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Abstract
There is a new theory of information based on logic. The definition of Shannon entropy as

well as the notions on joint, conditional, and mutual entropy as defined by Shannon can all
be derived by a uniform transformation from the corresponding formulas of logical information
theory. Information is first defined in terms of sets of distinctions without using any probability
measure. When a probability measure is introduced, the logical entropies are simply the values
of the (product) probability measure on the sets of distinctions. The compound notions of joint,
conditional, and mutual entropies are obtained as the values of the measure, respectively, on the
union, difference, and intersection of the sets of distinctions. These compound notions of logical
entropy satisfy the usual Venn diagram relationships (e.g., inclusion-exclusion formulas) since
they are values of a measure (in the sense of measure theory). The uniform transformation into
the formulas for Shannon entropy is linear so it explains the long-noted fact that the Shannon
formulas satisfy the Venn diagram relations—as an analogy or mnemonic—since Shannon entropy
is not a measure (in the sense of measure theory) on a given set.

What is the logic that gives rise to logical information theory? Partitions are dual (in a
category-theoretic sense) to subsets, and the logic of partitions was recently developed in a
dual/parallel relationship to the Boolean logic of subsets (the latter being usually mis-specified
as the special case of “propositional logic”). Boole developed logical probability theory as the
normalized counting measure on subsets. Similarly the normalized counting measure on parti-
tions is logical entropy—when the partitions are represented as the set of distinctions that is the
complement to the equivalence relation for the partition.

In this manner, logical information theory provides the set-theoretic and measure-theoretic
foundations for information theory. The Shannon theory is then derived by the transformation
that replaces the counting of distinctions with the counting of the number of binary partitions
(bits) it takes, on average, to make the same distinctions by uniquely encoding the distinct
elements—which is why the Shannon theory perfectly dovetails into coding and communications
theory.
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1 Introduction

This paper develops the logical theory of information-as-distinctions. It can be seen as the application
of the logic of partitions [15] to information theory. Partitions are dual (in a category-theoretic sense)
to subsets. George Boole developed the notion of logical probability [7] as the normalized counting
measure on subsets in his logic of subsets. This paper develops the normalized counting measure on
partitions as the analogous quantitative treatment in the logic of partitions. The resulting measure is
a new logical derivation of an old formula measuring diversity and distinctions, e.g., Corrado Gini’s
index of mutability or diversity [19], that goes back to the early 20th century. In view of the idea
of information as being based on distinctions (see next section), I refer to this logical measure of
distinctions as "logical entropy".

This raises the question of the relationship of logical entropy to Claude Shannon’s entropy
([40]; [41]). The entropies are closely related since they are both ultimately based on the concept
of information-as-distinctions—but they represent two different way to quantify distinctions. Logical
entropy directly counts the distinctions (as defined in partition logic) whereas Shannon entropy, in
effect, counts the minimum number of binary partitions (or yes/no questions) it takes, on average,
to uniquely determine or designate the distinct entities. Since that gives (in standard examples) a
binary code for the distinct entities, the Shannon theory is perfectly adapted for applications to the
theory of coding and communications.
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The logical theory and the Shannon theory are also related in their compound notions of joint
entropy, conditional entropy, and mutual information. Logical entropy is a measure in the math-
ematical sense, so as with any measure, the compound formulas satisfy the usual Venn-diagram
relationships. The compound notions of Shannon entropy were defined so that they also satisfy
similar Venn diagram relationships. However, as various information theorists, principally Lorne
Campbell, have noted [9], Shannon entropy is not a measure (outside of the standard example of 2n

equiprobable distinct entities where it is the count n of the number of yes/no questions necessary to
unique determine or encode the distinct entities)—so one can conclude only that the "analogies pro-
vide a convenient mnemonic" [9, p. 112] in terms of the usual Venn diagrams for measures. Campbell
wondered if there might be a "deeper foundation" [9, p. 112] to clarify how the Shannon formulas
can be defined to satisfy the measure-like relations in spite of not being a measure. That question is
addressed in this paper by showing that there is a transformation of formulas that transforms each of
the logical entropy compound formulas into the corresponding Shannon entropy compound formula,
and the transform preserves the Venn diagram relationships that automatically hold for measures.
This "dit-bit transform" is heuristically motivated by showing how average counts of distinctions
("dits") can be converted in average counts of binary partitions ("bits").

Moreover, Campbell remarked that it would be "particularly interesting" and "quite significant"
if there was an entropy measure of sets so that joint entropy corresponded to the measure of the
union of sets, conditional entropy to the difference of sets, and mutual information to the intersection
of sets [9, p. 113]. Logical entropy precisely satisfies those requirements.

2 Logical information as the measure of distinctions

There is now a widespread view that information is fundamentally about differences, distinguisha-
bility, and distinctions. As Charles H. Bennett, one of the founders of quantum information theory,
put it:

So information really is a very useful abstraction. It is the notion of distinguishability
abstracted away from what we are distinguishing, or from the carrier of information. [5,
p. 155]

This view even has an interesting history. In James Gleick’s book, The Information: A History,
A Theory, A Flood, he noted the focus on differences in the seventeenth century polymath, John
Wilkins, who was a founder of the Royal Society. In 1641, the year before Isaac Newton was born,
Wilkins published one of the earliest books on cryptography, Mercury or the Secret and Swift Mes-
senger, which not only pointed out the fundamental role of differences but noted that any (finite)
set of different things could be encoded by words in a binary code.

For in the general we must note, That whatever is capable of a competent Difference,
perceptible to any Sense, may be a suffi cient Means whereby to express the Cogitations.
It is more convenient, indeed, that these Differences should be of as great Variety as the
Letters of the Alphabet; but it is suffi cient if they be but twofold, because Two alone
may, with somewhat more Labour and Time, be well enough contrived to express all the
rest. [47, Chap. XVII, p. 69]

Wilkins explains that a five letter binary code would be suffi cient to code the letters of the alphabet
since 25 = 32.

Thus any two Letters or Numbers, suppose A.B. being transposed through five Places,
will yield Thirty Two Differences, and so consequently will superabundantly serve for
the Four and twenty Letters... .[47, Chap. XVII, p. 69]
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As Gleick noted:

Any difference meant a binary choice. Any binary choice began the expressing of cogi-
tations. Here, in this arcane and anonymous treatise of 1641, the essential idea of infor-
mation theory poked to the surface of human thought, saw its shadow, and disappeared
again for [three] hundred years. [20, p. 161]

Thus counting distinctions [12] would seem the right way to measure information,1 and that is the
measure which emerges naturally out of partition logic—just as finite logical probability emerges
naturally as the measure of counting elements in Boole’s subset logic.

Although usually named after the special case of ‘propositional’logic, the general case is Boole’s
logic of subsets of a universe U (the special case of U = 1 allows the propositional interpretation
since the only subsets are 1 and ∅ standing for truth and falsity). Category theory shows there is a
duality between sub-sets and quotient-sets (= partitions = equivalence relations), and that allowed
the recent development of the dual logic of partitions ([13], [15]). As indicated in the title of his
book, An Investigation of the Laws of Thought on which are founded the Mathematical Theories of
Logic and Probabilities [7], Boole also developed the normalized counting measure on subsets of a
finite universe U which was finite logical probability theory. When the same mathematical notion
of the normalized counting measure is applied to the partitions on a finite universe set U (when the
partition is represented as the complement of the corresponding equivalence relation on U ×U) then
the result is the formula for logical entropy.

In addition to the philosophy of information literature [4], there is a whole sub-industry in
mathematics concerned with different notions of ‘entropy’or ‘information’([2]; see [45] for a recent
‘extensive’ analysis) that is long on formulas and ‘intuitive axioms’but short on interpretations.
Out of that plethora of definitions, logical entropy is the measure (in the technical sense of measure
theory) of information that arises out of partition logic just as logical probability theory arises out
of subset logic.

The logical notion of information-as-distinctions supports the view that the notion of information
is independent of the notion of probability and should be based on finite combinatorics. As Andrei
Kolmogorov put it:

Information theory must precede probability theory, and not be based on it. By the very
essence of this discipline, the foundations of information theory have a finite combinato-
rial character. [27, p. 39]

Logical information theory precisely fulfills Kolmogorov’s criterion.2 It starts simply with a set
of distinctions defined by a partition on a finite set U , where a distinction is an ordered pair of
elements of U in distinct blocks of the partition. Thus the “finite combinatorial” object is the
set of distinctions ("ditset") or information set ("infoset") associated with the partition, i.e., the
complement in U ×U of the equivalence relation associated with the partition. To get a quantitative
measure of information, any probability distribution on U defines a product probability measure on
U × U , and the logical entropy is simply that probability measure of the information set.

3 Duality of subsets and partitions

Logical entropy is to the logic of partitions as logical probability is to the Boolean logic of sub-
sets. Hence we will start with a brief review of the relationship between these two dual forms of

1This paper is about what Adriaans and van Benthem call "Information B: Probabilistic, information-theoretic,
measured quantitatively", not about "Information A: knowledge, logic, what is conveyed in informative answers" where
the connection to philosophy and logic is built-in from the beginning. Likewise, the paper is not about Kolmogorov-
style "Information C: Algorithmic, code compression, measured quantitatively." [4, p. 11]

2Kolmogorov had something else in mind such as a combinatorial development of Hartley’s log (n) on a set of n
equiprobable elements.[28]
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mathematical logic.
Modern category theory shows that the concept of a subset dualizes to the concept of a quotient

set, equivalence relation, or partition. F. William Lawvere called a subset or, in general, a subobject
a “part”and then noted: “The dual notion (obtained by reversing the arrows) of ‘part’is the notion
of partition.” [31, p. 85] That suggests that the Boolean logic of subsets (usually named after the
special case of propositions as ‘propositional’logic) should have a dual logic of partitions ([13], [15]).

A partition π = {B1, ..., Bm} on U is a set of subsets, called cells or blocks, Bi that are mutually
disjoint and jointly exhaustive (∪iBi = U). In the duality between subset logic and partition logic,
the dual to the notion of an ‘element’ of a subset is the notion of a ‘distinction’ of a partition,
where (u, u′) ∈ U ×U is a distinction or dit of π if the two elements are in different blocks, i.e., the
‘dits’of a partition are dual to the ‘its’(or elements) of a subset. Let dit (π) ⊆ U × U be the set
of distinctions or ditset of π. Thus the information set or infoset associated with a partition π is
ditset dit (π). Similarly an indistinction or indit of π is a pair (u, u′) ∈ U ×U in the same block of π.
Let indit (π) ⊆ U × U be the set of indistinctions or inditset of π. Then indit (π) is the equivalence
relation associated with π and dit (π) = U ×U − indit (π) is the complementary binary relation that
has been called an apartness relation or a partition relation.

4 Classical subset logic and partition logic

The algebra associated with the subsets S ⊆ U is the Boolean algebra ℘ (U) of subsets of U with
the inclusion of elements as the partial order. The corresponding algebra of partitions π on U is the
partition algebra

∏
(U) defined as follows:

• the partial order σ � π of partitions σ = {C,C ′, ...} and π = {B,B′, ...} holds when π refines σ
in the sense that for every block B ∈ π there is a block C ∈ σ such that B ⊆ C, or, equivalently,
using the element-distinction pairing, the partial order is the inclusion of distinctions: σ � π
if and only if (iff) dit (σ) ⊆ dit (π);

• the minimum or bottom partition is the indiscrete partition (or blob) 0 = {U} with one block
consisting of all of U ;

• the maximum or top partition is the discrete partition 1 = {{uj}}j=1,...,n consisting of singleton
blocks;

• the join π ∨ σ is the partition whose blocks are the non-empty intersections B ∩ C of blocks
of π and blocks of σ, or, equivalently, using the element-distinction pairing, dit (π ∨ σ) =
dit (π) ∪ dit (σ);

• the meet π ∧ σ is the partition whose blocks are the equivalence classes for the equivalence
relation generated by: uj ∼ uj′ if uj ∈ B ∈ π, uj′ ∈ C ∈ σ, and B ∩ C 6= ∅; and

• σ ⇒ π is the implication partition whose blocks are: (1) the singletons {uj} for uj ∈ B ∈ π if
there is a C ∈ σ such that B ⊆ C, or (2) just B ∈ π if there is no C ∈ σ with B ⊆ C, so that
trivially: σ ⇒ π = 1 iff σ � π.3

The logical partition operations can also be defined in terms of the corresponding logical op-
erations on subsets. A ditset dit (π) of a partition on U is a subset of U × U of a particular kind,
namely the complement of an equivalence relation. An equivalence relation is reflexive, symmetric,
and transitive. Hence the ditset complement, i.e., a partition relation (or apartness relation), is a
subset P ⊆ U × U that is:

3There is a general method to define operations on partitions corresponding to the Boolean operations on subsets
([13], [15]) but the lattice operations of join and meet, and the implication are suffi cient to define a partition algebra∏

(U) parallel to the familiar powerset Boolean algebra ℘ (U).
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1. irreflexive (or anti-reflexive), P ∩∆ = ∅ (where ∆ = {(u, u) : u ∈ U} is the diagonal), i.e., no
element u ∈ U can be distinguished from itself;

2. symmetric, (u, u′) ∈ P implies (u′, u) ∈ P , i.e., if u is distinguished from u′, then u′ is distin-
guished from u; and

3. anti-transitive (or co-transitive), if (u, u′′) ∈ P then for any u′ ∈ U , (u, u′) ∈ P or (u′, u′′) ∈ P ,
i.e., if u is distinguished from u′′, then any other element u′ must be distinguished from u or u′′

because if u′ was equivalent to both, then by transitivity of equivalence, u would be equivalent
to u′′ contrary to them being distinguished.

That is how distinctions work at the logical level, and that is why the ditset of a partition is the
‘probability-free’ notion of an information set or infoset in the logical theory of information-as-
distinctions.

Given any subset S ⊆ U × U , the reflexive-symmetric-transitive (rst) closure Sc of the comple-
ment Sc is the smallest equivalence relation containing Sc, so its complement is the largest partition
relation contained in S, which is called the interior int (S) of S. This usage is consistent with calling
the subsets that equal their rst-closures closed subsets of U × U (so closed subsets = equivalence
relations) so the complements are the open subsets (= partition relations). However it should be
noted that the rst-closure is not a topological closure since the closure of a union is not necessarily
the union of the closures, so the ‘open’subsets do not form a topology on U × U .

The interior operation int : ℘ (U × U) → ℘ (U × U) provides a universal way to define logical
operations on partitions from the corresponding logical subset operations in Boolean logic:

apply the subset operation to the ditsets and then, if necessary,
take the interior to obtain the ditset of the partition operation.

Since the same operations can be defined for subsets and partitions, one can interpret a formula
Φ (π, σ, ...) either way as a subset or a partition. Given either subsets or partitions of U substituted
for the variables π, σ,..., one can apply, respectively, subset or partition operations to evaluate the
whole formula. Since Φ (π, σ, ...) is either a subset or a partition, the corresponding proposition is
“u is an element of Φ (π, σ, ...)”or “(u, u′) is a distinction of Φ (π, σ, ...)”. And then the definitions
of a valid formula are also parallel, namely, no matter what is substituted for the variables, the
whole formula evaluates to the top of the algebra. In that case, the subset Φ (π, σ, ...) contains all
elements of U , i.e., Φ (π, σ, ...) = U , or the partition Φ (π, σ, ...) distinguishes all pairs (u, u′) for
distinct elements of U , i.e., Φ (π, σ, ...) = 1. The parallelism between the dual logics is summarized
in the following Table 1.

Table 1 Subset logic Partition logic

‘Elements’(its or dits) Elements u of S Dits (u, u′) of π
Inclusion of ‘elements’ Inclusion S ⊆ T Refinement: dit (σ) ⊆ dit (π)

Top of order = all ‘elements’ U all elements dit(1) = U2 −∆, all dits
Bottom of order = no ‘elements’ ∅ no elements dit(0) = ∅, no dits

Variables in formulas Subsets S of U Partitions π on U
Operations: ∨,∧,⇒, ... Subset ops. Partition ops.
Formula Φ(x, y, ...) holds u element of Φ(S, T, ...) (u, u′) dit of Φ(π, σ, ...)

Valid formula Φ(S, T, ...) = U , ∀S, T, ... Φ(π, σ, ...) = 1, ∀π, σ, ...
Table 1: Duality between subset logic and partition logic

5 Classical logical probability and logical entropy

George Boole [7] extended his logic of subsets to finite logical probability theory where, in the
equiprobable case, the probability of a subset S (event) of a finite universe set (outcome set or
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sample space) U = {u1, ..., un} was the number of elements in S over the total number of elements:
Pr (S) = |S|

|U | =
∑
uj∈S

1
|U | . Pierre-Simon Laplace’s classical finite probability theory [30] also dealt

with the case where the outcomes were assigned real point probabilities p = {p1, ..., pn} so rather
than summing the equal probabilities 1

|U | , the point probabilities of the elements were summed:

Pr (S) =
∑
uj∈S pj = p (S)—where the equiprobable formula is for pj = 1

|U | for j = 1, ..., n. The

conditional probability of an event T ⊆ U given an event S is Pr (T |S) = p(T∩S)
p(S) .

In Gian-Carlo Rota’s Fubini Lectures [38] (and in his lectures at MIT), he has remarked in view
of duality between partitions and subsets that, quantitatively, the “lattice of partitions plays for
information the role that the Boolean algebra of subsets plays for size or probability”[29, p. 30] or
symbolically:

information : partitions :: probability : subsets.

Since “Probability is a measure on the Boolean algebra of events” that gives quantitatively the
“intuitive idea of the size of a set”, we may ask by “analogy”for some measure to capture a property
for a partition like “what size is to a set.”Rota goes on to ask:

How shall we be led to such a property? We have already an inkling of what it should
be: it should be a measure of information provided by a random variable. Is there a
candidate for the measure of the amount of information? [38, p. 67]

Our claim is quite simple; the analogue to the size of a subset is the size of the ditset or information
set, the set of distinctions, of a partition.4 The normalized size of a subset is the logical probability
of the event, and the normalized size of the ditset of a partition is, in the sense of measure theory,
“the measure of the amount of information”in a partition. Thus we define the logical entropy of a
partition π = {B1,..., Bm}, denoted h (π), as the size of the ditset dit (π) ⊆ U × U normalized by
the size of U × U :

h (π) = |dit(π)|
|U×U | =

∑
(uj ,uk)∈dit(π)

1
|U |

1
|U |

Logical entropy of π (equiprobable case).

This is just the product probability measure of the equiprobable or uniform probability distribution
on U applied to the information set or ditset dit (π). The inditset of π is indit (π) = ∪mi=1 (Bi ×Bi)
so where p (Bi) = |Bi|

|U | in the equiprobable case, we have:

h (π) = |dit(π)|
|U×U | =

|U×U |−
∑m

i=1|Bi×Bi|
|U×U | = 1−

∑m
i=1

(
|Bi|
|U |

)2
= 1−

∑m
i=1 p (Bi)

2.

The corresponding definition for the case of point probabilities p = {p1, ..., pn} is to just add up
the probabilities of getting a particular distinction:

hp (π) =
∑

(uj ,uk)∈dit(π) pjpk
Logical entropy of π with point probabilities p.

Taking p (Bi) =
∑
uj∈Bi

pj , the logical entropy with point probabilities is:

hp (π) =
∑

(uj ,uk)∈dit(π) pjpk =
∑
i 6=i′ p (Bi) p (Bi′) = 2

∑
i<i′ p (Bi) p (Bi′) = 1−

∑m
i=1 p (Bi)

2.

Instead of being given a partition π = {B1, ..., Bm} on U with point probabilities pj defining
the finite probability distribution of block probabilities {p (Bi)}i, one might be given only a finite
probability distribution p = {p1, ..., pm}. Then substituting pi for p (Bi) gives the:

4The lattice of partitions on U is isomorphically represented by the lattice of partition relations or ditsets on U×U
([13]; [15]), so in that sense, the size of the ditset of a partition is its ‘size.’
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h (p) = 1−
∑m
i=1 p

2
i =

∑
i 6=j pipj

Logical entropy of a finite probability distribution.5

Since 1 = (
∑n
i=1 pi)

2
=
∑
i p
2
i +
∑
i 6=j pipj , we again have the logical entropy h (p) as the probability∑

i 6=j pipj of drawing a distinction in two independent samplings of the probability distribution p.
That two-draw probability interpretation follows from the important fact that logical entropy is

always the value of a probability measure. The product probability measure on the subsets S ⊆ U×U
is:

µ (S) =
∑
{pipj : (ui, uj) ∈ S}

Product measure on U × U .

Then the logical entropy h (p) = µ (dit(1U )) is just the product measure of the information set or
ditset dit (1U ) = U × U −∆ of the discrete partition 1U on U .

There are also parallel “element ↔ distinction”probabilistic interpretations:

• Pr (S) =
∑
ui∈S pi is the probability that a single draw from U gives a element uj of S, and

• hp (π) = µ (dit (π)) =
∑

(uj ,uk)∈dit(π) pjpk is the probability that two independent (with re-
placement) draws from U gives a distinction (uj , uk) of π.

The duality between logical probabilities and logical entropies based on the parallel roles of ‘its’
(elements of subsets) and ‘dits’ (distinctions of partitions) is summarized in Table 2.

Table 2 Logical Probability Theory Logical Information Theory

‘Outcomes’ Elements u ∈ U finite Dits (u, u′) ∈ U × U finite
‘Events’ Subsets S ⊆ U Ditsets dit (π) ⊆ U × U

Equiprobable points Pr (S) = |S|
|U | h (π) = |dit(π)|

|U×U |
Point probabilities Pr (S) =

∑
{pj : uj ∈ S} h (π) =

∑
{pjpk : (uj , uk) ∈ dit (π)}

Interpretation Pr(S) = 1-draw prob. of S-element h (π) = 2-draw prob. of π-distinction
Table 2: Classical logical probability theory and classical logical information theory

This concludes the argument that logical information theory arises out of partition logic just as
logical probability theory arises out of subset logic. Now we turn to the formulas of logical information
theory and the comparison to the formulas of Shannon information theory.

6 Entropy as a measure of information

For a partition π = {B1, ..., Bm} with block probabilities p (Bi) (obtained using equiprobable points
or with point probabilities), the Shannon entropy of the partition (using logs to base 2) is:

H (π) = −
∑m
i=1 p (Bi) log (p (Bi)).

Or if given a finite probability distribution p = {p1, ..., pm}, the Shannon entropy of the probability
distribution is:

H (p) = −
∑m
i=1 pi log (pi).

5The formula 1−
∑
i p

2
i is quite old as a measure of diversity and goes back at least to Gini’s index of mutability

in 1912 [19]. For the long history of the formula, see [12] or [14].
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Shannon entropy and the many other suggested ‘entropies’are routinely called “measures” of
information [2]. The formulas for mutual information, joint entropy, and conditional entropy are
defined so these Shannon entropies satisfy Venn diagram formulas (e.g., [1, p. 109]; [35, p. 508])
that would follow automatically if Shannon entropy were a measure in the technical sense. As Lorne
Campbell put it:

Certain analogies between entropy and measure have been noted by various authors.
These analogies provide a convenient mnemonic for the various relations between entropy,
conditional entropy, joint entropy, and mutual information. It is interesting to speculate
whether these analogies have a deeper foundation. It would seem to be quite significant
if entropy did admit an interpretation as the measure of some set. [9, p. 112]

For any finite set X, a measure µ is a function µ : ℘ (X)→ R such that:

1. µ (∅) = 0,

2. for any E ⊆ X, µ (E) ≥ 0, and

3. for any disjoint subsets E1 and E2, µ(E1 ∪ E2) = µ (E1) + µ (E2).

Considerable effort has been expended to try to find a framework in which Shannon entropy
would be a measure in this technical sense and thus would satisfy the desiderata:

that H (α) and H (β) are measures of sets, that H (α, β) is the measure of their union,
that I (α, β) is the measure of their intersection, and that H (α|β) is the measure of
their difference. The possibility that I (α, β) is the entropy of the “intersection”of two
partitions is particularly interesting. This “intersection,”if it existed, would presumably
contain the information common to the partitions α and β.[9, p. 113]

But these efforts have not been successful beyond special cases such as 2n equiprobable elements
where, as Campbell notes, the Shannon entropy is just the counting measure n of the minimum
number of binary partitions it takes to distinguish all the elements. In general, Shannon entropy is
not a measure on a set.6

In contrast, it is “quite significant” that logical entropy is a measure such as the normalized
counting measure on the ditset dit(π) representation of a partition π as a subset of the set U × U .
Thus all of Campbell’s desiderata are true when:

• “sets”= ditsets, the set of distinctions of partitions (or, in general, information sets of distinc-
tions), and

• “entropies”= normalized counting measure of the ditsets (or, in general, product probability
measure on the infosets), i.e., the logical entropies.

6Perhaps, one should say that Shannon entropy is not the measure of any independently defined set. The fact that
the Shannon formulas ‘act like a measure on a set’can, of course, be formalized by formally associating an (indefinite)
‘set’with each random variable X and then defining the measure value on the ‘set’as H (X). But since there is no
independently defined ‘set’with actual members and this ‘measure’is defined by the Shannon entropy values (rather
than the other way around), nothing is added to the already-known fact that the Shannon entropies act like a measure
in the Venn diagram relationships. This formalization exercise seems to have been first carried out by Guo Ding Hu
[25] but was also noted by Imre Csiszar and Janos Körner [11], and redeveloped by Raymond Yeung ([48]; [49]).
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7 The dit-bit transform

The logical entropy formulas for various compound notions (e.g., conditional entropy, mutual in-
formation, and joint entropy) stand in certain Venn diagram relationships because logical entropy
is a measure. The Shannon entropy formulas for these compound notions, e.g., H(α, β) = H (α) +
H (β)− I (α, β), are defined so as to satisfy the Venn diagram relationships as if Shannon entropy
was a measure when it is not. How can that be? Perhaps there is some “deeper foundation”[9, p. 112]
to explain why the Shannon formulas still satisfy those measure-like Venn diagram relationships.

Indeed, there is such a connection, the dit-bit transform. This transform can be heuristically
motivated by considering two ways to treat the standard set Un of n elements with the equal
probabilities p0 = 1

n . In that basic case of an equiprobable set, we can derive the dit-bit connection,
and then by using a probabilistic average, we can develop the Shannon entropy, expressed in terms
of bits, from the logical entropy, expressed in terms of (normalized) dits, or vice-versa.

Given Un with n equiprobable elements, the number of dits (of the discrete partition on Un) is
n2 − n so the normalized dit count is:

h (p0) = h
(
1
n

)
= n2−n

n2 = 1− 1
n = 1− p0 normalized dits.

That is the dit-count or logical measure of the information in a set of n distinct elements (think of
it as the logical entropy of the discrete partition on Un with equiprobable elements).

But we can also measure the information in the set by the number of binary partitions it takes
(on average) to distinguish the elements, and that bit-count is [23]:

H (p0) = H
(
1
n

)
= log (n) = log

(
1
p0

)
bits.

Shannon-Hartley entropy for an equiprobable set U of n elements

The dit-bit connection is that the Shannon-Hartley entropy H (p0) = log
(
1
p0

)
will play the same

role in the Shannon formulas that h (p0) = 1 − p0 plays in the logical entropy formulas—when both
are formulated as probabilistic averages or expectations.

The common thing being measured is an equiprobable Un where n = 1
p0
.7 The dit-count for

Un is h (p0) = 1 − p0 and the bit-count for U is H (p0) = log
(
1
p0

)
, and the dit-bit transform

converts one count into the other. Using this dit-bit transform between the two different ways to
quantify the ‘information’in Un, each entropy can be developed from the other. Nevertheless, this
dit-bit connection should not be interpreted as if it was just converting a length using centimeters
to inches or the like. Indeed, the (average) bit-count is a “coarser-grid”that loses some information
in comparison to the (exact) dit-count as shown by the analysis (below) of mutual information.
There is no bit-count mutual information between independent probability distributions but there
is always dit-count information even between two (non-trivial) independent distributions (see below
the proposition that nonempty supports always intersect).

We start with the logical entropy of a probability distribution p = {p1, ..., pn}:

h (p) =
∑n
i=1 pih (pi) =

∑
i pi (1− pi).

It is expressed as the probabilistic average of the dit-counts or logical entropies of the sets U1/pi with
1
pi
equiprobable elements. But if we switch to the binary-partition bit-counts of the information con-

tent of those same sets U1/pi of
1
pi
equiprobable elements, then the bit-counts are H (pi) = log

(
1
pi

)
7Note that n = 1/p0 need not be an integer. We are following the usual practice in information theory where an

implicit “on average” interpretation is assumed since actual “binary partitions” or “binary digits" (or “bits”) only
come in integral units. The "on average" provisos are justified by the “Noiseless Coding Theorem”covered in the later
section on the statistical interpretation of Shannon entropy.
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and the probabilistic average is the Shannon entropy: H (p) =
∑n
i=1 piH (pi) =

∑
i pi log

(
1
pi

)
. Both

entropies have the mathematical form as a probabilistic average or expectation:∑
i pi
(
amount of ‘information’in U1/pi

)
and differ by using either the dit-count or bit-count conception of information in U1/pi .

The graph of the dit-bit transform is familiar in information theory from the natural log in-
equality: ln pi ≤ pi − 1. Taking negatives of both sides gives the graph of the dit-bit transform for

natural logs: 1− pi  ln
(
1
pi

)
.

Figure 1: The dit-bit transform 1− p ln
(
1
p

)
(natural logs).

The dit-bit connection carries over to all the compound notions of entropy so that the Shannon
notions of conditional entropy, mutual information, cross-entropy, and divergence can all be devel-
oped from the corresponding notions for logical entropy. Since the logical notions are the values
of a probability measure, the compound notions of logical entropy have the usual Venn diagram
relationships. And then by the dit-bit transform, those Venn diagram relationships carry over to the
compound Shannon formulas since the dit-bit transform preserves sums and differences (i.e., is, in
that sense, linear). That is why the Shannon formulas can satisfy the Venn diagram relationships
even though Shannon entropy is not a measure.

The logical entropy formula h (p) =
∑
i pi (1− pi) (and the corresponding compound formulas)

are put into that form of an average or expectation to apply the dit-bit transform. But logical
entropy is the exact measure of the information set Si 6=i′ = {(i, i′) : i 6= i′} ⊆ {1, ..., n} × {1, ..., n}
for the product probability measure µ : ℘

(
{1, ..., n}2

)
→ [0, 1] where for S ⊆ {1, ..., n}2, µ (S) =∑

{pipi′ : (i, i′) ∈ S}, i.e., h (p) = µ (Si 6=i′).

8 Information algebras and joint distributions

Consider a joint probability distribution {p (x, y)} on the finite sample space X×Y (where to avoid
trivialities, assume |X| , |Y | ≥ 2), with the marginal distributions {p (x)} and {p (y)} where p (x) =∑
y∈Y p (x, y) and p (y) =

∑
x∈X p (x, y). For notational simplicity, the entropies can be considered as

functions of the random variables or of their probability distributions, e.g., h ({p (x, y)}) = h (X,Y ),
h ({p (x)}) = h (X), and h ({p (y)}) = h (Y ). For the joint distribution, we have the:

h (X,Y ) =
∑
x∈X,y∈Y p (x, y) [1− p (x, y)] = 1−

∑
x,y p (x, y)

2

Logical entropy of the joint distribution
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which is the probability that two samplings of the joint distribution will yield a pair of distinct
ordered pairs (x, y), (x′, y′) ∈ X×Y , i.e., with anX-distinction x 6= x′ or a Y -distinction y 6= y′(since
ordered pairs are distinct if distinct on one or more of the coordinates). The logical entropy notions
for the probability distribution {p (x, y)} on X × Y are all product probability measures µ (S) of
certain subsets S ⊆ (X × Y )

2. These information sets or infosets are defined solely in terms of
equations and inequations (the ‘calculus of identity and difference’) independent of any probability
distributions.

For the logical entropies defined so far, the infosets are:

SX = {((x, y) , (x′, y′)) : x 6= x′},
h (X) = µ (SX) = 1−

∑
x p (x)

2;
SY = {((x, y) , (x′, y′)) : y 6= y′},

h (Y ) = µ (SY ) = 1−
∑
y p (y)

2; and
SX∨Y = {((x, y) , (x′, y′)) : x 6= x′ ∨ y 6= y′} = SX ∪ SY ,
h (X,Y ) = µ (SX∨Y ) = µ (SX ∪ SY ) = 1−

∑
x,y p (x, y)

2.

The infosets SX and SY , as well as their complements

S¬X = {((x, y) , (x′, y′)) : x = x′} = (X × Y )
2 − SX and

S¬Y = {((x, y) , (x′, y′)) : y = y′} = (X × Y )
2 − SY ,8

generate a Boolean subalgebra I (X × Y ) of ℘ ((X × Y )× (X × Y )) which will be called the infor-
mation algebra of X×Y . It is defined independently of any probability measure {p (x, y)} on X×Y ,
and any such measure defines the product measure µ on (X × Y )× (X × Y ), and the corresponding
logical entropies are the product measures on the infosets in I (X × Y ).

The four atoms SX ∩ SY = SX∧Y , SX ∩ S¬Y = SX∧¬Y , S¬X ∩ SY = S¬X∧Y , and S¬X ∩ S¬Y =
S¬X∧¬Y in the information Boolean algebra are nonempty and correspond to the four rows in the
truth table for the two propositions x 6= x′ and y 6= y′(and to the four disjoint areas in the Venn
diagram of Figure 2).

Atoms x 6= x′ y 6= y′ X 6≡ Y X ⊃ Y
SX∧Y T T F T
SX∧¬Y T F T F
SY ∧¬X F T T T
S¬X∧¬Y F F F T

Table 3: Truth table for atoms in the Information Algebra

For n = 2 variables X and Y , there are 2(2
n) = 16 ways to fill in the T’s and F’s to define all

the possible Boolean combinations of the two propositions so there are 16 subsets in the information
algebra I (X × Y ). The 15 nonempty subsets in I (X × Y ) are defined in disjunctive normal form
by the union of the atoms that have a T in their row. For instance, the set SX 6≡Y corresponding
to the symmetric difference or inequivalence (x 6= x′) 6≡ (y 6= y′) is SX 6≡Y = SX∧¬Y ∪ SY ∧¬X =
(SX − SY ) ∪ (SY − SX).

The information algebra I (X × Y ) is a finite combinatorial structure defined solely in terms
of X × Y using only the distinctions and indistinctions between the elements of X and Y . Any
equivalence between Boolean expressions that is a tautology, e.g., x 6= x′ ≡ (x 6= x′ ∧ ¬ (y 6= y′)) ∨
(x 6= x′ ∧ y 6= y′), gives a set identity in the information Boolean algebra, e.g., SX = (SX ∩ S¬Y ) ∪
(SX ∩ SY ). Since that union is disjoint, any probability distribution on X × Y gives the logically
necessary identity h (X) = h (X|Y ) +m (X,Y ) (see below).

8Note that S¬X and S¬Y intersect in the diagonal ∆ ⊆ (X × Y )2.

12



In addition to the logically necessary relationships between the logical entropies, other relation-
ships may hold depending on the particular probability distribution on X × Y . Even though all the
15 subsets in the information algebra aside from the empty set ∅ are always nonempty, some of the
logical entropies can still be 0. Indeed, h (X) = 0 iff the marginal distribution on X has p (x) = 1
for some x ∈ X. These more specific relationships will depend not just on the infosets but also on
their positive supports (which depend on the probability distribution):

Supp (SX) = {((x, y) , (x′, y′)) : x 6= x′, p (x, y) p (x′, y′) > 0} ⊆ (X × Y )
2

Supp (SY ) = {((x, y) , (x′, y′)) : y 6= y′, p (x, y) p (x′, y′) > 0} ⊆ (X × Y )
2.

Now Supp (SX) ⊆ SX and Supp (SY ) ⊆ SY , and for the product probability measure µ on
(X × Y )

2, the sets SX − Supp (SX) and SY − Supp (SY ) are of measure 0 so:

µ (Supp (SX)) = µ (SX) = h (X)
µ (Supp (SY )) = µ (SY ) = h (Y ).

Consider SX⊃Y = SX∧Y ∪ SY ∧¬X ∪ S¬X∧¬Y and suppose that the probability distribution gives
µ (SX⊃Y ) = 1 so that µ (SX∧¬Y ) = 0. That means in a double draw of (x, y) and (x′, y′), if x 6= x′,
then there is zero probability that y = y′, so x 6= x′ implies (probabilistically) y 6= y′. In terms of the
Venn diagram, the h (X) area is a subset of the h (Y ) area. i.e., Supp (SX) ⊆ Supp (SY ) in terms of
the underlying sets.

9 Conditional entropies

9.1 Logical conditional entropy

All the compound notions for Shannon and logical entropy could be developed using either partitions
(with point probabilities) or probability distributions of random variables as the given data. Since
the treatment of Shannon entropy is most often in terms of probability distributions, we will stick
to that case for both types of entropy. The formula for the compound notion of logical entropy will
be developed first, and then the formula for the corresponding Shannon compound entropy will be
obtained by the dit-bit transform.

The general idea of a conditional entropy of a random variable X given a random variable Y is
to measure the information in X when we take away the information contained in Y , i.e., the set
difference operation in terms of information sets.

For the definition of the conditional entropy h (X|Y ), we simply take the product measure of
the set of pairs (x, y) and (x′, y′) that give an X-distinction but not a Y -distinction. Hence we use
the inequation x 6= x′ for the X-distinction and negate the Y -distinction y 6= y′ to get the infoset
that is the difference of the infosets for X and Y :

SX∧¬Y = {((x, y) , (x′, y′)) : x 6= x′ ∧ y = y′} = SX − SY so
h (X|Y ) = µ (SX∧¬Y ) = µ (SX − SY ).

Since SX∨Y can be expressed as the disjoint union SX∨Y = SX∧¬Y ] SY , we have for the measure
µ:

h (X,Y ) = µ (SX∨Y ) = µ (SX∧¬Y ) + µ (SY ) = h (X|Y ) + h (Y ),

which is illustrated in the Venn diagram Figure 2.
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Figure 2: h (X,Y ) = h (X|Y ) + h (Y ) = h (Y |X) + h (X).

In terms of the probabilities:

h (X|Y ) = h (X,Y )− h (Y ) =
∑
x,y p (x, y) (1− p (x, y))−

∑
y p (y) (1− p (y))

=
∑
x,y p (x, y) [(1− p (x, y))− (1− p (y))]

Logical conditional entropy of X given Y .

Also of interest is the:

d (X,Y ) = h (X|Y ) + h (Y |X) = µ (SX 6≡ SY )
Logical distance metric

where 6≡ is the inequivalence (symmetric difference) operation on sets. This logical distance is a
Hamming-style distance function [34, p. 66] based on the difference between the random variables.
Unlike the Kullback-Leibler divergence (see below), this logical distance is a distance metric.

9.2 Shannon conditional entropy

Given the joint distribution {p (x, y)} on X×Y , the conditional probability distribution for a specific
y0 ∈ Y is p (x|y0) = p(x,y0)

p(y0)
which has the Shannon entropy: H (X|y0) =

∑
x p (x|y0) log

(
1

p(x|y0)

)
.

Then the Shannon conditional entropy H (X|Y ) is usually defined as the average of these entropies:

H (X|Y ) =
∑
y p (y)

∑
x
p(x,y)
p(y) log

(
p(y)
p(x,y)

)
=
∑
x,y p (x, y) log

(
p(y)
p(x,y)

)
Shannon conditional entropy of X given Y .

All the Shannon notions can be obtained by the dit-bit transform of the corresponding logical

notions. Applying the transform 1 − p  log
(
1
p

)
to the logical conditional entropy expressed as

an average of “1 − p” expressions: h (X|Y ) =
∑
x,y p (x, y) [(1− p (x, y))− (1− p (y))], yields the

Shannon conditional entropy:

H (X|Y ) =
∑
x,y p (x, y)

[
log
(

1
p(x,y)

)
− log

(
1

p(y)

)]
=
∑
x,y p (x, y) log

(
p(y)
p(x,y)

)
.

Since the dit-bit transform preserves sums and differences, we will have the same sort of Venn
diagram formula for the Shannon entropies and this can be illustrated in the analogous “mnemonic”
Venn diagram.
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Figure 3: H (X,Y ) = H (X|Y ) +H (Y ) = H (Y |X) +H (X).

10 Mutual information

10.1 Logical mutual information

Intuitively, the mutual logical information m (X,Y ) in the joint distribution{p (x, y)} would be the
probability that a sampled pair of pairs (x, y) and (x′, y′) would be distinguished in both coordinates,
i.e., a distinction x 6= x′ of p (x) and a distinction y 6= y′ of p (y). In terms of subsets, the subset for
the mutual information is intersection of infosets for X and Y :

SX∧Y = SX ∩ SY so m (X,Y ) = µ (SX∧Y ) = µ (SX ∩ SY ).

In terms of disjoint unions of subsets:

SX∨Y = SX∧¬Y ] SY ∧¬X ] SX∧Y

so

h (X,Y ) = µ (SX∨Y ) = µ (SX∧¬Y ) + µ (SY ∧¬X) + µ (SX∧Y )
= h (X|Y ) + h (Y |X) +m (X,Y ) (as in Figure 4),

or:

m (X,Y ) = h (X) + h (Y )− h (X,Y ).

Figure 4: h (X,Y ) = h (X|Y ) + h (Y |X) +m (X,Y )

Expanding m (X,Y ) = h (X) + h (Y )− h (X,Y ) in terms of probability averages gives:
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m (X,Y ) =
∑
x,y p (x, y) [[1− p (x)] + [1− p (y)]− [1− p (x, y)]]

Logical mutual information in a joint probability distribution.

Since SY = SY ∧¬X ∪ SY ∧X = (SY − SX) ∪ (SY ∩ SX) and the union is disjoint, we have the
formula:

h (Y ) = h (Y |X) +m (X,Y )

which can be taken as the basis for a logical analysis of variation (ANOVA) for categorical data.
The total variation in Y , h(Y ), is equal to the variation in Y “within”X (i.e., with no variation in
X), h (Y |X), plus the variation “between”Y and X (i.e., variation in both X and Y ), m (X,Y ).

It is a non-trivial fact that two nonempty partition ditsets always intersect [12]. The same holds
for the positive supports of the basic infosets SX and SY .

Proposition 1 (Two nonempty supports always intersect) If h (X)h (Y ) > 0, thenm (X,Y ) >
0.

Proof: Assuming h (X)h (Y ) > 0, the support Supp (SX) is nonempty and thus there are two
pairs (x, y) and (x′, y′) such that x 6= x′ and p (x, y) p (x′, y′) > 0. If y 6= y′ then ((x, y) , (x′, y′)) ∈
Supp (SY ) as well and we are finished, i.e., Supp (SX) ∩ Supp (SY ) 6= ∅. Hence assume y = y′.
Since Supp (SY ) is also nonempty and thus p (y) 6= 1, there is another y′′ such that for some x′′,
p (x′′, y′′) > 0. Since x′′ can’t be equal to both x and x′ (by the anti-transitivity of distinctions),
at least one of the pairs ((x, y) , (x′′, y′′)) or ((x′, y) , (x′′, y′′)) is in both Supp (SX) and Supp (SY ),
and thus the product measure on S∧{X,Y } = {((x, y) , (x′, y′)) : x 6= x′ ∧ y 6= y′} is positive, i.e.,
m (X,Y ) > 0.�

10.2 Shannon mutual information

Applying the dit-bit transform 1− p log
(
1
p

)
to the logical mutual information formula

m (X,Y ) =
∑
x,y p (x, y) [[1− p (x)] + [1− p (y)]− [1− p (x, y)]]

expressed in terms of probability averages gives the corresponding Shannon notion:

I (X,Y ) =
∑
x,y p (x, y)

[[
log
(

1
p(x)

)]
+
[
log
(

1
p(y)

)]
−
[
log
(

1
p(x,y)

)]]
=
∑
x,y p (x, y) log

(
p(x,y)
p(x)p(y)

)
Shannon mutual information in a joint probability distribution.

Since the dit-bit transform preserves sums and differences, the logical formulas for the Shannon
entropies gives the mnemonic Figure 5:

I (X,Y ) = H (X) +H (Y )−H (X,Y ) = H (X,Y )−H (X|Y )−H (Y |X).
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Figure 5: H (X,Y ) = H (X|Y ) +H (Y |X) + I (X,Y ).

This is the usual Venn diagram for the Shannon entropy notions that needs to be explained—
since the Shannon entropies are not measures. Of course, one could just say the relationship holds
for the Shannon entropies because that’s how they were defined. It may seem a happy accident that
the Shannon definitions all satisfy the measure-like Venn diagram formulas, but as one author put
it: “Shannon carefully contrived for this ‘accident’to occur”[39, p. 153]. As noted above, Campbell
asked if “these analogies have a deeper foundation” [9, p. 112] and the dit-bit transform answers
that question.

11 Independent Joint Distributions

A joint probability distribution {p (x, y)} on X × Y is independent if each value is the product of
the marginals: p (x, y) = p (x) p (y).

For an independent distribution, the Shannon mutual information

I (X,Y ) =
∑
x∈X,y∈Y p (x, y) log

(
p(x,y)
p(x)p(y)

)
is immediately seen to be zero so we have:

H (X,Y ) = H (X) +H (Y )
Shannon entropies for independent {p (x, y)}.

For the logical mutual information m(X,Y ), independence gives:

m (X,Y ) =
∑
x,yp (x, y) [1− p (x)− p (y) + p (x, y)]

=
∑
x,yp (x) p (y) [1− p (x)− p (y) + p (x) p (y)]

=
∑
xp (x) [1− p (x)]

∑
yp (y) [1− p (y)]

= h (X)h (Y )

Logical entropies for independent {p (x, y)}.

Independence means the joint probability p (x, y) can always be separated into p (x) times p (y).
This carries over to the standard two-draw probability interpretation of logical entropy. Thus in-
dependence means that in two draws, the probability m (X,Y ) of getting distinctions in both X
and Y is equal to the probability h (X) of getting an X-distinction times the probability h (Y ) of
getting a Y -distinction. Similarly, Table 4 shows that, under independence, the four atomic areas
in Figure 4 can each be expressed as the four possible products of the areas {h (X) , 1− h (X)} and
{h (Y ) , 1− h (Y )} that are defined in terms of one variable.

Atomic areas X Y

m (X,Y ) = h (X)× h (Y )
h (X|Y ) = h (X)× [1− h (Y )]
h (Y |X) = [1− h (X)]× h (Y )

1− h (X,Y ) = [1− h (X)]× [1− h (Y )]
Table 4: Logical entropy relationships under independence.

The nonempty-supports-always-intersect proposition shows that h (X)h (Y ) > 0 impliesm (X,Y ) >
0, and thus that logical mutual information m (X,Y ) is still positive for independent distributions
when h (X)h (Y ) > 0, in which case m (X,Y ) = h (X)h (Y ). This is a striking difference between
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the average bit-count Shannon entropy and the dit-count logical entropy. Aside from the waste
case where h (X)h (Y ) = 0, there are always positive probability mutual distinctions for X and Y ,
and that dit-count information is not recognized by the coarser-grained average bit-count Shannon
entropy.

12 Cross-entropies and divergences

Given two probability distributions p = {p1, ..., pn} and q = {q1, ..., qn} on the same sample space
U = {1, ..., n}, we can again consider the drawing of a pair of points but where the first drawing is
according to p and the second drawing according to q. The probability that the points are distinct
would be a natural and more general notion of logical entropy that would be the:

h (p‖q) =
∑
i pi(1− qi) = 1−

∑
i piqi

Logical cross entropy of p and q

which is symmetric. Adding subscripts to indicate which probability measures are being used, the
value of the product probability measure µpq on any S ⊆ U2 is µpq (S) =

∑
{piqi′ : (i, i′) ∈ S}. Thus

on the standard information set Si 6=i′ =
{

(i, i′) ∈ U2 : i 6= i′
}

= dit (1U ), the value is:

h (p||q) = µpq (Si 6=i′).

The logical cross entropy is the same as the logical entropy when the distributions are the same, i.e.,
if p = q, then h (p‖q) = h (p) = µp (Si 6=i′).

Although the logical cross entropy formula is symmetrical in p and q, there are two different ways
to express it as an average in order to apply the dit-bit transform:

∑
i pi(1− qi) and

∑
i qi (1− pi).

The two transforms are the two asymmetrical versions of Shannon cross entropy:

H (p‖q) =
∑
i pi log

(
1
qi

)
and H (q||p) =

∑
i qi log

(
1
pi

)
.

which is not symmetrical due to the asymmetric role of the logarithm, although if p = q, then
H (p‖p) = H (p). When the logical cross entropy is expressed as an average in a symmetrical way:
h (p||q) = 1

2 [
∑
i pi(1− qi) +

∑
i qi (1− pi)], then the dit-bit transform is a symmetrized Shannon

cross entropy :

Hs (p||q) = 1
2 [H (p||q) +H (q||p)].

The Kullback-Leibler divergence (or relative entropy) D (p‖q) =
∑
i pi log

(
pi
qi

)
is defined as a

‘measure’of the distance or divergence between the two distributions where D (p‖q) = H (p‖q) −
H (p). A basic result is the:

D (p‖q) ≥ 0 with equality if and only if p = q
Information inequality [10, p. 26].

A symmetrized Kullback-Leibler divergence is:

Ds(p||q) = D (p||q) +D (q||p) = 2Hs (p||q)− [H (p) +H (q)].

But starting afresh, one might ask: “What is the natural notion of distance between two prob-
ability distributions p = {p1, ..., pn} and q = {q1, ..., qn} that would always be non-negative, and
would be zero if and only if they are equal?” The (Euclidean) distance metric between the two
points in Rn would seem to be the logical answer– so we take that distance squared as the definition
of the:
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d (p‖q) =
∑
i (pi − qi)2

Logical divergence (or logical relative entropy)9

which is symmetric and we trivially have:

d (p||q) ≥ 0 with equality iff p = q
Logical information inequality.

We have component-wise:

0 ≤ (pi − qi)2 = p2i − 2piqi + q2i = 2
[
1
n − piqi

]
−
[
1
n − p

2
i

]
−
[
1
n − q

2
i

]
so that taking the sum for i = 1, ..., n gives:

d (p‖q) =
∑
i (pi − qi)2

= 2 [1−
∑
ipiqi]−

[(
1−

∑
ip
2
i

)
+
(
1−

∑
iq
2
i

)]
= 2h (p‖q)− [h (p) + h (q)]

= 2µpq (Si 6=i′)− [µp (Si 6=i′) + µq (Si 6=i′)] .

Logical divergence

Aside from a scale factor, the logical divergence is the same as the Jensen difference [36, p. 25]
J (p, q) = h (p||q)− h(p)+h(q)

2 . Then the information inequality implies that the logical cross-entropy
is greater than or equal to the average of the logical entropies, i.e., the non-negativity of the Jensen
difference:

h (p||q) ≥ h(p)+h(q)
2 with equality iff p = q.

The half-and-half probability distribution p+q
2 that mixes p and q has the logical entropy of

h
(
p+q
2

)
= h(p‖q)

2 + h(p)+h(q)
4 = 1

2

[
h (p||q) + h(p)+h(q)

2

]
so that:

h(p||q) ≥ h
(
p+q
2

)
≥ h(p)+h(q)

2 with equality iff p = q.
Mixing different p and q increases logical entropy.

The logical divergence can be expressed in the symmetrical form of averages to apply the dit-bit
transform:

d (p‖q) = [
∑
i pi (1− qi) +

∑
i qi (1− pi)]− [(

∑
i pi (1− pi)) + (

∑
i qi (1− qi))]

so the dit-bit transform is:[∑
i pi log

(
1
qi

)
+
∑
i qi log

(
1
pi

)
−
∑
i pi log

(
1
pi

)
−
∑
i qi log

(
1
qi

)]
=
[∑

i pi log
(
pi
qi

)
+
∑
i qi log

(
qi
pi

)]
= D (p||q) +D (q||p)

= Ds (p||q).

Since the logical divergence d (p||q) is symmetrical, it develops via the dit-bit transform to the
symmetrized version Ds (p||q) of the Kullback-Leibler divergence. The logical divergence d (p||q)
is clearly a distance function (or metric) on probability distributions, but even the symmetrized
Kullback-Leibler divergence Ds (p||q) may fail to satisfy the triangle inequality [11, p. 58] so it is not
a distance metric.

9 In a context where the logical distance d (X,Y ) = h (X|Y ) + h (Y |X) and the logical divergence d (p||q) are both
defined, e.g., two partitions π and σ on the same set U , then the two concepts are the same, i.e., d (π, σ) = d (π||σ).
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13 Summary of formulas and dit-bit transforms

The following Table 5 summarizes the concepts for the Shannon and logical entropies.

Table 5 Shannon Entropy Logical Entropy

Entropy H(p) =
∑
pi log (1/pi) h (p) =

∑
pi (1− pi)

Mutual Info. I(X,Y ) = H (X) +H (Y )−H (X,Y ) m (X,Y ) = h (X) + h (Y )− h (X,Y )
Cond. entropy H (X|Y ) = H(X)− I (X,Y ) h (X|Y ) = h (X)−m (X,Y )
Independence I (X,Y ) = 0 m (X,Y ) = h (X)h (Y )
Indep. Relations H (X|Y ) = H (X) h (X|Y ) = h (X) (1− h (Y ))
Cross entropy H (p‖q) =

∑
pi log (1/qi) h (p‖q) =

∑
pi (1− qi)

Divergence D (p‖q) =
∑
i pi log

(
pi
qi

)
d (p||q) =

∑
i (pi − qi)2

Relationships D (p‖q) = H (p‖q)−H (p) d (p‖q) = 2h (p‖q)− [h (p) +h (q)]
Info. Inequality D (p‖q) ≥ 0 with = iff p = q d (p‖q) ≥ 0 with = iff p = q

Table 5: Comparisons between Shannon and logical entropy formulas

The following Table 6 summarizes the dit-bit transforms.

Table 6 The Dit-Bit Transform: 1− pi  log
(
1
pi

)
h (p) =

∑
i pi (1− pi)

H (p) =
∑
i pi log (1/pi)

h (X|Y ) =
∑
x,y p (x, y) [(1− p (x, y))− (1− p (y))]

H (X|Y ) =
∑
x,y p (x, y)

[
log
(

1
p(x,y)

)
− log

(
1

p(y)

)]
m (X,Y ) =

∑
x,y p (x, y) [[1− p (x)] + [1− p (y)]− [1− p (x, y)]]

I(X,Y ) =
∑
x,y p (x, y)

[
log
(

1
p(x)

)
+ log

(
1

p(y)

)
− log

(
1

p(x,y)

)]
h (p‖q) = 1

2 [
∑
i pi(1− qi) +

∑
i qi (1− pi)]

Hs(p||q) = 1
2

[∑
i pi log

(
1
qi

)
+
∑
i qi log

(
1
pi

)]
d (p||q) = 2h (p||q)− [(

∑
i pi (1− pi)) + (

∑
i qi (1− qi))]

Ds (p||q) = 2Hs (p||q)−
[∑

i pi log
(
1
pi

)
+
∑
i qi log

(
1
qi

)]
Table 6: The dit-bit transform from logical entropy to Shannon entropy

14 Entropies for multivariate joint distributions

Let {p (x1, ..., xn)} be a probability distribution on X1 × . . .×Xn for finite Xi’s. Let S be a subset
of (X1 × ...×Xn)

2 consisting of certain ordered pairs of ordered n-tuples ((x1, ..., xn) , (x′1, ..., x
′
n))

so the product probability measure on S is:

µ (S) =
∑
{p (x1, ..., xn) p (x′1, ..., x

′
n) : ((x1, ..., xn) , (x′1, ..., x

′
n)) ∈ S}.

Then all the logical entropies for this n-variable case are given as the product measure of certain
infosets S. Let I, J ⊆ N be subsets of the set of all variables N = {X1, ..., Xn} and let x = (x1, ..., xn)
and x′ = (x′1, ..., x

′
n).

Since two ordered n-tuples are different if they differ in some coordinate, the joint logical entropy
of all the variables is: h (X1, ..., Xn) = µ (S∨N ) where:

S∨N = {(x, x′) : ∨ni=1 (xi 6= x′i)} = ∪{SXi
: Xi ∈ N} where

SXi = Sxi 6=x′i = {(x, x′) : xi 6= x′i}
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(where ∨ represents the disjunction of statements). For a non-empty I ⊆ N , the joint logical entropy
of the variables in I could be represented as h (I) = µ (S∨I) where:

S∨I = {(x, x′) : ∨ (xi 6= x′i) for Xi ∈ I} = ∪{SXi
: Xi ∈ I}

so that h (X1, ..., Xn) = h (N).

As before, the information algebra I (X1 × ...×Xn) is the Boolean subalgebra of ℘
(

(X1 × ...×Xn)
2
)

generated by the basic infosets SXi
for the variables and their complements S¬Xi

.
For the conditional logical entropies, let I, J ⊆ N be two non-empty disjoint subsets of N . The

idea for the conditional entropy h (I|J) is to represent the information in the variables I given by
the defining condition: ∨ (xi 6= x′i) for Xi ∈ I, after taking away the information in the variables
J which is defined by the condition: ∨

(
xj 6= x′j

)
for Xj ∈ J . "After the bar |" means "negate" so

we negate that condition ∨
(
xj 6= x′j

)
for Xj ∈ J and add it to the condition for I to obtain the

conditional logical entropy as h (I|J) = h (∨I| ∨ J) = µ(S∨I|∨J) (where ∧ represents the conjunction
of statements):

S∨I|∨J =
{

(x, x′) : ∨ (xi 6= x′i) for Xi ∈ I and ∧
(
xj = x′j

)
for Xj ∈ J

}
= ∪{SXi : Xi ∈ I} − ∪

{
SXj : Xj ∈ J

}
= S∨I − S∨J .

The general rule is that the sets satisfying the after-the-bar condition are subtracted from the sets
satisfying the before-the-bar condition:

S∨I|∨J = ∪{SXi : Xi ∈ I} − ∪
{
SXj : Xj ∈ J

}
=
{

(x, x′) : (∨Ixi 6= x′i) ∧
(
∧Jxj = x′j

)}
S∨I|∧J = ∪{SXi

: Xi ∈ I} − ∩
{
SXj

: Xj ∈ J
}

=
{

(x, x′) : (∨Ixi 6= x′i) ∧
(
∨Jxj = x′j

)}
S∧I|∨J = ∩{SXi

: Xi ∈ I} − ∪
{
SXj

: Xj ∈ J
}

=
{

(x, x′) : (∧Ixi 6= x′i) ∧
(
∧Jxj = x′j

)}
S∧I|∧J = ∩{SXi

: Xi ∈ I} − ∩
{
SXj

: Xj ∈ J
}

=
{

(x, x′) : (∧Ixi 6= x′i) ∧
(
∨Jxj = x′j

)}
.

For the mutual logical information of a nonempty set of variables I, m (I) = m (∧I) = µ (S∧I)
where:

S∧I = {(x, x′) : ∧Ixi 6= x′i}.

For the conditional mutual logical information, let I, J ⊆ N be two non-empty disjoint subsets
of N so that m (I|J) = m (∧I| ∨ J) = µ

(
S∧I|∨J

)
where:

S∧I|∨J =
{

(x, x′) : (∧Ixi 6= x′i) ∧
(
∧Jxj = x′j

)}
.

For the logical analysis of variation (ANOVA) of categorical data, the logical entropies in the
multivariate case divide up the variation into the natural parts. For instance, suppose that two
explanatory variables X1 and X2 affect a third response variable Y according to a probability
distribution {p (x1, x2, y)} on X1 ×X2 × Y . The logical division in the information sets is:

SY = SY ∧¬X1∧¬X2 ∪ SY ∧¬X1∧X2 ∪ SY ∧X1∧¬X2 ∪ SY ∧X1∧X2

where SY ∧¬X1∧¬X2
represents the variation in Y when X1 and X2 don’t vary, SY ∧¬X1∧X2

is the
variation in Y when X1 does not vary but X2 does, and so forth. The union is disjoint so the formula
for the multivariate logical analysis of variation is:

h (Y ) = h (Y |X1, X2) +m (Y,X2|X1) +m (Y,X1|X2) +m (Y,X1, X2),

with the obvious generalization to more explanatory variables X1, ..., Xn. Figure 6 (with X1 = X
and X2 = Z) gives the Venn diagram.

And finally by expressing the logical entropy formulas as averages, the dit-bit transform will
give the corresponding versions of Shannon entropy. Consider an example of a joint distribution
{p (x, y, z)} on X × Y × Z. The mutual logical information m (X,Y, Z) = µ

(
S∧{X,Y,Z}

)
where:
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S∧{X,Y,Z} = {((x, y, z) , (x′, y′, z′)) : x 6= x′ ∧ y 6= y′ ∧ z 6= z′} = SX ∩ SY ∩ SZ .

Figure 6: Venn diagram for logical entropies.

From the Venn diagram for h (X,Y, Z), we have (using a variation on the inclusion-exclusion prin-
ciple)10 :

m (X,Y, Z) = h (X) + h (Y ) + h (Z)− h (X,Y )− h (X,Z)− h (Y, Z) + h (X,Y, Z).

Substituting the averaging formulas for the logical entropies gives:

m (X,Y, Z) =∑
x,y,z p (x, y, z)

[
[1− p (x)] + [1− p (y)] + [1− p (z)]

− [1− p (x, y)]− [1− p (x, z)]− [1− p (y, z)] + [1− p (x, y, z)]

]
.

Then applying the dit-bit transform gives the corresponding formula for the multivariate ‘Shannon’
mutual information:11

I (X,Y, Z) =∑
x,y,z p (x, y, z)

 log
(

1
p(x)

)
+ log

(
1

p(y)

)
+ log

(
1
p(z)

)
− log

(
1

p(x,y)

)
− log

(
1

p(x,z)

)
− log

(
1

p(y,z)

)
+ log

(
1

p(x,y,z)

) 
=
∑
x,y,z p (x, y, z)

[
log
(

p(x,y)p(x,z)p(y,z)
p(x)p(y)p(z)p(x,y,z)

)]
(e.g., [17, p. 57] or [1, p. 129]).

To emphasize that Venn-like diagrams are only a mnemonic analogy, Norman Abramson gives
an example [1, pp. 130-1] where the Shannon mutual information of three variables is negative.12

Consider the joint distribution {p (x, y, z)}on X × Y × Z where X = Y = Z = {0, 1}. Suppose
two dice are thrown, one after the other. Then X = 1 if the first die came up odd, Y = 1 if the
second die came up odd, and Z = 1 if X + Y is odd [18, Exercise 26, p. 143]. Then the probability
distribution is as follows.
10The usual version of the inclusion-exclusion principle would be: h(X,Y, Z) = h(X) + h (Y ) + h (Z)−m (X,Y )−

m (X,Z)−m (Y, Z) +m (X,Y, Z) but m (X,Y ) = h(X) +h (Y )−h (X,Y ) and so forth, so substituting for m (X,Y ),
m (X,Z), and m (Y, Z) gives the formula.
11The multivariate generalization of the ‘Shannon’ mutual information was developed not by Shannon but by

William J. McGill [33] and Robert M. Fano ([16]; [17]) at MIT in the early 50’s and independently by Nelson M.
Blachman [6]. The criterion for it being the ‘correct’generalization seems to be that it satisfied the generalized Venn
diagram formulas that are automatically satisfied by any measure and are thus also obtained from the multivariate
logical mutual information using the dit-bit transform—as is done here.
12Fano had earlier noted that, for three or more variables, the mutual information could be negative. [17, p. 58]
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X Y Z p(x, y, z) p(x, y), p(x, z), p (y, z) p(x), p(y), p (z)

0 0 0 1/4 1/4 1/2
0 0 1 0 1/4 1/2
0 1 0 0 1/4 1/2
0 1 1 1/4 1/4 1/2
1 0 0 0 1/4 1/2
1 0 1 1/4 1/4 1/2
1 1 0 1/4 1/4 1/2
1 1 1 0 1/4 1/2

Table 7: Abramson’s example giving negative Shannon mutual information I (X,Y, Z).

Since the logical mutual information m(X,Y, Z) is the measure µ
(
S∧{X,Y,Z}

)
, it is always non-

negative and in this case is 0:

m (X,Y, Z) = h (X) + h (Y ) + h (Z)− h (X,Y )− h (X,Z)− h (Y,Z) + h (X,Y, Z)
= 1

2 + 1
2 + 1

2 −
3
4 −

3
4 −

3
4 + 3

4 = 3
2 −

6
4 = 0.

All the simple and compound notions of logical entropy have a direct interpretation as a two-draw
probability. The logical mutual information m (X,Y, Z) is the probability that in two independent
samples of X×Y ×Z, the outcomes would differ in all coordinates. This means the two draws would
have the form (x, y, z) and (1− x, 1− y, 1− z) for the binary variables, but it is easily seen by
inspection that p (x, y, z) = 0 or p (1− x, 1− y, 1− z) = 0, so the products of those two probabilities
are all 0 as computed—and thus there is no three-way overlap. The two-way overlaps are m (X,Y ) =
h (X) +h (Y )−h (X,Y ) = 1

2 + 1
2 −

3
4 = 1

4 or since each pair of variables is independent, m (X,Y ) =
h (X)h (Y ) = 1

2 ×
1
2 = 1

4 , and similarly for the other pairs of variables. The nonempty-supports-
always-intersect result holds for any two variables, but the example shows that there is no necessity
in having a three-way overlap, i.e., h (X)h (Y )h (Z) > 0 does not imply m (X,Y, Z) > 0.13

The Venn-diagram-like formula form(X,Y, Z) carries over to I (X,Y, Z) by the dit-bit transform,
but the transform does not preserve non-negativity. In this case, the “area”I(X,Y, Z) is negative:

I (X,Y, Z) = H (X) +H (Y ) +H (Z)−H (X,Y )−H (X,Z)−H (Y,Z) +H (X,Y, Z)
= 1 + 1 + 1− 2− 2− 2 + 2 = 3− 4 = −1.

It is unclear how that can be interpreted as the mutual information contained in the three variables
or how the corresponding ‘Venn diagram’(Figure 7) can be anything more than a mnemonic. Indeed,
as Imre Csiszar and Janos Körner remark:

The set-function analogy might suggest to introduce further information quantities corre-
sponding to arbitrary Boolean expressions of sets. E.g., the "information quantity" corre-
sponding to µ (A ∩B ∩ C) = µ (A ∩B)−µ ((A ∩B)− C) would be I(X,Y )−I(X,Y |Z);
this quantity has, however, no natural intuitive meaning. [11, pp. 53-4]

Of course, all this works perfectly well in logical information theory for the “arbitrary Boolean
expressions of sets”in the information algebra I (X × Y × Z), e.g.,

m (X,Y, Z) = µ (SX ∩ SY ∩ SZ) = µ (SX ∩ SY )− µ ((SX ∩ SY )− SZ) = m (X,Y )−m (X,Y |Z),

which also is a (two-draw) probability measure and thus always non-negative.

13The simplest example suffi ces. There are three non-trivial partitions on a set with three elements and those
partitions have no dits in common.
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Figure 7: Negative ‘area’I (X,Y, Z) in ‘Venn diagram.’

Note how the supposed ‘intuitiveness’ of independent random variables giving disjoint or at
least ‘zero overlap’ Venn diagram areas in the two-variable Shannon case comes at the cost of
possibly having “no natural intuitive meaning” and negative ‘areas’ in the multivariate case. In
probability theory, for a joint probability distribution of 3 or more random variables, there is a
distinction between the variables being pair-wise independent and being mutually independent. In
any counterexample where three variables are pairwise but not mutually independent [18, p. 127],
the Venn diagram areas for H(X), H(Y ), and H(Z) have to have pairwise zero overlaps, but since
they are not mutually independent, all three areas have a nonzero overlap. The only way that can
happen is for the pairwise overlaps such as I (X,Y ) = 0 between H (X) and H (Y ) to have a positive
part I (X,Y |Z) (always non-negative [49, Theorem 2.34, p. 23]) and a negative part I(X,Y, Z) that
add to 0 as in Figure 7.

15 Logical entropy and some related notions

The Taylor series for ln(x+ 1) around x = 0 is:

ln(x+ 1) = ln(1) + x− 1
2!x

2 + 1
3!x

32− ... = x− x2

2 + x3

3 − ...

so substituting x = pi − 1 (with pi > 0) gives a version of the Newton-Mercator series:

− ln (pi) = ln
(
1
pi

)
= 1− pi + (pi−1)2

2 − (pi−1)3
3 + ....

Then multiplying by pi and summing yields:

He (p) = −
∑
i pi ln (pi) =

∑
i pi (1− pi) +

∑
i
pi(pi−1)2

2 − ...
= h (p) +

∑
i
pi(pi−1)2

2 − ....

A similar relationship holds in the quantum case between the von Neumann entropy S (ρ) =
− tr [ρ ln (ρ)] and the quantum logical entropy h (ρ) = tr [ρ (1− ρ)] = 1 − tr

[
ρ2
]
which is defined

by having a density matrix ρ replace the probability distribution p and the trace replace the sum.
This relationship between the Shannon/von Neumann entropies and the logical entropies in the

classical and quantum cases is responsible for presenting the logical entropy as a ‘linear’approxi-
mation to the Shannon or von Neumann entropies since 1 − pi is the linear term in the series for
− ln (pi) [before the multiplication by pi to make the term quadratic!]. And h (p) = 1 −

∑
i p
2
i or

it quantum counterpart h (ρ) = 1 − tr
[
ρ2
]
are even called “linear entropy” (e.g., [8]) even though
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the formulas are obviously quadratic.14 Another name for the quantum logical entropy found in
the literature is “mixedness”[26, p. 5] which at least doesn’t call a quadratic formula ‘linear.’It is
even called “impurity”since the complement 1 − h (ρ) = tr

[
ρ2
]
(i.e., the quantum version of Alan

Turing’s repeat rate
∑
i p
2
i [21]) is called the “purity.”

Quantum logical entropy is beyond the scope of this paper but it might be noted that some
quantum information theorists have been using that concept to rederive results previously derived
using the von Neumann entropy such as the Klein inequality, concavity, and a Holevo-type bound for
Hilbert-Schmidt distance ([42], [43]). Moreover the logical derivation of the logical entropy formulas
using the notion of distinctions gives a certain naturalness to the notion of quantum logical entropy.

We find this framework of partitions and distinction most suitable (at least conceptually)
for describing the problems of quantum state discrimination, quantum cryptography and
in general, for discussing quantum channel capacity. In these problems, we are basically
interested in a distance measure between such sets of states, and this is exactly the kind
of knowledge provided by logical entropy ([12]). [42]

There are many older results derived under the misnomer “linear entropy” or derived for the
quadratic special case of the Tsallis-Havrda-Charvat entropy ([24]; [44], [45]). Those parameterized
families of entropy formulas are sometimes criticized for lacking a convincing interpretation, but
we have seen that the quadratic case is interpreted simply as a two-draw probability of a ‘dit’of
the partition—just as in the dual case, the normalized counting measure of a subset is the one-draw
probability of an ‘it’in the subset.

In accordance with its quadratic nature, logical entropy is the logical special case of C. R. Rao’s
quadratic entropy [36]. Two elements from U = {u1, ..., un} are either identical or distinct. Gini
[19] introduced dij as the ’distance’between the ith and jth elements where dij = 1 for i 6= j and
dii = 0—which might be considered the ‘logical distance function’dij = 1 − δij , so logical distance
is complement of the Kronecker delta. Since 1 = (p1 + ...+ pn) (p1 + ...+ pn) =

∑
i p
2
i +

∑
i 6=j pipj ,

the logical entropy, i.e., Gini’s index of mutability, h (p) = 1 −
∑
i p
2
i =

∑
i 6=j pipj , is the average

logical distance between distinct elements. But in 1982, C. R. Rao [36] generalized this as quadratic
entropy by allowing other distances dij = dji for i 6= j (but always dii = 0) so that Q =

∑
i6=j dijpipj

would be the average distance between distinct elements from U .
Rao’s treatment also includes (and generalizes) the natural extension of logical entropy to con-

tinuous probability density functions f (x) for a random variable X: h (X) = 1−
∫
f (x)

2
dx. It might

be noted that the natural extension of Shannon entropy to continuous probability density functions
f(x) through the limit of discrete approximations contains terms 1/ log (∆xi) that blow up as the
mesh size ∆xi goes to zero (see [34, pp. 34-38]).15 Hence the definition of Shannon entropy in the
continuous case is defined not by the limit of the discrete formula but by the analogous formula
H (X) = −

∫
f (x) log (f (x)) dx which, as Robert McEliece notes, “is not in any sense a measure of

the randomness of X”[34, p. 38] in addition to possibly having negative values [46, p. 74].

16 The statistical interpretation of Shannon entropy

Shannon, like Ralph Hartley [23] before him, starts with the question of how much ‘information’
is required to single out a designated element from a set U of equiprobable elements. Alfréd Rényi
14Sometimes the misnomer "linear entropy" is applied to the rescaled logical entropy n

n−1
h (π). The maximum value

of the logical entropy is h(1) = 1− 1
n

= n−1
n

so the rescaling gives a maximum value of 1. In terms of the partition-logic
derivation of the logical entropy formula, this amounts to sampling without replacement and normalizing |dit (π)| by
the number of possible distinctions |U × U −∆| = n2 − n (where ∆ = {(u, u) : u ∈ U} is the diagonal) instead of
|U × U | = n2 since: |dit(π)|

|U×U−∆| =
|dit(π)|
n(n−1)

= n
n−1

|dit(π)|
n2

= n
n−1

h (π).
15For expository purposes, we have restricted the treatment to finite sample spaces U . For some countably infinite

discrete probability distributions, the Shannon entropy blows up to infinity [49, Example 2.46, p. 30], while the
countable logical infosets are always well-defined and the logical entropy is always in the half-open interval [0, 1).
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formulated this in terms of the search [37] for a hidden designated element like the answer in a
Twenty Questions game. But being able to always find the designated element is equivalent to being
able to distinguish all elements from one another.

One might quantify ‘information’ as the minimum number of yes-or-no questions in a game
of Twenty Questions that it would take in general to distinguish all the possible “answers” (or
“messages” in the context of communications). This is readily seen in the standard case where
|U | = n = 2m, i.e., the size of the set of equiprobable elements is a power of 2. Then following the
lead of Wilkins over three centuries earlier, the 2m elements could be encoded using words of length
m in a binary code such as the digits {0, 1} of binary arithmetic (or {A,B} in the case of Wilkins).
Then an effi cient or minimum set of yes-or-no questions needed to single out the hidden element is
the set of m questions:

“Is the jth digit in the binary code for the hidden element a 1?”

for j = 1, ...,m. Each element is distinguished from any other element by their binary codes differing
in at least one digit. The information gained in finding the outcome of an equiprobable binary trial,
like flipping a fair coin, is what Shannon calls a bit. Hence the information gained in distinguishing
all the elements out of 2m equiprobable elements is:

m = log2 (2m) = log2 (|U |) = log2

(
1
p0

)
bits

where p0 = 1
2m is the probability of any given element (all logs to base 2).16

In the more general case where |U | = n is not a power of 2, Shannon and Hartley extrapolate
to the definition of H (p0) where p0 = 1

n as:

H (p0) = log
(
1
p0

)
= log (n)

Shannon-Hartley entropy for an equiprobable set U of n elements.

The Shannon formula then extrapolates further to the case of different probabilities p = {p1, ..., pn}
by taking the average:

H (p) =
∑n
i=1 pi log

(
1
pi

)
.

Shannon entropy for a probability distribution p = {p1, ..., pn}

How can that extrapolation and averaging be made rigorous to offer a more convincing interpre-
tation? Shannon uses the law of large numbers. Suppose that we have a three-letter alphabet {a, b, c}
where each letter was equiprobable, pa = pb = pc = 1

3 , in a multi-letter message. Then a one-letter
or two-letter message cannot be exactly coded with a binary 0, 1 code with equiprobable 0’s and 1’s.
But any probability can be better and better approximated by longer and longer representations in
the binary number system. Hence we can consider longer and longer messages of N letters along with
better and better approximations with binary codes. The long run behavior of messages u1u2...uN
where ui ∈ {a, b, c} is modeled by the law of large numbers so that the letter a on average occur
paN = 1

3N times and similarly for b and c. Such a message is called typical.
The probability of any one of those typical messages is:

ppaNa ppbNb ppcNc = [ppaa p
pb
b p

pc
c ]

N

or, in this case,

16This is the special case where Campbell [9] noted that Shannon entropy acted as a measure to count that number
of binary partitions.
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[(
1
3

)1/3 ( 1
3

)1/3 ( 1
3

)1/3]N
=
(
1
3

)N
.

Hence the number of such typical messages is 3N .
If each message was assigned a unique binary code, then the number of 0, 1’s in the code would

have to be X where 2X = 3N or X = log
(
3N
)

= N log (3). Hence the number of equiprobable
binary questions or bits needed per letter (i.e., to distinguish each letter) of a typical message is:

N log(3)/N = log (3) = 3× 1
3 log

(
1
1/3

)
= H (p).

This example shows the general pattern.
In the general case, let p = {p1, ..., pn} be the probabilities over a n-letter alphabet A =

{a1, ..., an}. In an N -letter message, the probability of a particular message u1u2...uN is ΠN
i=1 Pr (ui)

where ui could be any of the symbols in the alphabet so if ui = aj then Pr (ui) = pj .
In a typical message, the ith symbol will occur piN times (law of large numbers) so the probability

of a typical message is (note change of indices to the letters of the alphabet):

Πn
k=1p

pkN
k = [Πn

k=1p
pk
k ]

N .

Thus the probability of a typical message is PN where it is as if each letter in a typical message
was equiprobable with probability P = Πn

k=1p
pk
k . No logs have been introduced into the argument

yet, so we have an interpretation of the base-free ‘numbers-equivalent’17 (or ‘anti-log’or exponential)
Shannon entropy :

E (p) = P−1 = Πn
k=1

(
1
pi

)pi
= 2H(p),

it is as if each letter in a typical message is being draw from an alphabet with E (p) = 2H(p)

equiprobable letters. Hence the number of N -letter messages from the equiprobable alphabet is then
E (p)

N . The choice of base 2 means assigning a unique binary code to each typical message requires
X bits where 2X = E (p)

N where:

X = log
{
E (p)

N
}

= N log [E (p)] = NH (p).

Dividing by the number N of letters gives the average bit-count interpretation of the Shannon en-

tropy; H (p) = log [E (p)] =
∑n
k=1 pk log

(
1
pk

)
is the average number of bits necessary to distinguish,

i.e., uniquely encode, each letter in a typical message.
This result, usually called the Noiseless Coding Theorem, allows us to conceptually relate the log-

ical and Shannon entropies (the dit-bit transform gives the quantitative relationship). In terms of the
simplest case for partitions, the Shannon entropy H (π) =

∑
B∈π pB log2 (1/pB) is a requantification

of the logical measure of information h (π) = | dit(π)|
|U×U | = 1 −

∑
B∈π p

2
B . Instead of directly counting

the distinctions of π, the idea behind Shannon entropy is to count the (minimum) number of binary
partitions needed to make all the distinctions of π. In the special case of π having 2m equiprobable
blocks, the number of binary partitions βi needed to make the distinctions dit (π) of π is m. Repre-
sent each block by an m-digit binary number so the ith binary partition βi just distinguishes those
blocks with ith digit 0 from those with ith digit 1.18 Thus there are m binary partitions βi such that
∨mi=1βi = π (∨ is here the partition join) or, equivalently, ∪mi=1 dit (βi) = dit (∨mi=1βi) = dit (π). Thus

17When an event or outcome has a probability pi, it is intuitive to think of it as being drawn from a set of 1
pi

equiprobable elements (particularly when 1
pi
is an integer) so 1

pi
is called the numbers-equivalent of the probability

pi [3]. For a development of E (p) from scratch, see [12], [14].
18Thus as noted by John Wilkins in 1641, five letter words in a two-letter code would suffi ce to distinguish 25 = 32

distinct entities. [47]
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m is the exact number of binary partitions it takes to make the distinctions of π. In the general case,
Shannon gives the above statistical interpretation so that H (π) is the minimum average number of
binary partitions or bits needed to make the distinctions of π.

Note the difference in emphasis. Logical information theory is only concerned with counting
the distinctions between distinct elements, not with uniquely designating the distinct entities. By
requantifying to count the number of binary partitions it takes to make the same distinctions, the
emphasis shifts to the length of the binary code necessary to uniquely designate the distinct elements.
Thus the Shannon information theory perfectly dovetails into coding theory and is often presented
today as the unified theory of information and coding (e.g., [34] or [22]). It is that shift to not only
making distinctions but uniquely coding the distinct outcomes that gives the Shannon theory of
information, coding, and communication such importance in applications.

It might be noted that Shannon formula is often connected to (and even sometimes identified
with) the Boltzmann-Gibbs entropy in statistical mechanics—which was the source for Shannon’s
nomenclature. But that connection is only a numerical approximation, not an identity in functional
form, where the natural logs of factorials in the Boltzmann formula are approximated using the
first two terms in the Stirling approximation [14]. Indeed, as pointed out by David J. C. MacKay,
one can use the next term in the Stirling approximation to give a "more accurate approximation"
[32, p. 2] to the entropy of statistical mechanics—but no one would suggest using such a formula
in information theory. While the use of the “entropy” terminology is here to stay in information
theory, the Shannon Noiseless Coding Theorem gives the basis to interpret the Shannon formula,
not numerical approximations to the Boltzmann-Gibbs entropy in statistical mechanics.

17 Concluding remarks

Logical information theory is based on the notion of information-as-distinctions. It starts with the
finite combinatorial information sets which are the ditsets of partitions on a finite U or the infosets
SX and SY associated with a finite X×Y—and that calculus of identities and differences is expressed
in the information Boolean algebra I (U) or I (X × Y ). No probabilities are involved in the definition
of the information sets of distinctions. But when a probability distribution is defined on U or on
X×Y , then the product probability distribution is determined on U2 or (X × Y )

2 respectively. The
quantitative logical entropy of an information set is the value of the product probability measure on
the set.

Since conventional information theory has heretofore been focused on the original notion of
Shannon entropy (and quantum information theory on the corresponding notion of von Neumann
entropy), much of the paper has compared the logical entropy notions to the corresponding Shannon
entropy notions.

Logical entropy, like logical probability, is a measure, while Shannon entropy is not. The com-
pound Shannon entropy concepts nevertheless satisfy the measure-like Venn diagram relationships
that are automatically satisfied by a measure. This can be explained by the dit-bit transform so that
by putting a logical entropy notion into the proper form as an average of dit-counts, one can replace
a dit-count by a bit-count and obtain the corresponding Shannon entropy notion—which shows a
deeper relationship behind the Shannon compound entropy concepts.

In sum, the logical theory of information-as-distinctions is the ground level logical theory of
information stated first in terms of sets of distinctions and then in terms of two-draw probability
measures on the sets. The Shannon information theory is a higher-level theory that requantifies
distinctions by counting the minimum number of binary partitions (bits) that are required, on
average, to make all the same distinctions, i.e., to encode the distinguished elements—and is thus
well-adapted for the theory of coding and communication.
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