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New Recursiveness” (2003b), and others (Wethrauch 2000, Brattka 2003a) express
distinct preferences for one concept or model over another.

Not every concept is precious, and some may not well serve our purposes, nor
even the purposes for which they were proposed. One of our main goals will be to point
out the special significance of one particular concept, namely that of decidability up to
measure zero With respect to a given measure (called “decidability in £’ in Parker 2003).
However, the arguments for of this particular concept and the critiques of other concepts
presented here are valid only relative to particular purposes. Despite any apparent
partisanship, they are intended to be taken in an ultimately pluralistic, constructive, and

pragmatic spirit.
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CHAPTER 1

ON THE INTEREST OF INDEFINITE-TERM BEHAVIOR IN PHYSICS
AND OF UNDECIDABILITY THEREIN

1.1. Introduction

The claims of undecidability cited in the introduction concern the behavior of
systems in the unbounded future. They concern properties involving quantification over
all time, such as the property that at some time the state of a system will enter a certain
set, or that the system will approach a given set of states asymptotically. Let us
distinguish such properties from properties of behavior over some finite time, however
long, by dubbing the former indefinite-term (i.t.) properties and the undecidability of such
properties i.t. undecidability. There are also indications of finite-term non-computability
in classical physics (e.g., Pour-El and Richards 1981), but here we focus on i.t. decision
problems. One of the purposes of this chapter is to show that though i.t. undecidability is
an abstract and theoretical matter—even more abstract than finite-term non-
computability—it is worthy of a philosophical investigation.

There have been suggestions to the contrary. Philosopher Wayne Myrvold writes,

Some of the predictions of a theory concern the value of measurable quantities.
Others may concern the long-range behavior of the system, such as whether the
system will ever leave a certain volume of phase space. We should, therefore,
distinguish between predictions which are testable by experiments taking place in

8
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9

a pre-defined, bounded region of space-time, and predictions which are not. Only
the former should be considered measurable predictions. This is significant
because, if the dynamics of [a physical] theory permit the construction of a
physical instantiation of a Turing machine, the corresponding halting problem will
arise, so that certain features of the long-range [i.t.] behavior of the system will
not be an effectively computable function of its initial state. Turing machines
have been constructed (conceptually), not only out of electronic components, but
of colliding billiard balls and also quantum systems [citing Fredkin and Toffoli
1982 and Feynman 1986]. Such non-computability is routine, and hardly counts
as an instance of the physics outstripping effective mathematics, as, in such
systems, the state of the system at any given time is an effectively computable
function of the initial data. (1994, 1995)

This at least seems to suggest that i.t. predictions are empirically empty and i.t.
undecidability is trivial. Some of Myrvold’s opinions on this topic have changed, and
anyway the real purpose of his remarks seems not to be to dismiss i.t. undecidability
absolutely, but to limit the scope of those writings in which his remarks appear. We will
not attack Myrvold as if he were committed to the claim that all i.t. undecidability is
uninteresting. Nonetheless, he raises reasonable doubts that should be addressed.

In part, this chapter will serve to provide some historical background, on
computability, the i.t. problem of the stability of the solar system, and suggestions that it
and related problems are unsolvable. However, our main purpose here is to show that i.t.
undecidability is of some interest. We will briefly consider the interest of highly abstract
propositions in general, and of corresponding undecidability results, by analogy with
Hilbert’s philosophy of mathematics and the impact that undecidability results had on his

research program. We will then see (1) what kinds of interest i.t. predictions related to

the stability of the solar system may have, (2) that such predictions are testable in various
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10
ways, (3) how the appearance of unsolvability in problems related to the stability of the
solar system has influenced the direction of research, (4) that i.t. undecidability is not as
trivial as Myrvold’s (and Stephen Wolfram’s) comments seem to suggest, and (5) that
there is at least some suggestion, due to Pitowsky (1996), that i.t. undecidability has
metaphysical implications. We will not attempt to eliminate all doubts about the interest
of undecidable i.t. behavior, but to disarm such doubts of their immediate force, for a full
evaluation of the significance of i.t. undecidability can only be made after more rigorous
definitions and results have been established. We will do so in Chapters 2 through 5 and

make a more earnest attempt at interpretation in Chapter 6.

1.2. Abstraction, unbounded quantification, and undecidability

Indefinite-term propositions about mathematical models of physical systems are
highly abstract idealizations. Though the significance of such propositions may not be
immediate or concretely practical, it may be genuine and considerable nonetheless. At
least for some individuals and groups, abstract propositions, especially if suggested by the
concrete world, have inherent interest regardless of their practical implications. In the
philosophy of science, to understand what we can and cannot predict, in exactly what
sense, and why, are basic desiderata, and hence the study of non-computability in the i.t.
behavior of abstract models seems important for the sake of thoroughness alone.
Moreover, abstract idealizations can serve as heuristic guides or even direct shortcuts to

more concrete results. Undecidability results for idealized problems, then, can serve to
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11
direct research programs away from the fruitless pursuit of such shortcuts.

One illustration of these general considerations can be found in Hilbert’s view of
the role of unbounded quantification' in mathematics, his program to justify it, and what
became of that program. (For our purposes this is perhaps more than an allegory, since
i.t. propositions about models of physical systems are mathematical statements with
unbounded quantifiers.) Hilbert regarded unbounded existential propositions in
arithmetic as “ideal elements,” constructs artificially introduced in order to complete and
simplify a theory (e.g., [1926] 1983, 195). Other examples of ideal elements include
imaginary and complex numbers, the completion of Euclidean space with “points at
infinity,” and the algebraicobjects dubbed “ideals” by Dedekind. Hilbert thought that we
could justify using unbounded existentials and applying classical logic to unbounded
quantifiers if we could prove by “finitary” methods (a vague notion) that the results
would be consistent. He thought this could be proved as a matter of concrete fact,
without further appeal to unbounded existentials, by treating a theory as a formal system
of symbols and simple rules (ibid., 199-200). So construed, the consistency problem
could be regarded as a matter of elementary arithmetic, the symbols being equivalent to
numbers and the rules to arithmetic operations.

Hilbert’s hopes were of course dashed by an undecidability result—Godel's

! Unbounded quantification is the use of statements such as “There exists a number n
with property P,” without specifying a bound on 7, as in “There exits a number » less than one
million with property P.” The meaningfulness of unbounded quantification had been criticized
by finitists and intuitionists.
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12
second incompleteness theorem ([1931] 1986)>—but not quite sunk. That theorem
showed that no consistent theory of arithmetic contains a proof of its own consistency.
Hence whatever a “finitary” proof of the consistency of arithmetic might be, it could not
be carried out within axiomatic arithmetic, contrary to Hilbert’s expectations. Yet, rather
than abandon Hilbert's program altogether, some went on to pursue broader notions of
finitary proof or modified versions of the program (see Kreisel [1958] 1983; Kleene
1986, 139-141). Thus Godel’s undecidability results helped to direct research away from
certain dead ends and toward more fruitful avenues.

Godel’s theorems are not quite analogous to the kinds of undecidability results
that concern us here; they do not explicitly state that there is no algorithm to decide
membership in some set. In closer connection to our topic, Turing demolished another
element of Hilbert’s formalist program by showing that there is no solution to Hilbert's
Entscheidungsproblem, 1.e., that there is no algorithm to decide the set of valid formulae
of first-order logic (Turing [1936-37] 1965). This was, in fact, an i.t. undecidability
result. Turing argued it by means of what we now call Turing machines (TMs), and one

idealization inherent in that model of computation is that a computation may take an

2 It is less often mentioned that Gédel’s first incompleteness theorem undermined the
very motivations for Hilbert’s program. This point was the occasion for Gédel’s informal
announcement of the theorem at a Konigsberg conference of 1930 (Gédel [1931a] 1986, 200-
203). His point was that consistency is not justification enough for the application of an axiom
orrule. “Contentual” considerations (such as the fact that a certain sentence is true if and only if
it is not provable from the standard axioms of arithmetic) can establish arithmetic truths not
proved or disproved by the standard axioms. Hence, adding the negation of such a truth to the
axioms yields a theory that is consistent (if the axioms are consistent) but not true of arithmetic
proper, i.e., the intended model. So even in mathematics, there is a real question of truth beyond
that of consistency, on Gédel’s view.
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arbitrarily long time. The halting problem (to determine whether or not a given TM will
ever yield an output) is thus an i.t. problem, and the unsolvability of the halting
problem—the classic non-computability result—is an i.t. undecidability result.’ Turing
derived the unsolvability of the Entscheidungsproblem from this, and thus i.t.
undecidability results directed research away from another problem that would never have

been solved.

The point of this discussion is not to endorse or deride Hilbert’s philosophy of
mathematics. Rather it is to suggest a tentative picture of the usefulness of (1)
propositions about the unbounded future of a system and (2) knowledge about the
decidability of such propositions. It suggests that, just as Hilbert regarded unbounded
existentials as shortcuts to finitary results, i.t. claims may derive their practical
significance from their function as shortcuts to finite-term predictions. The practical
value of an i.t. undecidability result, then, would lie in its power to direct research
programs away from the pursuit of some such shortcuts (and perhaps toward more
promising ones). However, this practical assessment is compatible with realist views that
should not be dismissed out of hand: that claims about the unbounded future may

represent genuine truths, either about abstract models or about the physical world, and

? Of course, this i.t. undecidability result concerns a system with discrete states rather
than a real-valued system.

Conceived in terms of Turing machines (or in terms of any process of computation in
which similar steps take equal time), decidability and undecidability themselves are i.t.
properties: a property P is decidable if there is some TM that eventually determines whether a
given whole number # has P, i.e., after some finite number of steps. However, not all
undecidability results are i.t. undecidability results; i.t. undecidability is defined here as
undecidability of an i.t. property.
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that such truths may have genuine value aside from any practical applications. Hence, I
suggest it is prima facie conceivable that i.t. undecidability results may point to some
genuine and valuable truths that we cannot know. To determine whether this is in fact the

case is just another reason to study the matter more carefully.

1.3. The interest and usefulness of indefinite-term predictions

1.3.1. The stability problem and Universal Gravitation

One long-standing i.t. problem, and one that has influenced much development in
mathematics, is that of the stability of the solar system. Despite the appearance of fixed
regular orbits, the endless tugging of every planet on every other raises a serious and
difficult question as to whether a planet could ever be pulled out of its present orbit and
flung out of the system or smashed into another. To approach this problem, we model the
planets as point-like particles under Newton’s theory of Universal Gravitation (UG). If
none of the planets in the model ever escape or collide,* we say the system is stable (and
in this dissertation, ‘stable’ should be taken in this sense unless otherwise indicated).

This problem should be distinguished from the finite-term n-body problem: to
find the specific positions of # gravitating point masses at any finite time given their

initial conditions. We have methods of numerical approximation that effectively compute

* The collision of point masses is inherently unlikely. The set of initial states of a system
of n point masses leading to a collision has Lebesgue measure zero (Saari 1971-73), which is
usually assumed to imply probability zero. The question of collision is part of the stability
problem as it is usually framed. However, we, like several other researchers (e.g. Poincaré 1890;
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the finite-term behavior of a system at least up to any point of collision or other
singularity.5 The indefinite-term stability problem, though, remains unsolved even in the
non-singular case. We should also distinguish between the idealized mathematical
problem of the stability of the solar system, which I will call the idealized stability
problem or simply the stability problem, and the question of the actual fate of our actual
solar system, which concerns bodies that are neither points nor spheres and involves
factors other than gravitation. The latter I will call the actual stability problem.

One of the theses of this chapter is simply that some i.t. problems are interesting.
The idealized stability problem is interesting in part because it resonates with broad
cosmological concerns. Though it is an austere and ultimately unrealistic simplification,
it is also symbolic of larger questions about the mutability of the heavens and the fate of
mankind. To ask whether planets will escape or collide directly threatens the Platonic
(Laws X, 898, 903) and Aristotelian (De Caelo 270*12-°24, Metaphysics 1071°3-1075%19,
1075°37-1076%4) vision of a perfect and cyclical heaven furnished by divine providence.
Today there is little question of such perfection. We have long been confident that the
actual solar system is ultimately unstable; that the faint resistance of interplanetary gasses
and the friction of tidal motions will gradually drag the planets toward the sun (Poincaré

1898), and the sun will engulf several planets before finally dying out. Yet such

Arnol’d 1963; Wang 1991), will mainly be concerned with escape.

* The existence of such methods follows from the constructive existence and uniqueness
proof for solutions of sufficiently regular differential equations (see Earman 1986, 117). An
explicit power series solution to the finite-term problem (again, giving orbits up to singularity) is
given by Wang (1991).
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considerations might seem accidental. The idealized mathematical stability problem asks
whether, even ignoring such details, catastrophe is inevitable. More than a metaphor for
the question of our fate, it speaks to the necessity of the solar system’s ultimate demise.

It is also at least loosely related to a historic disagreement between Newton and
Leibniz. Newton suspected that under his own theory of gravitation, the actual solar
system would eventually deviate from its present form. At the end of the Opticks, he

wrote,

[B]lind Fate could never make all the Planets move one and the same way in Orbs
concentrick, some inconsiderable Irregularities excepted, which may have risen
from the mutual Actions of Comets and Planets upon one another, and which will
be apt to increase, till the System wants a Reformation. ([1704] 1979, 402)
Taken at face value, this passage seems to suggest that, due to mutual gravitation between
the various bodies, the current configuration of the solar system is unstable in the sense
that it will increasingly deviate from approximately circular, concentric, and coplanar
orbits. We should be careful not to equate this with the sort of instability we have been
discussing: escape or collision in an idealized system of point masses, due to gravitation
alone. Newton does not raise the question of escape or collision here, and he may have
had in mind causes of disruption to the system other than mutual gravitation. He
frequently mentions the possibility of a gradual decay of motion due to the faint
resistance of a very rare interplanetary medium. Nonetheless, the passage explicitly refers

to “the Actions of Comets and Planets upon one another,” presumably due to gravitation.

Furthermore, eventual escape or collision seems a natural conclusion. Increasing
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irregularities known in Newton’s time included an apparent expansion in the orbit of
Saturn and shrinkage in those of Jupiter and the moon (Berry [1898] 1961, 203, 256).
Hence it should have seemed that without a “Reformation,” Saturn might eventually
escape, the moon might collide with the earth, and Jupiter might collide either with the
sun or with another planet.

Yet, rather than suppose that the system would ever deviate far from its present
configuration, Newton seems to have preferred to postulate that God would intervene to

keep the system in order. Leibniz objected to this, writing,

[T]he machine of God’s making is so imperfect, according to [Newton and his
followers], that he is obliged to clean it now and then by an extraordinary
concourse, and even to mend it, as a clockmaker mends his work, who must
consequently be so much more the unskillful a workman as he is more often
obliged to mend his work and to set it right. ([1715] 1989, 320-321)
From Leibniz’s point of view, Newton’s proposal seemed to contradict God’s
omnipotence.

This illustrates one way in which an i.t. problem could conceivably bear on the
tenability of a theory. If one were committed to the view that an omnipotent God created
the solar system and wished it to retain its form forever, then a prediction that the solar
system would eventually deteriorate in some way might raise some theological concerns,
as in fact it did for Leibniz. On the other hand, a very strong i.t. result predicting that,
even taking resistance and other factors into account, the solar system would indeed retain

its form forever, would have exonerated UG from Leibniz’s theological criticism.

Theology aside, an i.t. prediction derived from UG could also have helped to
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confirm or disconfirm UG with regard to observation, at least in principle. A prediction
of actual stability, for example, would imply that no body will ever escape, and escapes
are relatively easy to observe; if a body recedes far enough and fast enough from the
center of the system, then we can be certain (within reason) that it will escape, and given
UG we can determine just what is far and fast enough to guarantee escape. So, if UG
implied stability, then an observed escape would disconfirm UG, if not refute it, while the
continuing absence of an escape would tend to confirm UG. In effect, a stability
prediction implies infinitely many finite term prédictions, predictions of the form, “No
planet will exceed velocity v and distance  at time #,” for fixed values of v and r but
infinitely many values of it. Each of these finite term predictions can then be compared
with observations.

Granted, this way of testing UG might not have been the most convenient.
Very precise approximations of the positions of the planets at specific times already lent
much confirmation to UG in Newton’s time (though these predictions were not always
exactly right). Nonetheless, an analytic stability result could have provided infinitely

many finite-term tests in one fell swoop, without endless calculation.

1.3.2. Stability in particle accelerators

A perhaps more convincing illustration of the usefulness of i.t. predictions is
provided by a problem very similar to that of the stability of the solar system, namely that
of stability in particle accelerators. For example, at CERN, the European particle physics

laboratory, sub-atomic particles are accelerated inside a narrow torus, something like a
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600 meter hula hoop. The particles must be held in nearly circular orbits by a magnetic
field in order not to collide with the wall of the chamber as they circle many millions of
times, and according to Moser (1978), even more times than the earth has circled the sun.
Hence, the magnetic field must be engineered so that the orbits of the particles are at least
very nearly stable. Moser (ibid.) reports that the finite-term problem of designing such a
nearly stable system was found to be practically impossible even with the use of
computing machines, due to rapid growth in errors during the calculation.

The difficulty was overcome by solving an indefinite-term problem. The theory of
Kolmogorov, Arnol’d, and Moser (KAM theory) demonstrates analytically the existence
of many bounded orbits in a large class of mechanical systems. According to Moser
(1978), it has shown that for certain accelerator designs, the great majority of orbits will
avoid colliding with the wall, not only for millions of cycles, but forever (at least in an
idealized model).

This is not only useful for the construction of accelerators, it also shows again
how 1.t. results can be used to test theories. Suppose our theory predicts that only a very
small portion of particles should ever collide with the wall of a certain accelerator. Ifin
fact a very large portion of particles collides with the wall in finite time, then something
is wrong with our theory. This is assuming that nothing is wrong with the accelerator
itself, etc., but one will always have to assume auxiliary hypotheses in order to test

another hypothesis.
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1.4. The testability of indefinite-term predictions

1.4.1. Falsifiability

How can i.t. predictions be used to test theories, or for anything else, if they are,
as Myrvold says (op. cit.), not measurable?

It is true that i.t. predictions cannot always be conclusively tested by experiments
that take place in a pre-defined, bounded region of space-time. For example, we might
attempt to test a prediction that the actual planets will never pass beyond certain bounds
merely by observing them. If our prediction is correct, then however long we watch, we
can never rule out, based on observation alone, the possibility that some planet will
escape at a later time.

However, one should not conclude that i.t. predictions have no empirical content.
As indicated in Section 1.3.1, many i.t. predictions are testable in a distinct and fairly
obvious sense. A stability claim, for example, asserts that no planet will escape, and an
escape is relatively easy to observe. For any given system of bodies, we can establish
clear sufficient conditions for escape; if at any time we observe one body receding from
the system’s center of gravity at a sufficiently high speed, then we can be sure that the
stability claim is false. Hence a stability prediction is falsifiable in a fairly strong
Popperian sense; we can imagine observations that would seem to force us to reject it.

Of course, whenever we seem to be witnessing an escape, we can always deny it
at the cost of some auxiliary hypothesis. We might suppose that our optical equipment is

not working the way we had thought, or that the planet is shrinking and has changed color
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(to account for red shift), etc. In calling a stability claim falsifiable, we have in mind
what Lakatos calls “naive methodological falsificationism,” which takes into account the
role of auxiliary hypotheses and ceteris paribus clauses (Popper [1934] 1968; Lakatos
1970). On this view, if we observe what seems, given certain auxiliary hypotheses, to be
an escape or collision, then the conjunction of stability with those auxiliary hypotheses is
refuted.

Admittedly, even this is a discredited “naive” view. One might well prefer a more
sophisticated methodology in which a hypothesis is only truly falsified when some other
view proves more fruitful, or in which nothing is ever absolutely falsified (cf. Lakatos
1970). But this is really aside from the point. Whatever methodology of science may be
the best, a claim of stability in a planetary system is about as falsifiable as hypotheses get.
It can be refuted so straightforwardly that there could be little serious concern about
auxiliary hypotheses or competing claims; the idea of dismissing an observed escape by
rejecting the theory of optics, blaming the equipment, etc., is intuitively implausible. The
claim here is not that some hypotheses can be absolutely falsified, only that a stability
claim can be falsified just as strongly as any.

Again, we do want to recognize a difference between the testability of finite-term
and indefinite-term claims. Lt. hypotheses cannot be reliably and conclusively tested
within a prescribed finite time. A claim such as “Mars will recede beyond Pluto by the
year 2025” can essentially be verified or falsified by that date. A stability claim, on the

other hand, cannot be directly verified, only falsified, and we cannot say when. Other i.t.
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claims, such as instability claims, can only be verified and not falsified.

Note, though, that this places i.t. predictions in no worse a position than many of
the important theoretical generalizations that pervade science, and perhaps better than
some. Newtonian universal gravitation (UG), for example, being a thesis about all bodies
at all times (hence the ‘U’), can never be verified, firstly because we can never observe all
bodies, and secondly because we cannot observe a body for all time. Furthermore, UG is
more difficult to falsify than a mere stability prediction, for it has a lot more wiggle room
with regard to auxiliary hypotheses. Whenever it conflicts with observations, one can
suppose that other forces or an unseen body are to blame, and on occasion this has turned
out to be right! Again, though, auxiliary hypotheses are a side issue. The main point is
that the i.z. character of a stability claim does not make it any less testable than other

universal generalizations.

1.4.2. Testing asymptotic behavior

There are some indefinite-term propositions, quantified both existentially and
universally over all time, that are neither falsifiable nor verifiable. Yet these too may be
testable in a sense. A claim that an orbit x(¢) will converge asymptotically toward a given

set 4 of physical states, for example, takes the form
(Ve> 0)AN(Vt> T) d(x(@), 4) < &,

where d denotes a measure of distance within the space of possible states. Such a claim

cannot be verified or refuted by direct observation, for if x(£) seems to approach 4 in the
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short term, it may still diverge later, and if it seems to diverge from 4, it may return later.

Convergence and divergence claims may nonetheless have theoretical interest as
well as practical heuristic value, just as stability claims do. The divergence of orbits can
be important for understanding the predictability of a system, as in cases of deterministic
chaos. Further, if we know whether or not an orbit converges to a given set in the long
run, we are in a better position to guess about its finite-term behavior, and conversely,
finite-term behavior can suggest i.t. behavior. There is after all such a thing as appearing
to converge asymptotically, and in some contexts, this appearance can constitute genuine
and explicitly quantifiable evidence of convergence.

Consider the technique Sommerer and Ott (1996) use to graph the basins of
attraction in a dynamical system.6 For each initial state in a 760 x 760 grid of states, each
corresponding to a pixel on a screen, they simulate an orbit until it comes within a
distance of 107 from either of two attractors, with a speed transverse to the nearest
attractor less than 107°. Then they color the pixel corresponding to the initial state either
black or white, depending on which attractor the orbit approaches.

Sommerer and Ott argue that this procedure is accurate, based on their analytic
results in Ott et al. 1994 for another, more artificial system with similar dynamics.
Suppose the state of this more artificial system lies at distance & from an attractor 4. Ott

and company argue that the probability that the state will not approach 4 asymptotically is

% The basin of attraction [ of a set A of states is just the set f of initial states such that
the orbit of a system beginning in 8 will asymptotically approach 4. An attractor, in Sommerer
and Ott’s usage, is essentially just a set whose basin of attraction has non-zero volume.
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K&" where K, n> 0 are constant. Hence, even though there is always a positive
probability that a given orbit will not converge toward A, this probability approaches zero
for orbits close to 4. Ott et al. also argue that such scaling of basins is universal for a
certain class of systems, including that of Sommerer and Ott (1996).

Thus, in this theoretical context, the i.t. property of asymptotic convergence to an
attractor can be probabilistically confirmed or disconfirmed by simulating an orbit for a
finite time. Further, if Sommerer and Ott’s system, or one sufficiently like it, does
accurately model some physical system, then ;;symptotic convergence in that system can

be confirmed or disconfirmed by a finite observation.

1.5. The stability problem, unsolvability, and the direction of research

There have been several suggestions either that the problem of the stability of the
solar system or some related problem is unsolvable. The responses to such speculations
illustrate how unsolvability, or supposed unsolvability, can direct research programs.

Laplace may have been the first to propose that the problem of stability—at least
that of the actual solar system—is beyond us. Such stability, he wrote, “is disturbed by
various causes that can be ascertained by careful analysis, but which are impossible to
frame within a calculation” (1878-1912, 7: 121). Though Laplace himself had
contributed one of several “proofs” of the stability of the solar system to emerge in the
late eighteenth century, his proof, like those of Lagrange, Poisson, and others, was not a

rigorous proof of indefinite-term stability, even for the idealized point-particle model, but
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a partial result that accounted for observed irregularities at particular levels of
approximation (Berry [1898] 1961). Simply put, Laplace showed that to a first
approximation, the mutual influence of the planets would cause their orbits to vary in
long periodic cycles, but with no net change. In particular he accounted for the variations
known to Newton in the orbits of Saturn and Jupiter, and thus his results suggested that
such irregularities would correct themselves (op. cit., 314).

Yet, Laplace did not believe he had proven the absolute stability of the actual
world system, nor, as the above remark shows, that this was possible. Though he
believed the entire universe could in principle be described in every detail by a single
formula, the human mind, he thought, “would always remain infinitely removed” from
the intelligence required to discover and apply such a formula ([1814] 1951). This
recognition seems to have benefited the direction of Laplace’s research, for he cites such
limitations as the motivation for studying probability theory (ibid.). It thus appears that
the impossibility of certain knowledge in some areas encouraged Laplace’s contributions
to probability.

It is sometimes said that Poincaré proved the n-body problem unsolvable, as
Diacu (1996) notes, and this is also said of the stability problem. This is partly due to
Poincaré’s contribution to a famous mathematical contest in the late 1880s. Weierstrass
proposed as one of the contest problems to find a convergent series solution to the n-body

problem, which he expected to yield a rigorous stability proof. Far from fulfilling
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Weierstrass’s hopes, Poincaré’s winning treatise squashed them (1 890).”

Yet Poincaré did not prove either the stability problem or the finite-term #-body
problem unsolvable. In truth he discovered three interrelated reasons to believe that those
problems must be extremely difficult. Firstly, he showed that certain known series used
to predict the positions of the planets diverge in the general case (though he emphasized
that this did not diminish their usefulness for finite-term approximation). Secondly, he
showed that the three-body problem could not be solved by finding first integrals.®
Finally, he discovered in the three-body problem an incredibly complex web of orbits
now known as the homoclinic tangle, a standard example in chaos theory. About this he
later wrote,

One will be struck by the complexity of this figure which I do not seek even to

trace. Nothing is more proper to give us an idea of the complication of the

problem of three bodies and in general of all the problems of Dynamics where

there is no uniform integral and where Bohlin’s series are divergent. ([1892-9]
1957, v. 3: 389)

He then remarked that to solve the three-body problem, it would be necessary to devise

methods entirely different from those known in his time (391).

” More accurately, the corrected version of the winning treatise did so. The original
prize-winning treatise actually contained a fallacious stability result. The dramatic story of these
events is told in Diacu and Holmes 1996, and with greater mathematical detail, in Barrow-Green
1997.

¥A first integral is a constant of the motion—a function on phase space that is constant
on any one orbit. By finding a sufficiently well-behaved first integral, one can transform an
initial value problem into another with fewer variables and thus in effect reduce the phase space
to one of fewer dimensions. Some problems, such as the two-body problem (including the two-
body stability problem), could be completely solved using such techniques. However, Bruns had
shown in 1887 that the three-body problem, with its 18-dimensional phase space, had only ten
algebraic first integrals, and Poincaré strengthened that result to exclude all other “uniform”
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Such results might have suggested that the three-body problem was unsolvable,
but Poincaré himself tried to disabuse the public of that misconception:
Do I say therefore that the problem is unsolvable? This word has no meaning; we
have known since 1882 that the quadrature of the circle is impossible with a ruler
and compass, and yet we know 7z with many more decimals than any graphic
construction could give. All that we can say is that the three-body problem cannot
be solved with the instruments to which we are presently disposed; those which it
will be necessary to devise and to employ in order to obtain the solution must
certainly be very different and of a much more complicated nature. (1891, 4)
Hence, Poincaré’s response to the difficulties he encountered is not abject despair, but to
suggest a change of direction. Indeed, in later papers, Poincaré attacked related problems
but in a rather different setting: the study of closed geodesics on convex surfaces (see
Barrow-Green 1991, 167-171), and in his last paper on the topic, he used quite different
methods based in algebraic topology (ibid., 169). One might also surmise that the entire
qualitative approach to dynamics for which he is often lauded, i.e., his interest in global,
topological properties of systems,” was a response to the growing feeling that many
differential equations could not be solved explicitly (ibid., 29).

Another contribution to the stability problem came from KAM theory, which, as

mentioned above, demonstrated for a large class of mechanical systems the existence of

(real analytic) first integrals.

? 1t is worth noting that such global, topological properties of systems are in general i.t.
properties, and even in his 1890 paper, Poincaré makes much use of i.t. results such as the
existence of periodic, asymptotic, and “doubly asymptotic” orbits. For Poincaré, such results
formed an important foundation for understanding, a “solid ground on which to support oneself
to set out on new conquests” (1891). This illustrates yet another value of i.t. results.
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many quasi-periodic orbits, simple orbits confined to tori in phase space.'® For planetary
systems, this showed that many states lie on stable orbits, provided all bodies but one are
very small. In that case, the stable orbits established by KAM theory form the great
majority.

It is in an effort to argue the value of such analytic i.t. results that Moser makes
his apparent undecidability claim. “The stability of undamped systems for all time,” he
writes, “can not in principle be decided by finite calculations and lies therefore beyond
the range of calculating machines” (1978, 67-68, Moser’s emphasis)."’ In response to
this difficulty, Moser touts KAM’s partial results. “[O]ne is led to a new concept of
stability in which the restriction applies only to the majority of certain orbits...[This]
weakened concept of stability is very meaningful and satisfactory for the physical
applications” (1978, 67, Moser's emphasis). Thus Moser follows Laplace through the
probabilistic turn, relinquishing the quest for exact prediction where it seems impossible
and settling for a result of probable stability.

In all of the cases cited in this section, an appearance of unsolvability has led
research in new and more fruitful directions. In these cases, the apparent unsolvability

may or may not have been genuine; there were no rigorous unsolvability results.

19 See Chapter 5 for a complete definition of ‘quasi-periodic.’

! This may not be intended as a strict undecidability claim. Moser may only
mean that the usual techniques for computing finite-time predictions will not in general
answer stability questions. However, we will see in Chapter 5 how KAM theory suggests
that the stability of the solar system may indeed be undecidable in a well-defined and
significant sense.
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Nonetheless, these examples serve to illustrate the valuable role that the recognition of

unsolvability can play in the direction of research.

1.6. Triviality
I do not think your observation was so trifling; in fact it was

quite ingenious. To make this clear I shall show that it is
false.

Imre Lakatos, Proofs and Refutations

1.6.1. The triviality of naive undecidability

Myrvold's comment that certain i.t. undecidability results are routine suggests that
they are consequently uninteresting. Yet Wolfram (1985, 2002) claims that undecidable
i.t. behavior is common and seems to feel that this makes it more interesting. This
appears reasonable; if some feature of our world or our theories is common, that is all the
more reason it should be well understood.

One might, then, take Myrvold’s passage to suggest that undecidable i.t. behavior
in physical systems, such as that derived from the unsolvability of the halting problem, is
well understood or even trivial. In one sense, undecidability in real-valued systems is
trivial, but it is partly for this very reason that it is not well understood. To see this, we
must consider some basic recursive analysis.

The rational numbers can be effectively coded as natural numbers, so there is a

straightforward concept of a recursive function taking rational numbers to rationals.
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From this we can derive an almost equally natural notion of a computable real-valued
function. A function f'on the real numbers is Grzegorczyk-computable if, roughly
speaking, there is a recursive function on the rationals that approximates f{x) to any
desired accuracy, given a rational argument q sufficiently close to x (Pour-El and
Richards 1983, 542; cf. Grzegorczyk 1955, 1957) (A precise definition is given in
Chapter 3, Definition 3.2.6.) As in the case of recursive functions on the natural
numbers, several other well motivated concepts have proved equivalent to Grzegoczyk-

computability. Hence this seems to capture an especially appealing notion of computable

function, and it generalizes naturally to functions on the space R" of real vectors, i.e., n-

tuples of the form (x;, x2,..., Xy).

Yet, it does not suggest a useful notion of a decidable set of reals or real n-tuples.

The obvious definition yields almost no decidable sets at all. Let us call a set B R”"

naively decidable if its characteristic function

1 ifxeB,
0 otherwise

ZB(x) ={

is Grzegorczyk-computable. But all Grzegorczyk-computable functions are continuous.
The only subsets of R” with continuous characteristic functions are the null set and R”, so
only these two most trivial sets are naively decidable. On R" naive decidability is just
triviality, and naive undecidability is trivial.

Myrvold may have had this in mind when he called i.t. undecidability results
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routine. Yet, his reference to arguments involving Turing machines (TMs) and the
halting problem would be unnecessary to make that point. Such arguments seem to
promise something more than the trivial naive undecidability, some significant
undecidability that has not yet been clearly specified. Hence the conclusions of such

arguments are apparently not well understood; at least no one has clarified them in print.

1.6.2 The non-triviality of indefinite-term undecidability

Myrvold and Wolfram both allude to physical instantiations of universal Turing
machines, those capable of computing any partial recursive function on any argument.
Such instantiations are not as trivial as those authors seem to suggest. There is one great
difficulty in constructing a universal Turing machine: it requires unlimited storage
capacity. A desktop computer is not a universal machine in the same sense as an abstract
universal TM. The former has only a finite amount of memory and disk space, and
consequently, it is not capable of computing an arbitrary recursive function on an
arbitrary input. It can only compute a vast but finite number of functions with finite
domains. Therefore its behavior is decidable; its finite-term and i.t. behavior can be
predicted by a more powerful computer, or even by a finite list pairing each of finitely
many inputs with an output, or with a symbol indicating that the machine does not halt on
that input.

The hypothetical computers cited by Myrvold and Wolfram are similarly finite
and predictable. Let us take Fredkin and Toffoli’s (1982) billiard machines, for example.

Fredkin and Toffoli show that for any recursive function fon the natural numbers, and for
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any natural number &, one can construct a hypothetical system of flat reflectors and
colliding hard spheres that would in theory compute f{#) for all n < k. (See Figure 1.)
However, there is no one finite Fredkin-Toffoli machine that computes f{(n) for all n, for a
Fredkin-Toffoli machine cannot even read an arbitrarily large input. The input to a
Fredkin-Toffoli machine consists of elastic balls of equal size, moving at the same fixed
speed. These balls code information only in virtue of their presence or absence at certain
specified points. An input 1011001, for example, consists of four balls in place of the
four 1’s in the string, and three empty spaces corresponding to the zeros, as shown in
Figure 1. Hence a single machine would have to be infinitely large in order to

accommodate arbitrarily large inputs consisting of arbitrarily many balls. Fredkin and

Figure 1.1. Fredkin and
Toffoli’s billiard computer
(Bennett 1982). Computation
is carried out by collisions
between balls, directed by fixed
flat mirrors. Input consists of
balls entering the machine at
any of finitely many specified
points. In the example pictured,
at most seven balls may enter.
Hence there are only finitely
many possible inputs, so no one
such machine is equivalent to a
universal Turing machine.
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Toffoli’s machines are universal in the sense that for any function on a finite rangé of
inputs, some Fredkin-Toffoli machine will compute it. But no finite Fredkin-Toffoli
machine is universal in the same sense as an abstract universal TM, only one of which
suffices to compute a// partial recursive functions on a// integer inputs. Nor are

Feynman’s (1986) quantum computers universal in this sense; each bit of input to such a

computer is “written” on a particle as a state [0) or [1). In order to be truly universal,

such a machine would have to contain infinitely many particles.

Therefore the usual argument from the halting problem that there exists a
particular universal TM with undecidable behavior does not apply to Fredkin and
Toffoli’s billiard machines, nor to Feynman’s quantum computers—at least not if these
machines are to have finite mass or occupy a bounded region of space.

Cristopher Moore (1990, 1991) has proposed a different kind of billiard machine
that seems to circumvent spatial limitations. We will not go into great detail, but in
Moore's machines, a single moving particle represents a bi-infinite string of symbols by
virtue of the exact point at which it passes through a designated plane (in a direction
orthogonal to the plane). The motion of this particle is directed by reflectors in such a
way as to simulate a Turing machine (Figure 1.2). (This already seems ingenious, not
trivial.) Given any TM, Moore shows, in general terms, how to construct such a billiard
machine to simulate it. Hence some such machine simulates a universal/ TM, and by the
unsolvability of the halting problem, its i.t. behavior is undecidable.

However, Moore’s claim is not completely clear. Like other authors, he neglects
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Figure 1.2. Schematic of a Moore-type billiard machine (Pitowsky 1996). The
configuration of a Turing machine is coded in the x- and y-coordinates of a particle
passing through the square shown. Small boxes labelled x — 2x, etc., represent pairs of
confocal parabolic mirrors, which shift the coordinates.

to define a non-trivial notion of undecidability for sets of r¢als. Also, Moore’s argument
appeals to a theorem that does not seem to apply in his context. Since the fundamental
laws of classicgl physics, as well as currently accepted laws, are reversible, any candidate
for a plausible model of a physical system should also be reversible. In particular, the
function ¢z, x) taking the state x of the system at time #; to the state at time #, + ¢ should
be invertible, i.e., one-to-one. Moore attempts to ensure this by appealing to a theorem of
Bennett (1973), which guarantees the existence of invertible, universal TMs. Given

such a TM, Moore can construct a corresponding invertible billiard machine. However,
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Bennett’s theorem does not apply to the kinds TMs on which Moore bases his
constructions, namely single-tape TMs allowing arbitrary bi-infinite inputs. It applies
only to TMs supplied with an infinite amount of blank tape. It would not help Moore to
assume that his inputs are finite, or that they occupy only every second space on the initial
tape. In order to be physically plausible, Moore’s machines must be invertible for all
initial conditions, not just those corresponding to certain sanctioned initial tape
configurations.

There may well be remedies for this problem, but it is not presently clear that
Moore's billiard machines can be made to exhibit any non-trivial sort of undecidability in
real space. Moore also suggests other, more abstract forms of machines in higher
dimensions, which might be physically more plausible (1991), but it is not obvious how
to construct concrete instantiations of such machines, nor, again, that a significant kind of
undecidability would result. Significant undecidability in a physical instantiation of a

universal TM may indeed be possible, but it is not a trivial matter.

1.7. Indefinite-term undecidability and physical reality

Myrvold is right to point out that i.t. undecidability “hardly counts as an instance
of the physics outstripping effective mathematics” in cases such as those in question,
where indeed, “the state of the system at any given time is an effectively computable
function of the initial data” (1994, 1995). However, if i.t. undecidability of a significant

kind does exist, it may at least imply that a certain ontology in a sense outstrips our
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powers of computation, namely that ontology in which the world—past, present, and
future—consists of a four- (or higher-) dimensional manifold onto which events are
indelibly painted. This picture constitutes a kind of determinism, or perhaps better,
determinacy, since it does not imply an ordered, law-like dependence among events, but
only that there are facts about what events will occur in the future and when."? It is the
tacit assumption behind Russell’s insistence that the future “will be what it will be”
([1912-1913] 1963, 146), namely the assumption that there is something in particular that
the future will be.!* Ifi.t. physical undecidability of the right kind (which we will discuss
shortly) exists, then this determinate ontology of future events may go far beyond the
reach of computation. This is not to say that such a picture is necessarily wrong, but only
that we might not be able to paint it in full detail—that we might not be able to decide,
even given all relevant information about the present, whether or not certain events will
ever occur.

As Itamar Pitowsky (1996) suggests, some might take such claims as reasons to
dismiss such a determinate ontology. Pitowsky points out a parallel between
constructivism in mathematics and a certain epistemological conception of determinism.

Strong constructivists (such as intuitionists) regard a mathematical sentence as having a

2 Fine uses similar terminology in [1986] 1996 (pp. 3, 163).

13 Russell’s assertion that the claim is tautological is surprising, since he of all people
should recognize the non-trivial import of the definite article. After all, there might not be one
and only one future, or at least, it might be misleading to adopt a form of speech in which the
future is determinate. Certainly one cannot infer that there is a unique future from the pseudo-
tautological form of the statement in question. However, the point here is not to debunk this
“block universe” ontology, but merely to suggest that the world it poses may far exceed our
powers of computation.
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truth value only if it can in principle be proved or disproved. Pitowsky says that this “in
principle” clause is typically cashed out by equating having a truth value with the
existence of an effective procedure to determine that truth value (172-173)."* A similar
‘in principle’ clause occurs in Laplace’s notion of determinism as a kind of predictability
by “an intelligence sufficiently vast” ([1814] 1951). Pitowsky takes this too to suggest
computability, i.e., that determinism only holds if there is a single Turing machine that
can determine any given fact about the future, given sufficiently accurate initial data.'®
Pitowsky then concludes that as a consequence of Moore’s undecidability results, a
constructivist who denies the truth value of undecidable mathematical propositions must

also deny physical determinism:

The physically significant mathematical structures of theoretical physics are rich
enough to allow a translation of many abstract number theoretical propositions
into meaningful physical propositions. Therefore, if the physical proposition
carries a definite truth value so does its mathematical counterpart. Consequently,
if one’s intuitions about the reality of space-time and motion are strong, one can
take Moore’s construction [see above] as a reductio ad absurdum of the
intuitionist position in mathematics. (1996, 175-176)

'* As formulated by Pitowsky, this supposedly intuitionist view is just a trivial fact. Ifa
particular sentence has a truth value then there is of course an effective procedure to decide the
truth of that particular sentence: if the sentence is true, for example, a correct decision
procedure is just to output ‘True.” Decidability is usually understood not as a property of a
sentence alone but either (1) of a sentence relative to a particular decision procedure or formal
theory (e.g., G6del’s famous self-referential sentence is not decided by Peano arithmetic) or (2)
of an infinite set (e.g., there is no algorithm to decide which sentences are in the set of theorems
of Peano arithmetic). It is not obvious what Pitowsky has in mind, and one of the main points of
this section is that in order to pursue arguments like Pitowsky’s we must clarify the notions of
decidability involved.

'* Richard Boyd (1972) also takes “predictability in principle” to mean computability by

a Turing machine, though like Earman (1986) he denies that determinism should be equated with
predictability.
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This is not the place for a full evaluation of Pitowsky’s argument, but three
concerns should be mentioned. Firstly, we have already noted that there are some
difficulties in Moore’s argument. Secondly, it is not clear that any metaphysical or
epistemological claim about mathematics forces any claim about physical reality or vice
versa. Brouwer and Heyting, for example, deny that certain mathematical sentences have
any truth value precisely because of the special nature of mathematical objects, which
they regard as mental constructions (Brouwer [1912] 1983, 78; Heyting [1956] 1983, 66,
72). For such intuitionists, the truth or determinacy of mathematical expressions depends
on intuitionistic provability alone, not on any correspondence with physical reality.

Finally, Pitowsky’s claim, as well as my weaker suggestion that a determinate
ontology of the future might outstrip computability, requires the existence of an actual,
particular system whose i.t. behavior cannot be computed. To establish the existence of
such a system would require, among other things, some clarification of the undecidability
involved. Suppose for example that several instantiations of a particular universal
computing machine actually exist. Then there is no algorithm to determine for every
possible initial state whether or not one of these machines will “halt,” i.e., reach a state
designated as an output. But each actual instantiation of such a machine is, at any given
moment, in only one state. There might be an algorithm to determine whether any of
these actual systems halt, and if there are only finitely many such systems, then there
certainly exists such an algorithm. Even if no effective method of deduction can

determine the i.t. behavior of a universal machine for every possible initial state, it might
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nonetheless be possible to deduce the i.t. behavior of what few actual such systems exist,
if any.

Hence, if undecidability is to have much bearing on the predictability of the actual
world, it must be a fairly strong kind of undecidability. For example, one might exhibit a
system with i.t. behavior that no algorithm can correctly decide over any neighborhood of
initial conditions. (This will be made more precise in Chapter 3, and in Chapter 4 we will
see that it holds for some of Sommerer and Ott’s systems (Ott et al. 1994).) To predict
the i.t. behavior of such a system, it would not suffice to measure its state up to some
neighborhood. One would have to make full use of the exact initial conditions. One
could not deduce the i.t. behavior of such a system from any correct theory, for the initial
conditions would have to be expressed by some infinite sequence of symbols, and hence a
valid deduction depending on the exact initial conditions would never end. It might be
reasonable to say that if a physical system of this kind exists, then a determinate ontology
of the infinite future does outreach computability. More to the point, though, this
discussion shows that in order to evaluate such claims, we need more precise concepts
and results. Furthermore, the suggestion of metaphysical implications provides some
philosophical motivation—beyond the usual chore of clarification—to develop such

concepts and obtain such results.
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1.8. Summary

There is certainly sufficient reason to investigate the i.t. behavior of physical
models and the computability or non-computability of such behavior. The history of the
question of the stability of the solar system and related questions, the significance they
have held for some, and the various partial results obtained, invest the story with
considerable human interest. They also illustrate the kinds of interest such problems can
have—theoretical, practical, even theological. We have also seen that i.t. predictions are
testable in various ways. Further, i.t. undecidability results can guide research away from
futile endeavors, such results are not trivially obtained, and it has been suggested that they
may themselves have some metaphysical interest.

The pursuit of computability and non-computability results for i.t. problems is
part of the broad effort to understand what we can and cannot know and why. For those
who are inclined to ground ontology in epistemology, that pursuit may also serve efforts
to determine what exists or will exist, in particular whether there is any fact about
whether certain events will ever occur. To understand whether or not the computability
of i.t. behavior legitimately bears on such questions, or on any questions, rigorous

conceptual clarifications will have to be made.
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CHAPTER 2

COMPUTABLE SETS OF REAL NUMBERS.:
A COMPARISON OF CONCEPTS AND MOTIVATIONS

2.1. Introduction

As we have seen (Section 1.6.1), the most obvious notion of a decidable set of real
numbers is virtually unsatisfiable; only the empty set and the whole set of real numbers
satisfies it. Several authors who were aware of this have introduced more relaxed and
useful concepts of decidability for sets of real numbers and sets of points in other
continuous spaces. Here we review several such notions, pyesented informally, and
consider their interest, be it practical or theoretical. We also motivate and introduce a
new concept, that of decidability up to measure zero. Rigorous definitions are given in
Chapter 3.

How should we choose among such notions? According to the approach sketched
in the introduction to this dissertation, we should not ask, “What is a decidable set of real
numbers, really?” but rather, “What should we call a decidable set of reals?”, or to give it
even less an illusion of objectivity, “What would we like to call a decidable set of reals?
To what purposes do we wish to evaluate the decidability of sets, and what concepts (for

there may be several) best serve those purposes?”
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There are various purposes to consider. One is very general and theoretical:
simply to extend the most powerful and aesthetically appealing results of discrete
recursion theory to the real numbers. Another is to lay rigorous foundations for the
existing theory of numerical analysis, i.e., of practical approximation methods in calculus
(Blum, Shub, and Smale 1989; Blum et al. 1998). Some authors are concerned to
develop a constructive theory of analysis (e.g., Bishop 1967; Bridges 1999), while others
are more concerned with constructivism in physics (e.g. Myrvold 1994, 1995; Pitowsky
1996). For Roger Penrose (1989), the decidability of sets even bears on whether artificial
intelligence is possible. There is furthermore a question of logic and epistemology:
“What can we learn about the membership of sets of real numbers by systematic
reasoning?”’

While we will keep such motivations in mind, the ultimate motivating question
for this investigation is, “What can and cannot we learn about the behavior of a physical
system by systematic calculation on the basis of a real-valued model?” For example,
when we encounter a planetary system, is it possible to measure its state, and based on
this measurement and a mathematical model of the system, to determine whether a planet
will ever escape or not? This is a question about the real world, fraught with real-world
complications that we will largely ignore except in parts of Chapters 4 and 5. However,
as we shop for concepts of decidability, let us remember that we would ultimately like to

apply them to this kind of question.
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2.2. Decidability, recursiveness, and computability

Before proceeding, it will be useful to redraw a much neglected distinction.
Decidability and recursiveness are not the same thing. They are distinct concepts
originally introduced for different purposes, and as we will see later, they tend to peel

apart when we try to stretch them over the real numbers.

We say a set A = N is recursive if its characteristic function,

1 ifneAd,

0 otherwise,

ZA(”)={

is recursive. The recursive functions on the natural numbers are those built up
inductively in certain simple ways from certain very simple functions; the name refers to
the familiar notion of a recursive or inductive definition, where the value of, say, f(n) is
given in terms of f{n — 1) or perhaps in terms of all the values f{m) for m < n.' The
precise definition of recursive function is not important for us at the moment, but it is
purely mathematical, involving no reference to computation or effectiveness (Godel
[1934] 1965; for a modern preseptation see Soare 1987).

In contrast, the notion of decidability is informal and vague. A set is decidable if

there is an “effective procedure,” an algorithm or recipe, to decide whether or not any

! The connection between recursive functions and recursive definitions is discernible, for
example, in Skolem 1923, though the functions and predicates discussed there are actually the
primitive recursive ones, a subclass of the recursive ones.
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given number is an element of the set (G6del [1934] 1965).

The Church-Turing thesis states that the “effectively calculable” functions on N
are precisely the recursive ones (Church [1936] 1965, 100), or equivalently, those
computed by Turing machines (Turing [1936-7] 1965). This immediately implies that the
decidable sets of positive integers are just the recursive ones, and since no clear
counterexample to the thesis has been found,’ “decidable” and “recursive” are now used
synonymously.

Yet, in the formative years of computability theory, decidability was an end, and
the notion of a recursive set was primarily a means of securing it, a purely mathematical
condition guaranteeing decidability. In the lectures where Godel first publicized the
modern notion of recursive set,” recursiveness enabled him to prove his incompleteness
theorems in virtue of the fact that it implied decidability, in particular decidability by a
certain axiomatic theory, i.e., provability (Godel [1934] 1965). However, Gédel did not
yet believe the converse, that decidability implied recursiveness as defined in his lectures

(Kleene 1986).* Even for Church, who proposed recursiveness as a “definition” of

2 There are abstract constructions of machines that do (in theory) compute non-recursive
functions (e.g., Siegelmann 1967), but it is not generally agreed that the operations of such
machines constitute effective procedures.

? This was based on Herbrand’s notion of a recursive function, suggested in a 1931 letter
to Godel shortly before a fatal accident. A related notion of intuitionistic calculability is
described in Herbrand [1931] 1967, with suggestive examples of recursively defined functions
(618-619).

* The lectures were published with a footnote that seemed to anticipate the Church-
Turing thesis, but Gédel insisted it did not. In 1965, he wrote to Martin Davis, “The conjecture
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computability ([1936] 1965), these two notions were not merely synonymous; if they
were, there would have been no need to pose the thesis! Despite Church’s “definition,”
the recursiveness of a set is not the same concept as effective decidability but a
mathematical idealization of it.

We will avoid confusing decidability and recursiveness here. In order to speak
generally about such notions, let us refer to them collectively as notions of a computable
set. Though ‘computable,” like ‘decidable,” normally expresses the intuitive notion of
effective calculability, we indenture it here as technical jargon for anything vaguely
similar to decidability or recursiveness. After all, even the purely mathematical notion of
recursiveness expresses a kind of computability. Our primary interest, though, is in

decidability.

2.3. What is computation?
Since the intuitive notion of decidability involves a notion of effective procedure,
or computation, a rigorous conception of decidability on the reals requires a rigorous

theory of computation on the reals. By this we just mean a theory of effective procedures,

stated there only refers to the equivalence of ‘finite (computation) procedure’ and ‘recursive
procedure’. However, I was, at the time of these lectures, not at all convinced that my concept of
recursion comprises all possible recursions” (Kleene 1986; G6del’s emphasis). Apparently,
then, he thought computability coextensive with some unspecified, all-encompassing notion of
recursiveness, but not recursiveness as we know it, and anyway he did not confuse the concepts
of computability and recursiveness.
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whether executed by man or machine.

2.3.1. Recursive analysis

One kind of computation theory on the reals is called recursive analysis and is
exemplified by the work of Ko and Friedman (1982; Ko 1991) and by Klaus Weihrauch’s
“Type-2 Theory of Effectivity” or TTE (1985; 2000). In recursive analysis, one regards
computation in much the same way as Turing: as the systematic manipulation of finite
strings constructed from a finite alphabet.’ In order to perform computations on real
numbers, the numbers must somehow be represented by symbol strings. Since there are
not enough finite strings to represent all the real numbers, reals are represented by infinite
strings, or equivalently, by infinite sequences of finite strings, or by infinite sequences of
natural numbers. For the sake of simplicity, we choose the latter here; real numbers will
be coded as infinite strings of natural numbers. Our theory will nonetheless be entirely
equivalent to one using infinite sequences of finite strings from a finite alphabet, since all
such finite strings can be effectively enumerated and are therefore interchangeable with

the natural numbers.

> A related approach, which sometimes called constructive analysis, is similar but
concerned only with the field of computable real numbers in the sense of Turing [1936-7] 1965,
e.g., with computable sets of computable reals and computable functions on the computable reals
(Mazur 1963; Bishop 1967; Aberth 1980). The approach we are calling recursive analysis, and
which we adopt throughout most of this essay, treats the entire continuum of real numbers (and
other continua), and the computability of function values relative to given arguments, which
might themselves be non-computable.
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A representation of the set R of real numbers, then, is a map from aset 4 NY
onto R. (See Definition 3.2.2.) For example, the familiar decimal representation maps a
sequence of natural numbers to a given real number if the sequence is just a decimal
expansion of the real number. (For details, see Definition 3.2.3(ii).) However, this
representation turns out to be inconvenient for a careful and broad study of computability,
for reasons that will be explained in the next sub-section.

A more useful representation, which we will call the standard one, codes a real
number x as, in effect, a list of all open intervals that have rational endpoints and contain
x. In Section 3.2.1 we fix an effective enumeration / of the open intervals with rational
endpoints. The standard representation of the reals maps a sequence ¢ of naturals to a
real number x if and only if the numbers in ¢ correspond, via /, to all and only those
rational intervals containing x (Definition 3.2.3(i)). To generalize this to R”, we call a
product

(91,92)x(q3,94) % ... x(q22-1,92n)

of intervals, where each ¢; is a rational number, an open rational n-interval. We fix an
effective enumeration I” of these, too, in Section 3.2.1. The standard representation of
R" then maps a sequence ¢ of natural numbers to a point x if and only if the numbers in
¢ correspond via I” to precisely those open rational n-intervals containing x (Definition
3.2.3 (i)). Inthat case, we will call @ a standard name for x.

In recursive analysis, the systematic nature of computation is usually modeled by
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an abstract computing machine, namely the Turing machine, with special conventions for
infinite inputs and outputs® and perhaps some inessential modifications. Ko (1991) and
Weihrauch (2000) specify such machines in full detail. Here we adopt a model similar to
Ko’s: atwo-tape Turing machine, where one tape holds the infinite input, and perhaps a
separate finite input as well,” while scratch work and output are written on the other tape.®
We do not specify the full details of such machines but instead rely on a version of the

Church-Turing Thesis extended to functions on infinite arguments:

Generalized Church-Turing Thesis for infinite arguments: Of the functions
that map infinite sequences of natural numbers to individual naturals, those that
can be computed by an effective procedure in finitely many steps are precisely
those that can be computed by a two-tape Turing machine where one tape supplies
the infinite input.

This is only slightly stronger than the Generalized Church-Turing Thesis used in the study

of r.e. degrees (Soare 1987), which states that the functions that map individual natural

¢ Even Turing imagined his machines to generate infinite output ([1936-7] 1965), but in
many modern discussions this is not permitted.

7 Of course, a finite input and an infinite one can be coded together as a single infinite
input, but it will often be useful to distinguish a separate finite input.

® This is similar to an oracle Turing machine, and the infinite input might be called an
oracle as in Ko (1991). This terminology can be confusing, though, for in our use of such
machines, the “oracle” is not an aid to computation, answering non-computable questions as in
the theory of r.e. degrees (Soare 1987); it merely supplies the input. Though our machines of
course make use of their “oracles,” there is no worry that this will make our model of
computation too powerfiul, for we are only concerned with what function a machine computes
over a broad domain of oracles. Any one oracle input to a machine has an effect only on the one
computation taking that oracle as input, not on the fiunction computed by the machine, taking
each oracle to some output.
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numbers to natural numbers and can be computed by some algorithm, using reference
data supplied by a fixed infinite sequence ¢, are precisely those computed by some two-
tape Turing machine supplied with that same fixed sequence ¢. (See note 8.) ere we
merely allow ¢ to vary and thus obtain functions on infinite arguments. The use of a two-
tape machine is inessential, for the same computations could be carried out by an ordinary
one-tape Turing machine, given appropriate input and output conventions. As the thesis

indicates, such details make no difference for our purposes.’

Like Ko, we permit infinite inputs but not infinite outputs. Instead we define
computability of a real-valued function in terms of finite computations of
approximations. We say that a function f: R” — R" is computable if there is a machine
M that, given a standard name of x and a natural number i, will output the i™ symbol of a
particular standard name for f{x)—that is, if {M(x, i)}; < n is a standard name for f{x)

(Definition 3.2.5).10 Below we discuss notions of computable set in the same framework.

? One exception: Weihrauch permits his “Type-2 machines” to output infinite strings,
with the restriction that the head on an output tape can only move from left to right. The latter
restriction is significant; without it, Weihrauch’s machines would be more powerful than Ko’s,
and in particular, the step function discussed below could be computed by such a machine.
However, in attempting to use such a machine, one might never know whether a given output
symbol were really part of the final output, or whether the machine would at some point come
back and revise it. In that case, the machine would not provide any reliable information, even of
an approximate kind, in finite time, so this would not be a very useful sort of computation.

' This is a generalization of Grzegorczyk’s notion of a computable function on the real
numbers (1955, 1957).
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2.3.2. The choice of representation

We are now better equipped to explain why we do not usually use the familiar
decimal or base-b digital representation of reals in recursive analysis. If we replace the
standard names in the definition of computable function in the preceding paragraph with
base-b digital names, it turns out that even the basic operations of addition and
multiplication are non-computable (Proposition 3.2.10).ll This may be puzzling, since
we in fact add and multiply using digital expansions on a daily basis. What is meant here
is that there is no general algorithm to find the n™ digit of x + y or xp in finite time, due to
the fact that numbers arbitrarily close to each other sometimes have very different base-b
expansions.'? (The proof of 3.2.10 is instructive.) In our usual applications we are not
concerned with computing particular digits correctly; we are content if we can produce

decimals that are arbitrarily close to, say, x + y in the usual Euclidean metric on
R, even if the digits of these approximations are not the same as those of the exact sum.

In effect, what we really want—and have—is access to a sequence of approximations that

converge to x + y in the Euclidean metric and in an effective way. This is just what we

! To state this precisely, we must extend base-b digital representations to R%. That is
easy enough, but it is even easier to show as an example that the function f(x) = x + 2/3 is not
computable with respect to the decimal representation (Proposition 3.2.10).

'2 In Weihrauch’s language (2000, 68), digital representations are not admissible,
meaning that digital names and standard names cannot be translated into one another
continuously (with respect to the Baire topology, or if one adopts a finite alphabet, as Weihrauch
does, with respect to the Cantor topology). This is just because there is no continuous function

taking each x € R to a base-b name for x.
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call a regular Cauchy representation (Definition 3.2.3(iii, iv)), and it is equivalent to the
standard representation (Propostion 3.2.9). Since the standard and Cauchy
representations seem to capture this intuition about what sort of approximative
computability we would like, and since they result in a more reasonable notion of
computable function, they are preferred in recursive analysis.

With regard to notions of decidability or near-decidability, construed in a certain
strict way, the choice between these representations is not critical. If there is no
algorithm to determine whether or not an arbitrary real number x is in the set 4, then we
would like an algorithm that does so for, in some sense, most real inputs. That is to say,
we would like to be able to compute the characteristic function of 4, which is a function
into {0, 1}, everywhere except perhaps on some “small” set of inputs. For the
computation of functions from subsets of R into {0, 1}, the digital, standard, and Cauchy
representations are all equivalent (Proposition 3.2.14). However, some of the notions of
recursive set that we will consider below involve other properties, such as the
computability of the distance between a point x and the set A. In order to evaluate such
properties appropriately, we adopt the standard representation. Also, the standard

representation generalizes more easily to other topological spaces (Chapter 3).

2.3.3. Recursive analysis versus real RAMs
There is an ongoing debate between proponents of recursive analysis, based on

discrete symbolic representations of real numbers, and those who treat real numbers
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themselves, regarded as abstract entities independent of any representation or
construction, as direct objects of computation. This is done by means of a generalization
of the so-called random access machine (Shepherdson and Sturgis 1963) called a real-
valued random access machine, or real RAM (Preparata and Shamos 1985). Here we are
mainly concerned with the recursive analysis approach, but let us now contrast its virtues
with those of the real RAM model."

One influential real RAM study is that of Blum, Shub, and Smale (1989; Blum et
al. 1998). Their machine is described as a flow chart where each node is associated with
a computation step. (See Figure 2.1.) In a single step, this maching can do one of two
things: (i) It can update the values of any number of variables according to prescribed
rational functions (functions each defined by a ratio of polynomials'*); for example, it can
reset the value of a pair of variables (x, y) to (g1(x, ¥), g2(x, »)), where g; and g, are
rational functions. Or (ii) it can perform an exact comparison and branch accordingly;
that is, it can answer a question such as ‘A(x, y) < 0?’ where 4 is a rational function, so
that the answer determines to which node the computation will proceed. (Note that one

can combine two of these comparison nodes to obtain an equality test.) A computation

" There are several other approaches to computable analysis, many of which are closely
related to recursive analysis. See Weihrauch 2000 (249-268) for a survey.

' Blum et al. define these machines to take arbitrary rings as their domains, so if the ring
in question is not a field, only polynomial functions, rather than rational functions, are permitted.

Here we are mainly concerned with the fields R".
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B
v

[, ) < (1%, »), go(x YD)

No

h(x, y) <0?———
Yes

Figure 2.1. A simple real RAM (Blum et al. 1998). Here g1, g2, and 4 are rational
functions.

is completed when it reaches a designated output node on the flowchart."

The most pertinent virtue of the real RAM model for us is that it directly suggests
a non-trivial notion of decidable set. Say a subset 4 of R” is real RAM decidable if its
characteristic function is real RAM computable, i.e., if there is some real RAM that,
given input x € R”, halts in finite time with output

1 ifxeAd
0 otherwise.

ZA(X)={

15 For precise definitions of and rigorous results on these machines, see Blum, Shub, and
Smale 1989 and Blum et al. 1998.
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This notion is not trivial or empty. The interval [0, 1], for example, is real RAM
decidable, while the middle-third Cantor set is not (Blum et al. 1998; see Proposition
3.6.3 below for construction of a Cantor set.)

On the face of it, the fact that simple sets like [0, 1], [0, o), and the unit disk in
R? are real RAM decidable speaks well of that concept; if any non-trivial sets should be
considered computable, surely these are among them. 16" Also, real RAM decidability
bears some analogies with the notion of a decidable set in N. It is similarly symmetric,
both in the sense that a set is real RAM decidable if and only if its complement is, and in
that it implies that some real RAM will tell us if a point x is in a set A4 and will also tell us
if x is not in A. Furthermore, the recursive sets of integers are precisely those sets of
integers that can be decided by a real RAM defined with integer variables and coefficients
(Blum, Shub, and Smale 1989, 33). In this sense, real RAM decidability is a
formal generalization of classical decidability on N.

However, in a number of respects, real RAM decidability is unsatisfying as a
model of computation as usually conceived. In one way it seems a little too strong, for a
relatively simple set like the closed epigraph E = {(x, y): y 2 €'} of the exponential

function is not real RAM decidable; in fact, no graph, closed epigraph, or closed

16 Penrose (1989) suggests that the unit disk and also the closed epigraph E = {(x, y): y >
€'} of the exponential function ought to come out recursive. Earman (1986, 119) proposes that a
simple step function such as that defined below ought to be considered computable, which
suggests that sets like [0, ) should be considered decidable. See Section 2.4.
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hypograph of an everywhere transcendental and continuous function fis real RAM
decidable (Brattka 1993b). Yet E and many other such sets seem intuitively tame and
computable, and Roger Penrose (1989) suggests that sets like £ ought to be considered
recursive. (Penrose also asks whether the Mandelbrot set is recursive. Blum and Smale
(1993) answer that it is not real RAM decidable, but since real RAM decidability does not
satisfy all of Penrose’s criteria, this answer is not completely appropriate. See Brattka
1993b for a full discussion of this point.)

There are several other ways in which the real RAM seems an ill-fitting model of
computation. Most significantly, a real RAM can perform exact comparisons between
real numbers. A Turing machine (even with infinite inputs) cannot do this; given two
names representing real numbers, it can eventually tell us if they are not equal, but it can
never compare all the symbols of the two names, so it can never be “sure” that they are
equal. This is closely related to the fact that Grzegorczyk computable functions are

continuous (Grzegorczyk 1955). Hence, not even the step function

0 ifx<0,
1 otherwise,

f(x)={

is Grzegorczyk computable, but it is real RAM computable. This is a significant
difference, for as we will see in Section 2.4, if a Turing machine could compute such a
function, it could also solve the famously unsolvable halting problem. In fact, allowing a

machine to evaluate comparisons exactly in finite time has been shown to be, in a sense,
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exactly equivalent to a “jump,” i.e., to a solution of the halting problem (Boldi and Vigna
1999).

The fact that real RAMs are in this respect stronger than Turing machines is in
itself no blemish, but the real RAMs’ exact comparisons do not seem to correspond to
anything in actual computational practice. In pure mathematics, the real numbers on
which we actually perform computations are specified by definitions, not given as objects
in themselves that immediately reveal their differences with other numbers. We can
sometimes generate effectively converging approximations to a given number, but this
does not provide us any way to decide when two such approximations are equal. Borel
made this point as early as 1912, working from an informal, intuitive notion of

computability. He writes about exact comparison,

One is not absolutely sure, from a theoretical point of view, that it does not
present insoluble difficulties, because one can conceive of two numbers such as

the following:
2
[ee] 2 [ee]
j'e“x dx |, I dx 5
—o _ol+Xx

which are identical up to any number of decimal places, and nevertheless one does
not know how to prove equality. (163-164, quoted in Myrvold 1994, 58)

Borel’s recognition of this difficulty supports the view that it is not an artifact of any

particular technical model of computation but inherent in the intuitive notion.'”

'7 Thanks to Wayne Myrvold for making this point about Borel, both in his dissertation
(1994) and in his comments on a draft of this chapter.
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In applications to nature, real numbers are given by measurements, which also are
only approximations. At best we might be able to catry out a sequence of increasingly
accurate measurements of a single quantity, but again this is not enough to enable exact
comparisons.

One might think of the real RAM as a model of analog computation, where a real
number is not represented by discrete symbols but by some physical quantity, such as the
amount of current in a circuit, that is analogous (e.g., proportional) to the real number
represented. Even in this context, though, exact comparisons are suspect. Such
comparisons would again constitute perfectly accurate measurements of physical
quantities.'® Furthermore, it seems that the construction of an analog machine capable of
exact comparisons would require perfect measurements. In contrast, Turing machines
(with limited tape space) can actually be constructed with finite measurement skills. In
fact, any Turing machine can be simulated by a common electronic computer, except only
that the computations of actual digital machines are limited by time, energy, and storage
space. On the other hand, even a limited real RAM cannot be implemented in any

obvious way until we figure out how to make perfect measurements.

18 Aside from apparent practical limitations on measurement, which might in general be
surmountable, quantum mechanics suggests that there are fundamental obstacles to perfect
measurement inherent in the very structure of the world. However, this objection applies as well
to an assumption that we will make throughout most of this investigation, namely that one can
make measurements of arbitrarily fine but imperfect accuracy. Except for a few remarks later
on, we will largely ignore quantum considerations.
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In any case, we will exclude analog computation from the scope of these
investigations. We will not say that analog computation is not computation; analog
computing machines were discussed as early as 1876 and built as early as 1931
(Campagnolo, Moore, and Costa 1998), pre-dating the electronic digital computer, the
hypothetical Turing machine, and classical discrete recursion theory. However, analog
computation should not be confused with the human activity that dominates mathematical
practice. Turing’s is a theory of Auman computation. There it is not enough that some
sort of machine could compute a given function in some sense; it has to be executable by
a person, or a finite team of people, with finite measurement skills." Turing’s “machine”
is intended as a model of such human activity. In practice, whether using paper and
pencil or electronic machines, most people still compute with discrete symbols. Hence
the powers and limitations of these activities are especially worth investigating.

Of course, Blum and company regard the real RAM as a model of actual practice
too, in particular of the practice they call “scientific” computation. But such computation
is done with digital computers, using only rational approximations to real numbers!
Hence it must be admitted that the real RAM is at best a loose model that ignores the
effects of digital implementation. (See Weihrauch 2000, 262-264 for some details of

these effects.) Certainly we can refine this model, and we can even eliminate the exact

' This is why Turing does not permit infinitely many distinct symbols; “there would be
symbols differing to an arbitrarily small extent,” implying that we could not then discern them
([1936-7] 1965, 135).
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comparisons as well as the other troubling features that we have not discussed, but the
more we do so, the closer we come back to the Turing machine. In fact, Brattka and
Hertling (1996) have introduced a modified “feasible” real RAM, which still treats
abstract real numbers as the direct objects of computation, without the mediation of
symbolic representations, but which does not employ exact comparisons. The real
functions computable by these feasible real RAMs are precisely those computable by a
Turing machine with infinite input.

One might object that permitting infinite inputs, as we do in recursive analysis, is
much like assuming perfect measurement accuracy. However, we require a Turing
machine to provide each approximate output in finite time, so each such output depends
on only a finite portion of the input; this is called the Use Principle (Soare 1986). (See
Section 2.4 and Theorem 3.2.16 below.) Hence what we are really assuming is access to
arbitrarily many input symbols, and thus when these symbols approximate some real
number, we are assuming access to arbitrarily accurate but never quite perfect
approximations to the input. This is perhaps only a slightly more plausible fantasy than
perfect measurement, but it can hardly be avoided. Were we to assume any particular
finite limit on measurement accuracy, we would not have a sufficiently general theory.
We would live in perpetual fear that actual measurements might surpass the limits
assumed by our model. Anyway, even if there are definite limits on physical
measurement, these limits depend on the unit of measure chosen. Similarly, if we

assumed a particular length limit on inputs, our model could eventually be surpassed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60
actual machines or even teams of human beings. By allowing infinite inputs and
assuming that arbitrarily accurate measurements are possible, we abstract away from the
specific limitations of particular computers and measurement techniques. Thus we can
show, for example, what functions cannot be computed no matter how accurate the data
are.

Throughout the remainder of this essay, therefore, ‘machine’ will refer to some
equivalent of a Turing machine permitting infinite input and giving finite output, as

discussed in Section 2.3.1.

2.4. In defense of naive decidability

Even within the symbolic, approximative framework of recursive analysis, it is

not that there is no especially natural and obvious notion of a decidable set of real

numbers. In fact there is one: we could say a set 4 < R” is decidable if there is some

algorithm or Turing machine that, given any x € R", will determine in finite time
whether x € 4 or not. Let us call this naive decidability. The problem is that on the
discrete conception of computation, this notion is virtually unsatisfiable. Even a simple
set like the interval [0, ) is naively undecidable, as is the closed epigraph of ¢”, as well
as any set of naturals embedded in R, whether recursive in the classical sense or not.

A helpful way of seeing this is in terms of the Use Principle from the theory of r.e.

degrees (Soare 1987). This states that if a Turing machine is supplied an infinite string of
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information and it eventually halts, it does so having used only a finite segment of that
information (Theorem 3.2.16). The infinite inputs that concern us are, in effect,
approximations to a point, so it follows from the Use Principle that a machine can only
make use of inexact information about that point. Thus we have what we might call
the...

Topological Use Principle?® (TUP; Proposition 3.2.17): If a machine M halts on
input x € R" with output ¢, then it does so for all inputs y in a neighborhood of x.

This principle will lead us to many undecidability results. It implies that at the
boundary of a set 4, where every neighborhood contains elements of both 4 and its
complement, no machine can correctly decide membership in 4 over a neighborhood. Ifa
machine classifies a boundary point as belonging to 4, for example, then it will also do so
for many nearby points that are not in A. (See Figure 2.2.) Hence every set with a non-
empty boundary is naively undecidable.

Some seem to regard the naive undecidability of such simple sets as [0, ), or
equivalently, the non-computability of the step function defined in Section 2.3.2, as an
unfortunate technical artifact of recursive analysis that could perhaps be removed (e.g.,

Earman 1986). However, such results are more fundamental than they might appear. As

2% Note that under the standard representation, a number has many names. In this
statement of the TUP we have ignored details about how M responds to different standard names
for x. Those detail are spelled out in Proposition 3.2.17.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62
Myrvold shows, an algorithm to compute the step function (in the symbolic framework of
recursive analysis) could be used to solve the famously unsolvable halting problem of
classical recursion theory (1997). Likewise, a foolproof decision procedure for [0, o)
would constitute a solution to the halting problem. Both facts can be proved as follows:
Let {@;} be an effective enumeration of the partial recursive functions on N. For each i
and j, we effectively construct a name for a number #(i, j) that is equal to zero if () is
undefined but less than zero if ¢; is defined onj. (See Myrvold 1997 for details of the

construction.) Then, if we have a procedure to compute arbitrarily accurate

ifa machine Vi
decides that x is in A

/

then M will decide
that this point is in A

Figure 2.2. Boundary points and the TUP. If a machine (or procedure) halts on an
input point x, then it will give the same output for all points in some neighborhood of x.
Therefore, if x is a boundary point of a set 4, such a machine will incorrectly decide 4 at
many points near x.
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Perhaps it is not so strange that only trivial sets of reals are strictly decidable. This fact
bears at least a superficial resemblance to an important result in classical
recursion theory called Rice’s theorem. An index set is a set of the form {i € N: P(¢;)}
(with {¢;} as above), defined in terms of some extensional property P of a function ¢,
such as the property of being total, having a non-empty domain, being one-to-one, et
cetera—any property of the function that does not depend on the particular way it is
defined or represented. Rice’s theorem says that the only recursive index sets are the
trivial ones: the null set and N (Soare 1987, 21). So only trivial properties of partial
recursive functions are decidable from their integer names, just as only trivial properties
of real points are decidable from their string names. The connection may not be
superficial, since these string names are sequences, i.e., functions on N. We will not
attempt to develop the connection further, though; we only note that the situation with
naive decidability is not so unfamiliar and so perhaps not so troubling.

Naive decidability is in any case a very natural notion of decidability for sets of
real numbers. In its definition it comes closer to the classical notion of decidability over
N than any of the relaxed notions we will consider below. It also bears the right kinds of

symmetry with respect to complementation, and it is equivalent to the computability of a
characteristic function. Given all of the above observations, it would not seem
unreasonable to take naive decidability as the natural generalization of decidability to sets
of real numbers, and bravely face the fact that non-trivial sets of real numbers are just not

decidable.
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Nonetheless, some sets are even less decidable than others. Those who have
claimed that certain models of physical systems have undecidable behavior have given
sophisticated arguments that suggest something more than this trivial, naive
undecidability. Even from a purely mathematical point of view, some sets are non-
computable in ways that go beyond mere non-triviality. We therefore proceed to consider

notions of computable set that attempt to capture such intuitions.

2.5. Recursive open and closed sets

Perhaps the two most popular notions of a computable set of reals, at least within
the recursive analysis approach, are that of a recursive closed set and the complementary
notion of a recursive open set. To explain these notions, we first introduce r.e.
(“recursively enumerable”) open and closed sets.

The concept of an r.e. open set is especially fundamental to our investigation, and
all of the notions of effectiveness to be discussed below are closely related to it. A set 4
< R"is r.e. open if there is some machine that halts on an input x € R" if and only if x €

A (Definition 3.3.1).2" This definition straightforwardly generalizes the notion of an r.e.

7

subset of N. By the TUP, these are indeed open sets (Remark 3.3.4). What makes them

so fundamental is the fact (obvious from the definition) that the domain of any

?! These were called recursively open sets in Lacombe 1957, 1958.
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computable function from a set of real numbers into {0, 1} (or N) is an r.e. open set. In
this respect too, the r.e. open sets are analogous to the r.e. subsets of N. (The domains of
computable functions into R” are more complex; see Weihrauch 2000, 31).

On the other hand, an r.e. closed set in R" is a closed set such that we can
effectively list all the open rational n-intervals that intersect it (Definition 3.3.7; cf.
Weihrauch 2000). Equivalently, it can be defined as a closed set with a dense computable
sequence (Zilou 1996).

Since the complement of an open set is closed and vice-versa, it seems fairly
natural to define a recursive open set as an r.e. open set with an r.e. closed complement,
and a recursive closed set as an .. closed set with an r.e. open complement (Definition
3.3.8), as do Weihrauch and others (Kreitz and Weihrauch [1984] 1987; Zhou 1996;
Brattka and Weihrauch 1999; Weihrauch 2000; Brattka 2003a, b). Let us also call a
bounded recursive closed set a recursive compact set. Since these concepts are often used
within Weihrauch’s Type-2 Theory of Effectivity (TTE), we say a recursive open or
recursive closed set is TTE recursive. (See Definition 3.3.8 (iii)).

Superficially, at least, TTE recursiveness has just about all the properties one
would like in a notion of a computable set of reals. An open or closed set is TTE
recursive if and only if its complement is, which holds if and only if both sets are r.e.

Simple sets like the interval [0, <), the closed unit disk in R?, and the closed epigraph of

" turn out to be recursive. Any set 4 < N is recursive in the classical sense if and only if
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it is a recursive closed set 4 = R (Weihrauch 2000, 126). Also, just as a function on N is
recursive if and only if its graph is recursive, a continuous function on R or on a recursive

compact subset of R is recursive if and only if its graph is a recursive closed set
(Zhou 1996; Weihrauch 2000; see Brattka 1993a for a thorough discussion).
Furthermore, as we will discuss below, TTE recursiveness is equivalent to the
computability of a generalization of the characteristic function.

Another nice feature of TTE recursiveness is the fact that recursive open and
closed sets can be effectively graphed to arbitrary precision, in a certain sense (Weihrauch
2000; cf. Brattka 2003a). Suppose for example that A4 is a recursive closed subset of the
unit squaré inR2. Let us divide the unit square into ¥* disjoint squares of equal size, each
containing a colored pixel. By the definitions of recursive open and closed sets, there is
an effective procedure to color each pixel either black or white in such a way that every
white pixel will lie entirely outside 4, and every black pixel will lie entirely within a
small distance, inversely proportional to k, of the set 4. (See Figure 2.3.) Hence by
choosing sufficiently large %, a plot of 4 can be made arbitrarily accurate with respect to
distance. This is clearly a useful property. We will consider it more critically in Section
2.7.

Unfortunately, TTE recursiveness has some troubling asymmetries. By definition,
an open or closed set is recursive if and only if it is r.e. and its complement is r.e.

However, the sense of ‘r.e.’ is different for open and closed sets.
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The notion of r.e. open is analogous to classical recursive enumerability, especially with
regard to decidability. The r.e. open sets are precisely the semi-decidablesets, in the sense
that there is an algorithm that will tell us that a given x is in 4 if and only if x really is in
A. Furthermore, the r.e. open sets are recursively enumerable in a literal sense; they are
precisely those sets that are unions of recursive sequences of open rational n-intervals
(Proposition 3.3.3). One might say we can enumerate them in clumps.

Though the notion of r.e. closed also has nice properties, it is not nearly so
analogous to classical recursive enumerability. There is never an algorithm that halts on
all and only the elements of an r.e. closed set; such semi-decidable sets are always open.
Nor is an r.e. closed set ever the set of inputs on which some machine halts, and nor are
r.e. closed sets recursively enumerable in an intuitive sense. As noted, we can enumerate

the points in a dense subset of any r.e. closed set, and by definition we can enumerate the
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Figure 2.3. Pixelated graph of a recursive closed set (Weihrauch 2000).
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open rational intervals that intersect it, but we cannot enumerate an entire r.e. closed set,
not even in clumps as with the r.e. open sets. In fact, Hemmerling (2003) exhibits an r.e.
(and further, recursive) closed set 4 such that it is impossible to decide which naturals lie
in A, even though no naturals lie on the boundary of 4. In short, r.e. closed means we can
determine which points are near the set, but not which points are in it.

Thus the apparent symmetry of TTE recursiveness suggested by its relation to the
notions of r.e. open and r.e. closed is somewhat illusory. Likewise, the other apparent
symmetry—that an open set is recursive if and only if its closed complement is
recursive—also runs rather shallow, since these notions of recursive are so different.
Recursive open sets are at least intuitively r.e., while recursive closed sets are much less
SO.

As mentioned, TTE recursiveness is equivalent to the computability of a certain
generalization of a characteristic function. That generalization is the distance function
dq(x) =inf) ¢ 4 |y — x|| (Weihrauch 2000, Brattka 2003b); a closed set is recursive if and

only if its distance function is computable (Weihrauch 2000). As Brattka points out (op.

cit.), the characteristic function of a subset of N is equal to the distance function under the

discrete metric on N. In this respect, the distance function is a formal generalization

of the notion of a characteristic function.
Yet, for reasons connected with those considered just above, the appropriateness
of this generalization is questionable. Firstly, the equivalence of recursiveness with

computability of the distance function applies only to closed sets. There are many sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69
neither open nor closed that have computable distance functions. Hence it is not true that
an arbitrary set A is TTE-recursive if and only if the distance function is computable.
Secondly, the distance function is distinctly asymmetric with regard to sets and their
complements. It takes various positive values in the exterior of a set, but it is constantly
zero within the set. (See Section 3.1 for topological concepts such as interior, exterior,
and boundary.) Consequently, the computability of d, immediately implies that the
exterior of 4 is semi-decidable: to determine that x € ext(4) (if x really is in ext(4)), just
compute the distance function to sufficient accuracy to be sure that it is non-zero. Yet dy
offers no such information about 4 itself or the interior of 4. No matter how accurately
we compute d(x) we can never be sure that it is exactly zero, so we can never be sure that
a point x is in 4 on that basis.

This is hardly surprising, since we have already noted that closed sets are not
semi-decidable, but then how useful is this generalization of the characteristic function?
The original motivation for defining the notion of a recursive set in terms of the
characteristic function was to establish a mathematical condition for decidability.

Immediately after defining ‘recursive relation (or class),” Godel explains,

[R]ecursive relations (classes) are decidable in the sense that, for each given n-
tuple of natural numbers, it can be determined by a finite procedure whether the
relation holds or does not hold (the number belongs to the class or not), since the
representing function is computable. ([1934] 1965, 44)22

22 The notion of recursive function referred to in this quote is what we now call primitive
recursive. Godel introduces the modern notion of recursive function (“general recursive”) later
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The same motivations are clear in the paper where Church first states his famous thesis.
Church gives motivating problems in the introduction, such as, “to find a means of
determining of any given positive integer n whether or not there exist positive integers x,
¥, z, such that x" +y" = 2" ([1936] 1965, my emphasis). A recursive distance function,

on the other hand, does not serve as a guarantee of decidability, and even the promoters of
TTE recursiveness recognize this. Brattka writes, “Although recursiveness of subsets of
Euclidean space in this sense does not correspond to the intuition of ‘decidability’, itis a
formal generalization of the classical notion of recursiveness” (Brattka 2003b). We will
soon see that there is another continuous formal generalization of the characteristic

function that implies something much closer to decidability.

2.6. Strong recursiveness, A-decidability, and decidability ignoring
boundaries
2.6.1. Strong recursiveness
A natural strengthening of TTE recursiveness rectifies the asymmetries pointed
out in the preceding section. Following Zhou (1996), we say a closed set 4 is strongly
recursive if A is recursive closed and its interior, int(4), is recursive open. Similarly, an

open set A is strongly recursive if A and its closure cl(4) are both recursive. Hence, any

in the lectures. Regardless, the significance of a (primitive) recursive characteristic function as a
guarantee of decidability is clear here.
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strongly recursive set has a recursive open interior and exterior. (Hertling calls these sets
birecursive in 1999.)

Like TTE recursiveness, this concept seems to have just about everything, but

more so. The intuitively simple sets we have discussed—{0, ), the unit disk, the

epigraph of ¢, recursive sets of naturals embedded in R —are all strongly recursive.
Also, the correspondence between the recursiveness of a function and that of its graph is
not lost; the graph of a continuous function fon R or on a recursive compact subset is
not only recursive but strongly recursive if and only if fis computable.” Clearly strong
recursiveness also implies the existence of an arbitrarily (distance-wise) accurate
graphing procedure, since it implies TTE recursiveness, though it is stronger than
necessary for this purpose.

The symmetry of strong recursiveness with respect to complementation runs
deeper than that of TTE recursiveness. We could characterize the former in terms of a
strengthened semi-recursiveness: say an open or closed set A4 is strongly r.e. if its closure
and its interior are both r.e.?* It follows immediately that an open or closed set 4 is

strongly recursive if and only if 4 and AC are strongly r.e. Also, an open or closed set is

2 This is because the graph of a continuous function on a closed set is contained in its
own boundary, and as Hemmerling notes (2003), such a set is recursive if and only if it is
strongly recursive.

2% In fact, the closure of an r.e. open set in R” is always r.e. closed, but the interior of an
r.e. closed set is not necessarily r.e. open (Hemmerling 2003).
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strongly recursive if and only if its complement is, but more significantly for our
purposes, this implies that both the interior and exterior are r.e. open. Hence, though a
strongly recursive closed set is still not even semi-decidable or recursively enumerable in
the same full and intuitive senses as an r.e. open set, at least its interior and exterior are.

Strong recursiveness is also equivalent to a generalization of the characteristic
function, but one that better serves the cause of decidability than the distance function.
Let the symmetric distance function Ay(x) = d 4(x)—d £C (x), where A° is the
complement of 4. An open or closed set 4 is strongly recursive if and only if A, is
computable (Hemmerling 2003). This function is perhaps not a very direct formal

generalization of the characteristic function, but if again we impose the discrete metric on

N, then for any subset 4 of N, y4(n) = (1 — A4(n))/2. (For example, ifn € A4, then
d4(n)=0 and dAC (n)=1,s0 Ay(n)=-1and (1 — Ay(n))/2=1= y4(n).) In any case,

the value of the symmetric distance function clearly indicates whether or not a point x is
in A except in borderline cases. For any x not on the boundary of 4, A4(x) is non-zero,
and in that case we can determine whether it is positive or negative by computing it to
sufficient accuracy. In this respect the computability of A4 guarantees something much
more like decidability than does that of the one-sided distance function. All in all, strong

recursiveness is more like a notion of decidability than TTE recursiveness is.
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2.6.2. A-decidability and decidability ignoring boundaries

So far we have considered only notions of computable open and closed sets.
Studies adopting the TTE approach typically consider only special classes of sets, such as
the open and closed sets, regular sets, or closed convex sets (Ziegler 2002, Kummer and
Shifer 1995). This approach has definite advantages. For one, it limits the cardinality of
the class of sets under consideration to 2%, so that every set can be represented by a
countably infinite string. The computability of open and closed sets then reduces to the
computability of corresponding strings.

However, He;mmerling has pointed out that if the intervals (0, 1) and [0, 1] are
recursive, surely the half-open interval [0, 1), being hardly more complicated than the
other two, should also be considered recursive. Similarly, the embedding {0} x (0, 1) of
the open interval (0, 1) into R? ought to come out recursive. These sets are neither open
nor closed, and therefore they are not TTE recursive, let alone strongly recursive.
Furthermore, in app]ications' one may encounter sets that are not open, closed, convex, or
regular, or one may simply not know whether a given set has such properties. Hence it
seems useful to discuss the computability of arbitrary sets in R”, as do Hemmerling
(2003), Myrvold (1997), and Ko (1991).

For decidability purposes, the requirement of being open or closed seems
irrelevant. As noted in Section 2.4., no effective procedure can correctly decide
membership in a set in a neighborhood of a boundary point. This is just as true of open

and closed sets as of any other set. Open and closed sets may be of special interest, but
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intuitively they are no more decidable than others. Thus, if we are only concerned with
decidability, strong recursiveness and TTE recursiveness carry some unnecessary
baggage.

Hemmerling (2003) generalizes strong recursiveness to arbitrary sets in a natural
way, using the symmetric distance function A4 defined above.”> He says a set 4 is 4-
decidable if A4is computable (Definition 3.4.1). As we have noted, computability of the
symmetric distance function implies a kind of near-decidability. If 4 is strongly recursive

or merely A-decidable, then there is an algorithm to decide whether x € 4 for any point x

e R" except those on the boundary of A.

Yet, for decidability purposes this is still unnecessarily strong. It is just the latter
implication, the existence of a decision procedure that fails only on the boundary, that
interests us here. We might instead take this implication itself as a decidability concept.
Myrvold calls a set decidable ignoring boundaries (d.i.b.) if its interior and exterior are
both r.e. open (Definition 3.4.5). This is equivalent to the existence of a Turing machine
M that outputs 1 if its input x is in 4 and 0 if x is not in 4, unless x lies on the boundary of
4, in which case M does not halt at all. It could also be defined as the existence of a

machine that computes weak characteristic function®®

% Hertling (1999) had studied the computability of this function but only with respect to
open and closed sets.

2% This was defined by Kummer and Schiefer (1995) but for rational arguments only,
applied by them only to closed convex sets, and by Ziegler (1999) to regular sets.
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1 if x € int(A4),
@, (x)=40 if x € ext(4),

undefined otherwise,

everywhere on the domain of that function and does not halt elsewhere. This turns out to
be strictly weaker than A-decidability (Corollary 3.4.7, Proposition 3.4.8).

Ignoring boundaries seems a very appropriate cure for the emptiness of naive
decidability. That emptiness arises from the fact that we can never correctly decide
membership in a set both on the boundary and near it, by the TUP. Therefore, ignoring
the boundary seems to be the minimal sacrifice. Furthermore, as Myrvold writes, “There
are cases in analysis and physics in which the boundaries of a given region are of little
concern” (1997).

However, we can perhaps be more specific. In which cases is the boundary of
little concern? They would seem to be cases where the boundary is small (though this

might not always be sufficient reason to ignore a boundary®”). It is easy to forget that the

2" Myrvold himself mentions a case from quantum mechanics where the boundary of a
set seems important, though it is in a sense very small (1997). The set E of entagled vectors in
the product space of two Hilbert spaces is r.e. open (with respect to an appropriate coding) and
its complement F is nowhere dense (in the natural topology). Hence F is identical to its own
boundary and is d.i.b. Myrvold remarks, “This is perhaps not very interesting, since ignoring the
boundary is ignoring the whole of F.” Here the boundary is small in the topological sense of
being nowhere dense (and therefore of first Baire category). It may also be small in the relevant
measure, but what measure that would be is not obvious. The point is, it seems important
regardless of its size, because it is one of the sets in question. On the other hand, its importance
really depends on our motivations. In this case, since the boundary of E is very small in a
topological sense, d.i.b. means that we can decide cases that in that same sense constitute the vast
majority.
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boundary of a set—those points where the symmetric distance function takes the value
zero—can take up a great deal of space. The boundary of the set of rational numbers, for
example, is the entire real line. Perhaps, then, we should distinguish as especially
decidable those sets that are d.i.b. and have very small boundaries. These might be the
d.i.b. sets whose boundaries are small in some appropriate measure, or if one prefers a
purely topological concept, those with boundaries that are of first Baire category
(countable unions of nowhere dense sets).

On the other hand, after dispensing with the tacit assumption that boundaries are
small or usually small, it is not clear why they might be any less important than other sets.
Penrose even gives them special importance, suggesting that a good notion of recursive
set should depend in a significant way on the boundary points (1989). Granted, we are
almost forced to ignore them, since we cannot correctly decide all the points in a
neighborhood of a boundary point. Yet, if it was the assumption that boundaries are
small that gave us licensé to ignore them, it seems better to base a notion of decidability
on the tacit assumption itself—that is, to define a relaxed decidability in terms of the size
of the set where an algorithm does not produce the desired output. The following

sections are concerned with such notions.
2.7. Recursive approximability

For a non-trivial set of real numbers, there is no decision algorithm that always

works. Recognizing this, Ko (1991) defines the notion of a recursively approximable set,
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a set for which there is a decision algorithm that usually or probably works. This
amounts to the existence of an approximately accurate decision algorithm, in the form of
a Turing machine that halts on every name for a real point and such that the set of points
where the machine gives the wrong output (the error sef) can be made arbitrarily small in
Lebesgue measure (or Lebesgue outer measure).?® The bound on the measure of the error
set is specified as an input on the machine’s work tape. In sum, a set is recursively
approximable (r.a.) if there is a machine that, given a parameter », (1) halts on every real
input and (2) computes the set’s characteristic function correctly, except perhaps on some
set with Lebesgue outer measure less than 2™ (Definition 3.5.1).

Ko explains that such a machine would decide a set “with an error probability less
than or equal to 2™, where the probability is measured by the natural Lebesgue
measure...” (1991). However, this motivating remark raises a question: Is it legitimate to
equate probability with Lebesgue measure? To some extent this seems natural. If we
choose a point in R” at random, or if one is chosen for us by some physical system, the
probability of getting a point in a particular set that has very small measure would seem to
be very small. This will be discussed further in section 2.9. For now, let us only note that
recursive approximability is an adaptable notion, easily relativized to any measure. (See

Definition 3.5.1.) Whatever the appropriate probability measure may be, the notion of

2z Lebesgue measure is the standard notion of volume in R”, and Lebesgue outer measure
is related notion that applies to more sets. The precise definitions are not essential to the present
discussion.
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recursive approximability relative to that measure expresses the existence of a decision
algorithm that will probably work, and further, with any success rate requested.

In addition, recursive approximability suggests a way of graphing sets in R?* with
arbitrary accuracy, not distance-wise, as with recursive open and closed sets, but measure-
wise. Consider a recursively approximable subset 4 of the unit square, and again let us
divide the unit square into smaller squares containing pixels, as in Section 2.5. By
choosing the screen resolution, i.e., the number of pixels, sufficiently high, we can
effectively graph A4 in such a way that the area of the screen that is incorrectly colored is
as small as we like. This will be helpful in understanding the results of Sommerer and

Ott described in Chapter 4.

We will just sketch the argument. If 4 is r.a., there is a machine M that correctly
decides 4 up to measure 27" for any given n. We fix n small and, by the TUP, we
enumerate the open sets W; (“W’ for white) of points x on which M outputs 0 (when given
n and some name ¢ for x). We also enumerate the open sets B; (‘B for black) where M
outputs 1 (given the same n and some name ¢ for a point). Finitely many of these sets 1¥;
<jand B; < will suffice to cover the closed unit square, so we determine such a covering.
Now, to accurately graph 4, we need only pixelate the unit square with fine enough
resolution to very accurately graph the sets W, <; and B; <;. Where the W, <;and B;<x
overlap, the coloring of pixels may be arbitrary, for these regions will be very
small. Thus, in R?, r.a. implies the existence of an effective method to correctly plota

set up to arbitrarily small area.
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As we saw in Section 2.5, the notion of a recursive closed set also implies an
effective method for plotting sets in R? with arbitrary accuracy, but in a different sense.
The latter implies that a set in R? can be plotted up to arbitrarily small distance, which is

not equivalent to area-wise accuracy. The proof of Proposition 3.6.6 exhibits a set that is
recursive closed and even strongly recursive but not r.a., namely a generalized Cantor set
with measure equal to a non-computable number. This set cannot be effectively plotted
up to arbitrarily small area, but it can be plotted up to arbitrarily small distance.
Likewise, there are sets that can be plotted with arbitrary accuracy measure-wise, but not

distance wise. Take any non-recursive set K of natural numbers, and consider the set 4 =

{(x, 2"‘) e R% x € [0, 1], k € K}. This closed set is not recursive, but since it has

measure zero, it is graphed with accuracy up to measure zero by a completely blank
screen.

Which sort of accuracy is most useful just depends on one’s intentions. The sets
that most concern this dissertation are sets of points that represent physical states, and
ultimately we would like to apply our knowledge of such sets to actual systems
encountered in the real world. If we assume that the states of actual systems that we
encounter will be randomly distributed over a continuum, then a measure-wise accurate
picture of a set 4 seems more immediately useful than a distance-wise accurate one, for
the former gives us a sense of how likely it is that the state of an arbitrary system will lie

in 4, and further, how likely it is that a state in a given small region of state space will lie
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in A. It enables us to classify states with a high probability of accuracy (assuming we

have chosen an appropriate measure).

2.8. Decidability up to measure zero

Recursive approximability is clearly a valuable property, but as an analog of
classical decidability it is somewhat unsatisfying due to its merely approximative nature.
In contrast, the classical concept of decidability in discrete recursion theory (or for that
matter, logic, as in Godel [1931] 1986, [1934] 1965) is absolute and total. It concerns
what can be decided in all cases using a single algorithm (or effectively axiomatized
theory). Such complete decidability is not possible for non-trivial sets of real numbers, so
Ko settles for an arbitrarily small but non-zero probability of error. But must we be
satisfied with this? It might yet be possible do decide non-trivial properties with exactly
zero probability of error, since probability zero is not the same as impossibility. This
would be intuitively better than a small non-zero chance of error and closer in spirit to the
absolute ideal of classical decidability.

There is an obstacle to such thorough decidability built into the concept of r.a. If
we require a decision procedure that always halts, as Ko does, only sets of trivial measure
(either zero or the same as the full background space) can be decided all the way up to
measure zero (Parker 2003). If a decision procedure for a set 4 halts on every input
representing a real point, then by the TUP, it must make mistakes near the boundary of 4.

Furthermore, if there is a boundary point where every neighborhood contains positive-
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measure portions of both 4 and AC, then the algorithm must make mistakes on a
positive-measure set of points. But the only sets in R" that do not have such boundary
points are measure-theoretically trivial, i.e., sets 4 such that either 4 or A€ has measure

zero.”

The motivations for Ko’s requirement that a decision algorithm must halt on every
point are not apparent. Assuming we have a machine that could possibly give incorrect
output anyway, the epistemological situation would seem no worse if in principle that
machine could also fail to halt, but only with probability zero. This would not affect the
probability of obtaining a correct output, and in application we could confidently assume
that non-halting cases would never arise.

Therefore, why not simply demand a machine that, with probability one (whatever
the probability measure may be), will halt and give correct output? Let us say a set is
decidable up to p-measure zero (or u-d.m.z), if some Turing machine will compute its
characteristic function except on a (possibly empty) error set with y~measure zero, where
the machine might decide incorrectly or not at all (Definition 3.5.4). We will use 4 for
Lebesgue measure and therefore write ‘A-d.m.z.” for decidability up to Lebesgue measure
zero, or if the measure is clear from the context, we may just write ‘d.m.z.’

Our intent in defining x~d.m.z. is that 1 should be chosen to reflect some

* For these sets, decidability up to measure zero is obvious anyway. A measure-zero set
is correctly decided, up to measure zero, by the Nancy Reagan algorithm: Just say no.
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probability that interests us. We will say more below about what probability we have in
mind. Suffice it to say for the moment that we would /ike it to be the case that if a set 4
of states for some class of physical systems has measure zero, then the probability that the
state of any particular system we come across will lie in that set is zero. In that case,
d.m.z. implies that an algorithm will succeed with probability one in any such application.
For this purpose, our chosen measure # need not be exactly equal to the probability that
concerns us, but it should be chosen so that the probability is absolutely continuous in
s+—all sets with g-measure zero should be assigned probability zero. Notice, we are not
asserting a connection between “phase space averages” and “time averages” for a
particular system, nor any other relation between one measure or probability to another.
We are merely stating a preference that u should reflect the very probability that interests
us, namely the probability that the state of any one system we encounter will fall in a
given set.

We will see in Chapter 3 that A-d.m.z. is strictly stronger than r.a.; it implies r.a.,
but the converse fails (Theorem 3.5.10 and Proposition 3.6.3). One may find this
surprising, since r.a. requires an algorithm that halts on every point, while d.m.z. does not.
However, given an algorithm that halts on almost every point and correctly decides a set
A on almost every point, it turns out that we can effectively construct an arbitrarily small
r.e. open set that covers those points where the algorithm does not halt. We then assign
arbitrary output to the points in that r.e. open set. Combining this with the original

algorithm yields an algorithm that halts everywhere and errs only on a set of arbitrarily
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small measure.

Note also that since A-d.m.z. implies r.a., it also implies, for sets in R or R? at
least, an effective method of graphing up to arbitrary accuracy, measure-wise. (It does
not imply that a set can be graphed with measure-zero error, at least not with finitely
many pixels of the same size and shape.)

It is not claimed here that d.m.z. is the best concept of decidability in every
respect for every real-valued context. In fact, r.a. is perhaps more pragrﬁatically
motivated, for an extremely minuscule probability of error is usually good enough for
practical purposes. However, it is just this pragmatism that makes r.a. less analogous to
classical decidability than d.m.z. Though only trivial sets of reals are decidable in the
absolute, naive sense, clearly those sets that are decidable all the way up to measure zero
come closer to that standard than those that can only be decided up to an arbitrarily small
non-zero measure.

Also, because d.m.z. is stronger than r.a., it distinguishes a higher level of
decidability to which r.a. is insensitive. The proof of Proposition 3.6.3 exhibits a set that
is r.a. but not d.m.z., and in Chapters 4 and 5 we will see mathematical models of
physical systems such that sets of states corresponding to certain qualitative properties are
r.a. but not d.m.z. The fact that these systems are not d.m.z. bears out intuitions that their
behavior is undecidable, intuitions not captured by the concept of r.a.

One can define still stronger notions of decidability that might be preferable in

some respects. Strictly speaking, though, no stronger decidability could entail any greater
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probability of correct output. D.m.z., with the right measure, guarantees an algorithm
that succeeds with probability one, the best rate of success we can hope for. Furthermore,
a stronger notion of decidability would imply a weaker notion of undecidability, and this
would be undesirable for our purposes. One of our tasks in Chapters 4 and 5 is to find the
most meaningful undecidability results possible for certain dynamical systems.

Perhaps an extreme purist would not much like d.m.z., nor r.a. Both concepts ride
roughshod over some of the subtleties we have discussed. They have the right sorts of
symmetry, and intuitively simple sets come out d.m.z. and r.a., but also, any measure-zero
set is both d.m.z. and r.a., no matter how complex it may be. Yet if what we want to
know is whether we can apply a single decision procedure to various systems that we
might encounter in the world, the exact states of which we cannot know in ad\}ance,

probabilistic or measure-theoretic notions of decidability seem appropriate.

2.9. Probability and measure

We noted in 2.7 that the motivation for recursive approximability (with respect to
Lebesgue measure) depended on the assumption that Lebesgue measure is somehow
related to probability. In physical applications, we would like to suppose that at any
given time, a given physical quantity is unlikely to take on a value in any particular set
that has small Lebesgue measure. To motivate A-d.m.z., we made a related claim: that
barring “special circumstances,” a quantity will not be in a given set with zero Lebesgue

measure at any given time. What right do we have to make such claims? What does
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Lebesgue measure have to do with probabilities?
Before even considering such questions, we should clarify what sort of probability

concerns us—the probability of what? Suppose we have some model of a physical

system in which the possible states of the system are represented as points in R".

Suppose also that we have an algorithm that partly decides the membership of a certain
set of states in that model. We would like to be confident that whenever we encounter
one of the systems for which our model is intended, it will be in one of those states for
which our decision procedure works. Take for example a system of three bodies in
otherwise empty space, evolving by gravitational attraction. Idealizing the bodies as
point masses, we can represent the state of such a system in R'3, allotting three
dimensions for the position of each body and three for each velocity. For the sake of
comparison among different three-body systems, let us also include the three masses in
our state space, so that each state is a point in R%'. Now suppose we have a procedure to
decide, say, whether a body will ever escape such a system, but there is some small set of
states on which the procedure does not work. Then we would Jike to know that whenever
we encounter a three-body system in the real world, chances are good that its state will
not be in that set. So the probability that mainly concerns us is the probability that, when
we stumble on one of the systems for which a certain model is intended, its state will lie
in a certain set.

We might also be concerned with systems that are deliberately prepared for the
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sake of an experiment. In that case we can usually assume some error in the preparation.
If we again have an algorithm to determine something about the behavior of the prepared
system, but this algorithm fails on some small set of states, then we would like to know
that, for an arbitrary preparation attempt, the chances of preparing a state in the error set
is very small.

The assumption that sets of measure zero, in Lebesgue measure and other related
measures, should be assigned probability zero is often made in statistical mechanics,
though its justification is a persistent problem in philosophy of science (Sklar 1973, 1993;
Malament and Zabell 1980; von Plato 1983; Batterman 1998; Vranas 1998). Sklar
devotes a section of his book Physics and Chance (1993, 182-188) to it but offers no
definitive solution and deems it an interesting outstanding problem (414). A common
explanation for the success of equilibrium statistical mechanics (specifically, Gibbs phase
averaging) assumes that one can ignore sets with zero measure in the so called micro-
canonical measure on an energy surface. These are the same sets that have zero Lebesgue
measure.’® That account of statistical mechanics is attacked by Malament and Zabell
(1980), but their own account also claims that the relevant probability measure on a state

space will be absolutely continuous. They write that absolute continuity “seems to be

*® Lebesgue measure is not well-defined on an arbitrary manifold, but it is well-defined
relative to a coordinate system on an open subset of a manifold. If the manifold is C' then in any
two coordinate systems on the same neighborhood, the same sets will have zero Lebesgue
measure (Folland 1984, 332).
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universally accepted as a basic postulate of statistical mechanics...” (345). The success of
statistical mechanics and the role of absolute continuity in the leading explanations of that
success give the postulate some support.

Malament and Zabell go on to offer some justification for absolute continuity in
terms of the way in which a system can be prepared. They show that in R" at least, it is

equivalent to a property called displacement continuity: that the probability associated
with a set be very close to that of another set obtained by a small translation. This
property is plausible, they suggest, because of our inability to prepare a system with
perfect accuracy (and because, when we can prepare a system so as to lie exactly on a
particular manifold, we can then reduce the state space to just that manifold with the
restricted topology and measure). This preparation argument would seem to be supported
by the Gaussian theory of errors. Assuming that the errors in preparation (or
measurement) are many, small, independent, and non-systematic (i.e., not inclined to one
direction more than another), we obtain a Gaussian normal distribution (Poincaré [1896]
1912, 128 ff; [1907] 1953, 77), which is indeed displacement continuous and absolutely
continuous in Lebesgue measure.

Such considerations speak to the tenability, popularity, and usefulness of
associating measure zero with probability zero. Ultimately, though, they are
inconclusive. For all we know, the states of physical systems in this world might be
confined to some discrete set, such as the rational points in some coordinate system, and

our continuous models might only approximate such systems. In that case, the most
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accurate probability measure would assign a positive probability to the set of rational
points, a set of zero Lebesgue measure. Thus the assumption of absolutely continuous
probabilities is a hypothesis of roughly the same status as the continuity of state spaces. It
is an attractive hypothesis worthy of special consideration, and it forms part of the
background of this investigation. If, in the end, we can reasonably ignore sets of small
measure, as many have supposed, then r.a. and d.m.z. are useful notions.

Again, though, both r.a. and d.m.z. can be relativized to any measure. Whatever
the most appropriate probability measure for a given state space may be, these concepts of
decidability can be adapted accordingly. Specific results concerning the decidability or
undecidability of particular sets with respect to Lebesgue measure, such as those
presented in Chapters 3 through 5, might not survive such modulations, but the value of
the general concepts is not threatened by any doubts about particular probability
measures. If a set is d.m.z. in the most appropriate probability measure, or even one that
merely assigns measure zero to the right sets, then there is a decision algorithm that one

can trust.

2.10. Conclusions

Many different notions of recursive and decidable sets of real numbers are
possible, and each has its virtues and vices.
Here we have mainly considered notions founded on Turing’s discrete conception

of computation, i.e., the manipulation of finite symbol strings, as modeled by the Turing
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machine. Though we did not consider all possible concepts of computation, the real
RAM model was found not to be a good model for the way we usually carry out
computations, whether by hand or by machine. In particular, real RAMs can carry out
exact comparisons between real numbers, which in practice we cannot generally do, even
with the aid of machines.

Within the discrete conception of computation, we first considered the naive
notion of a decidable set of reals, which consists in the existence of a foolproof decision
procedure. It would not be unreasonable to say that this is t4e natural notion of
decidability over the reals, but it is of little use, since only the most trivial subsets of R”
are decidable in this sense.

The TTE notion of a recursive open or closed set is more forgiving while still
implying some useful computability properties and maintaining some analogies with the
notion of a recursive set of natural numbers. However it does not imply even an
approximaté decidability, but only a semi-decidability analogous to recursive
enumerability. Strong recursiveness recovers the symmetry of decidability with respect to
complementation but is perhaps too strong for a notion of decidability. Its attractive
decidability implication is just decidability ignoring boundaries, but it is strictly stronger
than this notion and applies only to open and closed sets.

The notion of A-decidability, or the computability of the symmetric distance
function, generalizes strong recursiveness to arbitrary sets in R”, but is still stronger than

the implication that makes it attractive as a notion of decidability, namely decidability
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ignoring boundaries. The latter notion cuts more to .the heart of the matter and seems
minimally permissive, for it is at the boundary points of a set that correct decisions are
always impossible. Yet we must remember that boundaries can be large regions, and it is
often unsatisfactory to ignore them.

In physical applications it seems we are more concerned to have a decision
procedure that only fails on a small set of points, on the assumption that such a set will be
associated with a small probability. Recursive approximability, a sort of decidability up
to arbitrarily small measure, is therefore very practical. However, it involves the
somewhat arbitrary requirement that a decision procedure should always halt, right or
wrong, and it does not minimize errors in the strongest way possible. Decidability up to
measure Zero is a stronger notion and closer in spirit to the classical notion of
decidability, but not so strong as to be uninteresting. If we choose a measure x in which
the probability distribution over a set of physical states is absolutely continuous, then -
d.m.z. implies that some decision procedure succeeds with probability one. For practical
purposes, this seems to be the closest thing possible to decidability.

In Chapters 4 and 5 we will consider applications of these notions, especially
d.m.z., to systems that have been thought to have intuitively undecidable behavior. We
will see in both cases that it is d.m.z., or rather the lack thereof, that expresses the

intuitive undecidability that those systems exhibit.
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CHAPTER 3

THE LOGICAL RELATIONS BETWEEN VARIOUS NOTIONS
OF A COMPUTABLE SET

3.1. Introduction

In this chapter we establish the relations of implication, or more often the lack
thereof, among various notions of a decidable or recursive set of real numbers. The main
point is that the notion of decidability up to measure zero is not equivalent to other
notions of decidability or recursiveness, such as recursive approximability, decidability
ignoring boundaries, or “recursive closed.” The logical relations that do hold among
such concepts are summarized in Figure 3.3 at the end of the chapter. Though it is
conceptually self-contained, this chapter may be regarded as a technical appendix to
Chapter 2 (or Chapter 2 as a motivating introduction to this one).

Our approach to recursive analysis is similar in spirit, though not in every detail,
to the so-called Type-2 Theory of Effectivity (TTE), of which Weihrauch is a leading
proponent. Following Weihrauch, we generalize notions of decidability or recursiveness
to sufficiently structured topological spaces (second-countable 7y-spaces), discussing
examples in Euclidean space as special cases. Most of the definitions and results of

Sections 2 and 3 are based on those of Weihrauch (2000), along with some of Ko’s
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(1991) notation and concepts.1 Several notions are slightly modified in hopes of greater
simplicity. The proofs of many propositions throughout this chapter are given elsewhere
and only references are given here. Results not otherwise attributed, to the best of the
author’s knowledge, have not been proven elsewhere. Certainly all results involving

d.m.z. are original.

Before beginning, let us institute some basic notation. We use the backslash \’ to
denote set subtraction, the bold Roman superscript ‘€’ for complementation, and P(4) for
the power set of 4, i.e., the set of all subsets of 4. 4” denotes the set of functions f: B —

A. A function f € 4 — B is one defined on some subset of 4. We use dom(f’) for

domain, ran(f’) for range, and /"~ !(x) for the set {y € dom(f): fy)=x}. A function ¢: N

— A may be written as a sequence {¢} = (¢, ¢,...), Where each ¢; denotes ¢(7), and we
may write a € ¢ to mean a € ran(¢), and g 4 for ran(g) < 4.

We will also need a very little m.easure theory. Intuitively, a measure is a notion
of volume, or quantity of space. An outer measure on a set X is a function x: P(X) —>
[0, o) such that 1 = 0, and for any sequence {B;} < P(X), B; < Bj = uB; < uB;, and u
UieoB: < 2io 4 B; . A measure is a function : ¢ P(X) — [0, c0), with the same
properties as an outer measure and a little more: the final inequality becomes an equality.

However, the domain of a measure is not generally P(X) but some sigma-algebra, a

subset of P(X) containing & and X and closed under complementation and countable

' As noted in Section 2.3.1, Weihrauch’s and Ko’s contributions go back at least to 1981.
Here we rely on their more recent books, Weihrauch 2000 and Ko 1991, where earlier references
can be found.
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union. We will reserve A for Lebesgue measure, the standard measure in R". It is equal
to ordinary length in R, area in R?, and n-dimensional volume in R” for all cases where
these intuitive notions are clear. We omit the precise definition, which is inessential to
our discussion and can be found in any analysis text.

Finally, a bit of topology: A fopological space is a pair (X, 7) where X'is a set and
Ta topology, i.e., a set < P(X) closed under union and finite intersection and containing
as elements & and X. The elements of X are called points, the elements of 7 are called
open sets, and an open set containing a point x is called a neighborhood of x. A closed
set is the complement U° =X\ U of an open set U. The interior int(4) of 4 c X is the
largest open subset of 4, the exterior ext(A) is the largest open subset of A°=X\4, and
the closure cl(A) is the smallest closed set containing A. The boundary 04 of A is cl(4) \
int(4). A set f < ris a base for 7if every open set (element of 7) is a union of members
of B. A set o< 7is a subbase for 7if ris the smallest topology containing o, i.e., if 7is
generated from ojust by closing o under union and finite intersection. A topological
space is second-countable if it has a countable base, and finally, a Ty-space is a

topological space (X, 7) such that for each x, y € X

{Uer:xeU={Uer:yelU} & x=)y.
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3.2. Naming systems and coded topological spaces

3.2.1. Codings and spaces

We will represent an element of a countable set by a natural number. To fix some

concrete codings, let {(a,b) = (a2 +2ab+ b +3a+b)2, foralla b eN. Thisisa
recursive one-to-one mapping of N x N onto N, and its inverse is also recursive. Let

(ay,ay,...,a,) ={(ay,{ay,...,{a,_1,a,))...). Nowforalla, b e N, let

b ifa=0,
yA =
@b =1 _p otherwise,

and

0 ifb=0,
9a,by =1 %a
b

otherwise.
Thus {z;} is an effective enumeration of the integers, and {g;} of the rationals.

In the context of an uncountable space, where there is no way to represent each
point with a distinct whole number, we represent a point by a sequence of
approximations. This requires some minimal notion of nearness, i.e., a topology, and a
way of picking out points with countable sequences. Therefore we follow Weihrauch in
taking as our basic domains second-countable 7y-spaces, i.c., topological spaces such that
every point is uniquely picked out by a countable sequence of open sets containing it.

(See Section 3.1.)
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Definition 3.2.1 (see Weihrauch 2000).> A coded topological space is a pair X = (X, 0)

where

(i) X is a non-empty set,
(i) o = {0i}; e v is a sequence of subsets of X and
) {i: xegt={iiyea} & x=y

Note that o here is not necessarily a topology, but a countable subbase for a second-
countable Ty-space (X, 7x). (See Section 3.1.) Throughout this chapter, X refers to the
domain of a coded topological space X = (X, o), and most definitions are implicitly
relativized to a particular enumeration {o;} and the topology 7x generated by it.

To treat the set of real numbers as a coded topological space, we need a countable
subbase. Let

3 theinterval(q,,q,) if q,<qp,
(@b = & otherwise.

Thus 7= {I;} is an effective enumeration of the open intervals (g;, g) with rational

endpoints. To extend this to R", define an enumeration I" = {I;'} of the open rational n-

intervals (qq,,q8)* (day>9p,)% ---% (44,9, ) DY

(90>98)% (9ay 98y )% % (44,59p,) if forallj<n, g,,<qp,,

n
I<a]’b1 ,az,bz,.. -’ansbn> = {
%] otherwise.

? This is equivalent to Weihrauch’s notion of an “effective” topological space, but that
term is perhaps misleading, since neither the enumeration o nor its range is required to be
effective in any sense. When useful effectiveness conditions are imposed, one obtains a
computable topological space (Weihrauch 2000).
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Wherever we discuss R” below, we have in mind the coded topological space (R”, I") and
the usual Euclidean topology =, which is generated by I".
A point in a coded topological space can be represented by an infinite list of its
neighborhoods, or more precisely, by a sequence ¢ € N that lists the indices of all

subbase elements containing the point. Hence,

Definition 3.2.2 (Weihrauch 2000). (i) A representation of a set X is a function p: < NN
— Xonto X.
(ii) The standard representation px: C NY — X of a coded topological space X =

(X, o) is defined by px(d) =x < (i €¢ © x € gy). If px(#) =x, we call ga standard
name for x.

(iii) A naming system for a set A4 is either an enumeration of 4 or a representation

of 4. For any naming system o, @is an a-name for x if o) = x.

For the real numbers in particular, the standard representation pr is one of several

natural representations:

Definition 3.2.3 (Representations of R; see Weihrauch 2000).

(i) (Standard) pr(f) =x e R & (i € ¢ < x € [)). Similarly, pri(@) =x € R"

* For Weihrauch (2000), a naming system is a notation or representation, the former
being a function on a set of finite symbol strings. Here we substitute numbers for finite strings,
so notations can be replaced with ordinary enumerations.
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S@legoxell)
(ii) (Base-b digital expansion) Assume ¢ = (a1 @2 ... Gm « Gm+1 Gm+2 ...), Where
a e {—1,2,.,b—1},and fori>1, a; € {0,..., b — 1}. (Technically, then, ¢ is not an

element of NY, but we may so regard it by identifying the decimal point with the number
b and the negative sign with 5+ 1.) Then let

- Sap™" ifa =-,
Prase-b (#) = wi=2

Y ab™"  otherwise.
i=1
(iif) (Inclusive regular Cauchy) Let pce(@) =x < (VieN)|gy —x[< 27 We call
¢ € pc\(x) a regular Cauchy function® or regular Cauchy sequence for x.
(iv) (Strict regular Cauchy) Let pc'(#) =x < (VieN)|gy—x|< 27, Wecall ¢

e pc' \(x) a strict regular Cauchy function or strict regular Cauchy sequence for x.

We will consider the relative merits of these representations in Section 3.2.3.

4 Weihrauch and Ko simply call these Cauchy functions (sequences, representations),
without the qualifier ‘regular.” However, the requirement of uniformly rapid convergence (here,
the bound 27) is not part of the standard notion of a Cauchy function, and is similar to Bishop’s
notion of regularity (1967, 15). Constructivists such as Aberth, and Bishop himself (p. 85), also
tend to use the phrase ‘Cauchy sequence’ with the tacit implication that the rate of convergence is
ruled by some effective function of the indices, due to constructivist background principles.
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3.2.2. Machines and computable functions

Our computability and decidability concepts will be based on the notion of a
computer program or machine supplied with an infinite input sequence, and perhaps also
a distinguished finite input or parameter. We use the following notation for functions

computed by machines:

Definition 3.2.4 (cf. Ko 1991). Let ¢ € Nor NYand @, b € N. Then,

(i) If M is a machine that, given input ¢, outputs a and halts, we write M(H4 and
M(#)=a.’> If M does not halt given input g, we write M(HT.

(i) If, given inputs ¢ and a, M outputs b and halts, we write M(¢, al and M(¢, a)
= p. If M does not halt given inputs ¢ and a, we write M(¢, a)T.

(iii) If M(g, i)¥ for all i € N, we write M? for the sequence of outputs

{M(¢ D}ien.

Ko (1991) and Weihrauch (2000) define infinite-input machines in detail. Here
we instead rely on the generalized Church-Turing Thesis stated in Section 2.3.1. To
repeat the thesis more formally,

Generalized Church-Turing Thesis for infinite arguments: The functions M:

<(\" x N) > N computed by an infinite-input machine are precisely those that
can be computed by any effective procedure.

> Note that M(¢) = a implies M(#){. In cases where M(¢) is not defined, we will regard
M(¢) = a as a false statement, rather than a category error lacking any truth value. Thus we can
write, for example, “If M(¢) = a then...” without qualms.
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By appeal to this assumption, we ignore the details of machines and give computability
arguments by describing effective procedures in intuitive language.

Now we define computability for a few types of functions. (See Figure 3.1.)

Definition 3.2.5 (see Weihrauch 2000). (i) Let « be a naming system (an enumeration or
representation) for some set 4 and v= {v;} an enumeration of a countable set B. A
function f: ¢ 4 — Bis (&, v)-computable if there is a machine M such that for all ¢ €
dom(f - @), v - M(¢) =f- a#). In that case M is said to (& v)-compute f.

(ii) Let & be a naming system for some set 4 and p a representation for B. A

function f: ¢4 — B is (@, p)-computable if there is a machine M such that for all ¢ €
dom(f- @), p(M¢) = fo a(¢), in which case M is said to (& p)-compute f.
(iii) Let X = (X, o), Y =(X, o) be coded topological spaces with standard

representations px and py. A function f: ¢ X — Y'is computable if it is (px, py)-

computable.
f I
cA > cA > B
I
NorN¥ —— N NorNY —— "
M b M

Figure 3.1. Computability of functions. If vis an enumeration of B (left), then ‘f is (&,
v)-computable’ means that some machine takes each a-name for a to a v-name for f{a).
If pis a representation of B (right), then ‘f is (& p)-computable’ means there is a
machine M such that if ¢ is an e-name for a then the sequence M? = {M(¢ )};cn isa p-

name for fla).
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Part (ii) of this definition says that a function fis (¢ p)-computable if for some machine
M, the sequence of outputs {M(x, i)} c v represents f (x). By part (iii), a function /: € R
— R is computable simpliciter if it is computable in the standard representation pr.

In later sections, we will make use of the notion of a computable number, so we

need the following definition and subsequent fact.

Definition 3.2.6 (Weihrauch; cf. Turing [1936-1937] 1965). (i) Let p be a representation
for X. A pointx € Xis p-computable if there is a machine M such that p({M(i)}; < n) = x.

(ii) A number x € R is computable if x is pr-computable.

Theorem 3.2.7 (Weihrauch). A number x € R is computable iff x is pyase-s-computable.

Proof. See Weihrauch 2000, 93. B

3.2.3. Comparison of representations

Of the representations defined above for real numbers, Weihrauch tends to favor
his “standard” representation pgr, while Ko employs the inclusive regular Cauchy

representation pc. The present author has elsewhere used the strict regular Cauchy
representation pc’ (Parker 2000). However, Weihrauch has shown that all of these are

equivalent in the following sense:
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Definition 3.2.8 (Weihrauch). Two naming systems ¢, S are (computationally)
equivalent (a = f3) if ran(@) = ran(f) and the identity function on ran() is both (&, f)-

and (5, a)-computable.

So equivalence of haming systems just means that each can be effectively translated into

the other. As it turns out,

Lemma 3.2.9 (Weihrauch; see 2000, 88). por = poc= poc.

This implies immediately that for p= pc or p¢’ and for any naming system a, a function
is (o, @)-computable if and only it is (or, @)-computable, and (@, p)-computable if and
only it is (&, pr)-computable.

We do not adopt the familiar system of base-10 or base-2 digital expansions, in
part because for any base b, some very simple functions are not (Oyase-p> Poase-b)-

computable. Addition and subtraction are not computable with respect to base-b

representations, but to state this precisely, we would have to introduce the notion of a
base-b representation of R, Instead we show, as an example, that addition of the

constant 2/3 is not (Obase-10, Poase-10)-cOmputable.

Proposition 3.2.10 (see Weihrauch 2000). The function f{x) =x + 2/3 is not (Oyase-10,

Prase-10)-computable.
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Proof. Suppose there is a machine M that (Pyase-10, Poase-10)-computes f. This means that
if @is a decimal for x then for each i, M(4 i) is the i™ digit of a decimal for x +2/3. If ¢
=0.333... then {M(& i)}ien=0.999... or 1.000..., so in particular, M(g, 0) =0 or 1.
Given input (¢, 0), the machine M scans only some finite initial segment r of ¢ before
halting. (See Use Principle below.) Therefore, M(4 0) = M(r999..., 0) = M(r000..., 0).
But 7000... represents a number y < 1/3, so y + 2/3 < 1 and M(r000..., 0) = 0, while
7999... represents a number z > 1/3, so z + 2/3 > 1 and M(r999..., 0) # 0. Therefore

M(r999..., 0)  M(#000..., 0), and we have a contradiction. B

It turns out that this does not matter much for decidability concepts. Intuitively, a

set 4 is decidable if its characteristic function,

1 ifxed
0 otherwise,

ZA(X)={

which is a function into {0, 1}, is computable. Those concepts best regarded as relaxed
decidabilities, i.e., those equivalent to the existence of a relatively successful decision
procedure and requiring no other conditions, can be similarly expressed in terms of the
computability of characteristic functions over slightly restricted domains. Hence we are
still mainly interested in the computability of functions into {0, 1}. It is easy to see from
results of Weihrauch that for that purpose, digital expansions and the other three

representations above are all equivalent. Weihrauch shows,
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Theorem 3.2.11 (see Weihrauch 2000, 93). f: R — R is (Oyase-s, PR)-computable iff it

is (oRr, pr)-computable.

What concerns us at the moment, though, is not (Pvase-5 £Rr)-cOmputability but
(Poase-d> Vio,1y)-computability, for some reasonable enumeration vio,1;: N — {0, 1}. Let

us say,

Definition 3.2.12. Foralli e N, let

0 ifi=0,
1 otherwise.

Vi, 1}(i) = {

Then in fact,

Proposition 3.2.13. Given any naming system « for a set 4, a function f: c 4 — {0, 1}

is (& pr)-computable if and only if it is (¢, v, 1;)-computable.

Proof. =: Suppose fis (&, pr)-computable. Fix a machine M that (¢, pr)-computes f
(i.e., for all ¢ € dom(f- ), pR(M'f') =f- o ¢)). Given input ¢, let a machine M’ dovetail®

the algorithms to compute M(¢, i) for eachi € N. Let M output 0if 1 & Iy ;) for some i,

% A machine can carry out a countable number of algorithms, in effect simultaneously, by
“dovetailing” them. This means that the machine divides its time and tape space between the
several algorithms. Construction of such machines is standard in the theory of computation.
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and 1if 0 ¢ Iyyg ;) for someéi. (These propositions can be decided effectively, given our
choice of the sequence I.) Then M’ (@, vy, 13)-computes f(i.e., for all ¢ € dom(f> @), vy,
1y M (P =f- A9)).

«: First, construct a recursive sequence {£;} listing all rational intervals that
contain 0 (i.e., 0 € ; iff for some j, £ = i) and a similar sequence {y} for 1. Now
suppose fis (& Vo, 13)-computable as witnessed by M, i.e., for all ¢ € dom(f~ ), v(o,1;
M($)=f- A @). Let M'(¢ i) = pi for all i if M(¢) = 0 (in which case vy, 1;,(M(g)) = 0), and

let M(¢ i) = 3 if M(¢)¥ and M(#) > 0 (in which case vio, 13(M(#)) = 1). Then M (g,

pr)-computes f (i.e., for all ¢ € dom(f- @), PrRIM?) =f- o §)).

Corollary 3.2.14. f: cR — R is (Ovase-s, Vi0, 13)-computable iff it is (pr, Vjo, 1})-

computable.

Proof. Immediate from 3.2.11 and 3.2.13. &

Hence, for concepts of decidability on R that are sufficiently related to characteristic

functions, it makes no difference with which of the four representations of R defined

above we choose to work.
3.2.4. The Topological Use Principle and the Neighborhood Enumeration Theorem

The Use Principle from classical recursion theory lies at the heart of several

results in this dissertation. The Use Principle says that if a machine halts, it does so on
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the basis of some finite portion of the information provided to it.

Definition 3.2.15 (see Soare 1987). (i) Lets = (so, 51, ..., S») € N*. We say that
length(s) =n + 1. Forany ¢ € N, we write s © gand ¢ s if s is a proper initial
segment of ¢, i.e.,if s;= ¢ foralli e {0, 1, ..., n}.

(i) We write M(s, )V and M(s, i) = if for all ¢ € N, ¢ o s implies that M(4, i)

=j. If this fails for every j, we write M(s, i)T.

Proposition 3.2.16 (Use Principle). M(¢ i)=j < (3s < ) M(s, i) =.

Proof. See Soare 1987. &

In an uncountable topological space, finite information is approximate
information. Hence, if a machine halts on x (i.e., given a standard representation of x),

then it halts on an open neighborhood of x. (See Figure 2.2.) More precisely,

Proposition 3.2.17 (Topological Use Principle or TUP). If M(4 a) =b € N for some ¢
e N and a e N such that px(#) =x € X, then there is an open set U < 7x containing x

such that (Vy € U)@y e NN px( )=y and M(y, a)=>b.

Proof. Suppose x, ¢ a, and b satisfy the antecedent. By the Use Principle, choose a

finite sequence s such that s c gand M(s, a) = b. Let U = ﬂ:.f(’)gth(s -1 oy, . Toseethat U
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satisfies the consequent, let y € U. Choose 8 such that px(&8) =y and let = s8; that is,

s; if i < length(s),
V= .
O length(s) Otherwise.

Then px(w) =y. (The additive term ‘length(s)’ in the subscript on & ensures that y
includes all of @ and therefore lists all subbasic sets containing y, as required by the

standard representation px.) By the Use Principle, M(y, a) =M(s, a)=b. B

This principle is not purely an artifact of the standard representation, which represents
points by sequences of open sets. It holds just as well, for example, under the strict
regular Cauchy representation of real n-tuples (Parker 2003). It is equivalent to the fact
that computable functions (with respect to reasonable, “admissible” representations) are
continuous (Weihrauch 2000, 71).

The TUP is constructive and can be made “uniform,” meaning that given any x
where M halts and outputs b, we can effectively construct a neighborhood U of x where
M outputs b. Furthermore, we can effectively enumerate the entire region where M
outputs b, or that where M halts, as a recursive sequence of neighborhoods, each of which
is a finite intersection of subbase sets. This will be useful in proving some positive

decidability results.

To state the claim precisely, we first define enumerations of the finite strings and

the finite intersections of subbase sets:
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Definition 3.2.18. (i) For all n, s1,..., s, € N, let S({n,51,...,5,)) = (51,..., Sx), and let S(i);
denote the jth element of S(7).
(ii) Relative to any coded space (X, o), let U; = ﬂlfngth(s(i»_l TsG0); -

Intuitively, U is the set of points that have px-names beginning with the finite string S(7).

Theorem 3.2.19 (Neighborhood Enumeration Theorem or NET). For any infinite-

input Turing machine M, there is a recursive sequence {u;} such thatx e | J,U, w iff for

some ¢ € px_ ' (x), M(¢)V.

Proof. We give an informal procedure to construct {u;}. First, seti=0. Then dovetail
the computations of M(S(y)) over all j € N. Whenever M halts on some S(j) without
having scanned any input cells beyond length(S(y)), set #; = and increment i by one.
Now suppose x € |J,U u; - Then for some i, x has a px-name ¢ beginning with
S(u;). By construction of {u;} and the Use Principle, M( ¢)~1«. Conversely, suppose ¢ €
ox_'(x) and M(#¥. Again by the Use Principle and our construction of {1}, there is

some i such that S(u;)  ¢. Therefore,x € U, c J,U,, . ®

3.3. Open and closed sets

In Weihrauch’s Type-Two Theory of Effectivity, computability properties of sets

are typically defined only for special subclasses of the Borel sets, such as the open sets.
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We consider a few such notions in this section. Throughout, we assume X is the domain
of a coded topological space and px the standard representation for X.
We begin with a notion that pre-dates TTE and is analogous to the classical notion

of a recursively enumerable (r.e.) set.

Definition 3.3.1 (see Weihrauch 2000; cf. Lacombe 1957). A set 4 ¢ Xis r.e. open if

there is a machine M such that for all ¢ € dom(px), M(¢)¥ < px(#) € 4.

This is just the natural notion of a set such that some algorithm will tell us if an object is
in the set, but says nothing otherwise. Such sets are also called semirecursive
(Moschovakis 1980, Myrvold 1997) and Z? (see Moschovakis 1980). The class Z? is
just one in the hierarchy of the Kleene pointclasses (ibid.). We will not be much
concerned with the Kleene pointclasses, but those with superscript 0 are shown in our
final diagram (Figure 3.3). They can be defined inductively as follows: Foreachrn>1, a
Hg set is the complement of a 23 set, a Ag set is one that is both £ and H?, ,and a

22 41 5et is a union over some effective list of 1'[9, sets.”

Notice that if there is a recursive enumeration of the subbase sets included in 4,

then 4 isr.e. open. That is,

" Hemmerling (2003) substitutes the superscript “ta” for zero and calls this the
topological-arithmetic hierarchy.
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Remark 3.3.2.2 Assume (as always) that X = (X, o) is a coded topological space. If {a;}

is a recursive sequence of natural numbers and 4=J;2, o, then 4isr.e. open.

Proof. We give an algorithm for a machine M that halts on ¢ € dom(px) iff px(¢) € 4:
Let M merely enumerate {;} and, by dovetailing, check whether any ¢; equals some a;.

If so, let M halt. B

In R”, the converse holds as well, and this justifies the remark made in Section 2.5 that

r.e. open sets are enumerable in a very literal sense.

Proposition 3.3.3. 4 cR" isr.e. open iff there exists a recursive sequence {a;} € A

such that A=J,1] .

Proof. =: Suppose 4 is r.e. open. Then by definition there is a machine M such that for
allx e R"and all g € pRn"l(x), M(¢)¢ < x € A. By the Neighborhood Enumeration
Theorem, there is a recursive sequence {u;} such thatx e {J;U, iff for some ¢ & ox (),
M(gW, so |, U,, = 4. Inthis case, each U; = ﬂlj‘?:(%th(s -1y g(i)j . The set of open
rational n-intervals 7" is closed under finite intersection, so each U; € I". Define i N —

N by f(i) =j < U;= I'7. By construction of {U;} and I", f'is recursive. Now just let {a;
J J

= {flu;)}. Then {a;} is recursive and | J.7 :l =, U, =4

® This is a well known triviality.
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<: ByRemark 3.3.2. B

This also shows that in R”, r.e. open sets are really open. Comfortingly, the same

is true for all coded topological spaces.

Remark 3.3.4.° All r.e. open (i.e., semirecursive) sets are open.

Proof. Suppose 4 isr.e. open. Then there is a machine M such that for all ¢ € dom(px),

M(P < px(@) € A. By the Topological Use Principle, for each x € A there is an open

set U(x) such that x € U(x), and for each y € U(x) a sequence ¥ € NY such that px(w) =y

and M(y)¥. Hence each such y is in 4, so each U(x) = 4. Therefore 4={J,_,U(x), so

xeA

A is open. B

Equivalently, the domain of any computable function /: X — N is an open set.

This can also be seen as a consequence of another fact (which we will not prove): that the
domain of a computable function taking infinite strings to finite strings is always open in
the natural topology for infinite strings (Weihrauch 2000, 31). Since here we are
concerned with computation conceived as the manipulation of strings, facts about
computation on strings (or equivalently, on natural numbers and sequences thereof)
underlie all of our results.

Given the notion of an r.e. open set, a natural definition of a decidable set might

? This is also well known; Myrvold mentions it for example in 1997.
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be as follows:

Definition 3.3.5 (see Myrvold 1997). A set A < Xis naively decidable if A and AC are

r.e. open.

Equivalently, a set is naively decidable if there is a machine that computes its
characteristic function, for if there is a machine that halts on all and only elements of 4
and another that does the same for A%, we can construct from these a third machine that
gives output 1 if the input is in 4 and 0 otherwise. In any case, naive decidability is

rather special, for,

Remark 3.3.6. If 4 ¢ Xis naively decidable then A4 is open and closed.

Proof. Immediate from 3.3.5. W

In a connected space X, the only sets that are both open and closed are X and &. So for

example, the only naively decidable sets in R"” are R" and &.
There is also a notion of an r.e. closed set in the literature. Weihrauch (2000)
defines an r.e. closed set in R" as a closed set such that we can effectively list all the open

rational cubes that intersect it. More generally,

Definition 3.3.7 (Weihrauch; cf. Zhou 1996). A closed set A — Xis r.e. closed if there
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exists a recursive sequence {a;}; < y of natural numbers such that j = a; for some 7 if and

onlyifgnA#J.

Since the complement of an open set is closed and vice-versa, it seems fairly

natural to define recursive open and closed sets as follows:

Definition 3.3.8 (Weihrauch). (i) An open set is recursive if it is r.e. open and its
complement is r.e. closed.
(ii) A closed set is recursive if it is r.e. closed and its complement is r.e. open.

(iii) A recursive open or closed set is called a TTE-recursive set.

Notice that a set is TTE-recursive if and only if its complement is TTE-recursive.
This definition is partly justified by the idea that a distance function d(x) =

inf, 4 d(x, a), where d is some metric on X, is a natural generalization of the notion of a

characteristic function. It turns out that,

Proposition 3.3.9 (Weihrauch). A closed set 4 ¢ R" is TTE-recursive iff d(x) is

computable, where d(x) = inf, _ ; |x - a| and [ is the usual, Buclidean norm.

Proof. See Weihrauch 2000 (128). &
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However, the notions of a recursive closed set and a computable distance function
also have certain counterintuitive asymmetries, as discussed in Chapter 2. We can
effectively determine when a given point is not in a recursive closed set 4, but no
procedure will determine when a point is in 4, nor even, in general, when a point is in the

interior of A. Zhou (1996) offers a stronger, more symmetric notion:

Definition 3.3.10 (Zhou 1996). An open or closed set A4 is strongly recursive if int(4)

and ext(A) are recursive open sets.

Hertling calls this birecursiveness (1999). Note that if 4 is strongly recursive, then a
fortiori, int(4) and ext(4) are r.e. open. Also, a set is strongly recursive if and only if its

complement is strongly recursive. Incidentally, strong recursiveness also implies that if
N N 84 = & then N N A4 is recursive. This is not the case for recursive open or closed

sets in general (see for example Hemmerling 2003, Example 1), so strong recursiveness

is indeed stronger than TTE-recursiveness.

3.4. Topological notions of decidability for arbitrary sets
A more symmetric generalization of the notion of a characteristic function is that

of a A-function:

Definition 3.4.1 (Hemmerling 2003). (i) The A-function for a set A < R" is A4(x) = dy(x)

— dxu(x). (See Proposition 3.3.9.)
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(i)  Asetd cR"is A-decidable if its A-function is computable.

Hertling (1999) considers this notion for closed sets while Hemmerling (2003) extends it

to arbitrary subsets of R”. Hertling shows that

Proposition 3.4.2. If 4 = R" is closed then 4 is A-decidable iff A4 is strongly recursive.

Proof. See Hertling 1999. &

Corollary 3.4.3."° If 4 c R" is open then 4 is A-decidable iff 4 is strongly recursive.

Proof. Suppose 4 is open. Then A is closed, so 4 is A-decidable < AC is A-decidable

< A® is strongly recursive <> A is strongly recursive. M

Therefore,

Proposition 3.4.4 (Hemmerling 2003). If 4 = R" is strongly recursive then A4 is A-

decidable.

Proof. Immediate from 3.4.2 and 3.4.3. &

The converse clearly fails simply because strongly recursive sets must be open or closed.

1% Another well known triviality.
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For example, the interval [0, 1) is A-decidable but not strongly recursive; for that matter,

it is not even r.e. open or r.e. closed.

Myrvold (1997) introduced another natural notion of decidability for arbitrary

sets:

Definition 3.4.5 (Myrvold 1997; cf. Penrose 1989). A set A c X is decidable ignoring

boundaries (d.i.b.) if int(4) and ext(4) are r.e. open.

This implies the existence of a decision procedure that succeeds everywhere except on
the boundary, and furthermore does not halt on the boundary. Thus the procedure must
not so much ignore the boundary as tiptoe carefully around it. Penrose dismisses an
intuitive notion similar to d.i.b. because the complexity of a set like the Mandelbrot set
seems to reside in the shape of its border. Hence a computability concept that ignores
borders will not reflect such complexity. However, d.i.b. does not ignore borders in that
sense; if the boundary of a set is too complex for an algorithm to tiptoe around, the set is
not d.i.b.

Notice that A-decidability implies d.i.b. Hemmerling shows that,

Proposition 3.4.6. For any set A = R”, 4 is A-decidable iff int(4) and ext(4) are r.e. open

and 04 is r.e. closed.

Proof. See Hemmerling 2003. B
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Hence it follows immediately that,
Corollary 3.4.7. If 4 < R" is A-decidable then 4 is d.i.b.

There is no reason to expect the boundary of a d.i.b. set to be r.e. closed, so it is not

surprising that the converse of Corollary 3.4.7 fails, as we see next.

Proposition 3.4.8. There exists a set 4 < R that is d.i.b. but not A-decidable.

Proof. Let K be any non-recursive r.e. subset of N. (A classic example is the set K = {e:
@.(e)¥}, where {¢,} is some recursive enumeration of the partial recursive functions on
N.) Let {k;}; .~ be a recursive enumeration of K without repetition and let a; =

Z§=O2_kj for each i. Finally, let 4 =Q N (lim {a;}, ). Then int(4) = &, and ext(4) =
(=00, lim {a;}). Both are r.e. open: the interior trivially, and the exterior because we can
construct a machine M that, given input ¢, enumerates the sequence {a;} and halts if for
some iandj, / 4, S (-0, a;). Therefore 4 is d.i.b.

To see that 4 is not A-decidable, suppose it is. We will construct an algorithm to
tell us whether or not a given # is in K, contradicting the non-recursiveness of K. First,
notice that, since 4 is A-decidable, A4 is computable, so d, is computable. But d; = dyy,
so this implies that 84 = [lim {a;}, ) is recursive closed and therefore r.e. closed. That
means we have a recursive enumeration {b;} of all open rational intervals intersecting 04.

Note also that n ¢ K iff for some j, two things hold: # is not any of the first j entries in
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the enumeration {k;}, and a; + 27" > lim {a;}. So to decide whether n € K, we need only
enumerate {k;}, {a;}, and {b;}, checking for each j whether n = k; (in which case n € K)
and whether, instead, n # k; for any i <j but b; = (0, a; + 2™") (in which case n ¢ K).

Therefore K is recursive, contrary to assumption. B

Finally, note that neither recursive open nor recursive closed implies d.i.b., since,
as Zhou shows (1996; see also Hemmerling 2003), there are recursive closed sets that are
not strongly recursive, i.e., their interiors are not r.e. open. Hence they are not d.i.b.

Their complements are of course recursive open, and still not d.i.b.

3.5. Measure-theoretic decidabilities

Ko (1991) also considers a notion of decidability for arbitrary sets. He calls a set
recursively approximable if it can be correctly decided up to arbitrarily small Lebesgue
measure. We state this precisely while generalizing it to arbitrary coded metric spaces

and measures (or outer measures).

Definition 3.5.1 (Ko). Let 4 be a measure (or outer measure) on X. A set 4 < Xis u-

recursively approximable (yr.a.) if there is a machine M such that forallx € X, n e N,

and ¢ € dom(px),

(i) if px(¢) = x then M(¢, n){, and
(i) if n > 0 then B, (M) <27",
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where E4 /(M) = {x € X|[3¢ € dom(px)] M(¢ n) # ya(x)}, called the n™ error set for M.

Intuitively, E, (M) is the set of points where M miscalculates the membership of 4 given
input n.
Ko [2] shows that on the interval [0, 1] with Lebesgue measure 4, A-r.a. is

equivalent to Sanin’s notion of recursive measurability (Sanin 1968). This will be useful
below, so we state the definition and result. We use D to denote the set of dyadic

rational numbers a/2", where a € Z and n € N. The set of finite sequences of dyadic

rationals is written [D*.

Definition 3.5.2 (Sanin 1968). (i) A sequence {S;} of sets in R is a recursive sequence
of sets if there is a recursive function ¢: N — N x D* such that if ¢ (i) = (%, (a1, b1,..., ax,
b)) then a1 <bi< @ <by <..<ar<brand §;= U (a;,b)).

(i) A set S <R is recursively measurable (r.m.) if there exists a recursive

sequence {S;} of sets in R such that for all i >0, A(S A S;) < 27, where A is the symmetric

difference operator.

Theorem 3.5.3 (Ko). A setSc [0, 1]is A-r.a. if and only if it is r.m.

Proof. See Ko 1991 (162). &
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One might expect that recursively open and closed sets should be recursively
measurable, in parallel with classical analysis. However, the notions are independent. In
Section 6 we will meet a subset of [0, 1] that is closed and strongly recursive, and hence
TTE-recursive, but not A-r.a. and hence not recursively measurable. The fact that A-r.a.
(and hence r.m.) does not imply TTE-recursiveness will follow from 3.5.7, 3.5.8, and

3.5.10.

One can demand more of a set than to be recursively approximable. One might
well prefer a decision procedure that works not only on all but an arbitrarily small set, but
on all but a measure-zero set. Also, as long as we permit errors on a measure-zero set,
we might also permit the decision procedure not to halt on some measure-zero set. This

leads us to the following definition of decidability up to y-measure zero.

Definition 3.5.4. For a given measure (or outer measure) gon X, aset A c Xis
decidable up to y-measure zero (or decidable mod zero, abbreviated d.m.z. or y~-d.m.z.) if
there exists a machine M suc;h that pE4(M) = 0, where E (M) is the error set for M,

defined by EM) = {x € X|[3¢ € px ()] [M(HT or M(¢) # 74()] }.
Neither y~d.m.z. nor z-r.a. is completely trivial in extension. For example,

Remark 3.5.5. If ud =0 or u4€ =0 then 4 is p~-d.m.z. and grr.a.
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Proof. If 4 =0, let M?(n)=0 for all ¢ n. Then E4(M) = E4 (M) =4, so pE(M)=

UE4 (M) =0. If instead pA° =0, let M*(n)=1. ™

Later we will see other examples of g-r.a. and p-d.m.z. sets that have non-zero measure
and complements of non-zero measure.

Even in R with Lebesgue measure A, d.m.z. does not imply d.i.b.:

Proposition 3.5.6. There exists a set in R that is A-d.m.z. (and A-r.a.) but not d.i.b.

Proof. By 3.5.5, all we need is a measure-zero set that is not d.i.b. Let K be any non-
recursive r.e. subset of N. Embedded in R, K has Lebesgue measure zero, so KX is trivially
A-r.a. and A-d.m.z. Now suppose toward contradiction that K is d.i.b. This implies that
ext(K) =R\ K isr.e. open. Since pr = p, this implies that there is a machine M such
that if ¢ € po '(x) then M(#)¥ < x e R\ K. Foreachn e N, define 4 € pci(n) by
#'(i) = n. Now it is trivial to construct a machine M such that M (n)¥ if and only if
M(¢"){. Such an M halts on an input » € N if and only if n ¢ K. Hence N\ K is r.e., but

since K is r.e., this contradicts the non-recursiveness of K. B

This implies that 4-d.m.z. does not imply A-decidability nor strong recursiveness. (From
here on, it may be helpful to refer occasionally to Figure 3.3.)

We will see later that the converse fails as well; strong recursiveness, and

therefore d.i.b. and A-decidability, do not imply d.m.z., even in the context of R with
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Lebesgue measure (3.6.3). However, for sets with trivial boundaries, d.i.b. does imply

dm.z.:

Remark 3.5.7. If 404 =0 and 4 c Xis d.i.b. then 4 is p-d.m.z.

Proof. Ifint(4) and ext(4) are r.e. open, then one easily constructs a machine M that

gives output 1 on input ¢ € px '(x) iff x e int(4) and 0 iff x € ext(4). Hence E«(M) = 04,

SO ,LlEA(M) =0.0

For the sake of completeness, we now show that the property being d.i.b. with a
measure-zero boundary does not imply A-decidability, nor TTE-recursiveness, nor,

therefore, strong recursiveness.

Proposition 3.5.8. There exist both open d.i.b. sets 4 — R and closed d.i.b. sets 4 = R

such that 404 = 0 and 4 is not A-decidable, nor TTE-recursive.

Proof. Choose a non-recursiver.e. set K cN. Let A =(N\K) cR. Then ACisre. open
by Remark 3.3.2, for to enumerate the rational open intervals contained in A, it is
enough to enumerate those contained in intervals (z, i + 1) for i € Z, as well as those
rational intervals J such that N N J < K. Since int(4) =, 4 is d.i.b. However, d, is not
computable, for suppose it is. Then we can use it to effectively decide whether or not a

given whole number is in K: ifn € N and dy(n) > 0 then n € K, while if n € N and d(n)
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< 1thenn ¢ K. This contradicts the non-recursiveness of K, so d, is not computable.

Therefore A is neither TTE-recursive nor A-decidable, and the same goes for A =

This also shows that d.m.z. does not imply A-decidability, nor does it imply TTE-
recursiveness. (The latter point is trivial, since TTE-recursiveness holds only for open
and closed sets.)

We now compare d.m.z and r.a. For an arbitrary measure 2, p-d.m.z. and g-r.a.
are independent. We show first by example that even a strongly recursive interval may

be y-d.m.z. but not s-r.a.

Proposition 3.5.9. There exists a measure £ on R such that the interval B = [0, ) is x4~

measurable and g-d.m.z. but not z+r.a.

Proof. For any Lebesgue-measurable set 4 = R, let ud = [, |1/x| dx. Since p0B = p{0} =
0, Bis ~d.m.z. To see that B is not y-r.a., suppose some machine M halts on every input
(¢ n) € pr'(x) xN, x € R. Fix n. By the Topological Use Principle (3.2.17), fix y €
pr(0) and a neighborhood U of zero such that (Vx e U)[3 ¢ e pr (X)) M(g n)= My,
n). (See Figure 3.2.) Then there exists and interval (—a, a) ¢ U. But either (—a, 0) or (0,
a) < Eg, n(M). By choice of 4, p(-a, 0) = (0, a) = . Therefore uEp (M) = . Hence

there is no machine M witnessing that B is z-r.a. B
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J©)=|1/x]

measure of
error set (o)
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Msaysx e B

B=][0, )

Figure 3.2. Proof of Proposition 3.5.9.

Note that the d.m.z. set in this proof, [0, =), is of course strongly recursive: (-0, 0) and
(0, ) are r.e. open, and (-0, 0] and [0, «) are r.e. closed.

Here we have used a strange measure 4 to show that 4-d.m.z. (and strong
recursiveness) does not imply z-r.a. in the general case. InR" with Lebesgue measure 4,
this is not the case; A-d.m.z. does imply A-r.a. (3.5.10), but we will see in the next section
that A-r.a. does not imply A-d.m.z.

We now show that A-d.m.z. implies A-r.a. The difficulty in this lies with the

requirement in the definition of that the approximation procedure must halt everywhere.
Our strategy is this: Given an algorithm M that shows a set 4 < R" is d.m.z., and given a

desired error bound 27", we construct two recursive sequences of neighborhoods: the

neighborhoods U, (of the Neighborhood Enumeration Theorem 3.2.19), where M
halts and which nearly fill R”, and some very small neighborhoods V,, covering the gaps,

where our output will be arbitrary. We construct {V,, } in stages, first covering the gaps
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within the n-cube [-1, 17", then those in [-2, 2]", etc., with the new additions to {Vv,- }
shrinking rapidly with each stage. Thus the total measure of {/,, } can be made

arbitrarily small. An illustrative example follows the proof.

Theorem 3.5.10. If 4 = R" is A-d.m.z. then 4 is A-r.a.

Proof. Recall {S(i)} and {U;} = {U(i)} of Definition 3.2.18, and for each i € N, let V(i) =
U eOrsy,,.

Now suppose 4 is d.m.z. as witnessed by a machine M. By the Neighborhood
Enumeration Theorem (3.2.19), there is a recursive sequence {;} such that x € | J,U(y;)
iff for some ¢ € px_'(x), M(#¥. For each m € N, construct a recursive sequence of
integers {Vu,}i « z+ as follows:

1. Seti=1.
2. Find and fix ; (temporarily) such that A([—, i]"\ {_,U(u;)) < 277",

3. Find and fix v,,; such that AV(v,,)) <2™ " and V(v mi) Y ULO U(u;) covers
[, i]". Seti=i+ 1 and repeat from step 2.

Step 2 is possible because A[R"\{J;_,U(u;)1=A{x e R™: [Vge o5 ()] M(§T} =0,
and volumes of finite unions, intersections, and differences of rational n-intervals can be

computed exactly. Step 3 is possible because the intervals [, {] are compact. Note also
UlU@)V ¥ (v, )] =R", and AU,V (v, ) <X, 27" =2,
Now an algorithm for a machine M’ satisfying Definition 3.5.1 (r.a.) is simple:

given input (¢, m) € ,a[Rn"l(x) x N, evaluate for each i whether x € U(u;) and whether x
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V(v ). Ifx € Ulu ), output M(S(w)). If x € V(vm, 1), output zero.
Since |J;[U(u;) WV (v, ;)] =R", M’ will halt on every prs-name for a point in
R”. Also, Ey, m(A) < EM(A) U U; V(v,,;). Since AEy(4) =0 and AU; V(v,,;) <27,

AEy: m(A)<27". 1
Some informal discussion of an example may help to clarify the above proof.

Example 3.5.11. Let 4 be the set of real numbers such that the closest integer is unique
and prime, i.e., 4 = (3/2, 5/2) U (5/2,7/2) v (9/2, 11/2) L.... This set is d.m.z. and also
d.i.b., so suppose M decides it correctly except on the boundary {3/2, 5/2, 7/2,..., pi — 1/2,
pi+1/2,...}, and that M does not halt on that boundary. We wish to see how the machine
M of the preceding proof might proceed, given input (g, m) € pR‘l(x) x N,
First, M begins constructing the sequence U(u;) of open rational intervals where
M halts (that is, it computes the indices of these intervals). When these fill or nearly fill
the interval [-1, 1], M constructs a finite string v,, | representing a very small open set
V(vm 1) that covers any gaps within [—1, 1] that the sets U(u;) have not yet filled. Here
V(vm,1) will likely be empty, since M halts everywhere on [-1, 1]. Note that this
construction is independent of the input ¢.
At this point A’ might check whether pr(x) lies in either U(u1) or ¥(vm,1). This is
done in finite time by checking whether any interval ﬂfzo I, is a subset of U(uy) or

V(vim1). In the former case, M then applies the algorithm of M to S(u;) and outputs the
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result. In the latter case, pr() lies within a permissibly small error set, so A just
outputs zero, willy-nilly.

If neither case holds, then M’ proceeds on, counting the sets U(x;) needed to fill or
nearly fill [-2, 2], and constructing an even smaller set ¥(v,,2) covering [-2, 2]\ U; U(w).
In the present example, M will not halt on 3/2, so the set V(vx2) will likely consist of one

small interval such as (3/2 = 27""%,3/2 + 27™=%). M then checks to see whether some
ﬂ{:o I 4 lies entirely within U(u,) or ¥(vs2), and if so, generates output accordingly. If
7

not, these steps repeat until, for some j, ﬂlj:l 14 is found to lie entirely within some U(u;)

or V(vy, ).

To conclude this section, we introduce localized and globalized versions of -
d.m.z. These will provide a sense in which the behavior of a particular system in a

particular state might be called undecidable, to be discussed in subsequent chapters.

Definition 3.5.12. (i) A set 4 ¢ Xis decidable up to p-measure zero (u-d.m.z.) at a point
x € Xif there exists a machine M and an open set U € 7x such that x € U and #E (M) N
U]=0.

(ii) A is everywhere p~-d.m.z. if 4 is p-d.m.z. at every point x € X.

(iii) 4 is somewhere p-d.m.z. if A is pg-d.m.z. at some point x € X. Otherwise, 4 is

nowhere p-d.m.z.
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Clearly z-d.m.z. implies everywhere z~d.m.z. and somewhere p-d.m.z. However,
the converses fail. Any set with an open subset is somewhere p-d.m.z. (if u is regular) but

not necessarily u-d.m.z.; we will see examples in the next section. Also, everywhere

d.m.z. as defined above does not imply d.m.z. simpliciter, for,

Proposition 3.5.13. There exists a set 4 — R that is everywhere A-d.m.z. but not A-

d.m.z.

Proof. Let K be any non-recursive set of integers and let A = U g [k,k +1]. Then for any

x € R and any bounded open interval U containing x, U N 4 consists of a finite union of
intervals with integer endpoints, so clearly there exists a machine My such that A[E (M)

N U] = 0. Now suppose toward contradiction that 4 is A-d.m.z. Then there is some
machine M such that AE4(M) =0, so for each i € Z thereissomex € (7, i+ 1)and ¢
pR_l(x) such that M(@4) = y4(x). Also, for any non-integer x and ¢ € p;R_l(x), if M(¢)¢
then M(¢) = y4(x) (for suppose not; then by the Topological Use Principle, there is some

open set Vand a y € pr '(y) for each y & ¥ such that M(y)} but M( v) # y4(y), and

therefore AE (M) > 0, contrary to hypothesis). Therefore, in order to decide whether » €

N, one need only look for a finite initial segment r of a name ¢ € p[R_l(x) for some x € (n,

n+ 1) such that M(r){. One will eventually turn up, and when it does, xx(n) = M(r). But

this contradicts the non-recursiveness of K. B
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3.6. Riddled sets
The following definition derives from work in non-linear dynamics (Alexander et
al. 1992, Sommerer and Ott 1993, 1996). Intuitively, a set 4 is “riddled” with holes if it

has holes—that is, portions of A°—with positive measure in every neighborhood of 4.

More precisely,

Definition 3.6.1 (Alexander et al. 1992). A set A ¢ Xis riddled (with respect to a

measure or outer measure 1) if for every open set U c X, iU\ 4) > 0.

Note that for any regular measure 4, i.¢., one that assigns positive value to all open sets,
nowhere dense sets are always riddled with respect to . The converse fails; a riddled
set might be dense, for its positive-measure “holes” need not be open sets. However, a
riddled set is never r.e. open because it is not open.

Because of the topological use principle, riddled sets are not d.m.z. unless they

have measure zero:

Theorem 3.6.2. If 4 < Xis riddled and x4 > 0, then 4 is not z~d.m.z.

Proof. Assume the antecedent, and suppose toward contradiction that 4 is x~d.m.z. and
HE M) =0. Since uA4 > 0, there is at least one x € 4 such that M halts and outputs 1
given some input ¢ € px '(x). Thus the set B= {x |[I¢ € px ' (*)] M(¢) =1} is non-

empty. By the Topological Use Principle, B is open. Because A4 is riddled, /4B \ 4) > 0.
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But for every x € B, there is some ¢ € px_'(x) such that M(#) = 1, so B\ A < E«(M).

Therefore uE (M) > 0, contrary to hypothesis. B

This result makes it possible to show that certain interesting sets of states in
dynamical systems are not d.m.z. (See Chapters 4 and 5.) It also enables us to add the

following result to our study of the logical relations among decidability concepts:

Proposition 3.6.3. There exists a set C — R that is A-r.a. (and, by the way, strongly

recursive) but not A-d.m.z.

Proof. Say a closed interval J is maximal in a set S < R if J < § and for every closed
interval Kc S, K nJ+ 3 = KcJ. (For closed S, the maximal intervals are just the
connected components.) Foralli e Z* letr;=27"" !, We construct a generalized Cantor

set C as follows:
(1) Let Co=1{0, 1].
(i) Foreachie Z',let C; =

Cioi \ U (b 27y, atb 97y,
a,b:[a,b] is maximalin C;_;

(iii) Let C=C;.

Part (ii) dictates that we obtain C; by removing the middle segment of length r;/ 2 from

each of the 2 maximal intervals in C;_,. Hence the limit of this process, the set C, has
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measure 1 — 2Zr; = 1/2. Note C is riddled by construction, so C is not A-d.m.z.

We show now that Cis A-r.a. Given input (@ m) e NY x N, let M examine the
intervals Iy, in turn. Let M output 1 if it finds some maximal interval [a, b] in Cy, +1 and
some /, c (a - 272m+3 b 427+ 3y byt let M instead output 0 if it first finds some
maximal interval [a, b] in cI(CS, ) and some I 4Sa- 272m*3 b4 27@m*3)y  (This can
be done effectively since one can construct the rational endpoints of Cy, + 1 following (i)-
(iii), and we assume that the enumerations {/;} of the rational intervals and {g;} of the
rationals are recursive.) Then any x € Ep; m(Cp+1) must be close to one of the 2" *2
endpoints of C,, + 1, within distance 2°®"* ¥, Therefore AEy; m(Cp+1) < (2" 52"+ Y) =
27D S0, if ACp+1 \C) <27 D, then AEy h(C) <27 D4 27 D= pm

This is in fact the case, for we now show that for all i, A(C;\ C) < 27, Fori=0we
have A(Co\C)=ACo—- AC<1= 20, since AC > 0. Fori> 0 we have A(C;\ C) =
> 11 MC;_1 —C;) = (by construction) ¥7_,, 27/ AC; | < ¥7_,,,27 = 2",
Therefore AEy »(C) <27, so Cisr.a.

The proof that C is strongly recursive is exactly as in the proof of Proposition

3.6.6 below (where it is more important). B

Incidentally, it follows that C€ of the proof is not d.m.z., though since C€ contains
an open set, it is somewhere d.m.z. This confirms the trivial fact that a somewhere d.m.z.
set is not necessarily d.m.z.

To complete our study of logical relations among decidabilities, we exhibit a set
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that is strongly recursive, and hence TTE-recursive, A-decidable, and d.i.b, but not A-r.a.
This is done by varying the construction of the above set C so that AC is a non-

computable number. We will use two lemmas:

Lemma 3.6.4 (see Ko 1991). If S c R is r.m. then AS is a computable number.

Proof. Assuming S is r.m., let {S,} be a recursive sequence of sets such that for all » €

N, A(S A S,) <27". By Definition 3.5.2 there is a recursive sequence that gives the
endpoints aj, b,..., k), biry of €ach S,. Let M(n) = Zl’;(’l’) b; —a; . Then |M(n)— AS|<

27", Hence pc({M(n)}, <n) = x. Since pc = pR, X is computable. B

Lemma 3.6.5."" Let K = N and suppose y =Y,k 2" is a computable number. Then K

is recursive.

Proof. Case 1: y € D (the dyadic rationals; see Section 3.5). Then y can be written as an
infinite binary expansion in exactly two ways: as (a1.a2a3... a,1 000 ...) and (a;. ax a3
. @n0111...), where eacha;=0or 1. Hence eithern € K foralln>m or n ¢ K for
all n> m. In either case, X is recursive.

Case 2: y ¢ D. Then there is a unique binary expansion (a;.ax a3 ...) of y. By

3.2.7, a number is computable if and only if it is computable with respect to binary

notation. Since y is a computable number, the sequence {a;} of its binary digits is

1 Well known.
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recursive. So to determine whether n € K, merely compute the n™ digit a,. Thenn € K

iffa,=1. 1

Proposition 3.6.6 (cf. Ko 1991). There exists a subset of R that is strongly recursive but

not A-r.a.

Proof.'2 Let K be some non-recursive r.¢. subset of Z*, and let {ki}i ¢ z+ be a recursive
enumeration of K without repetition. Construct C just as in the proof of 3.6.3 but with
{ri ={27%}. Then AC=1-3, ;27" . ByLemma3.6.5, ¥, 2" is non-
computable, and it follows that AC=1-3 27" is non-computable. Therefore C is not
A-r.a., by 3.6.4 and 3.5.3.

To see that C is strongly recursive, we note that C is closed and show it A-
decidable. In particular, we give an algorithm to construct a regular Cauchy sequence ¢
for Ac(x), where Ac is the symmetric distance function for C. To compute each ¢,,
proceed as follows: First construct the finite sequence (a1 =0, b1, az, ba,..., ap, by=1) of
endpoints of C; (where k= 2’). Then find some j such that x is in either (-, 0), (1, ©),
(aj 27 b + 27, or (b, aj+1). These sets are r.e. open and cover R, so x can be
effectively located within at least one of these sets. If x € (0, 0), choose ¢; such that

|qg,+ x| <27 If x & (1, ), choose ¢ such that |1 + g, —x| <27 Ifx e (@27, b;+27),

'2 An example of this general kind was suggested by Matthius Schréder in a personal
communication.
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let g4 =0. Finally, ifx € (b, aj+1), let y = min{|b; — x|, |a;+ 1 — x|} and choose ¢; such
that gy, — 3| <27

Now we merely confirm that | g4 — Ac(x)| <27, Ifx € (-, 0) or (1, ), this is
obvious. Ifx € (¢;-2", aj] or [By, by +27), then g4, = 0 and 27" < Ac(x) <27, 50 | ¢4, —
Ac(x)| <27 Ifx € (aj, b)), then either x € Corx e ([a+ b]/2—-27"" o [a+ b)/2 +
2711 for some points @, b € C and m > i. In the former case, q94,= 0= Ac(x), because
CF is dense. In the latter case, 94,=0<Ac(x) < 2 =2 <2 50 |q4,— Ac(x)| <
27, Finally, if x € (b), a;+1), then y = min{|b; — x|, la;+ 1 — x[} = Ac(x) because b;, a;+1 €

C, so again, |g4 — Ac(x)]<27. o

It follows that neither strong recursiveness, A-decidability, nor d.i.b. implies either r.a.,

d.m.z., or the property of being d.i.b. with a measure-zero boundary.

3.7. Conclusions.

Figure 3.3 sums up the relations among the decidability concepts for subsets of R”
described in this chapter, and two that are not (weak decidability and approximate
decidability are defined in Hemmerling 2003). Bold arrows indicate implications first
established here or in Parker 2003. Other implications are established in Hemmerling

2003 and Hertling 1999.
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A few concepts shown in the graph are accompanied by asterisks. These are
concepts for which the logical relations to other concepts in the graph, or the lack thereof,
have not been exhaustively established here. Other than those marked with asterisks,
properties not connected by a path in the graph are independent. Those independence

results not proved explicitly follow from those proved and the implications proved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

[ ]
Ad*
T9* IT) *
recursively non-riddled \ /
approximable or u=0 A)*
A \ / V\

/ PN 1] re. *
decidable up (r.e. open) closed
to measure 0 decidable

ignoring
boundaries TTE-
recursive
d.i.b. A-decidable recursive recursive
and open closed
Ho=0
weakly *
decidable strongly
recursive

approximately *
decidable

Figure 3.3. Logical implications among notions of a computable set. Asterisks
indicate notions for which additional relations of implication have not been strictly ruled
out. Bold arrows indicate new results. Also, the implication “decidable up to measure

zero = recursively approximable” shown here is only established in R” with Lebesgue
measure, though it naturally generalizes to sufficiently well structured measure spaces.
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CHAPTER 4
RIDDLED BASINS OF ATTRACTION

4.1. Introduction

Two of the main motivating questions for this dissertation are whether there are
actual physical systems that behave non-computably in some meaningful sense, and in
what sense. In this chapter and the next, we discuss certain mathematical models of
physical systems, the indefinite-term (i.t.) behavior of which does exhibit some
significant undecidability. We will want to consider what kinds of properties of them are
undecidable, what kinds of undecidability those properties have, and how realistic or
unrealistic these models are. In the examples at hand, the most significant kind of non-
computability that holds, at least among those we have considered in Chapters 2 and 3, is
the lack of decidability up to measure zero. Let us use ‘non-d.m.z.” as a name for this
property. The cases we consider in this chapter exhibit a particularly strong form of non-
d.m.z.; qualitative properties of the i.t. behavior are nowhere d.m.z. (This is explained
below and formally defined in Definition 3.5.12.) The concepts of d.m.z. and nowhere
d.m.z. serve to clarify some non-computability claims that have been made for such
systems.

We will need some terminology from the study of dynamical systems. A

dynamical system is a kind of mathematical model, usually a model of a physical system,
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but sometimes put to other uses or studied as a purely mathematical object. It consists of
a space of possible states—phase space—and a function ¢ called the flow, by which the

state x at any one instant #, determines the state ¢(x, #) at any other time 7o + t! If pis
defined for ¢ € R, this is called a continuous dynamical system. If ¢ is defined only for ¢

e Zort e N, itis a discrete dynamical system. The flow of a continuous system is
usually determined by differential equations. The phase space often has many
dimensions; it enables one to represent all the variables of a system, such as the 6n
position and momentum coordinates for z bodies, as a single point. The basin of
attraction (or just basin) of a set A of states is the set f(4) consisting of those initial states
from which the system will asymptotically approach 4.2 For our purposes, an attractor is
essentially a set whose basin has non-zero volume in phase space. (We will discuss
attractors a little more below.)

A basin (or any set) is riddled, as in ‘riddled with holes,’ if every open set in
phase space contains a positive-measure portion of the complement of the basin
(Alexander et al. 1992; see our Definition 3.6.1). Riddled basins are like Swiss cheese,

but Swiss cheese so lacey that no piece, however microscopic, is without holes.> Two or

! This implies that the motion of the system is autonomous, i.e., independent of absolute
time. However, even a non-autonomous system can be treated as autonomous by introducing an
additional state variable that just mirrors the march of time. This also adds a dimension to the
phase space. Our main example below from Sommerer and Ott 1996 is just such a case.

? More precisely, let X be the phase space. For any x € X and 4 c X, let d(x, 4) =
inf}, ¢ 4|[x — ||, where |}-|| is a norm on X (the standard Euclidean norm if this is well defined).
Then for any set 4 c X, fJ(4) = {x € X: lim,_, ,d(¢(x, 1), 4) = 0}.

* The “holes” here are not necessarily open spaces; they may be disconnected
mathematical points or infinitely fine cracks, but arranged so that in any small region of phase
space their total volume (measure) is non-zero.
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more basins are said to be intermingled if they riddle one another, i.e., if every
neighborhood containing an element of one basin also contains positive-measure portions
of the other(s) (ibid.). Classical models of physical systems have shown numerical
evidence of riddled and intermingled basins (Sommerer and Ott 1993, 1996; Heagy,
Carroll, and Pecora 1994; Ott et al. 1994, Ott and Sommerer 1994) and some actual
systems have shown observational evidence of riddling, or rather approximate* riddling
(Heagy, Carroll, and Pecora 1994).

A riddled basin implies a kind of unpredictability, since exact initial data are
required in order to determine whether the state of a system lies in such a basin, and
hence to determine the system’s qualitative behavior as time increases without bound.
This sort of unpredictability is quite different from indeterminism such as that involved in
quantum measurement. The models presently in question are completely deterministic:
the state at any one instant determines the state at any other. Their unpredictability is
also different from so-called chaos (i.e., deterministic chaos). The central feature of
chaos is sensitive dependence on initial conditions, the property that for any state there is
another arbitrarily close to it in phase space such that the two resulting orbits will
eventually separate by some prescribed distance (Devaney 1989). This implies that some
finite-term predictions require very precise knowledge of present conditions. In double
contrast, riddled basins imply that some indefinite-term predictions require exact

knowledge of initial conditions (and worse than that: not only do approximate initial

* The evidence there supports a classical model with riddled basins, but of course such
models break down at the quantum level. In that sense the evidence only supports approximate
riddling, or perhaps riddling in the classical limit.
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conditions fail to determine the i.t. behavior definitively, they fail even to determine it
with probability one, as we will see).

Hence sensitive dependence and riddling of basins are seem prima facie
incomparable; neither is obviously more severe than the other because they concern
different prediction tasks. Given some mild conditions, though, riddling is logically
stronger: if two spatially separated attractors have riddled basins that are dense in the
phase space, sensitive dependence is implied, while on the other hand, a chaotic system
may have two separate attractors without riddled basins.” Sommerer and Ott (1993) also
point out an intuitive sense in which riddling is worse. In merely chaotic systems, it often
happens that all orbits are drawn toward one attractor and forever oscillate chaotically
near the attractor. Hence all orbits exhibit the same qualitative behavior. Even if there
are several distinct attractors, the basins may be solid enough that, except in borderline
cases, one can predict which attractor an orbit will approach, given sufficiently precise
but inexact initial data. In that case, the general nature of the long-term behavior is quite
predictable. But when basins are riddled, we cannot determine which one an orbit lies in,
so not only is it difficult to make precise quantitative predictions about what state the
system will later be in, but even qualitative behavior is unpredictable. Without knowing
to which attractor if any an orbit is drawn, it might be impossible to tell, for example,
what kind of oscillations it will undergo or whether it will settle into a particular region of

phase space. Furthermore, in physical experiments, such qualitative properties of the

> The system defined by the so-called two-well Duffing equation is apparently chaotic
and has two separate attractors with non-riddled basins (Sommerer and Ott 1996).
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behavior could not be consistently reproduced, because we could never prepare the
conditions precisely enough to determine the qualitative behavior.

Riddling also implies a kind of computational unpredictability. Any computation
that determines the indefinite-term behavior of a system whose attractors have riddled
basins must actually use the complete exact initial data, which in general cannot be
finitely expressed. In our view of computation, as conceived by Turing and as actually
performed (at least usually), arbitrary real numbers must be represented by infinite strings
of symbols (see Sections 2.3 and 3.2.1). Hence a computer (man or machine) cannot
make full use of exact real-valued initial data in finite time. Even if exact data are in
some sense available, it is impossible to perform a finite computation that depends on
them in a critical way.

On essentially this basis, Sommerer and Ott (1996) argue that the behavior of a
certain system, which seems to have riddled (and intermingled) basins, is non-
compufable. Howeyver, they do not give a rigorous definition of the non-computability
they have in mind. In addition, their results are based on computer-generated images of
the basins. As Sommerer and Ott note, one may ask how these computations can be
trusted if the basins are indeed non-computable. Sommerer and Ott answer this question,
but again in an informal way that we will make precise.

In effect, we have already clarified and bolstered Sommerer and Ott’s non-
computability claim with Theorem 3.6.2: no riddled set with positive measure is d.m.z.
Here we will have a look at Sommerer and Ott’s dynamical system, as well as a discrete

system of simpler construction but with similarly complicated dynamics, to which
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Sommerer and Ott draw an analogy. We will see that their arguments and motivations
are similar to those behind Theorem 3.6.2 and the notion of d.m.z. We will also note
reasons to suspect that for each of the other notions of computable set discussed in
Chapters 2 and 3, either Sommerer and Ott’s basins are computable, or the notion does
not meaningfully apply. In particular, Sommerer and Ott’s argument for the validity of
their own computations suggests that their basins are recursively approximable
(Definition 3.5.1). This explains how they are able to compute reliable graphs of their
non-computable basins, as we will see.

However, Sommerer and Ott do not prove that their basins are recursively
approximable, non-d.m.z., or even riddled, and in this we will not attempt to surpass
them. Instead we prove these things (in the appendix) for the simpler discrete system,
and we also prove that decidability up to measure zero is the only one of the effectiveness
concepts defined in Chapter 3 (except perhaps for the Kleene pointclasses, which we will
not consider) that captures the intuitive undecidability of the basins. We will also discuss
reasons to expect that those results extend to the more complex and perhaps more

physically realistic continuous system.

4.2. Sommerer and Ott’s differential equation

Sommerer and Ott’s (1996) model describes a point particle moving in a two-
dimensional potential, periodically “kicked” by an additional force. The motion is

governed by
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2
X X Iy +asin@i)i, 4.1)
dt2 dr

where x = (x, y) varies over R?, y is the friction coefficient, i is the unit vector in the
positive x direction, a is the amplitude of the periodic force, @/ 27 is the frequency of the

periodic force, and V¥ is the gradient of the potential given by
Vx) = (1-2) + 5’ - p) + by, (4.2)

The parameters s, p, and k& may be varied to obtain a family of potentials. Here we hold
all parameters fixed at Sommerer and Ott’s chosen values: y=0.632, a =1.0688, o=
2.2136, s =20, p = 0.098, and £ = 10.

The periodic force asin(wt) i in Equation 4.1 depends explicitly on time.
Consequently, its solutions do not constitute a dynamical system as defined above, for the
state at time ¢y + ¢ is not determined by ¢ and the state at time #; it depends also on the
value of ty—on the time of day, so to speak. However, we can obtain an autonomous
(time-independent) system by regarding ¢ itself as a state variable, so that a state for the
system is a quintuple (x, y, dx/d¢, dy/ds, ¢). Thus the motion is completely determined by
the initial values of the state variables, and solutions form a dynamical system on a phase
space with five dimensions, corresponding to these five variables.

Intuitively, the system can be visualized as a marble rolling around on the curved
surface described by V(x): a deep well with two dips in the bottom, flanking the y-axis,

and a small bump between them. (See Figure 4.1.) To incorporate the periodic force,
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X
-2.475

(b)

Figure 4.1. Sommerer and Ott’s forced potential. The equations describe the motion
of a marble rolling on this surface as the surface periodically rocks left and right. Part (a)
shows the potential 7 unaltered (except for the flattening at the top of the graph, which is
an artifact of the graphing utility). Parts (b) and (c) show close-ups of the potential with
rocking.
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imagine this surface rocking gently to the left and right. Due to friction, the marble will
tend to settle into one of the two dips, but due to the rocking, it will continue to roll left
and right within that dip, near the x-axis. While friction drags the path of the marble
down nearer and nearer to the x-axis, where the dip is deepest, the central bump
introduces an element of instability; if our marble rolls up onto the bump, it will fall away
from the x-axis.

Simulations suggest that this destabilization can occur no matter how closely the
marble has settled in near the x-axis (as long as it does not begin exactly on the axis with
velocity exactly parallel to it). Typically, two initial conditions that are very close in
phase space result in orbits that remain nearly identical for a brief time, then diverge.
(See Figures 4.2 and 4.3.) The position coordinates in the x-y-plane for each orbit soon
settle down to a nearly one-dimensional oscillation very near the x-axis, perhaps with
both orbits in the left-hand well. Their motion left and right is extremely erratic, driven
by the periodic force but not synchronized with it. Occasionally, one orbit may become
destabilized, swing around wildly in the left half of the plane, and settle down again.
This seems to happen less and less as time passes. Yet at any time, one orbit might
become destabilized, swing all the way into the other well, and settle down there, so that
the once nearly identical orbits now live in separate dips, probably forever.

Given these seemingly unpredictable episodes of destabilization, one might
suppose that orbits never settle down permanently. However, Sommerer and Ott give an
analytic (or at least partly analytic) argument that the system does in fact have two

attractors corresponding to motion along the x-axis in each of the two dips, so a
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(a) I

(b) I

Figure 4.2. Orbits of Sommerer and Ott’s system (I). Position coordinates of two orbits with
very nearby initial conditions are shown. The length of the red bar at the bottom of each graph
indicates time elapsed since the initial states. (a) The two orbits are so similar they are
indistinguishable and are shown as one orbit. (b) The orbits soon diverge. (Continued on next

page.)
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Figure 4.3. Orbits of Sommerer and Ott’s system (II). (c) Both orbits soon settle down very
close to the x-axis, shown only by the straight red line on the x-axis. (d) After a long time, one
orbit becomes erratic and escapes to the other attractor, where it will probably stay. Thus two
nearly indistinguishable initial states result in orbits approaching different attractors.
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significant portion of orbits do settle down for good. Here, ‘attractor’ is used in a sense
similar to that of Milnor (1985): an attractor is essentially a set whose basin of attraction
has positive Lebesgue measure. (Sommerer and Ott also specify that an attractor must be
a compact set with a dense orbit. This is slightly different from Milnor’s definition, but
the differences will not matter for us.) Under other, perhaps more standard definitions of
attractor, all points near an attractor must lie in its basin, so an attractor cannot have a
riddled basin. Milnor-type attractors are more appropriate to our discussion.

The attractors for Sommerer and Ott’s system lie in the three-dimensional subspace
where y = dy/dz = 0, corresponding to marbles that roll along the x-axis exactly. This
subspace is an invariant manifold: orbits within it stay in it. (This follows immediately
from Equations 4.1 and 4.2.) Orbits within this manifold form a dynamical system all
their own, governed by the much studied two-well Duffing equation,

d*x  dx

S7 g =3P =asin@), (4.3)

which we obtain by substituting 0 for both y and dy/df in equations 4.1 and 4.2. The
authors make use of two facts about this subsystem that are apparently well known and
are confirmed by their simulations (though the present author does not know whether
they have been proven analytically): (1) It has two attractors, corresponding to the two
dips, relative to the invariant manifold (i.e., sets whose basins of attraction have positive

three-dimensional volume within that manifold). (2) Motion on these attractors is
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chaotic.® Given these assertions, they then argue analytically that the two attractors of the
subsystem are also attractors for the larger original system, so many orbits within the
five-dimensional phase space are drawn to the attractors within the invariant manifold.”
That is, in many cases our marble is eventually trapped in one or the other dip.
Numerically approximated graphs illustrate the basins of the attractors (Figure 4.4). Both
of the basins seem to occupy significant portions of each neighborhood in phase space,
suggesting that they are intermingled (and therefore riddled). For the discrete system

discussed below, we will prove (in the appendix) that the basins are intermingled.

4.3. Undecidability in Sommerer and Ott’s model

Sommerer and Ott infer from their simulations that their basins are riddled and
that therefore a computation must make full use of exact initial data in order to determine
membership in one of these basins. They conclude that the basins are non-computable.
They write in their introduction, “[E]ven if the location of an initial condition is available
with infinite precision, it is not possible, on the basis of any finite computation, to decide
with certainty in which basin the initial condition lies” (244). Yet, this statement fails to

specify for how many initial states such computation is impossible. If the claim is that no

% Sommerer and Ott do not specify the precise sense in which the attractors are chaotic,
but they make use of a theorem (due to Alexander et al. 1991) that requires a particular kind of
chaos. The conditions of the theorem require that the attractor is ergodic with respect to some
invariant probability measure on that attractor. Perhaps this is known to hold for the two-well
Duffing equation, but Sommerer and Ott make no case for it in their 1996 paper.

" They show that the Lyapunov exponents transverse to the invariant manifold are
negative and then appeal to a theorem of Alexander et al. (1991) that if the attractors are chaotic
in the sense of footnote 6, these Lyapunov exponents imply that the attractors for the invariant
manifold are also attractors for the larger system.
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Figure 4.4. Sommerer and Ott’s intermingled basins (Sommerer and Ott 1996).

Slices of the five-dimensional phase space of the dynamical system defined by Equations
4.1 and 4.2. The attractors intersect these planes along the x-axis. For each initial
condition in each 760 x 760 grid, Sommerer and Ott simulated an orbit until it came
within 107 of an attractor, with phase space velocity transverse to the attractor less than
107°. Initial states leading to the left attractor were colored black, and those leading to the
right attractor, white. Blow-ups (b) and (c) of the insets in (a), and blow-up (d) of the
inset in (c), suggest that the basins are intermingled.
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algorithm can decide which basin any state is in, this is false; the algorithm “output yes”
will correctly decide some initial conditions, unless the basin in question is empty. If the
claim is that no single algorithm correctly classifies all initial conditions, this is trivial; it
is just the lack of what we have called naive decidability (Definition 3.3.5), a property
enjoyed only by the empty set and the entire phase space. Some more specific
quantification of the supposed undecidability is required.

What actually makes the undecidability of their example strong is the fact that the
basins and their complements both have positive measure in every neighborhood.
Therefore, in virtue of the Topological Use Principle (Section 2.4, Proposition 3.2.17),
any algorithm will fail to decide membership in the basins correctly not just in a few
isolated cases, but on a set of cases with positive measure; the basins are not decidable up
to measure zero. This is our Theorem 3.6.2: No riddled set with positive measure is
d.m.z. Note that Sommerer and Ott’s intuition that an algorithm cannot actually use
infinitely precise data about the position of a point is essentially the Topological Use
Principle, the main insight used to establish Theorem 3.6.2.

Sommerer and Ott’s concern with measure suggests that they had in mind a
concept of computability very much like d.m.z., or that they might have come to such a
notion if persuaded of the need to clarify theirs. One particular passage further supports
this point. Regarding the unavoidable errors in their images of the basins, Sommerer and

Ott write,

[W]e estimate that even for the highest magnification shown in [Figure 4.4],
fewer than 1% of the initial conditions are erroneously ascribed to the incorrect
attractor. Longer computer runs and greater precision in the computation would
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allow us, at least in principle, to make the error rate arbitrarily small; no finite
amount of computation, however, could reduce the error rate to zero for any
system with intermingled basins. (249)
This reference to a percentage suggests a concern with the measure of the set of initial
conditions incorrectly classified. Their distinction between arbitrarily small error rates
and an error rate of zero suggests the distinction between r.a. and d.m.z. Even this quote
leaves some room for sharpening, but it at least hints at something /ike a lack of d.m.z.,
and in any case, non-d.m.z. is one rigorously defined notion of undecidability that does
follow from intermingling.

Yet, Sommerer and Ott’s basins seem to have an even stronger undecidability.
We say a set 4 is d.m.z. at a point x if for some neighborhood U of x, U " 4 is d.m.z.
(Definition 3.5.12). Intermingled disjoint sets are not d.m.z. at any points in those sets.
Now, Sommerer and Ott assert that their two basins fill the entire phase space up to
measure zero (245). This is not obvious; the shape of the potential " makes it clear that
there is no attractor at infinity, but this does not rule out the possibility that a non-trivial
portion of orbits never permanently settle down to either attractor. Still, it is plausible,
and we will show that the basins of an analogous discrete system do fill their phase space
up to measure zero. In any case, Sommerer and Ott’s simulations at least suggest that
every neighborhood of the phase space for their continuous system contains positive-
measure portions of both basins, and if so, the basins are nowhere d.m.z. (This too we
will prove for the analogous discrete system.) This means that no algorithm can reliably

decide a basin even within a particular arbitrarily small neighborhood. We will return to
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this point in the next chapter.

Most of the other notions of effective set that we have discussed in Chapters 2 and
3 do not meaningfully apply to Sommerer and Ott’s basins. Assuming that the basins are
indeed intermingled, the TTE notions of strongly recursive, recursive open, recursive
closed, r.e. open, H? , and r.e. closed sets all fail, but for the most trivial reason: the
basins are simply not open or closed. They are not open because every open set
(apparently) contains portions of the basins’ complements, and they are not closed
because their complements are not open—every open set contains elements of the basins
themselves. The basins are also trivially A-decidable and decidable ignoring boundaries.
If indeed they permeate every open set, then the symmetric distance function for each
basin £ is just the constant function Ag(x, y, dx/dz, dy/dt, f) = 0, which is of course
computable. Further, the interiors and exteriors of the basins are empty, so they are
trivially r.e. open, and therefore the basins are d.i.b. To put it another way, the boundary
of each basin is everywhere, so ignoring boundaries is ignoring the entire phase space.

None of these effectiveness concepts is of much use here.

4.4. Recursive approximability in Sommerer and Ott’s model

In all likelihood, though, Sommerer and Ott’s basins are also recursively
approximable, and this does have some significance. It implies that we can learn
something about the basins by means of computation, despite their non-computability
properties.

Sommerer and Ott provide an informal argument more or less to that effect,
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though they do not use Ko’s term ‘recursively approximable’ nor establish a similar
mathematically precise concept. To generate Figure 4.4, Sommerer and Ott compute, for
each of more than two million initial states, an approximation of the resulting orbit,
which they extend until the approximated orbit comes very near to one of the attractors.®
(This can be done with any desired accuracy, thanks to the constructive existence and
uniqueness theorem for solutions to differential equations that satisfy the Lipschitz
condition; c.f. Earman 1986, 117.) They then color the pixel corresponding to the initial
state black or white, depending on which attractor the orbit comes near. Thus they
compute images of sets that are supposed to be non-computable! The irony is not lost on

them, and they respond as follows:

One may ask what is the value of computer generated pictures such as
those in [Figure 4.4], if proximity to an attractor is not a sufficient condition to
determine whether or not the orbit is really destined to limit on the attractor.
...[W]e note that previous results [Ott et al. 1993, 1994] on how the measure of a
riddled basin scales with distance from the basin’s attractor allow us to estimate
the probability of making an error in drawing the computer pictures of [Figure
4.4]. Consider a line segment parallel to, but a distance d away from, the
invariant manifold containing the attractor whose basin is riddled. The fraction f
of the length of that segment that is not in the basin of the attractor scales as f~
d’, where n > 0 is [a constant] given in terms of the (finite-term) Lyapunov
exponents. Thus, the closer one gets to the attractor, the greater the probability
that one is in its basin. Therefore, when one carries out a numerical simulation,
one can quantify the confidence in an initial condition belonging to the riddled
basin if its long-time image lies very close to the attractor. ...Longer computer
runs and greater precision in the computation would allow us, at least in principle,
to make the error rate arbitrarily small... (1996, 248-249)

¥ They also require that the orbit’s phase space velocity in the directions perpendicular to
the invariant manifold is very small before they terminate a simulation. Yet, given the rationale
for their technique, which we will discuss, that condition does not seem to be critical.
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Thus they argue that there is a procedure to decide membership in the basins with as
much statistical accuracy as one likes, short of 100 percent. This is the central feature of
recursive approximability. They also distinguish (in the previous quotation) between this
near-computability and that which their system lacks: the possibility of deciding the
basins with exactly 100 percent accuracy. (The important distinction they do not mention
is that between 100 percent accuracy with respect to volume and perfect accuracy, point-
for-point, which is only possible for the most trivial sets.) Hence r.a. seems to explicate
their claims that approximate computation is possible. (This also shows that when they
claim that the behavior is undecidable, they do not mean in Ko’s sense, that of being non-
r.a. Another notion is needed to capture their intuition, namely d.m.z.)

The validity argument they sketch above proceeds mainly by analogy, and though
it certainly establishes the plausibility of their claim, there are some fine details worth
considering. Sommerer and Ott refer to previous results, mainly from Ott et al. 1994, of
two kinds: other numerical simulations on other continuous systems similar to the one at
hand, which are open to the same questions of validity as the simulations presented in
1996, and analytic results in for discrete-time systems that also exhibit riddled or
intermingled basins. Ott et al. (1994) find that for their discrete examples with riddled
basins, and apparently (by numerical simulation) for the continuous ones as well, the
complement of a basin dwindles near the corresponding attractor in proportion to a power
of the distance, as Sommerer and Ott’s formula '~ d” indicates. They conjecture that
such scaling according to a power law is universal for systems with riddled basins (1994).

This is not strictly true, and even in the case of one of their discrete systems it is a kind of
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simplification (see footnote 10), but it does seem plausible that for any one particular
system with riddled basins there will be some rule governing the way in which basins
scale near the attractors. After all, an orbit is surely more likely to approach an attractor
if it is near the attractor than if it is far away, at least in general.

Though, even if this holds for Sommerer and Ott’s system, a fully detailed proof
that the graphs are largely accurate would involve another a step. Sommerer and Ott’s
argument suggests that if an orbit comes very near to an attractor 4, this is strong
evidence that the initial condition lies in the basin 4(4), relative to a probability measure
on all initial conditions. Yet, even if most states near A4 lie on orbits that tend toward 4 in
the limit, it could be that a disproportionate measure of initial conditions in the full phase
space lie on those orbits that come near 4 but later escape. In that case, the fact that an
orbit approaches 4 would be very little evidence that the initial state from which it was
computed lies in A4). To complete the argument, some additional condition is needed.’
Nonetheless, it is true (and proven) that for the simpler discrete systems of Ott et al.

1994, having an orbit that comes very near to an attractor is very strong evidence that the
initial condition lies in the corresponding basin, and this does lead us to a proof, quite
along Sommerer and Ott’s line of thinking, that the basins are r.a. We will discuss this in
the next section.

Assuming now that the basins for Equations 4.1 and 4.2 are indeed r.a., this

® Let B(4, &) = {x: d(x, A) < &} and 1 = Lebesgue measure. One condition that would
complete the argument is A5(A)/A{x: (3t € R) ¢(x, t) € B(4, &)} = A[(A) N B4, &))/Af4, &). In
the appendix we prove a similar condition (the Independence Lemma) for the discrete system of
Ott et al. 1994, and it seems plausible that some such condition could hold for the continuous
system.
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provides one clear sense in which graphs of them could be made arbitrarily accurate. As
noted in Section 2.7, r.a. implies that there is a method to construct a pixelated graph of
the set where the measure of the set of points (not pixels) incorrectly colored is as small
as we like. Here we think of each pixel as an open rectangle of exact points, and the error
set that we claim can be made arbitrarily small consists of the points, within the pixels,
that are inappropriately colored. This is apparently not what Sommerer and Ott mean
when they claim that the error rate for their graphs is less than one percent. They choose
just one point in each pixel and simulate its orbit, so presumably they mean that less than
one percent of those chosen points are incorrectly colored in their graphs. However, Ott
et al. also find that in the discrete systems, the probability that points near to one another
go to different basins decreases as a power of the distance between them (1994, 392).
Hence, even by Sommerer and Ott’s graphing method, the color of a pixel might
accurately represent the majority of points in the pixel, if the pixels are small enough. In
any case, if the basins of Sommerer and Ott’s system are r.a., as they seem to be, then
there is a method by which one could in principle effectively generated graphs that are
arbitrarily accurate with respect to measure, despite the undecidability of the basins.

Thus the distinction between r.a. and d.m.z. accounts in a precise way for the possibility

of computing graphs that themselves suggest non-computability.

4.5. The discrete-time system of Ott et al. 1994

Ott et al. discuss two discrete systems in the 1994 paper. We will consider the

one studied in their appendix, which is more similar to Sommerer and Ott’s continuous
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system in that it has two bounded attractors with intermingled basins. Sommerer and
Ott’s argument for the validity of their simulations proceeds largely by analogy with this
and similar discrete systems, as does our reasoning that the basins are likely r.a.
Therefore we wish to see, in general terms, why the basins of this system are r.a. but not
d.m.z., how general this behavior is, and how this system is similar to their continuous
system.

We will actually discuss a slight variation on the system of Ott et al. Since we are
concerned with the extent to which results about this system generalize to other systems,
it behooves us to generalize Ott et al.’s constructions slightly. At the same time, we must
impose some minimal computability conditions in order to obtain recursively
approximable basins.

Our version of the system consists of iterations of a non-invertible map ¢ on the

rectangle X = [0, 1] x [-1, 1] with the following general properties:

(i) The effect of @ on y-values is to take them toward 1 or —1, depending on x.

(ii) The effect of @ on x-coordinates is a stretch-and-fold operation similar to the
Bernoulli shift map ¢(x) =2x mod 1. Hence motion in the x-direction is
effectively random, in a sense to be clarified below.

As aresult of (i) and (ii), the motion of the y-coordinates will switch directions at
random. Nonetheless, we will construct ¢ so that the upper and lower edges of X,
namely 4_=[0, 1] x {1} and 4+ =0, 1] x {1}, turn out to be attractors.

To do this, we choose a computable function o [-1, 1] — (0, 1) defining a curve

x = o(y) that divides the rectangle X into left and right sections. (See Figure 4.5.) To
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Figure 4.5. A discrete-time dynamical system with intermingled basins. Based on
Ott et al. 1994. Part (a) shows the domain of the map ¢ with schematics of the functions
a and ffrom which @ is constructed. Part (b) shows the operation of ¢ on a horizontal

line segment: the left portion is stretched and lowered while the right portion is stretched
and raised.

facilitate the proofs, we assume that for y greater than some y*, a(y) is a constant a+
strictly between 0 and 1/2, and for y <—y*, o(y) is a constant & _ strictly between 1/2 and
1. We also choose a computable bijection f: [-1, 1] = [-1, 1] such that /'(y) — 1 and
f7(v) > -1 as i > «. Now consider a horizontal line segment [0, 1] x {y} across X. Our
function @ maps the left portion [0, a(y)) x {y} of that segment downward onto [0, 1) x
{# ()}, stretching the x-values out linearly by a factor of 1/a(y). Similarly, it maps the
right-hand portion [a(y), 1] x {y} upward onto [0, 1] x {f{y)}, stretching the x-values by a

factor of 1/(1 — a(y)). For a given point (xo, yo), we let (x,, y») denote ¢"(xo, yo). A more
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formal definition of @ is given in the appendix (Definition A.1).

In Chapter 2, we discussed the probabilistic motivations for our measure-theoretic
decidability properties, r.a. and d.m.z. In this section we are interested in whether these
properties hold of certain sets, specifically for the standard two-dimensional Lebesgue
measure. However, we will first have to consider the one-dimensional Lebesgue measure
of certain subsets of horizontal line segments, and it is helpful to regard that measure as a

probability. When we refer to the probability that a property P holds of an orbit {(xy,

¥Yn)}n e N, We mean, for some fixed y, the measure of the set of values xp such that P({(x,,

Yn)}n en) holds (Definition A.4). We are not concerned here whether this notion of
probability is physically meaningful; it is just a tool for thinking about Lebesgue
measure.

Under iterations of ¢, motion in the x-direction is random in the sense that the
probable value of x, is independent of the “coarse-grained history” of the preceding
values x; with respect to the partition imposed by the line x = a(y). More precisely, let H
be a set of natural numbers and let H, be the statement that for all i <n, x; < a(y;) if and
only if i € H (cf. Definition A.2 in the appendix). Then for any measurable subset S of
the interval [0, 1], the probability that x,, is in S is completely independent of H,,; in fact,

it is just the measure of S. That is,

Pr(x, € S| Hy) = Pr(x, € S) = 4S.
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(Cf. Lemma A.5.) Consequently, motion in the y-direction is also random, but in a
different sense: the y-values form a Markov chain. That is, the probable value of y,

depends only on y,_, and not on any previous values of y; given any » constants yq',

y1',...,y,,_1 (S [—1, 1],
Pr(yn=yu' |30=Y0s V1 =315 s YVn-1=Yn-1) =Pt =ya" | yn-1=yn-1").

The y-motion is equivalent to a “random walk” over the values f° ‘(»), with the probable
direction of each n™ step determined by o(y,). (See Lemma A.9.)

Despite this erratic motion in the y-direction, the extreme horizontals 4, and 4_
turn out to be attractors in the long run. This is just because, by our choice of the curve
a, orbits near an attractor are more likely to move toward it than away. If an orbit moves
even closer to the attractor, it becomes less likely that it will ever move away. In fact, all
but a measure-zero set of orbits eventually approach one of these attractors (Lemma
A.17).

Because « is constant near the attractors, we are able to show in the appendix that
(for a given yy) the probability that an orbit will ever recede from a given attractor
decreases in a very regular way as the orbit comes closer to the attractor (Corollary
A.11). For example, given that y, is above y* by k iterations of f'(or more precisely,

f'c - 1(y*) Sy <f k(y*)), the probability that some later y,, will ever fall below y* decreases
exponentially with £. Hence the probability that (xo, yo) € H(4-) given that y, > f k- 1(y*)

decreases at least as quickly as an exponential function of k. This is a generalization of
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the key step in Sommerer and Ott’s argument for the validity of their graphs,'® and it is
the key step in our proof that the basins are r.a. (Proposition A.21).

That proof is now fairly straightforward. To determine with high confidence in
which basin a point lies, we need only approximate its orbit (making use of the fact that f°
and « are computable) until the orbit comes sufficiently close to one of the attractors. To
satisfy the definition of r.a., we must also ensure that this procedure halts on all initial
conditions. Notice for example that ¢ itself is not computable, since it is discontinuous at
the curve x = a(y). Attempts to evaluate ¢ at points on that curve will not halt, so we
build into our approximation algorithm a clause that says, if ¢"(x, y) ever comes very
close to that curve, just give up, output zero, and halt. This will result in incorrect
outputs, but only for a very small portion of inputs. The full algorithm (excluding details
on how to approximate fand @) is given in the proof. The basins are indeed recursively
approximable.

Nonetheless, they are not d.m.z., because they are intermingled. No matter how
close an orbit comes to an attractor, there is still a small chance it will later defect to the

other side. The probability of taking a step away from the attractor may be small, but it

190tt et al. (1994, 409) obtain a related result for their particular choice of the function
we call £, but their statement appears to contain a typographical error. They use @.(z) for the
probability that an initial state (x;, y;) (they use ones instead of zeros here) lies in f(4_) given that
i is z steps by fabove y = 0. They argue that @.(z) =4 + B(a+ /f+), where A and B are
constants and f; = 1 — .. They then argue that 4 = 0 and conclude, “®,(z) =

B(a, /! B.)* ylﬁ‘f ,” where 77, is another constant. Clearly this should read @.(z) = B(a,/B,)?,

which by their definitions is equal to B(1-y,/1+ 3 )ﬁ”r . Notice that this is not merely a power of

1 —y;, and even the fact that it is a kind of power law in terms of y; is an artifact of their
particular choice of . Our Corollary A.11 is more general.
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has a non-zero minimum, so there is always a non-zero chance of taking many
consecutive steps away from the nearest attractor and toward the other. Once near the
other attractor, the orbit is more likely to tend toward that one. Therefore every
horizontal [0, 1] x {y} contains subsets of both basins, each with positive one-
dimensional measure. Now remember what ¢ does to x-values: it stretches them.
Consequently, even a very small horizontal line segment contains a sub-interval that will
eventually be stretched all the way across X. Therefore, every tiny horizontal line
segment contains positive-measure portions of both basins. If we integrate these over any
small two-dimensional neighborhood, we find that both basins have positive two-
dimensional measure there. Hence the basins are intermingled, and since they permeate
every neighborhood, they are not only non-d.m.z. but nowhere d.m.z. (Propositions A.18
and A.19).

These properties are very general. We have made only very broad assumptions
about our functions fand . Even the assumption that & is constant near the attractors
can now be relaxed. We have assumed for example that the constant «; is between 0 and
Y. This enables us to show that the probability that an orbit will ever recede from 4.
decreases in a very regular way near 4+, and this is true even if @ is very close to %.
Suppose now that a4 is indeed very close to 1/2, and suppose we replace the function «
with a computable function «' that is not constant near 4. but is less than o in that
region. (See Figure 4.6.) This can only mean that the probability that an orbit will ever
recede from A. is even smaller near A.. We can still use our algorithm to determine in

which basin a point most likely lies, and it will be all the more efficient. Yet, provided
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a' has a non-zero minimum, there will still be a positive probability of escaping the
attractor, so the basins will still be intermingled and nowhere d.m.z. Consequently, all of
our results hold for any computable (and therefore continuous) function ', provided
only that a'(1) <% < @’'(-1),and forally, 0 < a'(y) < 1.

We have also assumed that, in a single iteration, ¢ stretches both the left and right
portion of a horizontal all the way across the domain X. This too can be relaxed. As long
as ¢ affects some minimal stretching, so that every small line segment is eventually

stretched enough to include portions of both basins, we still have intermingled basins. In

fact, the particular form of the motion in the x direction does not matter much, so long as

a'(1)
1 /=
3}* [ Y A i
x=a'(y)

Figure 4.6. Generalizing the discrete system. If we replace « with another
computable function a’: [-1, 1] — (0, 1) such that &’ < a4 for y > y*, the basins are still
intermingled, non-d.m.z., and recursively approximable. This holds even for a: very
close to 1/2 and y* very close to 1, so &’ may be any computable function with a'(1) <
1/2 and (by a parallel argument) 1/2 < a'(-1).
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almost all orbits spend some time in regions that are drawn toward a given attractor (such
as x < o(y)) and some in regions that are pushed away (x > a(y)).

In this respect, Sommerer and Ott’s continuous system is very much like the
discrete system. The two attractors have stable regions (the dips in the potential) and
unstable regions (the central hump). Motion near the attractors is chaotic, spending some
time in both the stable and unstable regions. The similarity between the two systems
becomes more striking if we just modify the discrete system a little (Figure 4.7):
translate and bend the rectangle X so that both attractors lie on the x-axis, with the
unstable regions close together. Then produce the mirror image of this figure below the
x-axis. As in the continuous system (looking only at the x- and y-dimensions), we now
have two chaotic attractors on the x axis that are largely stable, but unstable in a small
central region. It seems very plausible that, like those of the discrete system, the basins
of the continuous system are indeed intermingled but r.a. Ott et al. may have over-stated
their conjecture that riddled basins always scale according to a power law near attractors;
in the case of the discrete map ¢, this depends on the particular choice of £. Yet, it also
seems likely that for a continuous system like theirs there will be some rule to the effect
that orbits near an attractor tend toward it, so that, if the differential equations are

sufficiently regular (i.e., Lipschitz) and computable, the basins will be r.a.

4.6. The physicality of Sommerer and Ott’s model

Sommerer and Ott complain that Cristopher Moore’s dynamical systems (which

also are claimed to exhibit non-computable indefinite-term behavior; 1990, 1991) are not
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Figure 4.7. Comparison of the discrete and continuous systems. (a) The original domain X of
the discrete system, with arrows showing attracting and repelling regions of the chaotic attractors.
(b) X translated and folded. (c) A reflection of the result is appended to the system to make the
similarity to the continuous system apparent. (d) A contour graph of the potential ¥ of the
continuous system, showing attracting and repelling regions of the x-axis, where the two chaotic
attractors intersect this graph.
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very “physical,” i.e., not realistic models of physical systems. But is Sommerer and Ott’s
system very physical? Might this kind of unpredictability exist in real physical systems?
There are at least three issues in particular to consider here: (1) Are there likely to exist
systems with roughly the same dynamics? (2) How does noise affect the dynamics? And
(3) do not the model and its computability and non-computability properties break down
at the quantum level?

It is hardly commonplace to stumble on a surface in the shape of the potential V"
steadily tilting left and right with a marble on it. However, it would not be impossible to
manufacture such a system, and accurately enough that its behavior would reflect the
riddled structure of Sommerer and Ott’s basins. What makes this plausible is the fact that
the riddling is structurally stable: it survives small changes in the parameters of the
motion. The relevant variables include the amount of friction, the frequency and
amplitude of the periodic force, and perhaps most significantly, the shape of the surface,
or the potential V. If we were to manufacture a rocking two-welled dish in hopes of
reproducing the erratic behavior of Sommerer and Ott’s model, the shape of the dish
would not have to be exact . The same qualitative dynamics persist over a range of
different potentials defined by varying the parameters. Ott et al. (1994) explicitly report
this for a potential qualitatively different from ¥, and Kan (1993) proves an analogous

result for certain discrete-time systems on the thickened torus 7° x [0, 1]."! We have also

" Specifically he shows that for some & there is an open set of C* diffeomorphisms of the
thickened torus having two attractors with intermingled basins (that is, an open set among the
diffeomorphisms of the thickened torus, all of which preserve the invariant manifolds 7% x {0}
and 7% x {1}).
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seen in intuitive terms that the riddled basins in the discrete system of Ott et al. 1994
persist under many broad variations. Sommerer and Ott (1996) at least suggest that the
same holds for their 1996 continuos-time system, and a handful of simulations conducted
by the present author using the “Phaser” software tend to confirm this.

Intuitively, some insensitivity to the shape of the potential is to be expected, since,
as we have noted, the riddling results from a few of its gross features: the two dips,
which tend to draw orbits in if friction is present, and the central hump, which tends to
destabilize orbits that run near the invariant manifold. Sommerer and Ott emphasize the
importance of maintaining the y-symmetry in Equations 4.1 and 4.2 in order to maintain
riddling, and of similar symmetries in other riddled systems. The symmetry guarantees
the existence of the invariant manifold where the attractors are found, a critical part of the
analysis by Sommerer and Ott and by Alexander et al. (1992). However, even this
symmetry is not strictly necessary. One can always make a change of coordinates that
destroys the y-symmetry without changing the dynamics, or to put it another way, one
can apply nearly any homeomorphism to the system and just let the new dynamics be
defined by applying the same transformation to the old dynamics. The new basins would
just be the images of the old basins, and if the homeomorphism preserves sets of positive
measure, riddling is maintained. So the important thing is not the symmetry per se but
having a chaotic attractor in an invariant manifold. Yet, perhaps even an attractor that is
not strictly contained in an invariant manifold could also generate riddling. That remains

to be seen.
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The rocking of our fabricated surface would not have to be exactly as prescribed
by Sommerer and Ott’s equation either, in order to generate riddled basins. The
important thing there is that it should keep the marble moving left and right chaotically.
Just about any oscillating force with approximately the right direction, amplitude, and
frequency would surely suffice.

Of course, our real interest is not in marbles on strange surfaces, but in systems in
general with qualitatively similar behavior. Heagy, Carroll, and Pecora (1994) have
observed an actual electrical circuit, the behavior of which shows clear evidence of a
riddled basin with positive measure, or at least an approximately riddled basin. That
basin is apparently somewhere d.m.z. (Definition 3.5.12), but not d.m.z. on the whole, at
least insofar as it really is riddled. Ott and Sommerer (1994) suggest that riddled basins
might also occur in some chemical reaction-diffusion systems.

Noise is another real-world factor that undermines models like Sommerer and
Ott’s, and this does have a major impact on the dynamics. Ott et al. suggest that low
noise would have the effect of disturbing even those orbits that would otherwise have
settled down to an attractor (1994, 392). There would still be an appearance of riddled
basins, but they would not really be basins of attraction as almost no orbits would
approach an attractor in the limit. Rather, almost all orbits would behave in the same
general way, forever jumping from one near-attractor to the other, so the qualitative
behavior would become trivially d.m.z. Heagy et al. observe in their circuit that the

power-law scaling of the (apparent) basin levels off very near the (apparent) attractor, and
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they attribute this to noise. True riddling, it seems, is reserved for truly isolated,
deterministic systems.

Further, these models and their basin structure seem to break down at the quantum
level. A basin is only really riddled if even the smallest neighborhoods of phase space
contain positive-measure portions of its complement. Computability, and in particular
d.m.z., is also an absolute, ideal concept, and whether or not a set is d.m.z. depends on
arbitrarily small details of the set’s structure. If riddling is to be the basis of non-d.m.z.
character, there must be no scale at which the riddling ceases. For extremely tiny
differences in initial conditions, quantum mechanics predicts behavior quite different
from that observed at the macroscopic level, and even the general framework of precise,
unique positions and velocities represented in a finite-dimensional phase space becomes
inadequate. Whether quantum mechanics permits any undecidability related to non-
d.m.z. lies a little outside the scope of this project, but we will touch on it again in
Chapter 6, where we consider more deeply the question of undecidability in real systems.

Regardless of this question of physicality, the concept of d.m.z., or non-d.m.z.,
captures a kind of undecidability manifested in some natural physical models of a very
conventional kind—systems of smooth ordinary differential equations. Furthermore, it
clarifies just what kind of undecidability systems like Sommerer and Ott’s—systems with
riddled basins—have. D.m.z. is the only one of the many decidability concepts we have
reviewed that fails for their examples in a non-trivial way. The argument that Sommerer
and Ott’s basins are non-d.m.z. reflects those authors’ own reasons for claiming non-

computability, while it also distinguishes that non-computability from both the trivial
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“naive” non-computability common to almost all sets and from the non-trivial

computability that their basins do seem to have: recursive approximability.
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CHAPTER 5

FURTHER RESEARCH AND CONCLUSIONS:
THE KAM TORI, THE STABILITY OF THE SOLAR SYSTEM,
AND UNDECIDABILITY IN REAL PHYSICAL SYSTEMS

We live in an old chaos of the sun...

Wallace Stevens, “Sunday Morning”

5.1. Introduction

Some further extensions of the research presented in the preceding chapters have
already been carried out but are not yet ready for presentation in their final form. These
include applications of decidability concepts and theorems to nearly integrable
Hamiltonian mechanical systems, with possible implications for the mathematical
problem of the stability of the solar system; a proposed way of extending decidability
properties from mathematical sets to actual physical systems; and an examination of the
significance of undecidability in classical models for our understanding of the actual

world. Some of the results of that research are summarized here.

5.2. The KAM tori and the stability of the solar system

The most noteworthy application so far of the concept of decidability up to

measure zero is to the infamous problem of the stability of the solar system discussed in
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Chapter 1. As noted there, some have suggested that this problem may be undecidable
(Moser 1978; Wolfram 1985, 2002), but without articulating an appropriate non-trivial
meaning for this claim.! The concept of decidability up to measure zero fills this gap. In
fact, KAM theory (named for its originators, Kolmogorov, Arnol’d, and Moser), provides
strong reasons to suspect that the stability of planetary systems and many related
problems are not decidable up to measure zero. It shows that for certain dynamical
systems (“nearly integrable Hamiltonian systems”), including idealized planetary
systems, many possible initial conditions result in bounded orbits confined to tori in
phase space.” For a single system of the right kind, these tori form what Moser calls “a
set of positive measure...but a complicated Cantor set” (1973, 8). Like the generalized
Cantor set that we saw as an example of a non-d.m.z. set in Chapter 3 (Theorem 3.6.3),
the union of the KAM tori has positive measure, is riddled, and is therefore not decidable
up to measure zero. Any algorithm to decide whether a given point lies on one of the
KAM tori will fail in a non-zero percentage of cases.

The fact that the KAM tori for a given system are not d.m.z. does not directly

imply that the stability of planetary systems is similarly undecidable. This depends on

! Arnol’d does articulate a more concrete decidability question, but of a rather different
kind from that considered here and for a different class of stability problems (Browder 1976, 59).
He develops this further in a letter published in da Costa and Doria 1993.

2 A torus is essentially a doughnut surface, but possibly of higher dimensions. It can be
constructed by identifying, for each coordinate, any two values that differ by an integer multiple

of some particular, specified, positive real number £, so that (xi,..., Xmy--., X0) = (X1yeney X + £,
x,) for any m € {1,..., n} and any x,..., x,. Note that after these “identifications” are made,
addition and subtraction of coordinate values still make sense (since if @ and a' differ by a
multiple of &, and if b and &’ also differ by a multiple of &, then so do @ + b and &' + b’ as well as
a—banda’ —b'. An n-tuple of angle measures ranges over a torus.
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the behavior of those orbits that do not lie on the KAM tori, about which little is known.
However, it is known that some escape (Arnol’d 1966), and it would be quite surprising
if each of these did not take with it some open set of nearby orbits.” If indeed the full set
of stable orbits for a given planetary system has positive measure (as we know it does in
some cases) and is riddled with escaping orbits, then it is not d.m.z. In that case we can
conclude that the stability of planetary systems is undecidable in this precise sense.

The KAM tori for a system are computable in most if not all other senses, at least
if all of the parameters and coefficients in the equations governing the system are
computable. The tori are explicitly constructed by an iterative process (Arnol’d 1963) of
removing open sets, much like that by which a Cantor set is constructed (see the proof or
Proposition 3.6.3). As in the latter case, this iterative process itself provides a means of
deciding membership in the KAM tori up to an error set with arbitrarily small measure,
witnessing that the union of the tori is recursively approximable. The gaps between them
are r.e. open, and their interior is empty, so they are d.i.b. They form a closed set, and the
distance to the nearest KAM torus is computable, so they are recursive closed and even
strongly recursive. All of this holds, that is, provided the parameters and coefficients
involved in the construction of the tori are computable. In the case of a planetary system,
for example, the relevant parameters are the masses of the bodies and the gravitational

constant. However, even if these quantities are not computable numbers, the union of the

? The suggestion intended here is not that the set of escaping orbits is open but that it is a
regular closed set, i.e., the closure of its own interior. In the two-body case, for example, there
are bounded elliptical orbits (elliptical in the space of positions, that is), escaping hyperbolic
orbits, and “between” these (in phase space), a boundary of parabolic orbits that also escape. The
phase points corresponding to the elliptical and parabolic orbits form a regular closed set.
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KAM tori is at least r.a., d.i.b., and strongly recursive relative to such parameters. That
is, there exist algorithms that satisfy the definitions of those computability concepts if
provided access to the parameters for reference, in addition to the initial conditions.

Whether or not the stability of planetary systems is ultimately d.m.z., the fact that

the KAM tori for a given system are not d.m.z. is a meaningful undecidability result for
an important area of mathematics, and along with the positive decidability properties of
the tori, it clarifies the precise senses in which stability problems may be rigorously
unsolvable. It also illustrates the usefulness of d.m.z. in bringing undecidability to light
in cases where the other concepts do not. The fact that any proposed decision procedure
for the KAM tori of a system will fail on a positive-measure set of cases is an insight that

none of the other concepts of computable set facilitates.

5.3. Decidability for real physical systems

Some authors seem to suggest not only that certain classes of mathematical
models have undecidable indefinite-term behavior but that the behavior of certain actual
physical systems might be undecidable. We have made some progress in understanding
what it could mean for a continuous mathematical model to exhibit undecidable behavior,
but can we somehow apply these ¢oncepts to actual systems? After all, decidability as
we have understood it so far is a property of sets—abstract mathematical objects—
whether sets of formulas, integers, or (for appropriately relaxed concepts of decidability
like d.m.z.) points in a continuous space. Can we make sense of the idea that some such

decidability or undecidability lies in real systems out there, and is not just an artifact of
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our favorite model? Also, the claim that there is actual undecidability and consequent
unpredictability in the world seems to assert that some individual system in a particular
state is computationally unpredictable. Usually, undecidability means that there is no one
algorithm to decide whether an object is in a given set in all or (for non-d.m.z. or non-r.a.
sets) most possible cases. (The “possible cases” would be natural numbers, points in a
space, or in general, the objects in some superset of the set in question.) Can we
somehow make sense of undecidability for a single system, where there is only one initial
state to be classified? Finally, even given all of this, what can we make of the
undecidability results we have obtained? Is it not the case that all of our models are
inaccurate anyway? And is not undecidability in classical systems immaterial if the

world is ultimately non-deterministic at the level of quantum mechanics?

5.3.1. Mathematical properties of real systems

As Myrvold writes, “It is, after all, theories, not things, which are formulated
mathematically, and to which mathematical notions such as computability and
constructivity apply” (1995, 33-34). (“Theories” here refers not to sets of sentences in
formal languages, but to mathematical models like dynamical systems.) This is strictly
true, but there is a way in which mathematical properties might reasonably be attributed
to real physical systems, provided a certain amount of physical realism. The idea applies
more precisely to collections of possible states for classes of similar systems—similar,
that is, in their dynamics but varying in their initial conditions and perhaps in some

features of their dynamics, corresponding to parameters.
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Suppose we are concerned with a particular class of systems, such as systems of
three nearly spherical bodies in otherwise nearly empty space. Suppose that such systems

have certain physical properties—their “states”—that are naturally correlated with points
in R" by means of some physical measurement procedure. Suppose also that there are

facts about how such systems would behave if they were in various states. Then we
could reasonably say that a collection of states “has” a mathematical property P if the
corresponding set of points in R" has property P. Thus we might say, for example,

that stability is non-d.m.z. for physical systems of three bodies (not just models) if the set
of those states that would lead to escape or collision corresponds to a set in R" that is not
d.m.z.

Attaching properties to a class of physical systems in this way does not differ
substantially from attaching them only to a mathematical model, if that model is
sufficiently accurate. However, two features of the proposal justify regarding the
properties as intrinsic to the physical systems themselves: (1) The mathematization of
the states of physical systems is (by assumption) ratural, given by the physical results of
physical measurement procedures. Hence a property of the mathematical points
corresponding to a collection of physical states is not an artifact of an arbitrary
association but a physical fact about the outcomes that would result from certain physical
procedures. And, (2) the collections of states to which we propose to attribute such
properties are not determined by our currently favored dynamical theory, but by physical
facts about how such systems really would behave given various initial conditions.

Hence if a property is attributed to a collection of states in this way, it is not in virtue of
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any arbitrary theoretical choices, but only in virtue of physical counterfactual truths.

This analysis of course involves complications to address, such as the possibility
that different measurement procedures might result in different attributions of properties.
One might also raise generally anti-realist or skeptical objections to the notion of physical
states or the hypothesis of counterfactual truths on which this account depends. Rather
than enter into such issues, we let the analysis (here brief and sketchy) stand as a kind of
framework for associating mathematical properties such as undecidability with whatever
real systems there might be. We merely propose a manner of speaking, not a thesis about
reality. However, remarks like Myrvold’s might have led one to believe that even

assuming realism, one could not meaningfully speak in such a way.

5.3.2. Classes of systems and individual systems

Does it make sense to suppose that problems like that of the stability of the solar
system, of our actual system in its particular state, are somehow undecidable? Perhaps
we can at least make some sense of this. If we have a decision procedure that works for
almost all states corresponding to a particular region of phase space, and the state of the
actual system happens to correspond to a point in that region, then we can say that the
property in question is locally d.m.z. for that particular system. Intuitively, this implies
that in that particular case we can decide with probability one whether the property holds.
If the structure of the KAM tori is any clue, it seems that the stability of a given many-
body planetary system is locally d.m.z. if and only if the system is unstable. In contrast,

Sommerer and Ott’s basins of attraction (1996) are not locally d.m.z. at any point. Even
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within any tiny neighborhood, no algorithm can decide their membership with probability

one.

5.4. The inexactness of models

Do we have any reason to suspect that undecidable behavior of some sort does
occur in actual physical systems? The models in which we have discovered undecidable
behavior are, after all, highly idealized, and d.m.z. is a very subtle property, depending on
the finest details of sets.

However, many of the details of real-world systems omitted by our models may
amount to small perturbations, and the undecidability we have seen might survive such
disturbances. We noted in Chapter 4 that the riddling of basins in Sommerer and Ott’s
systems (1996) survives some variations. The structure of the KAM tori for a nearly
integrable Hamiltonian system also survives some perturbations; it is part of the explicit
content of KAM theorems that the tori persist to some extent as certain parameters are
varied (e.g., Arnol’d’s 4, a factor in the masses of the smaller satellites of a planetary
system; 1963). On the other hand, friction or any kind of dissipation immediately
destroys the Cantor-like structure of the tori (Feudel and Grebogi 1997; Péschel 2001).
However, some invariant tori survive and become attractors, and their basins have a very
complicated structure (Feudel and Grebogi 1997). Perhaps these basins are non-d.m.z.
This remains to be explored.

As previously remarked, these classical models ultimately break down at the

quantum scale. If one takes a reductionist view of physics, any undecidability of the kind

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



179

we have discussed in actual systems must be grounded not in classical models but in the
most microscopic features of the world. One might argue, against such reductionism, that
classical and semi-classical descriptions of the large- or intermediate-scale features of
systems have a legitimacy, explanatory indispensability, and verity of their own.
However, even if not, there may be interesting decision problems within the quantum
formalism. As mentioned in footnote 27 of Chapter 2, Wayne Myrvold (1997) has
considered whether entanglement is a decidable property of quantum states (a problem,
he reports, that came to Abner Shimony in a dream). Myrvold shows that the set of
entangled states in a product space is dense, r.e. open, d.i.b., and (in effect) strongly
recursive.* To determine whether this or any other interesting set of quantum states is
d.m.z. will require some further thought about the appropriate measure to apply, and for
that matter, the appropriate topology.

Though the question is far from settled, these considerations suggest that it is at
least conceivable that some actual physical systems exhibit some genuine undecidability.
It is not prima facie out of the question, and we now have a clearer idea of what we might

mean by proposing it.

* Myrvold does not employ the notion of strong recursiveness, but he shows that the set of
entangled states is r.e. open, the distance to its complement is a computable function, and its
exterior is empty. This implies strong recursiveness.
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5.5. Final conclusions

It has been a very long journey indeed, and we have seen much along the way.
Let us review.

We set out to understand better the limitations of any systematic reasoning or
procedures as applied to the physical world. We stated as a motivating question, “What
can and cannot we learn about the behavior of a physical system by systematic
calculation on the basis of a real-valued model?” Our main concrete goal was to see,
both in the sense of argument and that of illustration, that decidability up to measure zero
is an especially appropriate concept of decidability for application to problems in physics,
and in particular that it is the most significant kind of decidability implied by arguments
like Sommerer and Ott’s, based on the riddled structure of sets.

We considered at some length the value of investigating such undecidability in the
indefinite-term behavior of systems. We compared and contrasted different models of
computation and different concepts of recursive and decidable sets in R”. We saw that,
unlike the other notions, d.m.z. is strong and strict like classical discrete decidability,
appro_priately symmetric with respect to sets and their complements, and well motivated
by probabilistic physical considerations. We saw that behavior of Sommerer and Ott’s
(1996) dynamical system is likely not d.m.z., though it is r.a., enabling one to study it by
means of computations. We stated, without much explanation, that the union of the
invariant KAM tori for a nearly integrable Hamiltonian system is also riddled and has
positive measure. Therefore, such a set is also non-d.m.z., and this undecidability may

well extend to the stability problem for idealized planetary systems (and other systems),
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even while all other kinds of decidability hold. Finally, we briefly suggested ways to
apply our mathematical decidability concepts to actual physical systems, and the
prospects for finding decidability there. We have concluded, if tentatively, that
undecidable behavior in actual physical systems is plausible.

One may wonder what use this observation is in a world that is incomprehensibly
messy and apparently somewhat non-deterministic. One way of characterizing the
insight is to say that even if the world were classical, deterministic, very simple, and well-
described by highly idealized models—even if the world were much more tame than it
is—there might still be simple questions about it far beyond us to answer, far beyond the
reach of any logic or calculation. Hence we should expect complexity and undecidability
in our real world all the more, and even in its tidier parts.

To put it another way, even if there is messiness, chaos, and non-determinism in
our world, there is also another kind of unpredictability in it that we should understand,
obscured though it may be by all the noise. There is computational unpredictability,
cases where, even given all the relevant information, we just cannot work out the answers
we seek. If we want to grasp our world as fully as possible, we need to understand not
only noise and non-determinism, but any inherent non-computability that might coexist
with them.

However, even if there is no genuine undecidability buried beneath the noise of
the real world, let us emphasize again, we have come a long way in clarifying what this
might mean—that is, what undecidability in the physical world or in a continuous space

could reasonably be, and what it could not be. We have achieved a central goal of
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philosophy: to explicate the problem.

The reader’s patience has been tested to extremes, but perhaps a project of this
scale justifies a little indulgence in pomp. Let us conclude by mentioning just a couple of
the very broadest morals of our tale.

The approach we have taken here to the questions, “What is a decidable set of real
numbers?” and “What is undecidability in the context of a physical system?” has been a
pluralistic and pragmatic one. We have argued for the special value of particular
concepts, especially d.m.z., but we have always tried to replace “What is” questions with,
“What do we want to know or do, and what concepts serve those goals?” We have taken
mathematical aesthetics into consideration, in particular a taste for absoluteness or
totality, like that of the classical notion of decidability, but not to the exclusion of
usefulness.

This pragmatic attitude, and the concept of d.m.z. in particular, can be located in a

tradition that Goroff traces to Poincaré:

There is another approach to the study of dynamical systems which we can also view as
having been abstracted from Poincaré’s formulation of the recurrence theorem.’ Less a
discipline than a philosophy, it concerns the importance of allowing exceptions.
Poincaré’s assertion does not concern all points in phase space, but rather almost all of

- them in the sense of measure theory.... The strategy of seeking to describe only typical
behavior in these ways has proven particularly fruitful in dynamical systems where, as
Poincaré’s work illustrates, the set of all possibilities is often too complicated to admit
effective classification. (1993, 190)

Poincaré’s flexible and permissive approach accords well with what we stated as

’ A reader unfamiliar with the recurrence theorem should not be concerned here with
what it is.
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one of the main purposes for pursuing undecidability results: they direct research
programs. They tell us what we cannot achieve by particular means and thus on what
goals or methods we should not waste sweat. Yet, they do not force us to a dead stop.
When it was proved that the circle could not be squared nor the angle trisected with
compass and straightedge, mathematicians did not cease to try alfogether, but only to try
by that method. They carried on with already established approximative methods (not
unlike those involved in the concepts of computable real numbers and functions) and to
this day continue with an exercise equivalent to squaring the circle, namely computing
the digits of 7.

Hence, our final moral is this: When we come to an impenetrable rock face let us
recognize it as such. Let us not vainly attempt to tunnel through, but nor let us turn back
in despair. Let us instead change directions. Perhaps we can in some sense climb

upwards, and from a higher vantage point, see things we have not seen before.
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APPENDIX

PROOFS CONCERNING THE DISCRETE
DYNAMICAL SYSTEM OF OTT ET AL. 1994

It would be easy to lose sight of our central concerns through the formalisms
ahead. We primarily wish to prove that the dynamical system we are about to define has
two basins of attraction that are not decidable up to measure zero, but are recursively
approximable. These basins are sets of initial conditions—in this case, points in the
plane—and the properties that we wish to establish—non-d.m.z. and r.a.—critically
involve the measures of sets in the plane. In what follows, much is said about
probabilities, in particular probabilities that an orbit will exhibit some kind of behavior.
However, probabilities in the mathematical sense are just measures, and the probabilities
we will discuss are really just the Lebesgue measures of sets of initial conditions or
points in the plane. We will speak of them as probabilities only to avail ourselves of
some convenient results from probability theory. The risk of confusion is especially great
because on a broader motivational level, this dissertation is concerned with probabilities
that orbits will exhibit some behavior, and the measure-theoretic properties of basins are
just tools to understand those. However, the results we want to prove in this appendix are
about the Lebesgue measure (and computability) of sets of points, and the probabilities of

sets of orbits are just tools to understand that: the Lebesgue measure of sets of points. It
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may require some effort on the part of the reader to keep this in mind.

We begin by defining a slight variation on one of the maps from Ott et al. 1994
(407) that is alluded to in Sommerer and Ott’s (1996) argument for the validity of their
numerical results. QOurs is primarily a generalization of their map, but we also impose

mild computability conditions. Figure 4.5 in Chapter 4 illustrates the definition.

Definition A.1. (i) Let X=[0, 1] x [-1, 1]. Fix computable numbers & € (0, 1/2), and

o € (1/2, 1) and a computable function «: [-1, 1] — (0, 1) such that for some y* > 0,

Let f: [-1, 1] - [-1, 1] be a computable bijection such that for every y € (-1, 1) we have
fO) >y lim;50f (@) =1,and lim,, /" (y) = -1. Given (xo, yo) € X, let @(x,, y,) =

(Xn+1, yn+1) for all n € N, where

x, la(y,) ifx,<a(y,),

otherwise,

and

) if x<alyy,),
f,) otherwise.

(ii) The orbdit of any initial state (xo, yo) € X is a sequence &xo, o) = {(Xn, ¥n)} =
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{@"(x0, Y0)}n en-

Notice that any property P[&xo, 0)] of an orbit or of its specific elements xy, y, defines a

set of initial conditions {(xo, y0): P[&(X0, Yo)]}-
We must prove several lemmas in order to obtain our computability and non-

computability results. Though Ott et al. supply little detail, the cleverest elements of the
proofs (the introduction of probabilities and the reduction of {y,}, < n to a random walk)

are due to them.

Some of our lemmas involve “coarse-grained histories.” The curve x = o(y)
partitions the rectangle X into two subsets: x < o(y) and x = o(y). A typical orbit will
frequently jump from one side of the partition to the other. A coarse-grained history is a

given pattern of such jumps, which we will represent as a set H = N such that x, < a(y,) if

and only if n € H. Also, for some sets S < [0, 1) we will be concerned with the set

S consisting of the initial x-coordinates for all orbits &(xo, yo) that (i) begin at a

yo.H,m
particular given yy, (ii) follow a given coarse-grained history H for the first m steps, and

(iii) place x,, in a given set S < [0, 1). More explicitly,

Definition A.2. Let HcNandm e N.

(i) Let Hy= {&(x0, y0): VR <m [x, < cAyy) < n e H] },

(i1) For any S ¢ [0, 1), and y, € [~1, 1], let

SyoHm = {xo € [0, 1]: &x0, y0) € Hpm, xm € S }.
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Our first lemma establishes two facts: that any such set S, 5 ,, is just a linearly

squeezed image of S, and that (trivially) all of the orbits with initial conditions in

Syo,H,m % {0} have the same y-value after m steps. That is,

Lemma A.3. For eachyy € [-1, 1], H< N, and m € N, there are constants a <

max ¢ -1, ;{max{(»)”, [1 — a)]"}), b <1, and ¢ € [-1, 1] such that for any non-empty
set Sc [0, 1),

(i) Sy, 1rm =aS+b, and

(ii) @"[ Sy 11,m X 0} =S x {c}.

(Note that a, b, and ¢ are independent of S.)

Proof. We argue by induction on m. The case m =0 is trivial, since S Yo,H,0 =S

Assume the lemma holds for some particular yo, H, and m, with constants a, b, and c.
This implies that for that particular yo, if &(x0, yo) € H,, then y,, =c. We now prove the
lemma for yo, H, and m + 1. Let S < [0, 1).

Case 1: m ¢ H. Then &xp, y0) € Hp+1=> X 2 AYm), SO

Syo.H,m+1 = %0 € [0, 1] &(x0, yo) € Hyn+ 1, Xm+1 € S}

= {xo € [0, 1]: &0, y0) € Huy Xm > AYm), Xm+1 € S}

= {x0 € [0, 1]: &, 0) € Hpy X2 &), 22— —a(e)

1-a(c) 5
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= {xo € [0, 11: &xo,Y0) € Hum, Xm € [1 — afc)]S + o)}
=a([1 - Ac)]S+ ofc))+b (by induction hypothesis)
=a[1 - ac)]S + [ac(c) + b]

=a'S+¥b,
where a' = a[l — ofc)] and b’ = [ao(c) + b]. Also,

@' <maxye -1, y(max{a®)”, [1 - a()]"}) - max, ¢ 1,11 - a()]
<max, ¢ (-1, y(max{ay)", [1 - a)]"}),

and b' <1, since S, g mi1 < [0, 1] x {yo}. Lastly,

O™ 8,0 1 me1 X 03] = 00" [{x0: &0, Y0) € Huny Xm+1 € S} x {0}]
= pp"[{x0: &0, 0) € Hiny Xm € [1 = aA0)IS + a0} x {y0}]
= gl([1- oA)]S + afe) ) x {c}] ~ (by hypothesis)
=Sx {c'},

where ¢’ =f(c).

Case 2: m € H. The argument is parallel but a little simpler, with @’ =ao(c), b’ =

byandc =f"'(c). m
We now introduce a probability. Again, we are mainly concerned here with

subsets of the rectangle X and their two-dimensional Lebesgue measure. However (and

this was not said above), we will first have to prove some things about the one-
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dimensional Lebesgue measure of certain subsets of horizontal line segments. 1t is this
one-dimensional Lebesgue measure on each horizontal that we treat as a probabiltiy.

Thus we actually define a family {Pr,, }, 1 1) of probability measures Pr,, , each

defined on sets of orbits originating at y =yo. An expression of the from Pr,[S] may be

thought of as representing Pr[S | yo = c], where ‘Pr’ denotes a probability measure on
unrestricted sets of orbits that do not necessarily share a common y,, equivalent to the
two-dimensional Lebesgue measure on the corresponding sets of initial conditions.
However, we do not need to define the more general probability Pr, for we make no use
of it. Instead, we first convert our restricted probabilistic results back into measure-
theoretic results for subsets of line segments, and then integrate these measure-theoretic
results to obtain the two-dimensional measures in R? that we ultimately want.

Our family of probability measures is defined as follows:

Definition A.4. (i) Let A; denote the Lebesgue measure on R.
(ii) Let yo € [-1, 1], and let I" and A be sets of orbits such that {x; €
[0, 1] &xo, y0) € T} and {xy € [0, 1]: &xo, yo) € A} are Lebesgue measurable and the

latter has non-zero measure. Then

Pry, [I'1=Ai{xo € [0, 1]: &(x0,y0) € '}, and

Ai{xg €[0,1]:&(xg,¥0) e T N A} .

Pr, [I' | A] = A1 {xo €[0,1]: &(x,0) € A}
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Formally, these probabilities are defined on sets of orbits. However, we often
express a probability in terms of some property of the elements of orbits, such as ‘x,, € §°
or ‘In |y,| = ¢,” which of course defines a set of orbits. This set of orbits in turn defines a
set of initial x-values, and the probability of the condition is equal to the Lebesgue
measure of the latter set. For the conditions we will consider here, these sets of initial x-
values are all measurable, as the reader may verify in two ways: we define them without
appeal to the Axiom of Choice or any equivalent, and they are all Borel (i.e., they can be
generated by countably many operations of union and intersection on open and closed

sets).

The next lemma, a direct corollary of the preceding one, shows that in a certain

sense the future of an orbit is independent of the orbit’s coarse-grained history.

Lemma A.5 (Independence Lemma). Let yoe [-1,1],me N, HcN,andSa

measurable subset of [0, 1). Then regardless of H, Pr, [x, €S|&E(xg,y0) € Hy ]l =4S,

Proof. By Lemma A.3, there exist constants a and b such that

Mixp €[01]:x™ €8, E(xy,y9) € H,y}
ﬂ'l {xe[oal]:ﬁ(x(),yO) € Hm}

Pryo[xm GSlf(xo,YO)GHmF

_ Z'ISyO,H,m
2’1 ( [071) yO,H,m)

_ MlaS+b]
~ M[a[0,]) +5]
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=%§'=21S. |

The next lemma says that the probability that the sequence {y,} will depart from a
given bounded region within an allotted time converges effectively to 1 as the allotted

time is increased.

Lemma A.6. Let yp € [-1,1],c € [0, 1), and N, M, k € N such that N < M and £4(0),

[77%(0)| > c. Then

M~N
Pr, [AneNA®W, M]) a2 ¢] > 1-(1—-[ min_a(y)]**) 2
Y0 yel-11]
Proof. If for some m € N (N, M —2k], X < &Vm), Xm +1 < O Vm+1)s- « o5 X2l <
(Ymi2k-1), then either y,, > £5(0) or Yo </ (0). In either case, we have n € N n (N, M]

such that |y,| = ¢. Therefore it is enough to show that (letting », m range over N)

Pr,, [@m e (N, M - 2k])(Vn € [m,m+2k)) x,< a(y,)]

M-N _
>1-(1-[ min_a(y)]**) %
yel-L1]]

This probability is analogous to that of rolling a 1 on a die 2k consecutive times within A/

— N independent trials. To obtain a coarse lower bound, we may divide the M — N trials
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into |_(M -N )/2k_| sequences (where L] denotes the greatest-integer function), each

consisting of 2k trials, and ignore any remainder:

Pryo[(EIm € (N,M -2k])(Vn e[m,m+2k)) x,<a(y,)]

M~-N
2k

> Pr, [(Gm < { j )(Vn e (N +2km, N + 2km +2k]) x,< a(y,)]

M-N
=1—Pry0[(‘v’m <\‘ ”

5

2k

1~ Pr,, l@n eV +2km,N +2km+2k) x,<a(y,)]
m=0

J)(Eln e (N +2km, N + 2km + 2k]) x,> a(y,)]

=1-

(Vi < m)(3n € [2ki,2ki + 2k)) x,> a(y,)]

M-N
[TJ_1 N+2km+2k
=1- I (- I Pr,lx<e@)|viel2mn)x;>a(y;)

m=0 n=N+2km+1
& (Vi < m)(3n e [2ki,2ki + 2k)) x,> (3, ])
M—NJ
2 N+2km+2k . .
>1- [I (- TI Pryo[x,,< min_a(y) | (Vj e [2km,< m)x; >a(y;)
m= n=N+2km+1 ye[-11]
& (Vi < m)(3n € [2ki,2ki + 2k)) x,= a(y,)])
M—NJ
2k N+2km+2k .
=1- T] (1 - ] #4[0, min a(y))) (byIndependence Lemma)
m=0 n=N+2km+1 yel-L1]

M—NJ

=1-(1=[ min a(y)]* )[T
yel-L1]
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M-N

>1-(-[ min a()*) %* .=
yE[-—l,l]

It follows quickly that almost every orbit will spend an infinite amount of time

outside any region [0, 1] x (—¢, ¢) where ¢ <1. Thatis,

Lemma A.7. Let y € [-1, 1], ¢ € [0, 1). Then Pr, [(YN)@n > N)|y,|>c]=1.

Proof. Pr, 0[(‘v’N )Y3n>N)|y,l2c]

Pr, [@n > N) |2 c| (VM < N)@En > N) by, > c]
1

b

8

> [1 Pr, [(3n>N) =]
=1

=

2 [] lim Pr, [An>sN<nsM)ly,[>c]
N=1M-o»®

o0
=[[1=1 (by the preceding lemma). B
At this point we make use of the notion of a simple random walk.

Definition A.8. A simple random walk is a finite or infinite sequence {z,,} of random
variables z,, such that for each m, z,, =z + Z; + ... + Z,, where the Z; are independent

and identically distributed random variables taking values in {-1, 0, 1}.
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Intuitively, coordinates y, greater than y* or less than —y* behave as a simple
random walk over the values {f'(yo)}:c z. But according to the usual definition, the one

just given, a random walk jumps only by integers. To meet this definition on its own
terms, we define a sequence {z,,} of integers that rises by one unit if y, = {y,_1) and falls
by one unit if y, =f'(y,_1). The precise definition of {z,} is given in the following

lemma.

Lemma A.9. Given y, € [-1, 1], and n, N € N such that n > N, let zo = 0, and for each m

€ {1,2,...,n— N} define Z,, by yy+m = fZ”' (VNim-1)» andletz,=zo+Zi + ... + Z,.

Then...

Q) Ifyn, yn+ 15+, yu 2 y* then zg, z1,..., 2, 1s a simple random walk with
Pr, [Z, =-1]=a, and Pr, [Z, =1]=1-a,.
(1) If yn, yn+ 15. .., Yo £ =y* then 2o, z4,..., 2, _ y 15 a simple random walk with

Pryo[Zm =—1]=ca._ and PryO[Zm =1]=1-c_.

Proof. Suppose yn, yn+1,..., yn 2y*. We need to show that the Z,, are independent and
all have the stated distribution. Notice that for any m € {1,2,..., N—n} and iy, i,...,

im-1 € {“15 1}3
Pryo [Zm =-1 | Zl Zil’ZZ =i2,...,Zm_1 :im—l]

= Py [vam =S " Onam-)| G €{besm=B(yys ;= £ Yiye 1]
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=Pryo[xN+m_1<a+|Vje{l,...,m—1}(xN+j_1<a+ <:>l]=—1)]
LetH={HcN|Vje {l,...,m-1}(N+j—-1 € He ij=-1)}. Then by the above,

Pryo [Zm =_1|ZI =i1,22 =i2,...Zm_1 =im_1]

=Py [Xyyma1 <oy |GH e D)5 (x0,90) € Hyim-2]-

1t follows trivially from the Independence Lemma that this is equal to

Pr, [*yim-1 <@,] = o+ But also, Pr, [xy,p,-1 <a,] =Pr, [Z, =-1],s0
Pl'yO [Zm =_‘1|Z1 =i1,Zz =i2,...Zm_1 =im_]] = Pryo [Zm =—1] = Q.

Similarly,

Pryo [Zm =1|Zl =i1,Zz =i2,...Zm_1 =im—]] = Pryo [Zm =1] =1-a.

The case yn, YN+ 15-+-» Yn < —y* is parallel. B
The next lemma is a well-known fact about simple random walks. It implies that
the probability that a walk will ever return to its starting point decreases to zero in a very

regular (and computable) way as the walk wanders farther away.

Lemma A.10. Let {z,,} be a simple random walk, with Pr,, [Z,, =-1]=y and

Pryo[Zm =1]=1-y. Let C=z,+iforsomei € Z'. Then
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k
Pryo[(‘v’mZM)zmzc|ZM=C+k]=1_( y ] ,

k
Pr, [(Vm2M)zy<Clzy=C-k]= 1_(1:1J )

Proof. See for example Hoel, Port, and Stone 1971, 222-223.

The following corollary is, among other things, the key to our proof that the
basins are recursively approximable (Proposition A.21). It implies that the probability
that an orbit beginning at y, = y tends in the limit to a given attractor decreases to zero in
a very regular way as the orbit comes close to the other attractor. Here ch N 1(c) Syn<

1*(c) expresses the condition that yy is k “steps” (iterations of f) above c, and f *=c) <yw

< f**1(=c) says that yy is k steps below —¢. This is followed by a simpler but also useful

corollary.

Corollary A.11. Lety, € [-1, 1], c € [y*, 1), N e N. Then

k
Pry, [(V”EZN)J’HZC|fk'1(C)SyN<fk(C)]=1—(1 . j , and

k
Pr, [(Vrn2N)y,<—c| Ry <yw<fFH (<o) = 1_(1 ;a_) .

Proof. Immediate from Lemmas A.9 and A.10.
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Corollary A.12. Letyg € [-1, 1], c2y*, N € N. Then

1-2a, 2a_ —1}

Pry, [(Vn 2 V) bl 2 ¢ | ] > €] 2 min{ e o

Proof. By the previous corollary,

>

1-2
Pryo[(VnZMyn2c!yN20]21—[ %y ): %+ and

l-a,) l-a,
l-a_ 20_ -1
Pryo[(VnZN)ynS—clyNS—c]Zl—( - J-_- -

Therefore,

Py, [(Vn 2 N) bl 2 ¢ | bl 2 ]
= Pr, [(Vn2N)ya2c|al 2 c] + Pr, [(Vn 2 N) yy < —c | Iy > c]
= Pr, [(Vn2N)ya2c|yv2c] Pry Dz el bl 2c]

+Pr, [(VR2N)yn<—c|yn<—c] Pr, [yn<—c|lynl2c]

> min{l_za+ s 2a. —1} Pr, Dvze [ wl 2 €]
l-a, a_

. 1= 2c_ -1
+ mm{1 20, , 2 } Pr, Dvs—c|nlzc]
l-a, a

=min{1—2a+’2a_—l}'.
l-o, a

The next lemma says that almost every orbit in a given horizontal is attracted to
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one or the other extreme horizontal, 4:+ = [0, 1] x {1} or 4-=[0, 1] x {-1}.

Lemma A.13. Pr, [{y.} = lor {y,} > -1]1=1.

Proof. The idea is this: We know from Lemma A.7 that for any ¢ < 1, it is virtually
certain that for infinitely many n, |y,| > ¢. For each such n there is a significant chance
that for m > n, |y, will never again fall below ¢ (Corollary A.12). Therefore, intuitively,

the sequence {y,} should eventually escape any interval (-, c) forever.
To be precise, fix an infinite sequence {c;}; < y of numbers in (y*, 1) such than

{e} = 1. Then
Pr,, [{y} = Lor {n} >-1]= Pr, [(Vi)EN)Vr = N) |2 ¢;]

= [TPr, [@N)(¥ = M) )2 ;| (% < DAV 2 M) bl ;]
i=0

> [TPr, [GN)(Vn = M) /2 ¢, ].
i=0

Therefore it is enough to show that for each ¢;, Pr, 0[(EIN WWnxN)ly,|zc;]=1.

To see that, fix ¢; 2 y*. Note Pryo[(EIN)(Vn 2N)y,lzc;]1=1- Pr, [for
infinitely many #, |y,| < ¢;]. By Lemma A.7, Pr,. [for infinitely many n, |y,| > ¢;] =1, so
Pryo [for infinitely many #, |y, <¢;] = Pryo [{yn} escapes (—¢;, ¢;) and returns again

infinitely many times]. We want to show that this probability is O.
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Consider Pr,, [{y} escapes (-¢;, ¢)) and returns again at least N times]. This

equals

( Pr,, [{ya} escapes (c; c;) and returns again at least j times |

—x

~
1l
—_

{yn} escapes (—c;, ¢;) at least j times]
- Pry, [{yn} escapes (—c;, ¢;) at least  times |

{yn} escapes (—c;, ¢;) and returns at least j — 1 times] )

By Lemmas A.5 (Independence) and A.12, the first probability in this product is less than
or equal to max{eas /(1 — &), (1 — @) / o}, and of course the second is less than or

equal to 1. Therefore,

Pr, [{yn} escapes (-c;, ¢;) and returns again at least N times]

N a, l-a a, 1-a )"
< Hmax{1 t ,—‘} = max{ + ‘} ,
i=1 -a, a_ l-a, «a

SO

Pr, 0 [{y»} escapes (—c;, ¢;) and returns again infinitely many times]

N
. a l-a
< lim max{—=*—, —+ =0,
N—w® l-a, o_

since & <% < a. To sum up,

Pr, [{ya} > lor {y} >-1] 2 ﬁPryO [@N)(Vn=N)|y,|=c;]
i=0
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[e ]

1 - Pry, [for infinitely many #, |ya| < ¢i]
i=0

e8]
= 1 = Pry,, [{yn} escapes (—c;, c;) and returns again infinitely many times]
=0

i

Il
e

—

I
(=]

Il
p—
|

This means that for initial conditions on any one horizontal line, the probability
that either {y,} = 1 or {y,} = -1is 1. It follows quickly that almost every initial
condition in X lies in the basin of attraction of either 4, or A_. This is spelled out in

statements A.14-A.17.

Definition A.14. (i) Let A, denote the Lebesgue measure on R,

(ii) Let S(A) denote the basin of 4, i.e., the set {(xo, yo): d[(Xn, ¥»), A] = 0}.

Corollary A.15. For any y, € [-1, 1],

Ai{xo € [0, 1]: (x0, y0) € AA+) or (x0, yo) €HA)} = 1.

Proof. Immediate from A.14. @

Lemma A.16. If for each y, in an interval [a, b], S, is a Lebesgue measurable subset of

Yo

R with finite measure and {(xo, yo) € R x [a,b]: xp € S Y } 1s measurable, then
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b
Aa{(xo, yo) € Rx [a,b] : xo € Sy} = J./llSyO dyy.
a

Proof. This is a special case of Fubini’s Theorem. See, e.g., Folland 1984, 64-65. W

Proposition A.17. A[B(4+) U KA)] =2 and (X / [Ad+) U AA)]) =0.

Proof. By A.15 and A.16,

1
[Afxg 2 (39, ¥0) € B(A) U B(A)}dyg
-1

A [B(4,) 0 B(4.)]

1
= Ildyo =2.0
-1

We now come to one of our desired results.

Proposition A.18. The basins #(4+) and A(4-) are intermingled.

Proof. We shall see that in any small neighborhood, both basins have positive measure.
First we wish to see that any set of the form [0, 1) x {c} contains positive-measure

portions of both basins. Choose ¢. Since almost all orbits on any horizontal go to one

attractor or the other, we have foreach N e N,

Pre[{(n} = 112 Pr.[{pn} = 1| (V22 N) yp 2 3*] - Pr.[(VR 2 N) yp = 1¥]

=Pr.[(Vn2N) y, 2 y*]
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=Pr.[(Vn 2 N) yp 2 y* | yn 2 y*]-Prc[yn 2 y*].

Clearly Pr. [yy = y*] > 0 for some N, and by the proof of Corollary A.12, Pr.[(Vn 2 N) y,
> y* | yy 2 y*] > 0. Therefore Pr.[{y,} — 1]> 0, and by a parallel argument, Pr.[{y.} —

—1]>0. Hence, by definition of Pr., Li[A4+) N ([0, 1) x {c})] >0 and L,[AA-) N ([0, 1)

x {c)]>0.

Next we show that the images, by iterations of ¢, of any small horizontal line
segment contain some set of the form [0, 1) x {c}. That is, for any y, € [-1, 1] and any
interval I < [0, 1] there exists m € N, ¢ € [-1, 1], and an interval J < I such that ¢"[J x
{v0}]1=10, 1) x {c}. To see this, fix 7 and choose m such that max , ¢ [-1, ;ymax{a(»)",
[1-a()]"} <(MI)2. Let =0, 1). Then by Lemma A.3, for each H N there exist a
<(Al)2,b<1,and c € [-1, 1] such that S, 7 ,, = (a[0, 1) + b) and (o”’[SyO’H,m x {¥o}]
=[0, 1) x {c}. For fixed yo and m but varying Hc {0, 1,...,m — 1}, the sets S, p ,, are
pairwise disjoint line segments with length less than (4:17)/2, and every initial condition

(x0, o) € [0, 1) x {yo} lies in some such § yo.H,m X {vo}. Therefore I x {yo} contains at

least one segment S, 7 ,, With @"[ S, g % {10}]=[0, 1) x {c}.

Combining these results, we show that each basin has positive measure in every

small horizontal line segment. Choose I and y, and fix H, ¢, and m such that

go'"[SyO,H’m x {¥0}]1 =10, 1) x {c}, where Sis still [0, 1). Let T'= S(4+) N ([0, 1) x {c}).

By the paragraph before last, ;7> 0. By Lemma A.3, TyO,H,m =[aT+ bl < Syo,H,m c
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L Also, T b m X o} € AA+), 80 Ty 1 m % {0} < A N (I x {yo}). Since

Ty o, =Mlal + b] = aA1T> 0, we have Li[A(A4+) N (I x {y0})] > 0, and by a parallel

argument, 4i[AA4-) N (I x {y0})] > 0.

To complete the proof, let U < X'be open. Then U contains an open disk V, so by

Lemma A.16,

1
U N D)) 2 (VN fAD)) = [4V 0 ([01]x{ye}) N B(4)]dy,
-1

and by the preceding paragraph, this integral is greater than zero. By a parallel argument,

(U B(A-)) > 0. Therefore f(4+) and f(A-) are intermingled. M

It follows immediately, by Theorem 3.6.2 of Chapter 3, that the basins are not
decidable up to measure zero. Even worse, they are nowhere d.m.z. (Definition
3.5.12(iii)).

Proposition A.19. The basins f(4+) and f(A-) are nowhere 4,-d.m.z.

Proof. Since f(4+) and f(4-) are dense in X and are intermingled, both U N f(4+) and U
N B(A.) are riddled and have positive measure for any open set U  R% Therefore no

suchset UN fA+)or UN f(A-)isdm.z. B

Trivially, the basins are not r.e. open either, nor are they r.e. closed, ¢ , TTE-
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recursive, nor strongly recursive, simply because...

Remark A.20. The basins B(4+) and B(A4-) are neither open nor closed.

Proof. Every open set contains elements of BA+)° and B(A)", so the basins are not
open. Every open set also contains elements of #(4+) and B(A-), so they are not

complements of open sets. B

Also trivially, the basins are A-decidable and d.i.b.: Since every open set contains
portions of both basins, the distance to the boundary of either basin is always zero. An
algorithm that blindly outputs zero therefore computes the delta function for both basins,
and also correctly decides the basins except on the boundary—but the boundary is
everywhere! This is a case where d.i.b. and A-decidability hold, but only due to the
intermingling that makes membership thoroughly undecidable.

However, all computation is not hopeless, as our final result shows.

Proposition A.21. The basins A(A-) and H(A4+) are recursively approximable.

Proof. Our strategy is to approximate the orbit of a given point until it comes very close
to one of the attractors, much as Sommerer and Ott did for their continuous-time system
(1996). We know from Corollary A.11 that if an orbit does come very close to an
attractor, there is very little chance that it eventually tends toward the other attractor.

Since almost all orbits tend toward one attractor or the other, that means there is a great
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chance that the orbit lies in the basin of the nearby attractor.
‘We must still handle some details, such as ensuring that our algorithm always
halts. The algorithm involves comparing real numbers, and exact comparisons cannot
always be made in finite time. Therefore we dovetail each comparison with another in

such a way that one or the other will halt.

Let a be a computable number no greater than min ¢ [-1,1; &), and let y*' be a

computable number greater than y*. An algorithm to approximate S(4+) given input (¢

i), where pra(@) = (xo, o), is as follows:

1. Letn=0.

2. Dovetail the following two comparisons: If [x, — a(y,)| < 272=1=5 then output
0 and halt; if [x, — a(y,)| > 272" =5, proceed to step 3.

3. Find an integer j > log 2773/ log[a / (1 - &)], and dovetail again: Ify, >
F(»*"), output 1 and halt; if y, < *'(3*"), proceed to step 4.

4. Find an integer k >1og 273/ log[(1 — a.) / ] and dovetail: If y, <f *(—*),
output 0 and halt; if y, > f - (—y*"), proceed to step 5.

5. Find an integer m such that f™(0) < f “*(=y*') and f™(0) > F(*), and dovetail:
Ifn>[2mlog 2™~ 3/log (1 — @®™)] + 2m, output 0 and halt; if n <
[2mlog 277 /log (1 — a®™)]+ 2m + 1/2, set n=n + 1 and go to step 2.
Step 2 circumvents any difficulty in approximating (x,, y,) arising from the
discontinuity of @ along the curve x = a(y): if x, is near a(y,), the algorithm halts. This

can result in incorrect output, but on any given horizontal line y = yy, the errors due to

step 2 are confined to small neighborhoods near the pre-images by ¢” of the curve x =
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ofy). For each n, the pre-image by ¢" of x = a(y) intersects a horizontal in 2" points, so

the total measure of the neighborhoods around these points where step 2 may yield

incorrect output is less than

§2n2 . 2-2}1 ~-i-5 - 2'—1'—3 .
n=0

Now consider the other steps. By Corollary A.11, the measure of the set of all

points on y = y, that are incorrectly classified by step 3 is less than

[, (1—a, )82 Vlosle /-] = p-i=3

Similarly, the set of points incorrectly classified by step 4 has measure less than
Y.
—i-3 .
[(1-ca_)/a_]'8? T logll-a) /@] _ p-i-3, By Lemma A.6, the set of points on y = yj

that are classified (perhaps incorrectly) by step 5, i.e., the set of points whose orbits do
not exit the region [0, 1] x [f*~ (™), " '(y*")] within [ [2m log 2773/ log (1 - a*™)] +

2m + 1] iterations of ¢, has measure less than

—i-3 —i-3
[2mlog22m +2m+1J 2mlog2 +2m
| log(1-a*™) » log(1~a®™) 3
(1—a2'”) 2m s(l—azm) 2m

(1 g yogz“"‘3 /log(1-a*™)

=273,

Hence the total measure of the set of all points on y =y, that are incorrectly

classified by one step or another, given the parameter i, is less than 427 %) =271, By
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Lemma A.16, the total two-dimensional Lebesgue measure of the set of all points in X
incorrectly classified by this algorithm is therefore less than 2(27~ 'y =27, The algorithm
will halt on every input because step 5 sets a finite bound on n (the number of
repetitions). Therefore (A4+) is recursively approximable, and a parallel argument shows

that f(4-) is recursively approximable. B

As per the argument in Section 4.5, all of these results generalize to cases where
is not required to be constant outside [-y*, y*]. They hold for any computable «,
provided a(1) <% < a(-1),and forally € [-1, 1], 0 < a(y) < 1.

Note that our function ¢ is non-computable because it is discontinuous. It might
not be too difficult to replace ¢ with a continuous, computable function and still get the
same results. Recall that the ¢ splits any horizontal into two segments, shifting one
upwards and the other downwards. We might redefine ¢ so that in any horizontal
spanning X, a small segment near x = () is stretched out in some computable way by ¢
to connect the upward- and downward-shifted components. With suitable handling of the
details, we could thus obtain non-d.m.z. long-term behavior by iteration of a computable

map. (A modification of this kind was suggested by Wayne Myrvold.)
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