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Abstract

For more than twenty five years, Fine has been challenging the traditional interpre-

tation of the violations of Bell inequalities (BI) by experiment. A natural interpre-

tation of Fine’s theorem is that it provides us with an alternative set of assumptions

on which to put the blame for the failure of the BI, and a new interpretation of

the violation of the BI by experiment should follow. This is not, however, how Fine

interprets his theorem. Indeed, Fine claims that his result undermines other inter-

pretations, including the traditional interpretation in terms of local realism. The

aim of this paper is to understand and to assess Fine’s claims. We distinguish three

different strategies that Fine uses in order to support his interpretation of his result.

We show that none of these strategies is successful. Fine fails to prove that local

realism is not at stake in the violation of the BI by quantum phenomena.
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1 Bell-type theorems, Fine’s theorem, and their interpretations

1.1 Bell-type theorems and experiments

Bell-type theorems 2 come in various versions, but most of them follow the

following general scheme: from a set of assumptions S are derived some in-

equalities (the Bell inequalities – henceforth the BI), which in turn are shown

to be violated by some quantum statistical predictions. The conclusion follows

by a simple modus tollens: no model of S-type, i.e. no model which satisfies

all the assumptions in S, can recover all the statistical predictions of quantum

mechanics.

Some experiments can be conducted which arguably correspond to testing the

BI. 3 A Bell-type experiment generally involves a measurement set up with two

separated parts, or “wings”, A and B, and a source. At the source, a system is

produced which is traditionally understood as constituted by two parts which

travel in opposite directions corresponding to the two wings. On each wing, a

measurement device (detector plus analyzer) which can be set to measure one

2 The original proof of Bell’s Theorem, within a deterministic context, is in [5].

The result has been generalized to the stochastic case by Bell in [7] and by others,

including [12],[13], [2], and [37]. The literature on Bell-type theorems is plentiful.

Bell’s papers are indispensable references: [5–8], all reprinted in [9], with some others

in [10]. For a recent synthesis on Bell theorem, see [43].
3 The experiment performed in 1982 by Alain Aspect and his team in Orsay is

considered the classic ([4], [3]). Redhead provides a table of the experimental results

concerning the violations of the Bell Inequalities up to the last eighties in [39, p.108].

Many others have been conducted since, among which the ones by Zeilinger’s team

in Vienna and Gisin’s team in Geneva are well known (see for example [55], [56]).
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of several observables on each side, labeled respectively A1, . . . , An and B1,

. . . , Bn, with the Ai, Bj commuting for all (i, j) and the Ai, Aj and Bi, Bj non

commuting for every i 6= j. One then considers the single and double outcome

distributions P (Ai), P (Bj), and P (Ai, Bj), usually for i, j ∈ {1, 2, 3}. The

experiments to date are almost uncontroversially taken to be in agreement

with the predictions of quantum mechanics. 4 The upshot is thus that no

model of the S-type can give an account of all quantum phenomena.

The interpretation of the experimental violation of Bell-type inequalities varies

depending on the set of assumptions S considered in the derivation. In most

cases, S is supposed to capture the idea of “Local Realism”. The phrase “Local

Realism” is widely used in the literature, even if there is no clear, uncontro-

versial definition of it. 5 Roughly, a local realist model is characterized by the

two following conditions:

Realism: measurement outcomes are determined before the actual measure-

ment process;

Locality: measurement outcomes are locally determined; namely, the results

of a measurement are independent of what is happening on remote systems.

Let us make these conditions more clear.

To provide quantum phenomena with a realist model in the above sense is

4 There remains some debate on the so-called “detection loophole”. For an analysis

of the detection loophole, see the work of J.A. Larsson, for instance [35]. We’ll come

back to the problem of detection when dealing with Fine’s prism models in Section

3.
5 See for example [32, p.61-2] for a “deliberately vague” characterization of local

realism.
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the aim of hidden variable (h.v.) theories. By contrast to the orthodox inter-

pretation of standard quantum mechanics, 6 h.v. theories take it that one can

supplement the quantum state with extra variables, 7 such that the complete

state of the system, determines the outcome of a given experiment. That said,

the sense in which the outcomes are “determined” comes in various ways.

Arguably the strongest sense for such a determination is value definiteness.

Value definiteness is the requirement that state of a system assigns definite

values for all quantum observables, irrespective of whether a measurement is

performed. If these values further encode determinate measurement results,

h.v. models satisfying value definiteness are non-contextual, i.e. the measure-

ment results do not depend on the measurement context. 8 It is not necessary

for h.v models to satisfy value definiteness in order to count as realist in the

sense above.

It is not necessary that the outcomes be determined deterministically either.

A physical transition between the times t and t + δt is said to be determin-

istic if and only if the state of a closed system submitted to this transition is

6 It is well known that the quantum state, given as in standard quantum mechanics,

does not allow one to predict definite outcomes for a given experiment: it only

gives a probability distribution over a spectrum of possible outcomes. The orthodox

interpretation takes it that no more complete specification of the physical situation

can be made.
7 These are called “hidden” variables because we do not have direct access to their

values, nor do we have control of them in practice
8 More will be said about contextual h.v. models in Section 3. For distinctions

between types of contextuality, see for example [43, p.2], [39, p.135, 139-142] and

[14].
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completely determined at a time t + δt, given its state at t. 9 Accordingly, a

deterministic h.v. model is such that the outcomes of a given measurement are

completely determined by the state of the system before measurement, pos-

sibly together with the measurement context. By contrast, a stochastic mode

includes a stochastic dynamics at the “hidden” level, such that the complete

state of both the system and the experimental context does not determine

completely the result of the measurement. H.v. models can be stochastic.

We can now introduce the weakest interpretation of the notion of realism

above, i.e. determinateness. Determinateness is satisfied if and only if each

experiment will have definite results, which may be fixed deterministically

or only stochastically by the state of the system, possibly together with the

state of the experimental context, before measurement. It should be clear

determinateness does not involve either determinism or (non-contextual) value

definiteness.

Let us turn to the second aspect of Local Realism, i.e. locality. The notion

of locality within Bell-type theorems and Bell-type experiments have been a

central matter of controversy. Most commonly, locality is characterized in a

deliberately vague way in terms of the prohibition of “influences” between

spatially separated regions. 10 The condition is traditionally supposed to be

9 For a detailed study of the notion of determinism in the context of Bell experi-

ments, in particular for a distinction between two-time determinism and dynamical

determinism, see [16].
10 Clearly, the notion of influence is vague, in particular when one wants to draw

consequences concerning the relationships between the notion of locality in the Bell

context and in Relativity Theory. This problem cannot be addressed in any details

here for it would take us off course. For an extended study on this topic, see [36].
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captured by a formal condition on probabilistic distributions over outcome-

events. 11 “Locality” is then satisfied when the outcome-events a and b are

statistically independent, each conditional on the complete specification of

the states and measurement protocol at its respective end of the experiment.

This is the famous factorization condition, or factorizabiliy:

pλ(a, b|i, j) = pλ(a|i)pλ(b|j), (1)

where λ stand for the “hidden complete state” 12 , i for the setting of the appa-

ratus A, j for the setting of the apparatus B. Whether or not factorizability is

the correct way to formalize the requirement of locality has been the center of

discussions over the past 30 years. The most common view takes factorizability

as including a requirement of locality. 13

In the end, the received view takes it that the experimental violation of the

BI forces us to admit that no local (i.e. factorizable) realist (i.e. determinate)

model can recover all quantum phenomena. This is the view which Fine has

been challenging for more than twenty five years.

11 This condition was introduced by Bell in [7, p. 37].
12 Whether λ is a single variable or a set of variables does not matter in the context

of the following.
13 Jarrett and Shimony (see [31] and [42]) showed independently (after Suppes and

Zanotti in [44]), that factorizability divides up into two distinct conditions on the

probability distributions of the outcome-events: Outcome and Parameter Indepen-

dence. Parameter Independence is usually taken to be a locality condition, while

Outcome Independence is interpreted in various ways, including in terms of sep-

arability and holism (see [30]). Another important interpretation of the Bell-type

experiments is in terms of backward causation (see [38] and [17] for example).
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1.2 Fine’s theorem and its possible interpretations

Fine proved the following theorem: 14

Theorem 1 The following conditions on the correlations of a Bell-type ex-

periment with i, j ∈ {1, 2} are equivalent:

(1) The BI hold for the probability distributions of the experiment;

(2) There is a deterministic hidden variable model of the experiment returning

the observed outcome distributions (singles and doubles);

(3) There is a factorisable model of the experiment returning the observed

outcome distributions (singles and doubles);

(4) There is a joint distribution for all four observables of the experiment

P (A1, B1, A2, B2), compatible with the observed outcome distributions (sin-

gles and doubles) as marginals;

(5) There are well-defined joint distributions for all pairs and triples of com-

muting and noncommuting observables compatible with the observed out-

come distributions (singles and doubles) as marginals.

The result is multifold but two striking features deserve discussion. First,

Fine’s theorem provides us with alternative derivations of the BI: he shows

that it is sufficient, for a probabilistic model to satisfy the BI, to have well

defined joint probability distributions for all pairs and triples of observables,

or to have well defined joint distributions for all four observables, whether

these observables are compatible or not – let us call these PJPD, for Prob-

14 The original proof is to be found in [21]; [22] is more philosophically concerned,

and more ambitious in terms of the consequences Fine wants to draw from his result,

and [25] is making the point in a non-technical way.
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lematic Joint Probability Distributions. (We say“Problematic” because they

cannot be correct because of the violation of the BI by experiment). Second,

Fine’s theorem establishes the converse of the original Bell derivation of the

inequalities. 15

A natural interpretation of Fine’s result is as follows. An alternative derivation

of the BI is provided: the BI hold in any probabilistic model in which the PJPD

are well defined. Alternative assumptions are uncovered on which we can put

the blame in a Bell-type modus tollens argument. No model in which the

PJPD are well defined can give an account of all quantum phenomena. The

ontological significance of this fact can be the subject of philosophical inquiry.

This is not the way in which Fine interprets his theorem. From 1982 on, he

has been holding that his theorem does more than provide an alternative

derivation from which additional interpretations of the ontological situation

underlying Bell-type experiments can be made. Rather, Fine contends that

the interpretation in terms of well defined joint probability distributions su-

15 That is to say, Fine shows that any model satisfying the BI is equivalent to a

deterministic h.v. model of the experiment. It should be noted that Fine’s theorem

also contains results about factorizable, and hence potentially stochastic, models. It

shows that any factorizable model of the experiment is equivalent to a deterministic

one. In fact, this is a slightly weaker result than the one Suppes and Zanotti obtained

in [44], that any factorizable model of the experiment (in which one can have perfect

anticorrelations) is in fact deterministic (see also [52] and [16, p.61-62]). This means

that there is no genuinely stochastic factorizable model of the experiment. For this

reason, this paper will focus on Condition (2) instead of (3) in the theorem when

discussing the significance of Fine’s theorem. That said, no result of this paper

hinges on the assumption of determinism.
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persedes other interpretations of the violation of the BI. In particular, the

traditional interpretation in terms of local realism would be threatened. Con-

sider the three following quotations, two from the original papers, the other

from a more recent one:

Our investigations suggest that what the different hidden variables programs

have in common, and the common source of their difficulties, is the provi-

sion of joint distributions in those cases where quantum mechanics denies

them. 16

Finally, I believe that Proposition (1) – conjoined with the other two [items

2, 3, and 5 above]– shows what hidden variables and the Bell inequalities

are all about; namely, imposing requirements to make well defined precisely

those probability distributions for non commuting observables whose rejec-

tion is the very essence of quantum mechanics. 17

The Bell inequalities have a purely probabilistic content [...]. 18

As it stands, such claim does not seem to hold. It is a simple matter of logic

that the theorem does not undermine the other derivations, nor conclusions

drawn from them. Further argumentation is needed to support Fine’s strong

interpretation of his results.

16 [22, p.1309]
17 [21, p.294]
18 [28, p.3]

9



1.3 Fine’s three lines of argumentation

In this paper, we distinguish between, and object to, three lines of arguments

that Fine uses to defend his strong interpretation.

Section 2 deals with Fine’s first line of argument. Fine claims that his the-

orem uncovers an additional assumption in the traditional derivation which

is sufficient to have the BI satisfied. If true, then the violation of the BI is

not necessarily to be interpreted in terms of Local Realism. However, as we

shall point out, Fine’s argument only holds for non-contextual h.v. models, i.e

non-contextual. For contextual h.v. research programs, the interpretation in

terms of local realism is highly relevant: indeed, it proves that they must be

non-local to be compatible with all quantum statistical predictions.

Section 3 focuses on a second line of argument, which is based on the existence

of the so-called Prism Models. Prism Models are local realist models which

reproduce the violation of the BI. Fine seems to conclude from this that local

realism is not at stake in the violation of the BI. Against this argument, we

shall point out that Prism Models are not models of quantum probabilities, but

only of the actual experiments. Contra quantum theory, Prism models deny

that any systems can be detected in any experimental configuration. Hence,

their existence does not threaten the traditional view that no local realist

classical probabilistic model can return all statistical predictions of quantum

mechanics.

In Section 4, we turn to Fine’s last line of argumentation, which is based on

the converse of his new derivation of the BI: that the BI’s holding implies the

PJPD to be well defined. From this, Fine wants to deduce that h.v. models
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for quantum probabilities start right from the beginning with an inconsistent

set of hypotheses. The argument is not all clear, but can be reconstructed in

the following way: 19

(1) In accepting QM, the h.v. investigator is committed to rejecting the ex-

istence of joint probabilities for incompatible observables;

(2) By the converse of the new derivation, anyone committing to a h.v. model

from which the BI are derivable is also committed to the existence of joint

probabilities for incompatible observables.

Svetlichny et alii have shown that (2) is not well supported. We shall recall

their argument, and proceed to criticize (1), in pointing out that, contrary

to what Fine assumes, the acceptance of a theory does not include a specific

interpretation of probabilities. Applied to (1), this means that, in accepting

quantum mechanics, one is not committed to anything like “the existence” or

the “non-existence” of well defined probabilities in the sense needed by Fine.

2 A hidden assumption in the traditional derivation?

One way to construct hidden variable models is to construe observables as

random variables defined over a common classical probability space. Such

construction is usually referred to as an “ensemble representation”. It is a

formal consequence of an ensemble representation that the joint distributions

are well-defined for all pairs of observables, commuting or not. Further, these

joint distributions are compatible with the singles as marginals. Hence, by

19 This is inspired by the work of Svetlichny, Redhead, Brown and Butterfield in

[45].
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Fine’s theorem, some BI hold for such models. Fine holds that this supports

the claim that his theorem uncovers a hidden assumption in the traditional

probabilistic models, an assumption which alone is sufficient to make the BI

to hold:

[...] any ensemble representation must make well defined joint distributions

for incompatible observables (like position and linear momentum, or spin in

skew directions), for the function associated with these observables will be

random variables over a common space and these always have well-defined

joints. 20

In this section, we shall first explain how ensemble representations indeed

include the definition of the PJPD. We shall then proceed to criticize Fine’s

strong conclusion in pointing out that a large class of hidden variable theories

do not construe quantum observables as random variables over a common

classical probability space. For this class of h.v. theories, Fine’s argument

does not stand.

2.1 Ensemble representations and joint probabilities

To construct an ensemble representation is a way to reduce statistical distri-

butions of outcomes to determinate but unknown states. In our case, let the

“complete state” of a system be the quantum state plus the set of hidden

variables λ which together determine the results of measurements. Consider

now the set Λ of all possible hidden variables λ. Even if all we know about a

system is confined to the probability distribution over a spectrum of possible

20 [24, p.45]
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outcomes given by |ψ〉, we want the system under consideration to be really in

one of the complete states corresponding to some variables λ (or the state |ψ〉

really describes an ensemble of systems, each of which is in one of the complete

states corresponding to the λ). For each |ψ〉, this set Λ is then structured as a

classical probability space, that is to say, is equipped with a probability mea-

sure on its Borel sets BΛ. Thus, for a given |ψ〉, there is a probability density

ρ|ψ〉(λ) of the possible hidden parameters λ over the space Λ. That is to say,

P |ψ〉(I) = ρ|ψ〉(λ) dλ (2)

represents the probability that the hidden variables lie in the interval I =

[λ, λ+ dλ].

What remains to be done is to provide a formal way of connecting the sta-

tistical distributions of outcomes with this probability measure. To this aim,

every observable Qi, i ∈ {1, . . . , n}, is defined as a random variable on the

common probability space Λ, that is, every Qi is represented by a real-valued

function [Qi] defined over Λ. For a given state, any observable has a range of

determinate values associated with the possible λ. A consequence of constru-

ing observables as random variables over Λ is that the probability structure

(Λ,BΛ, ρ
|ψ〉(λ)) induces one on the Borel sets BEi

of the ranges Ei of the func-

tions [Qi] (in general the Ei are some subset of the real numbers). A new

probability measure is thus defined on the subsets F of the BEi
, that is, the

probability P
|ψ〉
[Qi]

(F ) that the function [Qi] of the observable Qi takes its value

in F . It is defined in the following way:
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∀Qi, ∀F ⊂ BEi
, P
|ψ〉
[Qi]

(F ) = P |ψ〉[([Qi])
−1(F )] (3)

So, the probability structure on the set of hidden variables is projected on the

space of the possible values of each observable. Thus, the statistical distribu-

tions of outcomes given by |ψ〉 for a given observable are reduced to statistical

distributions of hidden variables.

Further, since the functions [Qi] are defined as random variables on a common

probability space, any Borel function f([Q1], . . . , [Qn]) is in turn a random

variable on the Cartesian product Λn, and there is a new probability measure

defined on the Borel sets of its range, fully characterized by ρ|ψ〉(λ) on BΛ.

In particular, for all pairs of observables (Q1, Q2), whether compatible or

not according to quantum formalism, the joint probability P
|ψ〉
[Q1],[Q2] and the

random variable f([Q1], [Q2]) is defined for all Borel function f such that they

satisfy, for F1,F2, Borel subsets of respectively BE1 and BE2 .

P |ψ〉
[
([Q1])−1 (F1) ∩ ([Q2])−1 (F2)

]
= P

|ψ〉
[Q1],[Q2](F1 × F2) (4)

In other words, the probability that two observables take jointly some given

values is fully determined by considering the intersection of the sets of hidden

variables respectively corresponding to the given values.

Finally, the quantum expectation values are recovered as the expectation val-

ues of the functions corresponding to the observables along the the lines of

the usual probability rules. That is, given a certain state, a simple integration

over the whole range Λ of the possible λ provides the expectation value of any

of the observables or of any Borel function f([Q1], ..., [Qn]) of the observables.
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< f([Q1], ..., [Qn]) >|ψ〉=
∫

Λ
f([Q1], ..., [Qn])(λ).ρ|ψ〉(λ).dλ (5)

To summarize, such h.v. models amount to constructing an ensemble repre-

sentation for all the observables, which includes the definition of joint prob-

abilities for all observables returning the singles as marginals, whether these

observables are commuting or not. By Fine’s theorem, the Bell inequalities

hold for any probabilistic model of this kind.

Granted then, it is the case that any probabilistic model in which the observ-

ables are construed as random variables over a common classical probabilistic

space entails that the PJPD are well defined. For these models, whatever the

set of other assumptions they may include, whether it be locality, realism or

anything else, the PJPD being well defined alone can be blamed for their

violating the BI.

This alone, however, does not imply that Fine’s theorem undermines the in-

terpretation of Bell-type results in terms of local realism. For it is not the case

that all hidden variable probabilistic models construe observables as random

variables over a common classical probabilistic space. In particular, Fine never

considers contextual h.v. research programs.

2.2 Hidden variable models outside the scope of Fine’s argument

In arguing that his theorem shows that the traditional derivations of the BI

include a hidden assumption about the definition of the PJPD, Fine seems to

pursue two different aims. One aim is to dismiss h.v theories as a whole in

saying that “what the different hidden variables programs have in common,
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and the common source of their difficulties” 21 is precisely the definition of

the PJPD. Thus, h.v. research programs, whether local realist or not, would

simply be dead ends. A second aim is to deflate the significance of Bell-type

results: the PJPD being well defined would be what the BI are all about.

In particular, the violation of the BI by experiment would not mean that

h.v. theories have to be non-local in order to be compatible with all quantum

phenomena.

Fine’s argument presented above fails to help to achieve any of these aims. This

is because the classical construal of the observables as random variables over

a common probability space, which Fine shows to include the assumption of

well defined joint probabilities, is non-contextual. But, first, we did not need to

wait for Fine’s theorem to know that no non-contextual h.v. theory can model

quantum probabilities. Second, there are contextual h.v. theories, which do

not include the definition of the PJPD, and thus, which fall outside Fine’s

argument. For such models, the derivation in terms of local realism remains

highly relevant, for it forbids them to be local. Let us make these points in

more detail 22 .

Hidden variable theories are said to be contextual, if and only if the value of

the observable obtained by any measurement process is not fully determined

by the complete state of the system, but depends on what other quantities are

simultaneously measured, or of the state of the measuring apparatus or any

other details of the measurement context. Shimony 1984 made a distinction

between algebraic and environmental contextuality. Algebraic contextuality is

when the value of a quantity measured depends on other quantities measured.

21 [21, p.1309]
22 For similar points, see Shimony in [41].
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Environmental contextuality is when the value of a quantity depends not on

other quantities measured but on other features of the measurement context.

The idea of contextuality is more familiar than it seems. Let us take a rather

simple analogy. Consider a horse race. Whether Quick Silver, your favorite

horse, is going to win the race or not may depend on various factors. One

factor could be the degree of humidity of the ground: for example, Quick Silver,

even though an excellent runner on a dry ground, might be uncomfortable on

a muddy soil. Whether Quicksilver is going to win presumably depends on

which other horses are running the race as well. If so, the outcome of the race-

experiment depends on both the environmental context (the state of the track)

and on the algebraic context of the race (What other horses are “measured”).

It is both environmental and algebraic contextual.

Now, that there can be no non-contextual h.v. model compatible with all

statistical predictions of quantum mechanics, was famously shown by Gleason

in his profound theorem in 1957 for Hilbert space of dimension greater that

two, 23 and in a simplified version of the theory by Bell in 1966, 24 as well

as by Kochen and Specker 1967 theorem 25 . Hence, Fine’s theorem does not

provide anything new as far as non-contextual h.v. theories are concerned. 26

Further, Fine cannot hope to dismiss all h.v. research programs on the basis

that all non-contextual h.v. theories include the definition of the PJPD. The

entire class of contextual h.v. theories simply falls outside Fine’s argument.

Bohm’s theory is such a contextual h.v. theory, which returns all statistical

23 in [29].
24 in [6].
25 in [33].
26 See Shimony in [41] for a discussion of the case of dimension 2.
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predictions of quantum mechanics within the bounds of current empirical ac-

curacy. It does not include the definition of the PJPD, and thus does not

necessarily imply that the BI hold by Fine’s theorem. This is because Bohm’s

theory does not use the classical construal of observables as random variables

over a common probability space, but the framework of statistical variables.

A statistical variable is real-valued function with a probability measure di-

rectly defined on the Borel subsets of its range. This can be contrasted with

random variables which we considered up to now. A random variable is a real

valued function defined on the space of complete states, or on some subset

of the space of complete states. In the case of a random variable, there is

a probability measure on the possible values of the variable (which derives

from the probability measure on the states). Therefore, a random variable is a

statistical variable but the converse does not hold, as the example of Bohm’s

theory shows.

POSSIBLE CUT: FOLLOWING PAR.

Within Bohm’s theory, the result of a given measurement is encoded in the

position of the “pointer”, for which there is always a well defined probability

distribution. While of course the result of a given measurement depends on the

λ, which values of the λ are underlying which positions of the pointer depends

on the context of measurement. Thus, even if the outcomes are construed as

deterministically arising from an underlying physical situation, the observables

are not construed as random variables on the common space Λ. Instead, the

various experimental set-ups correspond to statistical variables.

Now, given two statistical variables, the joint distribution is generally not

defined. By contrast, two random variables, as explained above, whenever
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they are defined on a common domain, have their joint distributions well

defined. Clearly then, by Fine’s theorem, the BI do not necessary hold in

a statistical variables model of the quantum distributions. Any h.v. models

which uses statistical variables instead of random variables for construing the

hidden variable falls outside of Fine’s argument.

POSSIBLE CUT: DISCUSSION OF MINIMAL REALISM and BOHM

It is worth noting that Fine has been advocating the framework of statistical

variables as the appropriate framework for quantum probabilities since (at

least) 1968, precisely because it allows for the PJPD not to be necessarily well

defined. 27 Fine claims that statistical variable models admits a “natural”

interpretation he dubs “Minimal Realism”, according to which the following

objects and properties are real: 28

(1) physical objects – corresponding to the theoretical systems;

(2) generic features which can take different forms – corresponding to the

observables;

(3) particular forms of the generic features – corresponding to the values of

the observables;

(4) distributions of probability on the spectrum of particular forms of the

generic features – corresponding to the distributions of probability on the

spectrum of values of the observables, ascribed by the quantum state.

Thus, the theoretical state of a quantum system is associated with an objective

physical object (say, a quantum coin), an objective property (say, Quantum

Face), a spectrum of objective forms of the property (Quantum Head and

27 See [18], [19], [20], and [24, chap. 4].
28 See [24, p.160 sq.].
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Quantum Tail), and the objective probability measure over this spectrum of

forms (an even distribution for instance between Q-Heads and Q-Tails if our

quantum coin is fair).

In minimal realism, probability distributions are non-reducible, objective fea-

tures of the world: they are second order properties (properties of properties)

of the object. Each property possesses as a property the probability distri-

bution over its different forms. These distributions determine the outcome of

an experiment. Thus, the framework of statistical variables, when interpreted

with Minimal realism, can be seen as a non-deterministic but determinate

model for quantum probabilities.

Not all h.v. models using the framework of statistical variables have to take the

probabilities as fundamental though. Determinism is still an option. For exam-

ple, Bohm’s theory uses the framework of statistical variables, but maintains

an ignorance interpretation of probabilities. Within Bohm’s theory, quanti-

ties are interpreted either as categorical properties (for the quantities with

continuous spectra such as position) or as dispositions (for all others). The

dispositional properties considered by Bohm’s theory can be seen as being re-

ducible. 29 . Reducible dispositions are not ontologically significant: they reduce

to categorical properties together with the experimental context. On Bohm’s

theory, measurement outcomes are determined by the underlying situation,

including the initial positions of the particles, the initial wave-function, and

the experimental context. The probability distribution associated with any

given measurement arises from our ignorance of the underlying situation, in

particular from our ignorance of the initial configuration of the particles.

29 See Clifton and Pagonis on this in [14].
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So, in contextual h.v. theory (whether deterministic or not), the PJPD are

not necessarily well-defined. Given that Bell has shown that the BI are deriv-

able from local realism in a contextual setting, 30 the violation of the BI by

experiment is still relevant for such theories. Indeed, it implies that, since

they endorse the assumption of “realism”, contextual h.v. theories have to be

non-local in order to be compatible with all statistical predictions of quantum

mechanics. Bohm’s theory is one such non-local contextual h.v. theory.

Thus, Fine’s first line of argument can deflate neither the importance of h.v. re-

search programs nor the significance of Bell-type results for these programs.

3 A de facto argument: Fine’s Prism Models

Fine has constructed local realistic models for the Bell experiments, the so-

called Prism Models. 31 . Fine seems to believe that the existence of his Prism

Models implies that the traditional interpretation of the violation of the BI,

according to which no local determinate h.v. theory can recover all quantum

statistics, is threatened:

At this stage, however, one thing seems clear, and not acknowledged well

in the recent literature. It is that Bell-type arguments and the experiments

which support them cannot be straightforwardly understood as arguments

against, or experimental refutations of, locality. ([23, p. 293])

30 in [6].
31 The original work is in [23], followed among other by [24, chap. 4], [26], and [27].

Others have gotten interested in Fine’s models, like Larsson ([34]) and Szabó ([46],

[48], [47])
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To the extent to which [to construct prism models] can be accomplished it

undermines the experimental argument against local hidden variables, ... .

([26, p. 475-476])

In order to draw such conclusions, Fine needs to argue that (1) Prism Models

are deterministic, local realistic models, which return the outcome distribu-

tions of actual Bell-type experiments; (2) Prism Models provide a probabilistic

model of the quantum probabilities; Hence (3): the traditional interpretation

of Bell-type results in terms of local realism is threatened.

In the following, we present the construction of Prism Models, thus granting

(1), but then refute (2), thus showing that (3) does not follow.

3.1 Prism Models

Prism Models are probabilistic models characterized by the feature that ob-

servables do not in general have well defined probability distributions on all

complete states λ ∈ Λ. More precisely, there are some quantum states, for

which there are some hidden variables, for which there are some observables,

on the ranges of which no probability distribution is defined. From a math-

ematical point of view, the idea is just that, while the observables Qi are

separately construed as random variables, they are defined on different sub-

sets σ(Qi) of Λ, thus being associated with partial real-valued functions on

Λ.

Note that this is different from saying that some observables have a zero

probability associated with some range of outcome for a given state. or that, in

other words, a given state has probability zero to display such or such outcome
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associated with certain observables or experimental configurations. Instead,

in the framework of partial random variables, no probability distribution is

defined for these states which fall outside the domain of the function of the

observable considered.

Now, another observable Qj will not in general have its function [Qj] defined

on the λ ∈ σ(Qi). In other words, σ(Qi) in general includes states in and

outside the domain of the function [Qj] associated with the measurement of

Qj. If we happen to measure Qi and Qj at the same time, the set of hidden

states for the joint systems on which the joint measurement is defined is the

intersection σ(Qi) ∩ σ(Qj). So, whether you measure Qi and Qj together or

separately makes a difference as to which set of complete states is selected. In

some cases, the intersection may be empty for some observables, so that some

joint distributions may not be defined. Typically, in the case of a Bell-type

experiment, the joint distribution over all observables is not defined, because

the intersection of all domains of all the functions associated with all the

observables is empty.

More needs to be said about the interpretation of Prism Models. That the ob-

servables are associated with partial real-valued functions on Λ is interpreted

in terms of defectiveness. For a given state |ψ〉, the λ encodes for determinate

values of the outcomes, but it also encodes for some physical, predetermined

property (or properties), defectiveness, that makes the system under consider-

ation suitable for certain measurements, and not for others. An Qi-defective

system just cannot respond to the experimental configuration (an analyzer-

detector assembly) corresponding of the observable Qi and hence will not

“show up” in the sense that it will not be counted by the detector. Applied

to a Bell-type experiment, given the experimental configuration or observable
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QA
i at the A end of the experiment, λ is in σ(QA

i ) if and only if an A-system

of type λ will be detected by any detector associated with a QA
i -analyzer.

Fine managed to show that there are Prism Models for the actual Bell experi-

ments with two observables on each end. That is to say, it is possible to divide

Λ in subsets and define the four observables considered in the experiments

over these subsets, such that the single and double probability distributions

given by the model are consistent with the observed outcome distributions

which violate the Bell inequalities.

In Prism Models, some underlying (even if possibly hidden) properties, asso-

ciated with the variables λ, fully determine the outcomes of our experiments,

including whether or not the system considered will be detected or not. So,

Prism Models are determinate. Prism Models are even deterministic. Finally,

Prism Models are local. Granted then, Fine has constructed local realistic

models returning the statistical distributions of the actual experiments for di-

mension 2 × 2. Szabó has further proved the possibility of Prism Models for

n× n dimensional systems. 32 These are impressive results. However, they do

support Fine’s strong claim about the irrelevance of the notions of locality

and realism for the interpretation of Bell-type experiments, as we shall now

show.

3.2 Prism Models, the experiments, and quantum mechanics

Fine suggests that it is because the joint distributions are not defined that

Prism Models can violate the Bell Inequalities in the right way. He claims

32 in [46].
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that Prism Models keep the structural features of the probabilistic model

which codify the “local realistic” character of the observables, while avoiding

the assumption of the existence of the joint probabilities, which he deems re-

sponsible for the Bell inequalities to obtain. 33 We argue in this subsection that

this is not the case. The reason why Prism Models are successful is our actual

failure of detection of all quantum systems. We will further argue that Fine’s

way to avoid that the PJPD makes Prism Models stand in contradiction with

quantum theory. While providing an alternative model for the actual statis-

tical results, Prism Models do not provide an alternative model for quantum

probabilities. 34

Fine’s Prism Models are successful because of a feature of the actual realiza-

tions of Bell-type experiments, namely the fact that not all systems that are

produced at the source are detected by the measurement apparatuses. Our

statistical measure of Bell-type correlations takes into account only these par-

ticles that are “coincidentally” detected by both detectors, not the original

ensemble produced at the source. Prism models draw on this feature of the

actual experiment to recover the probability distributions of the outcomes.

The usual way in which we interpret failure of detection is in terms of the

33 See for example the conclusion in the original paper on Prism Models [23, p. 293]:

“... it is entirely possible that locality will survive this critical examination and that

other principles – like the random variables framework – will go by the wayside

instead.”.
34 What is striking is that Fine is well aware of the fact the Prism Models are only

models of the actual experiment, not a general h.v. theory for quantum probabilities

([23, p. 280], [26, p. 475-476]). He fails to see, however, that this implies that his

strong conclusion, as in the quotes at the beginning of this section, does not follow.
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deficiency of the detectors used. We further assume that such deficiency is

random, and hence, that the sample of systems we actually detect is a fair

one. This is called the “enhancement hypothesis”. 35 Fine proposes an alter-

native interpretation for failure of detection in the actual experiments. Within

Prism Models, instead of being due to the random deficiency of our detectors,

failure of detection reflects a physical property of the systems, i.e. defective-

ness. Within the formalism of Prism Models, the property of defectiveness

corresponds to the observables’ being construed as partial random variable.

While giving room for a local deterministic account of the actual experimental

results, the construal of the observables as partial functions on Λ makes Prism

Models stand in contradiction to quantum mechanics (as normally construed).

If interpreted in terms of defectiveness, Prism Models predict that not all

particles will be detected by a given experimental context. If not interpreted

in terms of defectiveness, they still fail to make predictions (even probabilistic

ones) for some runs of the experiments. In any case, Prism Models predict that

they are some quantum systems (Qi-defective systems) and some experimental

context (Qi), for which no probability distribution over possible outcome-event

is defined.

On the contrary, quantum mechanics predicts that any quantum system should

respond to any given experimental question. Indeed, according to the usual

quantum measurement theory, any quantum system can be appropriately cou-

pled to some other system which will act as a perfect measuring apparatus. 36

This motivates the usual interpretation according to which any deficiency in

35 On this, again, see [35] and reference therein.
36 We do not consider the limitations shown by Araki and Yanase in [1]. They can

be disregarded for present purposes.
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the experiment is in one of our detectors – it is a technical problem – and does

not reflect any property of the system being measured.

Because Prism Models contradict quantum mechanics, their existence does

not support the strong claim held by Fine, that there are models consistent

with all quantum statistical predictions in which local realism is secured. It

also does not support the claim that locality and realism are not at stake in

the violation of the BI.

That said, what it does support is the claim that there are local deterministic

models consistent with the actual statistics of Bell-type phenomena. Now, that

Prism Models are local deterministic models of the experiments to date, is,

we believe, worth considering for further investigation. It would be certainly

worth pursuing a research program to experimentally assess whether or not

there is a detection efficiency limit. Szabó investigates to what extent Prism

Models can be refuted by experiment on the basis of the detection efficiency

rates. His conclusion is that actual experimental results still do not constitute

a serious objection to Prism Models. Fine’s models might be more relevant

than they seem.

POSSIBLE CUT: DISCUSSION OF DEFFECTIVENESS

If further experimental investigation was favorable to Prism Models, some fur-

ther interpretational work would still have to be done. The interpretation in

terms of defectiveness seems unsatisfactory as it stands. What we have is that

there are some complete states which possess some physical property such that

some observables cannot be measured. Fine does not give any further inter-

pretation of this property. At least three further interpretations are possible.

First, if an observable corresponds to some determinate property-assignment,
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one interpretation is that the property corresponding to the observable is not

measurable. Unless Fine could provide an explanation for why this happens,

such an interpretation goes against one of the most fundamental assumptions

in the methodology of experiment about the possibility of measurement. More-

over, it might run into problems with Kochen-Specker-type theorems. Another

interpretation would be that the observable corresponds to a generic property,

but the value of this property is unmeasurable because it is indefinite. The

idea is that some properties do not have any determinate value, that could

be correlated either deterministically or stochastically with the measurement

context. This could correspond to the notions of “spread quantities” or “inex-

act values” that have been defended by some authors. 37 However, Fine seems

to reject this option himself: he accepts the objections leveled against such no-

tion of spread quantities. 38 Yet another interpretation is that the observable

corresponds to a generic property, but there are some states that simply do

not “have” this generic property, in any form, exact or spread. This obviously

needs more fleshing out, but it might be what Fine has in mind, considering

the concluding remark of [22]:

After all, if we hold that probabilities (including joint probabilities) are real

properties, then some observable may simply not have them. 39

That said, Fine never seriously investigates such issues. Indeed, Fine himself

admits that Prism Models are somewhat too “cheap” and too “easy”. 40 The

37 See for example Teller in [49], [50], and [51].
38 See [24, p.161, note 16].
39 [22, p.1310]
40 See [24, p. 56 sq.]. Fine formulates the same kind of qualifications as to the

philosophical or physical significance for his local model in response to the Hardy

theorem in [28].
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aim of constructing these models was primarily negative, that is, it was to un-

dermine the traditional interpretation in terms of local realism. This, however,

as we have argued, is just not what Prism Models can be used for.

4 Beyond the alternative? Fine’s strong claim

Fine’s last line of argumentation in favor of his strong claim uses the converse

of his derivation of the BI, that is, that any model in which the BI hold is

equivalent to a model in which the PJPD are well-defined. From this, Fine

wants to deduce that any set of assumptions from which the BI are derivable

has, in Fine’s terms, the “existence of well defined joint probabilities” as a

consequence, including for non-commuting observables. Given that the defini-

tion of these joint probabilities is forbidden by quantum theory, h.v. programs

start right from the beginning, Fine’s argument goes, with an inconsistent set

of hypotheses.

Fine’s argument can be reconstructed as coming in two steps:

(1) In accepting QM, the local realist is committed to rejecting the existence

of joint probabilities for incompatible observables;

(2) By the converse of the new derivation, anyone committing to a h.v. model

from which the BI are derivable is also committed to the existence of joint

probabilities for incompatible observables.

Svetlichny, Redhead, Brown and Butterfield have investigated this argument. 41

They accept (1) but show that (2) is not well supported. In the following, we

41 in [45].
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shall briefly sum up their argument against (2) and then modestly contribute

to undermining Fine’s argument in raising some objections against (1).

Svetlichny et alii reject (2) on the basis that Fine’s theorem does not show that

the BI’s holding implies the joint probabilities for incompatible to exist in the

sense of being physically real. What has been shown instead is a weaker result,

i.e. that the BI’s holding implies the formal definition of the joint probabilities.

But the local realist might be happy to accept the joint probabilities as being

defined formally, but without giving them any physical significance.

Fine himself gives a criteria, (jd),) for the joint probabilities to be considered

as physically real. 42 .

(jd) – Observables A1, ..., An of a quantum system obey (jd) just in case,

for every n-place Borel function f , there is an observable of the system

with operator f(A1, ..., An), and for all states Ψ of the system there is a

probability measure µΨ,A1,...,An on the Borel sets of Rn that returns the

quantum single distributions PΨ
Ai

as marginals and is such that for all borel

sets S:

µΨ,A1,...,An(f−1(S)) = PΨ
f(A1,...,An)(S)

Note that (jd) is not what Fine shows to be equivalent to the BI’s holding

in his main theorem. In the theorem the definition of the PJPD depends on

the state and on the four observables considered in the experiment. So, if (jd)

is the appropriate formalization of the idea that the joint probabilities exist,

42 The following is taken from [22]. Fine presents (jd) as a criteria for the joint

probabilities to exist in [20, p. 31].
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Fine’s theorem cannot be used to legitimate (2). Further investigation about

the relationships between (jd) and the BI’s holding is needed.

Fine manages to show that violations of the BI are also violations of (jd), but

not the converse, which is needed for (2) to hold. Now, as Svetlichny et alii

notice, the problem is that the converse is false. A simple way to see this is

to appeal to another of Fine’s results, i.e., that (jd) is equivalent to all the

observables’ pairwise commuting 43 . Now, there are many cases in which the BI

are satisfied while not all observables commute. 44 So, if (jd) is the appropriate

formalization of the idea that the joint probabilities exist, then it is not the

case that a commitment to the non-existence of the joint probabilities (due to

a commitment to QM) implies commitment to the BI to be violated, and (2)

is undermined.

One could object that (jd) is too strong, and that weakest assumptions (such

as the ones appearing in Fine’s main theorem) express the idea of the physical

existence of the PJPD. Svetlichny et alii’s study allows to counter such an

objection. Indeed, they show that, if we look at the probabilities through the

limiting relative frequencies generated on random sequences in the real world,

there are some models of the Bell-type experiment which satisfy the BI while

violating (jd). 45 So, it seems that all what Fine’s theorem proves is that the

43 Theorem 7 in [22]
44 Any experiment in which the observable measured on one side remains the same,

while the observable on the other side varies: A1 = A2 and B1 6= B2 will have the

BI satisfied, while (jd) violated.
45 See [45, Section 3, p. 395]. For other arguments against the idea that Fine’s

theorem shows more than the formal definition of joint probabilities, see [40, p. 123]

and [11, p. 142-145].
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models satisfying the BI are equivalent to models in which the PJPD are

formally defined but unlikely to have any physical significance.

So, (2) does not hold. Let us turn to (1), i.e. that in accepting QM, the

local realist is committed to rejecting the existence of joint probabilities for

incompatible observables. It seems to us that 1. consists in at least three

components. The first component is the assumption that h.v. programs are

committed to accepting quantum theory. The second component is that to

accept quantum theory is sufficient for being realist about quantum theory,

in particular about quantum probabilities. This is to say that to accept the

theory commits one to a certain interpretation of the probabilities involved

in the theory. The final component is that to be realist about a theory that

contains probabilities is sufficient for being committed to the “existence” of

only the probabilities that are well defined within the theory. Our contention

is that none of these components is trivial. Each can be avoided in hidden

variable programs, so that Fine’s argument does not stand.

First, not all hidden variable programs presuppose the quantum formalism.

As Shimony systematically points out, there are different types of h.v. pro-

grams, with different sets of assumptions and tackling different issues. 46 An

important part of these programs aims at assessing whether some specific

kind of probabilistic models are compatible with all statistical predictions of

quantum mechanics. The construction of the probabilistic models generally

does not presuppose the quantum formalism, quite the contrary. Famously,

the original derivation of the BI by Bell does not presuppose the quantum for-

malism. The point of some of these research programs is to show what kinds

46 See [41].
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of probabilistic models are not compatible with all statistical predictions of

quantum mechanics. One can then investigate the significance of the failure

of such models from an interpretational point of view: what the world could

be like, since such and such probabilistic models are impossible? Such inves-

tigation guides other, more positive, research programs, which try out new

theories which are empirically equivalent to standard quantum mechanics, up

to our current level of empirical accuracy. Bohm’s theory is obviously a case

in point (although historically it developed in a more complicated manner).

Concerning the second component, it is not clear that Bell-type research pro-

grams are as committed to scientific realism as Fine wants them to be. To

accept a theory can involve at least two different options:

(1) to believe that the theory is true or approximately so, or,

(2) to take the theory as empirically adequate.

One might want to take an empiricist stance towards quantum theory, but still

investigate the interpretation of the violation of the BI by the experimental

outcomes. Here, van Fraassen is a case in point. His interpretation of Bell-type

experiments is that Bell-type experiments exhibit some phenomena which do

not fit into one of our favorite models for scientific explanations: the common

cause model. This interpretation is epistemological rather than ontological: it

constraints the kinds of models that are legitimate, not the way the world

is. 47 We do not see how one could argue that an anti-realist like van Fraassen

is committed, in investigating the violation of the BI, to the existence of the

47 At least this is what van Fraassen claims in [52]. The discussion about whether

or not van Fraassen can stay at the level of models without drawing metaphysical

conclusion is beyond the scope of this paper.
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joint probabilities in any ontologically robust sense.

From a more general point of view, we would like to stress that to accept a

probabilistic physical theory does not involve any commitment to any par-

ticular interpretation of probabilities. 48 Scientific realists as well as scientific

empiricists can choose to interpret the probabilities involved in the theory as

being:

(a) either objective or subjective;

(b) either reducible or irreducible to physical properties.

That some probabilities can be defined formally does not imply that they

“exist” in any ontologically strong sense.

We maintain that the converse of this last statement holds as well: that some

probabilities cannot be defined formally does not imply that they do not “ex-

ist”, which brings us to the third component of (1), i.e. that to be realist about

a theory that contains probabilities is sufficient for being committed to the

“existence” of and only of the probabilities that are well defined within the

theory. The point is easy to make in the case where one takes an empirical

stance toward quantum mechanics. In this case, that some probabilities are

not formally defined in the theory does not imply that they do not “exist”,

since a theory that pretends only to be empirically adequate does not preclude

48 CUT? It is striking that the core of many arguments of the objectors to Fine

up to now has been to vary the interpretations of the probabilities in Fine’s re-

sults: Shimony and Redhead consider counterfactual interpretations, Svetlichny et

al. consider a Church-von Mises interpretation. The reason for this, it seems to us,

is that Fine’s argument hinges on a specific interpretation of the probabilities.
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the “existence” of probabilities not contained in the formalism itself. But even

for the realist, that some objects are not defined in a given formalism does

not imply that these objects do not exist at the ontological level. For example,

a defendant of a realist stance toward the Many-Worlds interpretation may

believe that worlds exist as supervenient patterns emerging within the wave

function, while explicitly avoiding to formally define them within the formal-

ism. 49 One important aim of the interpretational work on physical theories

is precisely to 1. distinguish clearly, within the formalism, what is physically

significant from what is an artifact of the mathematical construction, and

2. complement the ontology with these entities which gives us a consistent

view of a world in which the theory can be true.

The upshot is that, unless one accepts additional assumptions about realism

and the interpretation of probabilities, the first step of Fine’s last argument for

his strong interpretation of his result does not stand better than the second. At

the end, Fine’s last line of argument seems to fail, unless further assumptions

are made.

5 Conclusion

We have argued that:

• Fine’s argument that the definition of joint probabilities is a hidden assump-

tion in the traditional derivations of the BI holds only for a restricted class

of h.v. theories, which were ruled out by previous theorems;

49 This, in order to avoid the preferred basis problem. For more details on this, see

[53], [54].
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• Fine’s argument, to the effect that the existence of his Prism Models is a de

facto argument against the traditional interpretation of Bell-type results,

does not hold, because Prism Models are incompatible with some quantum

statistical predictions;

• Fine’s argument that the converse of his derivation shows that h.v. research

programs start off with an inconsistent set of assumptions holds only under

strong assumptions about the ontological status of probabilities.

It seems to us, then, that Fine fails to prove that his theorem has to be inter-

preted in a strong way, namely as undermining the traditional interpretation

of Bell-type results in terms of local realism. Bell-type theorems and Bell-type

results are still relevant for the interpretation of quantum theory and quantum

phenomena.

That said, the framework of statistical variables, which Fine has been advocat-

ing as the appropriate one for quantum probabilities, is interesting, especially

when fleshed out with a Bohmian interpretation. Further, Fine’s Prism Mod-

els constitute a competitive model for the outcomes distributions to date, and

should probably be given more attention.
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