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Abstract

I argue that information is a goal-relative concept for Bayesians. More

precisely, I argue that how much information (or confirmation) is provided by

a piece of evidence depends on whether the goal is to learn the truth or to

rank actions by their expected utility, and that different confirmation mea-

sures should therefore be used in different contexts. I then show how informa-

tion measures may reasonably be derived from confirmation measures, and I

show how to derive goal-relative non-informative and informative priors given

background information. Finally, I argue that my arguments have important

implications for both objective and subjective Bayesianism. In particular, the

Uniqueness Thesis is either false or must be modified. Moreover, objective

Bayesians must concede that pragmatic factors systematically influence which

priors are rational, and subjective Bayesians must concede that pragmatic

factors sometimes partly determine which prior distribution most accurately

represents an agent’s epistemic state.
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1 Introduction

Suppose you are about to roll a six-sided die (with faces numbered one through six)

and you want a probability distribution that represents how probable each of the

six possible outcomes is.1,2 I have rolled the die many times already, and I tell you

that – on average – the die has landed on 5. Clearly, the die is strongly biased

towards landing on high numbers, and it seems intuitively probable that the die will

land on a high number on the next roll as well. But how do you come up with

precise probabilities for each of the possible outcomes? This is an instance of the

so-called “problem of the priors”: how do you translate background information into

a probability distribution, and – in the absence of background information – how do

you represent a lack of information probabilistically? This paper argues that how

you should answer these questions depends on what goals you have.

More precisely, I will consider two different situations, defined by two different

goals that an agent may have. In the first situation, the goal of the agent is to

learn which hypothesis in a partition of hypotheses is true. In the second situation,

the agent instead intends to use the partition of hypotheses as a predictive tool in

decision making. My arguments will show that these two situations call for different

prior distributions. The implication in the die example is that you need to figure out

why you are interested in the outcome of the die roll before you can figure out which

1I wish to thank Malcolm Forster, Jan Sprenger, Reuben Stern, and the FEW 2016 referees for
reading a version of the paper. I also wish to thank the FEW audience, and especially mycommen-
tator, Kenny Easwaran. I also thank the referees for helpful comments.

2This example is originally due to E. T. Jaynes (see, e.g., Jaynes (1989)). For an extended
critical discussion, see Seidenfeld (1986). Although the example is clearly highly artificial, it is
structurally similar to many real scientific examples.
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prior probability you should use.3

The arguments of the paper have important implications for both objective and

subjective Bayesians. In particular, the Uniqueness Thesis for priors, which is a

prominent thesis among objective Bayesians according to which there is a uniquely

rational prior given any background information, is either false or must be modified.

Moreover, objective Bayesians must concede that pragmatic factors systematically

influence which probability distribution is most rational. Subjective Bayesians, on

the other hand, must concede that pragmatic factors sometimes in part determine

which probability distribution most faithfully represents an agent’s epistemic state.

2 Notation and the Basics of Bayesianism

A few notational remarks are in order. First, I will generally use H to refer to a

partition of hypotheses (i.e. a set of mutually exclusive and exhaustive hypotheses),

and I will use Hj to refer to some arbitrary member in the partition. Similarly, I

will generally use E to refer to a partition of possible evidence and Ei to refer to

some element in the partition. However, if I am explicitly discussing a continuous

hypothesis space (i.e. a hypothesis space that is indexed by a real-valued parameter),

then I will use Θ to refer to a partition of hypotheses, θ to refer to some hypothesis

in the partition, X to refer to a partition of possible evidence, and x to refer to an

element of the partition. Generally, sums over all the elements in a partition will

be denoted by
∑

i or
∑

j, unless the sum is over a continuous space, in which case

integrals will be used instead.

3I return to the die example in Section 8.
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The basic problem in Bayesian inference is to infer the true, predictively accurate,

or otherwise useful hypotheses in H given some particular observation E. Bayesians

solve this problem by using Bayes’s theorem. Bayes’s theorem requires two ingre-

dients: a prior probability function and a likelihood function. A prior probability

function is a probability distribution p over H that is supposed to represent how

probable each Hj is prior to any evidence. For ease of notation, I will sometimes

use p(H) to refer to the set of probabilities p(H1), p(H2), . . . , p(Hn) over the par-

tition H. The fact that p is a probability distribution means that we require that∑
j p(Hj) = 1. A likelihood function, p(E|Hj), is a function that says how probable

each Hj makes the observation E.

Once we have a prior and a likelihood, Bayes’s theorem says that p(Hj|E) =

cp(Hj)p(E|Hj).
4 To a Bayesian, p(H|E) is the new probability that we ought to

assign to H in light of having observed E.

3 The Importance of Information Measures for

Bayesianism

An “information measure” is a quantitative measure of how “informative” or “opin-

ionated” a probability distribution is.5 The most well known information measure

is the Shannon entropy, which says that the information content in p(H) is given

by −
∑

j p(Hj) log p(Hj). The higher the Shannon entropy, the less informative and

less opinionated is the probability distribution. The probability distribution with

4Here c = 1/
∑

j p(E|Hj)p(Hj).
5In this paper I will use “informative” and “opinionated” interchangeably.
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the highest Shannon entropy is the “flat” distribution that assigns the same prob-

ability to every hypothesis in H. Intuitively the flat distribution is indeed the least

informative and least opinionated probability distribution since it does not favor any

hypothesis in H over any other. On the other hand, the distribution over H that

has the lowest Shannon entropy and is therefore the most informative is the distri-

bution that assigns all its probability mass to one of the hypotheses. This also seems

intuitively reasonable. Indeed, we may view it as a sanity check on any proposed

information measure that the measure deem a probability distribution that assigns

all its probability to a single hypothesis maximally opinionated, and that it deem

the flat probability distribution minimally opinionated.6

But what about all the other probability distributions in between the maximally

and minimally opinionated ones? Here intuition often comes up short. Let’s say we

are considering distributions over a partition of three hypotheses. Is a distribution

that assigns probabilities of 0.2, 0.3 and 0.5 to the three hypotheses more or less

opinionated than a distribution that assigns 0.15, 0.4, and 0.45? This may seem like

an esoteric question, but the answer to the question is of crucial importance, and is

sensitive to the choice of information measure.

The reason why this question is of crucial importance to so-called “objective

Bayesians” is clear. According to most objective Bayesians a probability distribution

is rational for an agent if and only if the distribution is maximally non-informative

relative to the agent’s background knowledge; thus, objective Bayesians explicitly

need an information measure in order to evaluate how informative various candidate

6This sanity check only makes sense when the hypothesis space is finite. Matters are subtler
when the hypothesis space is continuous, as we shall see later.
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probability distributions are.

That information measures are also crucially important to subjective Bayesians is

probably a more contentious claim. I defer a more thorough discussion of this issue

to Section 9.2, since my discussion will rely on developments made in the paper.

However, the reason why information measures are also important to subjective

Bayesians can be put briefly as follows. Subjective Bayesians hold that an agent’s

probability distribution should accurately represent the agent’s epistemic state. Since

most of us do not have numerical probabilities in our heads, this introduces a kind

translation problem, because agents’ subjective degrees of confidence must somehow

be translated into numbers. How this translation problem should be solved will

sometimes depend on what the goals of the agent are and what the correspondingly

suitable information measure is.

4 Other Approaches to Measuring Information

Many information measures have been proposed in the statistical and information

theory literatures.7 Which of these many information measures is appropriate for

Bayesian purposes? Most Bayesians who have thought about this issue have endorsed

the aforementioned Shannon information measure. As was pointed out previously,

the Shannon entropy has the intuitively appealing feature of declaring the flat distri-

bution maximally uninformative and the distribution that assigns all its probability

to a single hypothesis maximally informative. However, there are many other infor-

7Including two (infinitely) large classes of information measures, the Rényi measures (Rényi,
1961) and the Tsallis measures (Tsallis, 1988) .
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mation measures that also have this feature,8 so why go for the Shannon entropy

rather than one of these other measures?

The standard arguments in favor of Shannon’s information measure have nothing

in particular to do with Bayesian inference,9 and it is therefore unclear why Bayesians

should care about these arguments.

For example, one of the standard postulates used to derive Shannon’s informa-

tion measure holds that the information content of a probability distribution should

decrease as the number of hypotheses increases, all else being equal. This postulate

has dubious relevance to Bayesian inference, however, because in Bayesian analyses

the hypothesis space is almost always held fixed throughout the analysis. And even

if we do demand that our information measure satisfy this requirement, there are

many information measures that satisfy it aside from Shannon entropy.

Indeed, in the traditional argument for Shannon’s information measure, the only

property that distinguishes Shannon’s measure from a whole slew of other informa-

tion measures is that it has a certain additivity property (Rényi, 1961). Although

it may make sense to require this additivity property in the original communication

theory context in which Shannon information was introduced, it’s not clear why an

information measure needs to have the property in the context of Bayesian inference.

Some Bayesians have taken a more radical and pluralist approach to information

measures. For example, Morris DeGroot (1962) defines “the value of information”

8Including all Rényi and Tsallis measures.
9A notable exception is Jon Williamson (2010), who uses an argument based on Bayesian scoring

rules. However, below I will argue that the scoring rule he relies on is only appropriate in what
I call the “learning” situation, where the goal is to identify the true hypothesis in a partition of
hypotheses.
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as the difference that a piece of evidence makes to the expected utility calculation of

an agent. This definition is used by Bernardo (1981) to define “minimally valuable”

priors. However, the “minimally valuable” prior is often not the flat distribution and

is sometimes even the probability function that assigns all its probability mass to a

single hypothesis. Hence, whatever the “minimally valuable” prior is supposed to

be, it should not be interpreted as the prior that is maximally uninformative,10 and

DeGroot’s measure is therefore not an appropriate measure of the informativeness

of probability functions, since the measure clearly fails the previously mentioned

sanity checks. The reason DeGroot’s measure gives unintuitive results is because the

measure depends on the utility function of the agent.

The approach advocated here is intermediate between the preceding two ap-

proaches. I do not think information measures should be functionally dependent on

agents’ utilities, but I also do not think a single measure of information is appropriate

in all contexts, nor do I think arguments for information measures should proceed in

a complete vacuum from the contexts in which the information measures will play a

role. In particular, in a Bayesian context, the prior and the posterior probabilities

of a hypothesis are the fundamental quantities that represent how probable the hy-

pothesis is prior to and after the observation of evidence, respectively. Since evidence

is the conveyer of information, the starting point of my argument is the following

foundational observation about information in a Bayesian context:

Observation Given some hypothesis H and evidence E, the posterior,

p(H|E) is more informed than the prior, p(H)

10It is not clear Bernardo (1981) would have endorsed such an interpretation either.
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That the posterior probability is more informed than the prior seems to me to

be a truism, but the question now arises of how much more informed the posterior

is when compared to the prior.

5 Confirmation Measures as Measures of the In-

formativeness of Data

In general, a measure of the distance between the posterior and prior probability of

a hypothesis given a piece of evidence is known as a “confirmation measure.” Here, I

will follow convention and use c(H,E) to refer to the confirmation score of H given E

according to some unspecified confirmation measure. Additionally, two specific con-

firmation measures will play a particularly important role. The difference measure,

d(H,E), measures the degree of confirmation that E confers on H as p(H|E)−p(H).

The log-ratio measure, lr(H,E), measures the degree of confirmation as log p(H|E)
p(H)

.

Note that both the difference measure and the log-ratio measure have the property

that 0 signifies that E confers no confirmation on H.

Importantly for our purposes, confirmation measures may naturally be inter-

preted as quantitative measures of how much information a piece of evidence pro-

vides with respect to a hypothesis.11 For example, if c(H,E) is a large number (either

positive or negative), then that means that E provides us with a lot of information

about H, since H greatly changes the probability of H; if, on the other hand, c(H,E)

11That confirmation measures may be interpreted in this way is not to deny that they may also be
interpreted in other ways. For example, one prominent strand of confirmation theory (e.g. Crupi
and Tentori (2013)) regards confirmation as a generalization of logical entailment. I thank Jan
Sprenger for emphasizing this to me.
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is 0, then E provides us with no information about H.

It is immediately clear that different confirmation measures will in general dis-

agree on how informative a given datum is, and sometimes the extent of disagreement

can be extreme. For example, a change from Pr(H) = 0.00001 to Pr(H|E) = 0.01

is trivial compared to a change from 0.5 to 0.6 if we use the difference measure; but

according to the log-ratio measure, the first change is much greater than the second.

How informative E is with respect to H therefore depends on which confirmation

measure is used.

The argument put forward here will be that the appropriate way to measure the

distance between the posterior and the prior probability of a hypothesis depends

on the goals of the agent. Thus, for example, whether the difference between a

probability of 0.01 and a probability 0.1 is “big” or “small” depends on pragmatic

factors. I will consider two more specific goals that an agent may have in order to

demonstrate the point.

5.1 The Learning Situation and the Log-Ratio Measure

In the first situation I consider – let’s call it the “learning situation” – the goal is

to identify which hypothesis, H, in a partition of hypotheses, H, is true. Translated

into the Bayesian framework, the goal is for the posterior probability of the true

hypothesis, H0, to be as large as possible. Ideally, we want p(H0|E) = 1. Given that

this is the goal, what is the best way to measure the extent to which E informs us

about some H in H?

One way to make the goal more explicit is by creating a “scoring rule” that
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more precisely encodes what our epistemic values are in the learning situation. A

“scoring rule” is a function of the form s(p,H0), where H0 is the true hypothesis

in the partition H. The score of p is supposed to represent how well p achieves our

goals. The defining feature of the learning situation is that we want to assign as much

probability to H0 as possible. A reasonable way to formalize this goal is to require

that a probability function, p, receive a higher score than a different probability

function, q, if and only if p(H0) > q(H0).

A scoring rule that ranks p as better than q if and only if p assigns the truth

a higher probability than does q is sometimes known in the literature as a “local”

scoring rule. Such scoring rules are “local” because the probabilities that p and

q assign to false hypotheses are irrelevant to which probability function receives a

higher score.12 Sometimes we do care about how inaccurate our probabilities in false

hypotheses are, and in those cases locality is a bad requirement to make of our scoring

rule. However, locality is a very reasonable requirement to make of a scoring rule

in the learning situation, because in the learning situation the objective is precisely

and only to identify the truth.

Out of the well-known and independently plausible scoring rules, the only local

scoring rule is the log scoring rule, which assigns a score of log p(H0) to p. In fact, the

log-scoring rule is the only local scoring rule that is strictly proper (Bernardo, 1979a),

which is a property that many philosophers have argued any reasonable scoring rule

ought to have (see, e.g. Oddie (1997), Gibbard (2007), Joyce (2009), and Horowitz

(2014)). The log-scoring rule is therefore a reasonable scoring rule in the learning

12Clearly, in practice we often do care about which probabilities we assign to false hypothesis, so
the learning situation, as characterized here, describes a somewhat idealized epistemic goal.
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situation: it appropriately encodes the epistemic goal of learning the truth. Note

that this does not mean that the log-scoring rule is the uniquely rational scoring rule

in the learning situation.

As Steven van Enk (2014) points out in a recent paper, there is a clear connection

between scoring rules and confirmation measures. More precisely, the extent to which

E confirms (or disconfirms) a hypothesis H can also naturally be understood as the

extent to which E changes the score of p(H), on the assumption that H is true. The

idea is that the scoring rule assigns an epistemic value to the posterior and to the

prior, and the difference in score is therefore the difference that the evidence makes

to the epistemic value of the hypothesis.

In the learning context, the epistemic value is to learn the truth, so the difference

in log-score between p(H|E) and p(H) is therefore the difference that the evidence

makes to the goal of learning whether H is true. If we measure this difference by

taking the arithmetic difference, we end up with the log-ratio measure of confirma-

tion:

log p(H|E)− log p(H) = lr(H,E). (5.1)

Thus, we get the conclusion that the log-ratio measure is a reasonable measure of

the informativeness of evidence in the learning situation, where the goal is to learn

whether H is true.13

13Why measure the difference between the log-score of the posterior and the prior using the

arithmetic difference rather than, say, the ratio, log p(H|E)
log p(H) ? Of course, we could use the ratio

instead of the difference, but the resulting confirmation measure is not independently plausible, in
contrast to the familiar log-ratio measure. In any case, I am not claiming that the formal choices I
make here and other places in the paper are uniquely reasonable, but only that they are reasonable.
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The above argument is not intended to be a knock-down argument for the log-

ratio measure of confirmation; the argument is only intended to show that the log-

ratio measure is reasonable in the learning situation, where the goal is to identify the

true hypothesis in a partition of hypotheses. Indeed, although the log-ratio measure

is reasonable in the learning situation, it is not reasonable in all other situations; in

the next subsection, I consider a different situation where the log-ratio measure is

not reasonable, while another confirmation measure is.

5.2 The Decision Situation and the Difference Measure

Our goal is not always to find the truth; sometimes the goal is to make a good

decision. Thus the second situation I will consider is the “decision situation.” In

the traditional Bayesian formalization of the decision situation, there is a preference

ranking over a partition of various states Sm that the world may be in, and there is

also a partition of possible available acts An ranked by their expected utility. For

example, Sm may represent hypotheses about how much it is going to rain in the

next hour, and An may represent how far away from home we are willing to venture

without an umbrella.

For simplicity, I will assume in this paper that the acts and states are independent

according to p.14 More importantly, I will also assume that the utility function does

not depend on p or on possible evidence.15 The “prior” expected utility of some act

14When the acts and states are not independent, there is some controversy over which Bayesian
decision theory is the correct one. Some endorse Causal Decision Theory (e.g. Lewis (1981), Pearl
(2009), and Joyce (2009)), while others endorse Evidential Decision Theory (e.g. Jeffrey (1983),
Eells (1991), and Ahmed (2012).

15Hence, the utility function is not a scoring rule in the sense of the previous section. The learning
situation as I presented it in the previous section may also be regarded as a kind of decision problem,
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An is then defined16 as:

EU(An) =
∑
m

p(Sm)U(Sm&An) (5.2)

Here, U(Sm&An) is the utility of performing An when Sm obtains. For example,

going on a long walk without an umbrella when it rains a lot has a low utility for

me, but going on a long walk without an umbrella when it’s sunny has a high utility.

Now suppose we also have available a partition of hypotheses, H, that can be used

to predict whether Sm will obtain. For example, H may be hypotheses about what the

barometric pressure will be in the next hour. Clearly, if we knew what the barometric

pressure H0 would be in the next hour, then we could use that information to predict

how much it would rain using the conditional probability p(Sm|H0). Unfortunately,

we don’t know what the barometric pressure is going to be, so we need to put a prior

probability over H, p(Hj), that represents the probability of each of the possible

values the barometric pressure can take in the next hour. Once we have this prior

distribution, we can use the Hj’s to predict the Sm’s by using the law of total

probability:

p(Sm) =
∑
j

p(Sm|Hj) ∗ p(Hj) (5.3)

Now, suppose we wanted to use a scoring rule to evaluate the prior probability

distribution over H. Is the log-scoring rule appropriate in this context? By assump-

but it is important to realize that it is a qualitatively very different decision problem from the kind
of decision problem considered in this section, because the utility function (i.e. the scoring rule) in
the learning situation depends on the agent’s probability function and on the data.

16Following Savage (1954).
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tion, we do not really care about what the true value of the barometric pressure is;

what we care about is how much it will rain in the next hour. The hypotheses about

barometric pressure are therefore for us mere predictive tools. Clearly, if the goal

is to use the Hj’s to predict which Sm is going to obtain, then we want to assign

high probabilities to predictively accurate hypotheses (irrespective of whether they

are true) and low probabilities to predictively inaccurate hypotheses. The true hy-

pothesis only has a special status insofar as it can be expected to have the highest

predictive accuracy. But a probability function that assigns a high probability to

the truth will not be good for predictive purposes if it also assigns high probabili-

ties to hypotheses that are very predictively inaccurate, and, moreover, it will not

be better than a probability function that assigns a low (even 0) probability to the

truth, but at the same time only assigns high probabilities to predictively accurate

hypotheses. But this means that a local scoring rule, such as the log-scoring rule, is

inappropriate, because a local scoring rule scores probability functions only by the

probabilities that they assign to the truth.

In particular, in the prediction of Sm (i.e. formula (5.3)), each Hj is in a sense

equally important because each Hj is used in the weighted prediction, so a non-local

scoring rule that takes into account the probability assigned to every hypothesis

in the partition seems much more appropriate. The most well known non-local

scoring rule that does this is the quadratic scoring rule, which assigns a score of∑
j (i(Hj)− p(Hj))

2 to p, where i(Hj) is the indicator function that assigns 1 to

Hj if Hj is true and 0 otherwise. The quadratic scoring rule therefore seems more

appropriate than the log-scoring rule for the purpose of evaluating our prior over H
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in the decision situation, where H is used as a predictive tool. Moreover, as van

Enk (2014) shows, the standard confirmation measure that is associated with the

quadratic scoring rule is the difference measure. Hence we get the conclusion that

the difference measure, and not the log-ratio measure, is a reasonable measure of the

informativeness of evidence in the decision situation.

The above argument is rather sketchy, so here is a more detailed analysis that

shows how the difference measure of confirmation naturally arises in the decision sit-

uation. First, note that we can plug (5.2) into (5.1) in order to make the dependence

of the expected utility of An on Hj explicit:

EU(An) =
∑
m

∑
j

p(Sm|Hj)p(Hj)U(Sm&An) (5.4)

Next, suppose we receive evidence regarding which hypothesis in H is true in the

form of data E; for example E may be data about the barometric pressure from two

hours ago. What the barometric pressure was two hours ago is clearly relevant to

what the barometric pressure will be in the next hour, so if we are good Bayesians,

we will update each prior p(Hj) to a posterior p(Hj|E) to take into account this new

information. If we do, then the new “posterior” expected utility of An is:

EU(An|E) =
∑
m

∑
j

p(Sm|Hj, E)p(Hj|E)U(Sm&An) (5.5)

Here, p(Sm|Hj, E) represents the probability that it will rain Sm millimeters in

the next hour, given that the barometric pressure in the next hour is Hj and the

barometric pressure two hours ago was E. It is natural to assume here and in many
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other similar cases that E does not give us any information about Sm except insofar

as E provides us with information about Hj.That is, it is natural to assume that

p(Sm|Hj, E) = p(Sm|Hj).
17 If we make this assumption, then the posterior expected

utility of An is simply:

EU(An|E) =
∑
m

∑
j

p(Sm|Hj)p(Hj|E)U(Sm&An) (5.6)

Now, if we take the difference between the posterior expected utility of An and

the prior expected utility of An, we arrive at the following expression:

∆EU(An;E) = EU(An|E)−EU(An) =
∑
i

∑
j

p(Si|Hj)[p(Hj|E)− p(Hj)]U(Si&Aj)

(5.7)

Or, in other words,

∆EU(An;E) =
∑
i

∑
j

p(Si|Hj)d(Hj,E)U(Si&Aj) (5.8)

Here, d(Hj, E) is the confirmation conferred on Hj by E according to the differ-

ence measure p(Hj|E)− p(Hj). Again, the above expressions may look complicated,

but the important thing to note is that the difference between the posterior and prior

expected utility of An depends on the data only through d(Hj, E). In the decision

situation, we do not care about which Hj is true; we only care about Hj insofar as it

can help us predict Sm and thereby influence our preference ranking over An. Clearly

17As has been pointed out to me by Reuben Stern, this assumption does not always hold, but it
holds very widely.
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the only way our preference ranking can change given x is if ∆EU(An;E) is non-zero

for some An. But ∆EU(An;E) depends on the data only through d(Hj, E); hence,

in the decision situation, d(Hj, E) arises as a natural measure of the informativeness

of E with respect to Hn.

But why use the arithmetic difference between the posterior and prior expected

utility to measure the impact that E has on the expected utility of An? Isn’t that

a circular way of arguing in favor of the difference measure? Why not use, say, the

ratio instead?

One answer to this objection18 is that we do not really have a choice, because

the ratio between two expected utilities will in general not be a meaningful quan-

tity. This is because utility functions are usually only defined up to arbitrary linear

transformations. In other words, if U is the utility function of some agent, then

aU + b is usually an equally valid representation of the agent’s utilities, for any real

number b and positive real number a. For instance, Savage’s (1954) famous repre-

sentation theorem, and its various descendants, only define the utility function up to

arbitrary positive linear transformations. As a result of this, utilities and expected

utilities exist on an interval scale (Stevens, 1946). But this means that the ratio of

two utilities is not meaningful, because the ratio will change if you transform the

utility scale with an arbitrary positive linear transformation. As an analogy, celsius

and fahrenheit are interval scale measurements of temperature: it is meaningful to

say that the difference between 5 and 10 degrees celsius is the same as the difference

between 15 and 20 degrees celsius, because these differences remain equal if they are

18I will say a bit more about it in the next section.
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both transformed to the fahrenheit scale. However, it is not meaningful to say that

10 degrees celsius is “twice as large” as 5 degrees celsius, because the ratio between

these temperatures changes if the temperatures are transformed to the fahrenheit

scale.

5.3 Numerical Examples Showing Why the Learning and

Decision Situations Require Different Measures of Con-

firmation

Neither of the preceding subsections is intended to offer a knock-down argument;

the argument in subsection 5.1 merely shows the log-ratio measure to be an espe-

cially reasonable confirmation measure in the learning situation, and the argument

in subsection 5.2 just shows the difference measure to be especially reasonable in the

decision situation. Furthermore, the arguments may appear rather abstract. Simple

numerical examples help illustrate and independently bolster the claim that the de-

cision situation and the learning situation call for different confirmation/information

measures.

In particular, suppose you have just two hypotheses, H and ¬H and consider two

different scenarios: in the first scenario, the probability of H changes from 0.0001 to

0.1001; in the second scenario, the probability of H instead changes from 0.4 to 0.5.

Which of these changes is more informative?

Suppose, first, that you are in the learning situation, so that your goal is to figure

out which of H or ¬H is true. According to the odds version of Bayes’s formula,
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p(H|E)

p(¬H|E)
=

p(E|H)

p(E|¬H)

p(H)

p(¬H)
(5.9)

Thus, if the probability of H changes from 0.0001 to 0.1001, then p(E|H)
p(E|¬H)

= 1111.

If, on the other hand, the probability of H changes from 0.4 to 0.5, then by the same

calculation, p(E|H)
p(E|¬H)

= 1.5. Thus, the change from 0.0001 to 0.1001 requires that H

predict the evidence much better than ¬H, whereas the change from 0.4 to 0.5 does

not.

Let’s make the example more vivid by providing some concrete numbers. Suppose

¬H assigns E a probability of 0.0009 and that H assigns E a probability of 0.9999,

and suppose E is observed. Intuitively, the observation of E very strongly suggests

that H is true and that ¬H is false because ¬H’s prediction was that E was basically

impossible whereas H predicted that E was almost sure to happen. Under these

conditions, if H’s prior probability is 0.0001, then H’s posterior will be 0.1001. Thus,

the difference between 0.0001 and 0.1001 is actually extremely large in this context.

Suppose, on the other hand, that H assigns E a probability of 0.9 and that ¬H

assigns E a probability of 0.6, and suppose again that E is observed. In this scenario,

the observation of E only weakly suggests that H rather than ¬H is true. H and

¬H both predicted E as more likely than not, and both also assigned ¬E a fairly

high probability. Under these conditions, if H’s prior probability probability is 0.4,

then H’s posterior probability will be 0.5. Hence the difference between 0.4 and 0.5

is not very large in this context.

This numerical example, which has nothing to do with scoring rules and there-

fore provides an argument independent of the one provided in the subsection (5.2),
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strongly suggests that the change from 0.0001 to 0.1001 is much more informative

regarding H’s truth value than is the change from 0.4 to 0.5. This is exactly the

verdict delivered by the log-ratio measure.19. The difference measure, on the other

hand, says that these changes in probability are equally informative, which does not

seem reasonable.

But now suppose you are instead in the decision situation, and suppose you are

calculating the expected utility of some action A. Then, as the following calculation

shows, the change in the expected utility of A is the same whether the probability

of H changes from 0.0001 to 0.1001 or from 0.4 to 0.5. For suppose first that the

probability of H changes from 0.0001 to 0.1001. Then:

∆EU(A;E) =
∑
m

p(Sm|H)U(Sm&A)
[
p(H|E)− p(H)

]
+
∑
m

p(Sm|¬H)U(Sm&A)
[
p(¬H|E)− p(¬H)

]
(5.10)

=
∑
m

p(Sm|H)U(Sm&A)
[
0.1001− 0.0001

]
+
∑
m

p(Sm|¬H)U(Sm&a)
[
0.8999− 0.999

]
(5.11)

=
∑
m

p(Sm|H)U(Sm&A) ∗ 0.1−
∑
m

p(Sm|¬H)U(Sm&A) ∗ 0.1 (5.12)

Suppose, on the other hand, that the probability of H changes from 0.4 to 0.5;

then the change in the expected utility of A is,

19Of course, other confirmation measures also deliver this verdict, such as the log-likelihood ratio,
for example. The argument presented here therefore does not single out – and is not intended to
single out – the log-ratio confirmation measure as better than all other confirmation measures;
the argument only establishes the log-ratio measure of confirmation as a reasonable measure of
confirmation.
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∆EU(A;E) =
∑
m

p(Sm|H)U(Sm&A)
[
0.5− 0.4

]
+
∑
m

p(Sm|¬H)U(Sm&a)
[
0.5− 0.6

]
(5.13)

=
∑
m

p(Sm|H)U(Sm&A) ∗ 0.1−
∑
m

p(Sm|¬H)U(Sm&A) ∗ 0.1 (5.14)

The fact that (5.12) to (5.14) are identical implies that the change in the expected

utility of A is the same whether the probability of H changes from 0.0001 to 0.1001

or from 0.4 to 0.5. Thus, in this context, a change in probability from 0.4 to 0.5 is

exactly as informative as a change in probability from 0.0001 to 0.1001. And this is

the verdict delivered by the difference measure.

On the other hand, the log-ratio measure is not a reasonable measure of in-

formativeness in the decision situation. In fact, for every ε > 0, no matter how

small, and every B > 0, no matter how large, it is easy to come up with examples20

such that the degree of confirmation (or disconfirmation) conferred by E accord-

ing the log-ratio measure is greater than B, while at the same time, for every n,

|E(An;E) − E(An)| < ε and |E(An;E)/E(An) − 1| < ε, i.e. the difference that E

makes to the expected utility of every action under consideration is arbitrarily small,

regardless of whether you measure the impact that E has on the expected utility

ranking of actions as a difference or as a ratio.

Arguably, in the decision situation, where what you care about is the expected

utility ranking of the actions under consideration, it does not make sense to say that

20For reasons of space, I will omit the details here.
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E provides you with a lot of information if E has essentially no influence on the

expected utility of any action. But that is what you have to say if you measure

informational impact with the log-ratio measure. The log-ratio measure is therefore

not a reasonable measure of informativeness in the decision situation.

6 How to Derive Information Measures From Con-

firmation Measures

So far, I’ve argued that how informative a piece of evidence is depends on the goal.

In the learning situation, the informativeness of E with respect to H is reasonably

quantified by the log-ratio measure, whereas the difference measure is not reasonable.

However, in the decision situation, the informativeness of E with respect to H is

reasonably quantified by the difference measure, whereas the log-ratio measure is

not reasonable.

However, the ultimate goal of the paper is to show that how much information

there is in a probability distribution depends on how the probability distribution

will be used. The next goal of the paper is therefore to show how information

measures may reasonably be derived from confirmation measures. As before, I do

not claim that the formal choices made are uniquely rational: I only claim that

they are reasonable. There may be other reasonable ways of deriving information

measures from confirmation measures, but the point will still stand that the decision

situation and the learning situation call for different information measures because

they call for different confirmation measures.
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6.1 How to Extend a Confirmation Measure to a Partition

of Hypotheses, or: How to Measure the Information

Distance Between the Prior and Posterior Distributions

A confirmation measure tells us how informative E is with respect to some particular

Hj in H. Of course, E will have an impact on each Hj in the partition. How may we

quantify the effect that E has on the partition overall? Or, to put the same question

in somewhat different terms, how do we measure the “information distance” between

the whole posterior distribution and the whole prior distribution? One way to do so

is to simply add up all the individual confirmation scores,
∑

j c(Hj, E), for each Hj

in the partition. This implicitly weighs each confirmation score as equally significant.

An alternative approach that is more appealing from a Bayesian perspective is to

weigh each term in the sum using either the prior or the posterior. Since the poste-

rior is more well-informed than the prior, it makes more sense to use the posterior

than the prior. Following this idea leads us to quantify the impact of E on H as∑
j c(Hj, E)p(Hj|E).

Plugging in various confirmation measures for c yields different measures of the

information distance between the posterior distribution and the prior distribution.

For example, plugging in the log-ratio confirmation measure for c yields the well

known Kullback-Leibler divergence (Kullback and Leibler, 1951), which lends further

credence to the idea that
∑

j c(Hj, E)p(Hj|E) is a reasonable general measure of the

information distance between the posterior and the prior. Quantifying the impact of

E on H in this way is also endorsed by Crupi and Tentori (2014).
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Thus, I contend, the following is a reasonable (though not necessarily uniquely

reasonable) quantification of the information distance between the prior distribution

and the posterior distribution, given some piece of evidence E:

The information distance between the posterior and the prior distribution.

Given a confirmation measure c, a piece of evidence E, and a probability function

p, the information distance between the prior distribution p(H) and the posterior

distribution p(H|E) is defined as follows:

InfDis(p(H|E), p(H)) =
∑
j

c(Hj, E) ∗ p(Hj|E) (6.1)

(6.1) tells us the information distance between p and the posterior given some

particular Ek in E. Different Ek’s will, of course, result in different posteriors. Be-

fore we receive the evidence, how much evidence can we expect to receive from E?

Or, put differently, how much information – on average – will E provide us about

H? A reasonable way to quantify the answer to this question is to simply average

InfDis(p(H|E), p(H)) over the partition E (again, this is also suggested by Crupi

and Tentori (2014)):

InfDis(p(H|E), p(H)) =
∑
i

InfDis(p(H|E), p(H)) ∗ p(Ei) (6.2)

(6.2) tells us how much information, on average, the partition of evidence E can

be expected to provide us about the partition of hypotheses H. A trick due to Jose

Bernardo (1979) is now all we need in order to derive information measures.21

21I emphasize that my interpretation of Bernardo’s trick differs significantly from Bernardo’s own.

25



6.2 How to Define Information Measures From Measures of

the Information Distance Between the Posterior and the

Prior Distribution

More precisely, a prior is intuitively non-informative to the extent that it is distant

from most posteriors that are heavily influenced by data. To formalize this idea,

imagine that we are going to receive a large amount of evidence E1,E2, . . . . . .En. As

the amount of evidence increases (n→∞), the posterior distribution will gradually

become increasingly informed by the evidence, and in the limit of infinite evidence,

the posterior distribution will be maximally informed and maximally opinionated;

that is, some hypothesis (we do not know which one) will have a probability of 1.22

A prior distribution is then non-informative in proportion to how informationally

distant, on average, it will be from the maximally informative posterior distribution,

whatever the maximally posterior distribution turns out to be. Using the definition of

InfDis (6.2), we can formally quantify the preceding ideas, and define the information

content of the prior distribution, p(H), as follows:

Inf(p) = lim
n→∞

InfDis(p(H|En), p(H)) (6.3)

It is very important to note that we do not need an actual sequence of evidence in

order to make sense of (6.3). The imagined sequence of evidence, E1,E2, . . . . . .En,

merely functions as a way of formalizing the idea that the posterior gets increasingly

For more faithful presentations of Bernardo’s views, see Bernardo (1979b), Berger et al. (2009), or
Sprenger (2012).

22Well known convergence results guarantee that the probability distribution will converge under
widely applicable conditions (see, e.g. Hawthorne (manuscript)).
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informed as more evidence comes in. The derivation in Appendix A shows that,

when the hypothesis space is finite, properties of the sequence of imagined evidence

(e.g. the distribution of the evidence) do not make a difference to the information

content of Pr(H).23

If we plug (6.1) and (6.2) into (6.3), we get the following alternative expression for

Inf(p), which makes the dependence on the choice of confirmation measure explicit:

Inf(p) = lim
n→∞

∑
i

∑
j

c(Hj, E
n
i ) ∗ p(Hj, E

n
i ) (6.4)

Now we can plug different confirmation measures into (6.4) and get different in-

formation measures. In the case of a finite hypothesis space, it is actually possible to

explicitly calculate (6.4) for several well known confirmation measures, and in partic-

ular for the difference measure and the log-ratio measure. More precisely, if we plug

in the difference measure and the log-ratio measure, respectively, and perform the

relevant calculations, we arrive at the following two alternative information measures

(see Appendix A for the derivations):

The lr information measure. Given p defined on a finite hypothesis space, {Hi},
23When the hypothesis space is continuous, the situation is a bit more subtle—in this case, the

information content depends on the statistical model in which the hypotheses are situated. But this
is reasonable because, in the continuous case, the hypotheses are generally indexed by continuous
parameters, and it is those parameters that must be assigned probabilities. Moreover, the meaning
of a parameter generally depends on the statistical model of which it is a part. For example, the
parameter B in the linear model Bx + C picks out the slope of a line; but in the quadratic model
Ax2 +Bx+C, B does not pick out the slope of a line. Thus, it is not strange that the information
content of Pr(B should depend on which statistical model B is embedded in.
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The information content of p according to the log-ratio measure is defined as,

Inf lr(p) = −
∑

p(Hi) log p(Hi) (6.5)

The d information measure. Given p defined on a finite hypothesis space, {Hi},

The information content of p according to the difference measure is defined as,

Infd(p) = 1−
∑

p(Hi)
2 (6.6)

Both of the above information measures have a long and rich history, and it is

both surprising and interesting in its own right that these measures have such a

close connection with Bayesian measures of confirmation. −
∑
p(Hi) log p(Hi) is the

Shannon information of p (Shannon, 1948), which has been defended as a measure

of the non-informativeness of probability functions by, among others, Edwin Jaynes

(2003) and Jon Williamson (2010). 1 −
∑
p(Hi)

2 is known to ecologists as the

Simpson index of diversity (Simpson, 1949) and to machine learning theorists as

the Gini index. Jaynes discusses 1−
∑
p(Hi)

2 as a possible alternative information

measure (Jaynes, 2003, p. 345), but rejects it for reasons I will explain later. The

diagnosis of the present paper is that both −
∑
p(Hi) log p(Hi) and 1 −

∑
p(Hi)

2

are appropriate information measures, but that the two measures should be used in

different contexts: −
∑
p(Hi) log p(Hi) is appropriate in a learning situation, but in

a decision situation 1−
∑
p(Hi)

2 is more appropriate.

28



7 Two Goal-Relative Non-Informative Priors

The general definition provided in (6.4) gives us a way of selecting maximally non-

informative priors. More precisely, given some confirmation measure, a probability

function that maximizes (6.4) is a natural candidate for a prior that is maximally

non-opinionated. Both (6.5) and (6.6) are maximized by a single prior – namely the

flat prior – so if the hypothesis space is finite, whether you use the log-ratio or the

difference measure as the confirmation measure in (6.4) will not make a difference to

the non-informative prior you select. In the next section, I consider what happens

when (6.5) and (6.6) are maximized relative to constraints; it turns out they can then

yield different priors, and so the confirmation measure you use makes a difference

when you have background information.

However, if the hypothesis space is continuous, the confirmation measure you use

makes a difference even if the maximization is not relative to any constrains. For

concreteness, let us consider the problem of estimating the bias θ of a coin given n

coin flips. In other words, the problem is to estimate the parameter θ in the binomial

distribution. Then we have:24

The lr non-informative prior. Given the problem of estimating the parameter θ

of a binomial distribution, the maximally non-informative prior density function that

corresponds to the log-ratio measure is

NonInflr(θ) =
1√

θ(1− θ)
(7.1)

24For reasons of space, I’m omitting the proof. However, a proof can be found in Bernardo
(1979b).
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The above prior is known as “the Jeffreys prior” after its discoverer, Harold

Jeffreys (1946). We also have:25

The d non-informative prior. Given the problem of estimating the parameter θ of

a binomial distribution, the maximally non-informative prior density function that

corresponds to the difference measure is

NonInfd(θ) = 1 (7.2)

The main take-away message here is that the goals you have influence which

non-informative prior it is rational for you to have. Or to put the point differently:

whether a probability function is “completely non-informative” or opinionated de-

pends on the context. The Jeffreys prior can justifiably be regarded as maximally

non-informative in a learning situation, but in a decision situation it is opinionated.

The reverse is true for the flat prior, which is maximally non-informative in a decision

situation, but opinionated in a learning situation.

8 Goal-Relative Priors Given Objective Background

Information

As noted earlier, the information measures −
∑
p(Hi) log p(Hi) and 1 −

∑
p(Hi)

2

are both uniquely maximized by the flat prior. However, if we have background

information available, it is reasonable to maximize the two information measures

25For reasons of space, I again omit the proof. Unfortunately, I’m not aware of any reference
where a proof may be found. However, the proof is straightforward.

30



relative to that background information. This is the procedure recommended by the

objective Bayesians Jaynes (2003) and Williamson (2010), for example.26

If (6.5) and (6.6) are maximized relative to background information, they will in

general not be maximized by the same priors. As a simple illustration, consider again

the example provided in the introduction.27 The example was as follows: suppose

you are about to roll a six-sided die and you want a probability distribution p(X) over

the possible outcomes X = 1, 2, 3, 4, 5, 6. I have rolled the die many times already,

and I tell you that – on average – the die has landed on 5. Let’s first formalize the

information that I give you. The natural way for you to formalize that the die has

landed on 5 on average is to demand that the expected value of the die roll according

to your prior should be 5. In other words, you should require that
∑6

i=1Xip(Xi) = 5.

The additional constraints are, of course, that
∑

i p(Xi) = 1 and that p(Xi) ≥ 0 for

each Xi since probabilities must be non-negative and add up to 1.

If you maximize −
∑
p(Hi) log p(Hi) relative to all of the above three constraints,

you end up with the probability distribution summarized in the following table:28

26How are we to understand the learning of “background information”? This is a deep ques-
tion that I do not have the space to discuss here. But, very briefly, the learning of background
information cannot be the result of conditionalizing because conditionalizing requires that there
already be a prior, but background information is supposed to be a constraint that is used in the
construction of the prior and must therefore be “prior to the prior.” For a discussion of these issues,
see Williamson (2010).

27Again, this admittedly artificial example is structurally similar to many real examples.
28I have omitted the very tedious calculation.
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Die Probability

1 0.02053

2 0.03853

3 0.07232

4 0.13574

5 0.25475

6 0.47812

The distribution that maximizes 1−
∑
p(Hi)

2, on the other hand, is as follows:29

Die Probability

1 0

2 0

3 0.1

4 0.2

5 0.3

6 0.4

Perhaps the most striking difference between the two tables is the fact that the

second table has zeros in it whereas the first table does not.30 This is not incidental to

this example: whereas the prior that maximizes −
∑
p(Hi) log p(Hi) will never assign

a probability of 0 to any hypothesis unless background information logically excludes

the hypothesis, the prior that maximizes 1 −
∑
p(Hi)

2 sometimes does assign 0 to

29I have again omitted the tedious calculation.
30Another thing that may strike the reader is how nice the numbers look in the second table;

however, that is incidental to this specific example and will not happen in general.
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hypotheses. Indeed, it is precisely for this reason that Jaynes rejects 1 −
∑
p(Hi)

2

as a measure of non-informativeness, because he does not think that any hypothesis

should ever be assigned a probability of 0 unless the hypothesis is logically excluded

(Jaynes, 2003, p. 346).

The requirement that a prior never assign 0 to any outcome or hypothesis is

reasonable in the learning situation. After all, the goal in the learning situation is

to learn the truth, and if you assign probabilities of 0 to hypotheses, you run the

risk of assigning a probability of 0 to the truth, which would ruin your chances of

learning what the truth is. However, in the decision situation, the requirement that

every hypothesis receive a non-zero probability is unmotivated. After all, the goal

in the decision situation is not to learn the truth; therefore, accidentally assigning

a probability of 0 to the truth is not necessarily a bad thing. Thus, the learning

situation is inherently a more “risk-averse” setting than the decision situation, and

this is reflected in the fact that 1−
∑
p(Hi)

2 is maximized by “riskier” priors than

the priors that maximize −
∑
p(Hi) log p(Hi).

The reader may object that assigning a probability of 0 to a hypothesis implies

that you would be willing to accept absurd bets. For example, assigning a probability

of 0 to H apparently implies that you would be willing to pay USD 1,000,000,000

for a bet that pays 1 cent if H is false. That does not seem rational. However,

this objection implicitly assumes that every probability is a betting probability. But

this assumption begs the question against the arguments made in this paper. In

fact, as soon as I offer you a bet over a partition of hypotheses, your goal becomes

to identify which hypothesis in the partition is true. In other words, you enter
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the learning situation with respect to that partition. However, according to the

arguments presented here, you should only ever assign 0 to a hypothesis if you are

in the decision situation, i.e. if you do not care about which of the hypotheses is

true, but rather aim to use the hypotheses as a predictive tool in order to predict

something else. We may call the probabilities you assign to hypotheses in the decision

situation “predictive probabilities”; thus, the predictive probability you assign to Hi

reflects how much trust you put in Hi’s prediction. Crucially, you can have trust in

the predictions of a hypothesis, even if you know that the hypothesis is false. On the

other hand, your betting probability in Hi reflects the bets you would be willing to

accept on the truth of Hi. Clearly you would not be willing to accept any bets on a

hypothesis you know to be false; your betting probability in a hypothesis you know

to be false is 0 or close to 0. Hence, predictive probabilities and betting probabilities

are very different. In general, you should not use predictive probabilities as your

betting probabilities.31

9 Wider Implications for Bayesianism

The arguments in the preceding sections have important upshots for both objective

and subjective Bayesians, as I hope to make clear in the following two subsections.

31I thank a referee for pressing me to be clearer in this paragraph.
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9.1 Upshots for Objective Bayesianism

According to most versions of objective Bayesianism, a probability function is ratio-

nal for an agent if and only if the probability distribution is maximally uninformative

while still being consistent with the agent’s background information. Because most

objective Bayesians have assumed that there is only one correct way of measuring

the informativeness of a probability function, most objective Bayesians have ac-

cepted the Uniqueness Thesis (see Feldman (2007) and White (2005)). According to

the Uniqueness Thesis (applied to the case of prior probability functions), given any

body of background information, there is a unique rational prior probability func-

tion. However, if the arguments presented in this paper are sound, the Uniqueness

Thesis, as stated, is clearly false and can only be salvaged if it is relativized to goals.

Thus, a version of the Uniqueness Thesis consistent with the arguments presented

in this paper is as follows: given any body of background information, and given a

fixed goal, there is a uniquely rational prior probability function.

However, modifying the Uniqueness Thesis in this way makes apparent the second

consequence for objective Bayesians: if the arguments that have been presented

are sound, then objective Bayesians must apparently admit that pragmatic factors

systematically influence which prior it is rational to use.

9.2 Upshots for Subjective Bayesianism

Whereas the upshots for objective Bayesians are, I think, relatively clear, the up-

shots for subjective Bayesians are likely to be more controversial. In contrast to

objective Bayesians, subjective Bayesians do not think there are substantial rational
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requirements that agents’ probability distributions need to satisfy. Rather, an agent’s

probability distribution is supposed to accurately reflect the agent’s epistemic state.

Hence, for subjective Bayesians, the construction of a prior is not a search for the

rationally ideal prior probability function; instead, it is the search for a probability

distribution that will faithfully capture the agent’s actual opinions. Since agents

do not literally have probability functions in their heads, the epistemic state of the

agent must somehow be translated into a probability function, either by the agent

herself or by others. But how this translation exercise is to be solved will in general

depend on the goals of the agent.

This is perhaps most easily seen in cases where you want to represent probabilis-

tically a lack of opinion. Suppose, for example, that you are trying to determine

which probability distribution most faithfully represents your opinions regarding the

bias of some coin, and suppose, moreover, that you consider yourself completely un-

informed and unopinionated, so that you would like your probability distribution

over the possible biases of the coin to reflect your lack of an opinion. According to

the calculation in Section 7, the probability distribution that is maximally unopin-

ionated and that therefore most accurately reflects your epistemic state is relative to

whether you are in the learning situation or the decision situation. If you are in the

learning situation, the Jeffreys prior is the most faithful probabilistic representation

of your lack of an opinion, but if you are in the decision situation, the flat prior more

faithfully represents your epistemic state.

Of course, it is possible that you are in both the learning situation and in the

decision situation simultaneously with respect to a single partition of hypotheses.
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In that case, both probability distributions will be accurate representations of your

epistemic state, but the two probability distributions should be used for different pur-

poses. The predictive probability distribution – appropriate in the decision situation

– should be used and updated (given evidence) whenever your goal is to use the par-

tition of hypotheses to predict the future. But the learning probability distribution

should be used and updated (given evidence) when you are interested in identifying

the true hypothesis in the partition. If you have both goals at the same time, both

probability distributions should be used. Note that your epistemic state is the same

in both situations – you are completely unopinionated. But how you should best

represent your lack of an opinion over the set of hypotheses probabilistically depends

on why you care about the set of hypotheses.

More generally, suppose you consider yourself both epistemically risk-averse and

empirically-minded and that you therefore want your epistemic state to be as unopin-

ionated as possible given objective background information, such as, e.g., publicly

available frequency data. Naturally, you will want your probability distribution to

accurately reflect your epistemic risk-averseness. According to the results in Sec-

tion 6, you will need to take into account your goals when you are deciding how

to translate your epistemic state into a probability distribution, because whether a

probability distribution counts as unopinionated given background information can

only be determined once a goal has been specified. Thus the upshots we saw for

objective Bayesians also carry over to at least some agents, namely those agents who

see themselves as epistemically risk-averse.

37



10 Conclusion

I will end by briefly summarizing what I take to be the main novel contributions

and conclusions of the paper. First, I have argued that the decision situation and

the learning situation require different confirmation measures in order to accurately

quantify the informational impact that a piece of evidence has on the probability of

a hypothesis. Thus, I have argued for a version of “confirmation measure pluralism.”

Second, I have shown how various information measures may reasonably be derived

from confirmation measures, and I have shown that how opinionated a probability

distribution is for an agent therefore depends on whether the agent is in the decision

situation or in the learning situation. Thus, I have also argued for a kind of “infor-

mation measure pluralism.” Finally, I have argued that the goal-relative nature of

information has important upshots for both objective and subjective Bayesians. Most

importantly, objective Bayesians must concede that whether a probability distribu-

tion is rational is partly determined by pragmatic factors, and subjective Bayesians

must similarly concede that pragmatic factors sometimes partly determine which

probability distribution most accurately represents an agent’s epistemic state.

A Derivations of (6.5) and (6.6)

The first goal is to show that Inf lr(p) = −
∑
p(Hi) log p(Hi) under the condition that

the posterior mass converges on some Hi as n → ∞, for any imagined sequence En

of evidence. In other words, for any En, we require that there exists an Hi such that

limn→∞ P (Hi|En) = 1. To avoid clutter, I will suppress n in the notation henceforth.
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Now, definition (6.4) with c = lr yields,

Inf lr(p) = lim
n→∞

∑
E

∑
i

log
p(Hi|E)

p(Hi)
p(Hi, E) (A.1)

= lim
n→∞

∑
E

∑
i

log p(Hi|E)p(H|E)p(E)− lim
n→∞

∑
E

∑
i

log p(Hi)p(Hi, E) (A.2)

=
∑
i

lim
n→∞

∑
E

p(E)log p(Hi|E)p(H|E)−
∑
i

log p(Hi)p(Hi) (A.3)

For each term of the form p(E)log p(Hi|E)p(H|E), by assumption, either p(Hi|E)→

1 as n → ∞, in which case p(E)log p(Hi|E)p(Hi|E) → 0; or else p(Hi|E) → 0, in

which case p(E)log p(Hi|E)p(Hi|E)→ 0 again.32 Thus,

Inf lr(p) = −
∑
i

log p(Hi)p(Hi) (A.4)

Which was the first thing to be proven. Note that no assumptions were made

about the sequence of evidence in the above derivation. This shows that the deriva-

tion does not depend on any such assumptions.

Now suppose that we instead plug c = d into definition (6.4). Then the calculation

becomes:

32This latter limit can be shown by an application of l’Hopital’s rule.
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Infd(p) = lim
n→∞

∑
E

∑
i

[
p(Hi|E)− p(Hi)

]
p(Hi, E) (A.5)

= lim
n→∞

∑
E

∑
i

p(Hi|E)p(Hi, E)− lim
n→∞

∑
E

∑
i

p(Hi)p(Hi, E) (A.6)

= lim
n→∞

∑
E

∑
i

p(Hi|E)2p(E)−
∑
i

p(Hi)
2 (A.7)

(A.8)

By assumption, there is a unique term of the sum
∑

i p(Hi|E)2 such that p(Hi|E)→

1 as n→∞; moreover, for all of the other members of the sum, p(Hi|E)→ 0. There-

fore, as n→∞, the entire sum
∑

i p(Hi|E)2 converges to 1. Consequently,

Infd(p) = lim
n→∞

∑
E

p(E)−
∑
i

p(Hi)
2 (A.9)

= 1−
∑
i

p(Hi)
2 (A.10)

(A.11)
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