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Abstract	
	

Systems	biology	has	provided	new	resources	for	discovering	and	reasoning	
about	mechanisms.	In	addition	to	generating	databases	of	large	bodies	of	
data,	systems	biologists	have	introduced	platforms	such	as	Cytoscape	to	
represent	protein-protein	interactions,	gene	interactions,	and	other	data	in	
networks.	Networks	are	inherently	flat	structures.	One	can	identify	clusters	
of	highly	connected	nodes,	but	network	representations	do	not	represent	
these	clusters	as	at	a	higher	level	than	their	constituents.	Mechanisms,	
however,	are	hierarchically	organized:	they	can	be	decomposed	into	their	
parts	and	their	activities	can	be	decomposed	into	component	operations.	A	
potent	bridge	between	flat	networks	and	hierarchical	mechanisms	is	
provided	by	biological	ontologies,	both	those	curated	by	hand	such	as	Gene	
Ontology	(GO)	and	those	extracted	directly	from	databases	such	as	Network	
Extracted	Ontology	(NeXO).	I	examine	several	examples	in	which	by	applying	
ontologies	to	networks,	systems	biologists	generate	new	hypotheses	about	
mechanisms	and	characterize	these	novel	strategies	for	developing	
mechanistic	explanations.		

	
1.	Introduction	
	
In	the	19th	and	20th	centuries	biologists	in	many	fields	of	biology	sought	to	explain	
phenomena	by	identifying	responsible	mechanisms,	decomposing	them	into	their	parts	and	
operations,	and	then	showing	that	when	appropriately	organized	and	situated,	these	parts	
and	operations	could	produce	the	phenomena	for	which	explanations	were	sought	(Bechtel	
&	Abrahamsen,	2005;	Machamer,	Darden,	&	Craver,	2000).	This	approach	starts	with	the	
phenomenon	to	be	explained	and	uses	a	variety	of	experimental	manipulations	to	
differentiate	parts	and	operations.	Typically	initial	research	identifies	only	a	small	number	
of	parts	and	operations	and	proposes	a	relatively	simple	account	of	how	they	are	organized	
to	generate	the	phenomenon.	Over	time	more	and	more	parts	and	operations	are	identified	
and	the	complexity	of	the	mechanistic	accounts	grows	(Bechtel	&	Richardson,	1993/2010;	
Craver	&	Darden,	2013).	Systems	biology,	however,	has	provided	a	different	strategy	for	
advancing	mechanistic	accounts.	Automated	techniques	have	enabled	the	collection	of	vast	
amounts	of	data	about	constituents	(e.g.,	genes	and	proteins)	of	living	systems.	These	data	
have	been	collected	in	a	large	number	of	databases,	many	organized	around	specific	
species,1	and	then	analyzed	to	put	forward	hypotheses	about	mechanisms	and	their	
components.		
																																																								
1	Over	the	past	15	years	numerous	large	databases	based	on	a	variety	of	interactions	
between	genes	or	between	molecules	in	cells	have	been	made	publically	available.	A	



	
Some	systems	biologists	(Huang,	2011)	and	philosophers	of	biology	(Braillard,	2010;	Gross,	
2011;	Huneman,	2010)	have	viewed	the	tools	for	analyzing	large-scale	data	as	providing	an	
alternative	to	traditional	mechanistic	accounts.	Many	systems	biologists,	however,	continue	
to	appeal	to	mechanisms.	Instead	of	rejecting	mechanistic	explanations,	they	seek	to	draw	
upon	this	vast	amount	of	data	to	develop	enriched	accounts	of	biological	mechanisms.	This	
process	often	involves	developing	network	representations	of	a	body	of	data	and	
performing	computational	operations	on	these	networks	to	identify	clusters	of	proteins	or	
genes	that	interact.	The	researchers	view	these	clusters	as	candidate	mechanisms.	In	many	
cases	proposed	mechanisms	can	be	identified	with	mechanisms	that	have	been	discovered	
through	more	traditional	biological	research.	Even	when	this	is	the	case,	though,	the	
clusters	often	involve	many	additional	genes	or	proteins	that	are	potential	new	
components	of	these	mechanisms.	In	other	cases	the	clusters	don’t	correspond	to	existing	
mechanisms	and	represent	possible	new	mechanisms.	
	
To	illustrate	the	basic	strategy	of	using	clusters	in	networks	to	reason	about	mechanisms,	I	
begin	in	Section	2	by	focusing	on	one	recent	study	that	produced	a	map	of	the	cell	(Figure	1	
below).	This	study,	like	many	others,	employed	Gene	Ontology	(GO)	to	identify	the	cell	
structures	or	processes	in	which	the	genes	or	proteins	are	involved.	[The	use	of	the	term	
ontology	in	biology	is	only	loosely	related	to	its	use	in	philosophy	to	refer	to	an	account	of	
the	types	of	entities	thought	to	exist	and	how	they	relate	to	one	another.	The	use	in	biology	
draws	from	artificial	intelligence	(Gruber,	1995)	and	refers	to	a	formal	representation	or	
taxonomy	of	the	entities	and	their	properties	and	interrelations	invoked	in	a	domain	of	
discourse.]		GO	is	the	product	of	a	large-scale	effort	to	organize	published	biological	
knowledge	both	within	and	across	species	and	in	many	cases	in	which	there	has	been	
research	on	a	gene	or	its	product,	this	information	is	encoded	in	GO.	Thus,	it	provides	a	
valuable	tool	to	make	sense	of	networks.	
	
In	terms	of	drawing	upon	networks	to	understand	mechanisms,	however,	GO	offers	much	
more.	One	reason	some	view	network	analyses	as	providing	an	alternative	to	mechanistic	
explanation	is	that	networks	are	flat	structures.	One	can	identify	interconnected	
components	in	networks,	but	nodes	are	not	organized	hierarchically	into	higher-level	
systems	as	proposed	in	mechanistic	accounts.	GO,	however,	is	organized	hierarchically—
small	cell	components	are	identified	as	parts	of	larger	components	and	specific	biological	
processes	are	linked	to	higher-level	biological	biological	processes.	The	hierarchies	in	GO	
correspond	to	the	hierarchies	found	in	mechanisms	in	which	parts	are	contained	within	
larger	structures	and	operations	of	parts	contribute	to	the	operations	of	these	larger	
structures.	Thus,	GO	does	more	than	provide	annotations—it	anchors	network	
interpretations	in	a	mechanistic	framework.	I	will	examine	GO	as	well	as	NeXO,	a	related	
																																																																																																																																																																					
regularly	updated	compilation	of	molecular	biology	databases	is	maintained	at	
https://www.oxfordjournals.org/our_journals/nar/database/c/.	It	currently	
includes	685	databases.	Starting	with	supplementary	issues	in	April	1991	and	May	
1992	and	a	regular	issue	in	July,	1993,	the	journal	Nucleic	Acids	Research	has	
regularly	reviewed	databases.	Beginning	in	1996,	the	journal	identified	its	first	issue	
of	each	year	as	the	database	issue.	



ontology	developed	directly	from	the	databases	from	which	networks	are	built,	in	Section	
3.	
	
In	Section	4	and	5	I	turn	to	how	GO	and	NeXO	have	recently	been	put	to	use	to	analyze	
networks	to	provide	novel	understanding	of	biological	mechanisms.	Section	4	examines	a	
procedure	referred	to	as	active	interaction	mapping	that	has	been	employed	to	advance	
understanding	of	the	phenomenon	of	autophagy.	The	research	generated	an	ontology	
specifically	for	autophagy	on	the	basis	of	which	the	researchers	advance	new	hypotheses	
about	parts	and	operations	of	the	responsible	mechanisms.	Finally,	in	section	5,	I	describe	
how	the	incorporation	of	the	information	in	ontologies	enhances	the	ability	of	researchers	
to	determine	how	complicated	mechanisms	will	behave,	thereby	showing	how	they	explain	
those	behaviors	of	cells.		
	
To	date	the	most	extensive	research	using	ontologies	to	advance	mechanistic	explanations	
on	the	basis	of	networks	has	been	done	on	budding	or	brewer’s	yeast,	Saccharomyces	
cerevisiae.	Budding	yeast	has	been	adopted	as	a	model	organism	due	to	the	extensive	
molecular	tools	that	have	been	developed	to	perform	experimental	manipulations	and	its	
relatively	small	genome	(approximately	6000	genes).	Accordingly,	I	will	restrict	my	focus	
to	research	on	this	model	organism.		
	
Although	many	types	of	data	have	been	collected	and	used	as	the	basis	for	network	
analysis,	I	will	focus	on	two.	Most	people	think	of	proteins	as	individually	catalyzing	
reactions	in	cells,	but	they	often	do	so	as	part	of	complexes.	These	complexes	result	from	
the	binding	of	proteins	to	one	another	and	are	generally	construed	by	the	biologists	as	
structural	elements	of	the	cell.	Techniques	such	as	yeast	two-hybrid	screening	and	affinity	
purification	followed	by	mass	spectrometry	have	enabled	the	generation	of	large	bodies	of	
data	about	which	yeast	proteins	are	able	to	bind	to	each	other.		
	
Although	genes	are	also	structural	components,	researchers	often	characterize	them	
functionally	in	terms	of	the	phenotypic	traits	to	which	they	contribute.	A	standard	way	of	
figuring	out	the	functions	of	a	gene	is	to	knock	it	out,	observe	the	deficits,	and	infer	what	is	
missing.	Gene	interaction	studies	extend	this	procedure.	About	a	thousand	genes	in	yeast	
are	essential—the	yeast	does	live	when	they	are	knocked	out.	Knocking	out	the	others	
individually	does	not	kill	the	yeast,	although	it	may	slow	colony	growth.	Some	pairs	of	non-
essential	genes	are	not	lethal	when	individually	knocked	out	but	are	when	jointly	knocked	
out	(these	are	referred	to	as	a	synthetic	lethals.)	A	lesser	effect	(known	as	synthetic	sickness)	
arises	when	a	double	knockout	results	in	a	reduction	in	growth	of	a	colony	that	is	either	
lesser	or	greater	than	what	would	be	predicted	from	the	effects	of	single	knockouts.	When	
the	effect	on	growth	is	less	than	expected,	the	interaction	is	considered	positive.	(More	
complex	procedures	have	been	developed	to	identify	interactions	involving	essential	
genes.)	Synthetic	lethality	and	sickness	are	interpreted	as	showing	interactions	between	
genes—for	example,	the	proteins	coded	by	the	genes	may	be	able	to	substitute	for	each	
other	or	perform	related	operations.		
	
As	data	about	protein-protein	interactions	and	synthetic	lethal	gene	interactions	began	to	
be	assembled	in	large	databases	at	the	end	of	the	20th	century,	researchers,	many	with	



training	in	computer	science	as	well	as	biology,	began	to	develop	new	techniques	to	
analyze	the	data.	They	developed	network	models	in	which	proteins	or	genes	are	the	nodes	
and	interactions	are	shown	as	edges.	A	given	protein	may	interact	with	several	other	
proteins,	and	edges	will	connect	the	nodes	for	each	of	these	proteins.	Each	protein	will	in	
turn	interact	with	different	other	proteins,	resulting	in	a	large	interconnected	network.	
Likewise,	a	given	gene	may	generate	synthetic	lethality	or	sickness	with	numerous	genes,	
and	those	genes	with	yet	other	genes.	In	many	cases,	both	sorts	of	interactions	will	be	
shown	in	the	same	network,	where	the	nodes	represent	both	the	genes	and	the	proteins	for	
which	they	code.	Often	the	interconnections	become	very	dense,	resulting	in	what	is	
derogatorily	referred	to	as	a	hairball.	To	make	sense	of	these	networks,	investigators	
invoke	a	number	of	strategies,	many	of	which	serve	to	cluster	together	nodes	that	are	
especially	highly	interconnected.		
	
2.	Identifying	Mechanisms	with	Clusters	in	Network	Representations	
	
Whether	the	data	involves	protein-protein	interactions	or	gene	interactions,	the	clusters	
that	are	identified	are	interpreted	mechanistically	as	either	parts	of	mechanisms	or	
mechanisms	themselves.	To	show	how	this	is	done,	and	how	researchers	attempt	to	draw	
mechanistic	insights	from	such	analyses,	I	focus	on	one	of	the	largest	gene-interaction	
studies	that	has	been	conducted.	Costanzo,	Baryshnikova,	Bellay	et	al.	(2010)	targeted	
1712	genes	(constituting	about	30%	of	the	yeast	genome)	that	they	took	to	be	
representative	of	the	whole	genome.	They	examined	survival	and	colony	growth	for	each	
possible	double	mutant,	finding	approximately	170,000	synthetic	lethal	interactions	among	
the	approximately	5.4	million	gene	pairs	they	examined.	They	employed	Cytoscape,	a	
platform	that	supports	construction	of	network	representations	and	allows	for	multiple	
forms	of	analysis,	to	construct	the	network	in	Figure	1.	This	involved	several	procedures.	
First,	the	researchers	identified	those	gene	pairs	in	the	overall	connectivity	matrix	that	
were	most	highly	correlated	(Pearson	coefficient	>	0.2)	and	inserted	edges	between	them.	
Second,	using	an	edge-weighted,	spring-embedded	network	layout	algorithm	they	
generated	a	network.	The	algorithm	caused	nodes	for	genes	that	interact	in	a	similar	way	to	
be	clustered	together.	Finally,	they	annotated	the	network	using	Gene	Ontology	(GO),	
which	provided	information	about	what	is	known	about	the	biological	processes	to	which	
particular	genes	contribute.	(GO	is	discussed	further	in	the	next	section.)	Nodes	with	the	
same	GO	annotation	are	colored	the	same.	The	clustering	of	colors	in	Figure	1	illustrates	
that	common	gene	interaction	profiles	is	predicative	of	common	function.	The	way	the	
network	was	constructed	not	only	positioned	together	nodes	for	genes	that	exhibited	the	
same	profile,	but	situated	clusters	that	are	engaged	in	related	cell	processes	near	each	
other.	For	example,	mitosis	and	chromosome	repair,	DNA	replication	and	repair,	and	cell	
polarity	and	morphogenesis	are	positioned	near	each	other.		



	
Figure	1.	Functional	map	of	a	cell	generated	from	interactions	among	1712	yeast	
genes.	Genes	with	similar	interaction	profiles	are	located	near	each	other.	Color-
coding	indicates	the	biological	processes	associated	with	genes	in	GO.	From	
Constanzo	et	al.	(2010),	Figure	1,	reprinted	with	permission	from	AAAS.		

	
Viewing	the	network	with	greater	resolution	reveals	connections	between	genes	that	
interact	in	performing	more	specialized	functions,	interacting	in	specific	biological	
pathways	and	or	protein	complexes.	Figure	2A	extracts	sub-networks	of	the	network	
shown	in	Figure	1,	with	panels	B-D	further	isolating	three	sub-networks:	those	for	amino	
acid	biosynthesis	and	uptake,	the	endoplasmic	reticulum	(ER)	and	Golgi	apparatus,	and	
tRNA	modification.	Some	edges	correspond	to	positive	interactions	(green),	others	to	
negative	ones	(red).	Diamonds	correspond	to	essential	genes,	circles	to	non-essential	
genes,	and	yellow	to	those	whose	function	is	not	characterized	in	GO.	At	this	scale	one	can	
identify	subcomplexes	within	each	complex	that	correspond	to	components	of	the	given	
mechanism.		



	
Figure	2.	Subnetworks	of	network	shown	in	Figure	1.	Panels	B-D	isolated	specific	
networks	within	those	shown	in	Panel	A	and	focus	in	on	the	positive	or	negative	
interaction	between	clusters	within	three	of	the	subnetworks.	From	Constanzo	et	
al.’s	(2010),	figure	2,	reprinted	with	permission	from	AAAS.	

	
One	of	the	advantages	of	using	network	analyses	to	identify	mechanisms	is	that	it	can	
reveal	components	of	mechanisms	not	identified	by	more	traditional	strategies	that	
targeted	only	genes	hypothesized	to	be	involved.	If	a	gene	not	previously	identified	with	a	
mechanism	clusters	with	others	that	are	part	of	the	mechanism,	researchers	infer	that	it	is	
involved	in	the	same	mechanism	and	carries	out	the	same	function	(a	strategy	known	as	
guilt	by	association).	For	example,	three	genes,	PAR32,	ECM30,	and	UBP15,	clustered	with	
the	genes	already	assigned	to	the	Gap1-sorting	modules.	Accordingly,	the	researchers	
imputed	the	same	role	to	them	(Figure	2B).	They	supported	this	assignment	
experimentally	by	showing	that	when	each	was	deleted,	Gap1	sorting	and	transport	deficits	
appeared.	The	researchers	likewise	inferred	from	the	fact	that	SGT2	exhibits	similar	
connectivity	with	the	GET	pathway	that	it	performed	a	similar	function.	They	supported	
this	inference	by	showing	that	when	mutated,	it,	like	the	GET	pathway	genes,	resulted	in	
the	mislocalization	of	Pex15,	a	tail-anchored	protein.	
	
One	virtue	of	identifying	mechanisms	within	networks	is	that	connections	between	
clusters/mechanisms	may	identify	operations	through	which	one	mechanism	regulates	
another.	Based	on	their	synthetic	lethal	interactions,	the	researchers	proposed	that	the	



umylation	pathway	plays	a	role	in	regulating	the	elongator	complex	(Figure	2D).	In	
addition	to	specific	regulatory	connections	between	mechanisms,	Costanzo	et	al.	also	made	
a	number	of	observations	about	overall	organization	of	the	network,	through	which	
mechanisms	are	coordinated	with	each	other.	As	in	many	biological	networks,	they	found	
that	most	genes	participated	in	few	interactions,	but	a	small	number	were	hubs	engaged	in	
large	numbers	of	interactions.	Hubs	tended	also	to	be	genes	that	exhibited	more	severe	
deficits	when	mutated.	Moreover,	they	also	had	a	greater	number	of	GO	attributions.	They	
concluded	that	hubs	are	more	likely	to	be	pleiotropic	and	involved	in	a	greater	variety	of	
phenotypic	traits,	suggesting	that	they	“play	key	roles	in	the	integration	and	execution	of	
morphogenetic	programs.”	
	
Costanzo	et	al.’s	study	is	exemplary	of	many	similar	analyses	from	which	researchers	are	
developing	new	hypotheses	about	mechanisms	in	yeast	cells.	Inference	procedures	such	as	
guilt	by	association	are	discovery	heuristics.	On	their	own,	they	do	not	suffice	to	confirm	or	
falsify	the	hypotheses.	Rather,	the	resulting	hypotheses	need	to	be	tested	by	more	
traditional	tools	of	molecular	biology.	What	is	important	is	that	the	network	approaches	
are	generating	many	new	hypotheses,	most	of	which	would	not	have	been	advanced	
otherwise.		
	
2.	Constructing	Ontologies	that	Represent	Mechanistic	Knowledge		
	
To	interpret	the	clusters	in	their	network	as	cell	processes,	Costanzo	et	al.,	like	many	other	
researchers,	appealed	to	Gene	Ontology	(GO).	But	in	many	of	these	studies,	GO	is	simply	a	
tool	for	annotating	nodes	based	on	what	has	been	reported	in	the	published	literature	
about	the	biological	process	to	which	they	contribute	or	the	cell	structure	in	which	they	are	
active.	But	GO	offers	much	more—it	represents	a	form	of	theory	insofar	as	it	not	only	
provides	stable	definitions	of	terms	but	also	identifies	relations	among	them	(Leonelli,	
2010,	2012).	In	particular,	by	organizing	the	terms	used	to	describe	cell	structures	and	
processes	hierarchically,	it	provides	a	framework	for	conceptualizing	how	components	are	
organized	into	mechanisms	as	higher-level	entities.	In	this	section	I	will	introduce	GO	as	
well	as	an	alternative	ontology,	NeXO,	and	show	how	they	represent	knowledge	about	the	
hierarchical	organization	of	biological	mechanisms.	
	
GO	was	developed,	starting	in	1998,	with	the	goal	“to	produce	a	dynamic,	controlled	
vocabulary	that	can	be	applied	to	all	eukaryotes	even	as	knowledge	of	gene	and	protein	
roles	in	cells	is	accumulating	and	changing”	(Ashburner,	Ball,	Blake	et	al.,	2000).	The	
perceived	need	for	a	common	vocabulary	arose	as	a	by-product	of	the	sequencing	of	the	
genes	of	several	model	organisms.	Sequencing	of	budding	yeast,	the	round	worm	
(Caenorhabditis	elegans),	and	the	fruit	fly	(Drosophila	melanogaster),	had	just	been	
completed,	and	sequencing	of	the	flowering	plant	(Arabidopsis	thaliana)	and	fission	yeast	
(Schizosaccharomyces	pombe)	were	underway.	Finding	a	large	number	of	likely	orthologs	
in	the	genetic	sequences	of	budding	yeast	and	worms,	Chervitz,	Hester,	Ball	et	al.	(1999)	
found	they	could	infer	the	biological	roles	of	about	12%	of	the	proteins	in	worms	from	
putative	orthologs	in	yeast.	Rubin,	Yandell,	Wortman	et	al.	(2000)	extended	this	finding	to	
fruit	flies.	This	suggested	that	a	reasonable	hypothesis	when	orthologous	genes	are	found	
in	two	species	is	that	they	perform	the	same	biological	function.	At	the	time,	however,	there	



was	not	a	common	vocabulary	in	which	functions	were	described,	making	inference	
between	species	difficult.	As	a	result,	the	investigators	responsible	for	three	online	model	
organism	databases,	FlyBase,	Mouse	Genome	Informatics	(MGI),	and	the	Saccharomyces	
Genome	Database	(SGD),	joined	forces	to	create	the	Gene	Ontology	Consortium.2		
	
The	consortium	set	out	not	just	to	produce	a	standardized	vocabulary	with	clear	definitions	
for	each	term,	which	could	facilitate	communication	across	model	organisms,	but	also	to	
define	relations	between	terms—to	construct	an	ontology.	The	challenge	its	developers	
faced	was	how	to	systematically	relate	the	vocabulary	terms	they	adopted.	One	part	of	the	
challenge	was	the	recognition	that	knowledge	is	often	incomplete.	So	a	goal	was	to	
“organize,	describe,	query	and	visualize	biological	knowledge	at	vastly	different	stages	of	
completeness.”	Another	part	of	the	challenge	was	to	incorporate	what	seemed	very	
different	types	of	information	about	genes/proteins:	information	about	the	molecular	
function	of	proteins	(i.e.,	the	reactions	they	catalyzed),	the	biological	processes	in	which	
they	figured,	and	the	cellular	component	in	which	they	were	active.3	This	led	to	the	
construction	of	three	different	ontologies	for	Molecular	Function,	Biological	Process,	and	
Cellular	Component.	Within	each	they	organized	terms	hierarchically	from	low-level	
instances	to	high-level	instances.	For	example,	“translation”	and	“cAMP	biosynthesis”	were	
low-level	specifications	of	biological	process,	while	“cell	growth	and	maintenance”	and	
“signal	transduction”	were	high-level	specifications.	A	tree	structure	in	which	each	node	
has	one	or	more	decedents	would	provide	a	simple	form	of	a	hierarchy,	but	the	designers	
recognized	that	individual	genes	might	be	active	in	multiple	tissues	and	their	products	may	
contribute	to	multiple	molecular	processes	and	biological	processes.	Accordingly,	each	
ontology	was	organized	as	a	directed	acyclic	graph	in	which	the	edges	represented	“is_a”	or	
“part_of”	relations	(“has_part”	and	“regulates”	were	subsequently	added).		
	
Figure	3	shows	portions	of	each	ontology	from	a	very	early	version	of	GO.	In	each	panel	GO	
terms	are	shown	in	black	and	genes	associated	with	the	term	are	shown	in	a	color	
representing	the	species	in	which	they	occurred.	Panel	A	shows	a	section	of	the	Biological	
Process	ontology	for	DNA	metabolism.	DNA	repair	and	DNA	recombination	are	both	high-
level	children	of	DNA	metabolism.	DNA	ligation	is	a	lower-level	process	in	three	different	
processes:	DNA	repair,	DNA	recombination,	and	DNA-dependent	DNA	replication.	
Accordingly,	it	has	three	different	parents.	Many	of	the	same	genes	are	shown	in	more	than	
one	ontology	and	in	some	cases	appear	in	multiple	locations	in	the	same	ontology.	For	
example,	Mcm2-7	are	shown	under	the	term	pre-replicative	complex	formation	and	
maintenance	in	the	Biological	Process	ontology,	under	chromatin	binding	in	the	Molecular	
Function	ontology	and	as	active	in	two	locations	(the	cytoplasm	and	the	pre-replicative	
complex)	in	the	Cell	Component	ontology.		

																																																								
2	MGI	was	itself	the	product	of	integrating	two	mouse	databases.	In	2000	the	
Arabidopsis	Information	Resource	(TAIR)	and	the	Caenorhabditis	elegans	group	
joined	GO.	
3	“These	particular	classifications	were	chosen	because	they	represent	information	
sets	that	are	common	to	all	living	forms	and	are	basic	to	our	annotation	of	
information	about	genes	and	gene	products”	(Ashburner,	Ball,	Blake	et	al.,	2001).	



	 	
Figure	3.	Parts	of	each	of	the	three	ontologies	in	GO	from	an	early	version	of	GO.	
Reprinted	by	permission	from	Macmillan	Publishers	Ltd:	Nature	Genetics	from	
Ashburner	et	al.	(2000).		



	
The	knowledge	represented	in	GO	is	mechanistic	knowledge.	The	Cell	Component	ontology	
identifies	different	components	of	the	cell	that	are	associated	with	specific	cell	activities	
and	so	the	locus	of	one	or	several	mechanisms.	The	part_of	relation	between	components	at	
different	levels	of	the	hierarchy	corresponds	to	the	fact	that	parts,	which	may	themselves	
be	mechanisms,	are	structural	constituents	of	particular	mechanisms.	The	Biological	
Process	hierarchy	characterizes	the	activities	performed	by	individual	mechanisms	within	
the	larger	system	while	the	Molecular	Function	identifies	the	specific	operations	in	which	
specific	components	are	engaged.	Identifying	a	gene	as	active	in	a	part	of	the	cell	that	can	
be	situated	among	other	parts,	as	engaging	in	a	molecular	reaction	that	is	categorized	
among	the	various	reactions	in	a	cell,	and	as	contributing	to	a	specific	biological	process	
that	falls	under	more	general	biological	process,	specifies	its	role	in	a	mechanism.		
	
Moreover,	GO	is	not	static	but	is	constantly	evolving	to	include	new	mechanistic	
knowledge.	From	the	outset	GO’s	developers	recognized	that	knowledge	about	cellular	
mechanisms	would	grow	and	change,	and	this	would	involve	not	just	locating	new	genes	
under	various	terms	but	also	altering	the	structure	itself.	In	fact	the	number	of	terms	in	GO	
has	expanded	dramatically.	One	vehicle	for	expansion	has	been	merging	with	other	
ontologies,	such	as	the	Subcellular	Anatomy	Ontology	that	was	one	of	the	ontologies	the	
Neuroscience	Information	Framework	Standard	developed	for	neuroscience.	This	required	
examination	of	each	term	to	determine	whether	it	matched	one	in	GO	(perhaps	using	a	
different	name)	or	represented	additions	to	GO	(Gene	Ontology	Consortium,	2015).	
	
Leonelli,	Diehl,	Christie	et	al.	(2011)	describe	a	number	of	major	changes	that	were	made	to	
the	structure	of	GO	in	its	first	decade.	Some	of	these	resulted	from	detecting	anomalies.	For	
example,	when	“serotonin	secretion”	was	first	incorporated	in	the	Biological	Process	
ontology	it	was	an	is_a	child	of	“hormone	secretion”	and	“neurotransmitter	secretion.”	
When	“serotonin	secretion	during	acute	inflammatory	response”	was	added	as	an	is_a	child	
of	“serotonin	secretion”	a	problem	was	recognized:	serotonin	secretion	was	not	strictly	a	
sub-type	of	“neurotransmitter	secretion”	since	it	operates	on	other	cells	than	neurons.	
Accordingly,	GO	curators	made	several	revisions:	they	added	a	new	term	“neurotransmitter	
secretion,”	which	they	situated	at	the	same	level	as	“serotonin	secretion.”	They	made	
“serotonin	secretion	during	acute	inflammatory	response”	a	child	only	of	the	latter.	Other	
changes	resulted	from	expanding	the	scope	of	GO,	for	example,	to	include	host-parasite	
relations	or	to	include	prokaryotes.	The	latter,	for	example,	required	considerable	
adjustment	since	a	cell	component	such	as	the	“tricarboxylic	acid	cycle	enzyme	complex”	
that	resides	in	the	mitochondrion	in	eukaryotes	is	situated	in	the	cytoplasm	in	prokaryotes.	
This	resulted	in,	among	other	changes,	adding	a	specific	term	for	“mitochondrial	
tricarboxylic	acid	cycle	enzyme	complex”	as	a	child	of	both	“tricarboxylic	acid	cycle	enzyme	
complex”	and	“mitochondrial	matrix,”	and	locating	the	original	term	as	a	child	of	
“cytoplasmic	part.”	These	various	changes	were	often	the	product	of	extended	discussion	
among	the	curators	and	reflect	an	attempt	to	synthesize	the	developing	knowledge	into	a	
coherent	mechanistic	framework	that	provides	the	categories	needed	to	describe	both	the	
structural	and	functional	hierarchies	involved	in	mechanistic	accounts	of	various	cell	
phenomena.	
	



While	GO	is	a	valuable	resource	reflecting	mechanistic	understanding	of	cells	as	it	is	
developed	in	published	scientific	studies,	it	faces	limitations.	First,	a	constant	challenge	for	
the	Gene	Ontology	Consortium	is	manually	curating	all	new	findings.	Given	the	increasing	
rate	of	publication,	this	has	quickly	become	extremely	costly	and	the	Consortium	is	
regularly	investigating	ways	to	automate	the	expansion	of	GO	(e.g.,	using	TermGenie	to	add	
new	terms).	There	is	a	second	problem,	however,	which	has	motivated	the	development	of	
an	alternative	approach	to	creating	ontologies—as	a	result	of	being	built	from	established	
scientific	research,	GO	is	focused	around	the	cell	components	and	processes	that	have	been	
investigated:	“there	has	been	a	strong	bias	in	coverage	within	GO	toward	processes	that	are	
well-studied,	and	a	corresponding	lack	of	coverage	of	processes	that	have	been	more	
recently	identified”	(Dutkowski,	Kramer,	Surma	et	al.,	2013).	To	overcome	this	limitation,	
Dutkowski	et	al.	set	out	to	create	an	ontology	directly	from	large-scale	data	sets	that	
include	information	not	yet	codified	into	mechanistic	understanding	of	cells.		
	
Most	network	studies	based	on	cluster	analysis	generally	result	in	what	Dutkowski	et	al.	
characterize	as	a	flat	network,	not	hierarchically	organized	as	GO	is.	The	challenge	
Dutkowski	et	al.	took	up	was	to	extract	a	hierarchical	organization	directly	from	networks	
derived	from	three	datasets	that	represented	protein-protein	interactions,	gene	
interactions,	co-expressed	genes	datasets,	and	from	YeastNet,	an	integrated	probabilistic	
functional	gene	network	that	combines	evidence	from	multiple	experimental	sources	to	
provide	a	weighted	functional	relationship	between	genes	(Lee,	Li,	&	Marcotte,	2007).	They	
annotated	each	network	using	GO,	which	revealed	a	substantial	agreement	between	them	
and	the	GO	hierarchy.	Dutkowski	et	al.	then	integrated	the	four	networks	and	applied	a	
probabilistic	model	for	detecting	hierarchically	organized	communities	or	complexes	(Park	
&	Bader,	2011).	This	generated	a	binary	tree	in	which	genes	were	progressively	grouped	
into	larger	clusters	(Step	1	in	Figure	4).	Forcing	the	data	into	a	binary	tree	prevented	nodes	
from	having	more	than	two	children	or	more	than	one	parent.	Since	terms	in	ontologies	can	
have	multiple	parents	and	children,	Dutkowski	et	al.	revised	the	graph	to	allow	terms	to	
have	multiple	parents	and	children	when	doing	so	would	increase	the	fit	to	the	original	
network	data	(fit	was	judged	by	a	probability	score	that	takes	into	account	edges	in	the	
original	network	that	cross	between	subtrees)	(Step	2).	The	resulting	graph	constituted	the	
NeXO	ontology.	The	researchers	then	aligned	it	with	the	GO	Cellular	Component	ontology	
by	matching	terms	with	the	same	(or	very	similar)	assignment	of	genes	and	located	at	
similar	points	in	the	hierarchy	(Step	3).		

	



Figure	4.	Steps	in	the	construction	of	NeXO.	Reprinted	by	permission	from	
Macmillan	Publishers	Ltd:	Nature	Biotechnology,	from	Dutkowski	et	al.	(2013),	
Figure	1.	

	
Aligning	NeXO	with	GO	served	multiple	ends:	transferring	names	and	definitions	in	GO	to	
NeXO,	identifying	terms	in	NeXO	that	are	not	in	GO,	and	registering	conflicts	between	NeXO	
and	GO.	Figure	5A	shows	the	NeXO	ontology	as	a	tree	with	three	main	branches	for	the	
intracellular	compartment,	the	membrane,	and	the	mitochondrion.	The	size	of	nodes	
indicates	the	number	of	genes	assigned	to	the	term	while	the	color	indicates	the	degree	of	
correspondence	to	a	term	in	GO.	The	names	of	the	high-level	term	assignments	in	GO	are	
indicated.	Overall	NeXO	shows	a	high	correlation	with	GO.	Altogether,	a	third	of	NeXO	
terms	map	to	terms	in	one	or	more	of	the	three	GO	ontologies.	The	percentage	is	greatest	
(~60%)	for	terms	in	the	GO	Cellular	Component	ontology,	and	about	25%	for	terms	in	the	
Molecular	Function	and	Biological	Process	ontologies.		



	
Figure	5.	A.	The	NeXO	ontology	after	alignment	with	the	Cellular	Component	of	GO.	
The	color	of	nodes	indicates	the	degree	of	alignment.	B-D.	The	region	of	the	ontology	
for	the	proteasome	complex.	C	and	D	show	different	network	representations	of	the	
raw	data	while	B,	the	product	of	aligning	with	GO,	reveals	the	detailed	mechanistic	
organization	of	the	proteasome	complex.	Reprinted	by	permission	from	Macmillan	
Publishers	Ltd:	Nature	Biotechnology,	from	Dutkowski	et	al.	(2013),	Figure	2.	
	

As	well	as	viewing	the	global	structure	of	NeXO,	one	can	examine	it	at	a	more	fine-grained	
level.	Panel	5B	focuses	on	the	portion	of	the	ontology	for	the	proteasome	complex	(a	
complex	of	proteins	that	degrades	unneeded	or	damaged	proteins)	and	reveals	a	hierarchy	
of	subcomponents.	Graphing	the	raw	interaction	data	for	the	proteasome	complex	with	a	



force	directed	layout	(Figure	5C)	and	a	layout	distinguishing	interactions	within	and	
between	subcomponents	(Figure	5D),	revealed	a	division	of	the	proteasome	complex	into	
two	components.	Yet,	the	alignment	with	GO	in	panel	5B	most	clearly	brings	out	the	
hierarchical	structure	of	the	proteasome	complex.	The	proteasome	is	revealed	as	a	
mechanism	with	multiple	parts	performing	a	variety	of	different	operations.	
	
Since	the	point	of	developing	a	data-driven	ontology	was	to	go	beyond	what	is	provided	in	
GO,	Dutkowski	et	al.	focused	primarily	on	terms	not	in	GO.	One	group	of	terms	consisted	of	
those	for	which	strong	support	could	be	found	in	the	literature	but	had	not	yet	been	
incorporated	into	GO.	Dutkowski	et	al.	submitted	these	to	GO	and	many	were	accepted.	One	
example	is	that	the	NeXO	term	NeXO:6164	groups	together	BLS1,	SNN1,	CNL1.	Recent	
studies	had	identified	these	as	members	of	a	complex	referred	to	as	BROC	in	yeast,	and	the	
GO	curators	revised	GO	by	introducing	the	term	BROC-1	complex	and	identifying	these	
genes	as	members.	NeXO	also	identified	several	relations	between	terms	not	captured	in	
GO,	such	as	that	the	Piccolo	NUA4	complex,	which	it	presents	as	a	part	of	the	NUA4	histone	
acetyltransferase	complex.	The	curators	also	incorporated	these	relations	into	GO.	In	these	
cases	NeXO	extends	the	mechanistic	knowledge	in	GO	by	finding	published	results	that	the	
curators	of	GO	had	not	yet	identified	or	incorporated.	But	the	strategy	employed	is	rather	
different.	Rather	than	taking	specific	pieces	of	information	about	a	part	or	operation	
developed	in	a	traditional	study	of	a	cell	mechanism,	NeXO	starts	with	relationships	
identified	in	networks	built	from	large-scale	databases.	Through	application	of	the	
algorithms	that	generate	NeXO,	the	researchers	identify	components	that	fit	into	
mechanisms	and	then	return	to	the	published	data	to	identify	what	had	already	been	
discovered	about	them.			
	
The	power	of	the	strategy	is	revealed	when	NeXO	supports	new	hypotheses	about	
mechanisms	and	their	parts	and	operations.	For	example,	the	researchers	identified	73	
genes	that	annotated	to	the	NeXO	term	that	mapped	to	the	GO	term	“Golgi	apparatus”	but	
were	not	so	annotated	in	GO.	Zeroing	in	on	where	some	of	these	genes	are	located	in	NeXO,	
Figure	6	shows	a	subnetwork	under	the	new	NeXO	term	NeXO:9763.	Because	of	its	similar	
connectivity,	NeXO:9763	is	positioned	next	to	the	retromer,	known	to	regulate	recycling	
transmembrane	receptors,	and	the	HOPS	and	Corvet	complexes,	which	capture	endosomal	
vesicles.	The	researchers	inferred	that	NeXO:9763	is	also	involved	in	endosomal	and	Golgi	
regulation.	Within	NeXO:9763	there	are	two	pairs	of	highly	correlated	genes	which	are	
each	assigned	a	term	in	NeXO:		NNF2	and	YEL043W	fall	under	the	term	NeXO:8060	while	
MTC1	and	SFT2	are	assigned	to	NeXO:9270.	These	terms	represent	potential	new	
components	of	a	mechanism,	but	unlike	terms	in	GO,	which	generally	can	be	referred	to	
with	common	English	names	that	fit	their	role	in	a	mechanism,	many	of	the	new	terms	
identified	by	NeXO	lack	common	English	names.	This	reflects	the	fact	that	NeXO	picks	out	
previously	unstudied	units	in	the	cell	and	is	advancing	hypotheses	about	how	they	fit	into	
the	mechanistic	accounts	of	cell	structure	and	function.		



	
Figure	6.	The	location	of	the	NeXO	term	9763	near	the	HOPS	and	Corvet	complexes	
supported	the	hypothesis	that	the	components	organized	under	this	term	are	
involved	in	endosomal	and	Golgi	regulation.	Reprinted	by	permission	from	
Macmillan	Publishers	Ltd:	Nature	Biotechnology,	from	Dutkowski	et	al.	(2013),	
Figure	4b.	

	
The	two	ontologies	discussed	in	this	section,	GO	and	NeXO,	provide	a	hierarchical	
perspective	that	is	typically	lacking	in	network	analyses.	They	thus	provide	an	important	
bridge	between	network	analysis	and	mechanistic	hypotheses.	The	relations	from	which	
the	hierarchies	are	constructed	correspond	to	component	relations	between	parts	or	
operations	in	mechanisms.	In	the	case	of	GO	the	alignment	with	mechanisms	is	not	
surprising	since	GO	is	constructed	by	curating	existing	mechanistic	research.	NeXO,	an	
ontology	constructed	directly	from	the	data	collected	in	various	databases,	incorporates	
terms	and	genes	not	included	in	GO.	When	new	genes	are	included	under	an	existing	term	
they	suggest	possible	new	parts	of	known	mechanisms.	When	new	terms	are	identified	
under	higher-level	terms,	they	suggest	new	mechanisms	that	interact	with	known	ones.	In	
these	ways,	organizing	the	data	from	databases	into	ontologies	supports	new	mechanistic	
hypotheses.	
	
3.	Applying	Ontologies	to	Networks	to	Develop	Mechanistic	Hypotheses	
	
Having	discussed	in	general	how	ontologies	create	hierarchical	representations	that	
correspond	to	existing	mechanistic	understanding	or	advance	new	mechanistic	hypotheses,	
I	turn	now	to	a	specific	network	study	that	employed	ontologies	to	develop	new	
mechanistic	understanding.	Kramer,	Farre,	Mitra	et	al.	(2017)	introduce	what	they	call	
Active	Interaction	Mapping	(IA-Map)	and	employed	it	to	advance	mechanistic	
understanding	of	the	phenomenon	of	autophagy—a	process	in	which	cells	respond	to	
starvation	and	other	stresses	by	degrading	macromolecules	into	amino	and	fatty	acids	



(procuring	needed	ATP	in	the	process).	The	amino	and	fatty	acids	are	then	utilized	to	
synthesize	new	proteins.		
	
To	construct	their	network	model,	Kramer	et	al.	combined	data	from	76	networks	built	using	
diverse	types	of	data	(protein-protein	interactions,	gene	interactions,	gene	similarity,	etc.).	
They	selected	492	genes	(20	identified	as	having	a	core	function	in	autophagy,	102	annotated	
to	autophagy	in	GO,	and	370	that	manifest	similar	network	connectivity	to	the	core	genes).	
They	used	a	clustering	algorithm,	CliXO	(Clique	Extracted	Ontology),	that	Kramer,	Dutkowski,	
Yu	et	al.	(2014)	had	developed	to	create	a	directed	acyclic	graph	in	which	nodes	can	have	
multiple	parents	and	children	(avoiding	some	of	the	steps	originally	required	to	construct	
NeXO).	They	termed	the	resulting	graph	of	218	terms	and	310	relations	between	terms	an	
initial	Autophagy	Ontology	(Atg	1.0)	and	aligned	it	with	GO.	Figure	7A-C	shows	the	
ontology	with	terms	in	rectangles—red	for	terms	that	did	not	align	with	GO,	and	varying	
shades	of	blue	for	terms	that	did	align	(darker	colors	signify	stronger	alignment).	The	size	
of	the	rectangles	corresponds	to	the	number	of	genes	receiving	the	annotation.	Panels	B	
and	C	present	two	parts	of	the	ontology	in	which	genes	are	shown	in	ovals,	with	light	
shading	indicating	that	the	gene	was	not	previously	identified	with	the	annotation,	medium	
shading	indicating	that	the	gene	was	so	annotated	in	GO,	and	dark	shading	indicating	core	
genes.	Panel	B	shows	the	ontology	beneath	the	term	AtgO:15,	which	does	not	align	with	
any	GO	term,	and	C	the	part	beneath	AtgO:18	that	aligns	to	the	GO	annotation	
“macrophagy.”	Panel	D	shows	the	corresponding	GO	ontology.	Many	of	the	genes	not	
annotated	to	autophagy	in	GO	exhibited	significant	enrichment	for	other	cell	processes	
including	the	cell	cycle,	cellular	response	to	stress,	and	general	vesicle	transport,	
suggesting	links	between	these	processes	and	autophagy.	In	this	and	other	respects,	AtgO	
1.0	already	has	the	potential	to	advance	new	mechanistic	understanding	of	autophagy,	but	
before	exploring	this,	the	researchers	developed	a	revised	ontology,	AtgO	2.0.			



	
Figure	7.	A-C.	AtgO	1.0	ontology	for	autophagy.	D.	GO	ontology	for	autophagy.	
Reprinted	from	Kramer	et	al.	(2017),	Figure	2,	with	permission	from	Elsevier.	

	
To	develop	a	revised	ontology,	Kramer	et	al.	identified	gene	interaction	studies	as	making	
the	largest	contribution	to	AtgO	1.0.	These	gene	interaction	studies	were	all	conducted	by	
growing	yeast	colonies	under	normal	conditions.	Other	gene-interaction	studies,	however,	
compared	the	networks	generated	for	colonies	grown	in	rich	media	with	those	generated	
for	colonies	grown	under	various	stress	conditions	(Luscombe,	Babu,	Yu	et	al.,	2004;	Ideker	
&	Krogan,	2012;	Guénolé,	Srivas,	Vreeken	et	al.,	2013).	Kramer	and	colleagues	pursued	this	
strategy,	conducting	a	new	gene-interaction	study	pairing	52	autophagy	genes	with	3,007	
other	genes	(approximately	two-thirds	of	the	non-essential	genes	in	yeast)	in	two	
conditions	known	to	induce	autophagy	(exposure	to	rapamycin,	which	pharmacologically	
induces	autophagy,	and	nitrogen	starvation,	which	metabolically	induces	autophagy)	and	an	
untreated	control	condition.	As	in	the	Costanzo	et	al.	study	above,	interaction	is	demonstrated	
when	the	affect	on	growth	differs,	positively	or	negatively,	from	what	would	be	expected	with	
no	interaction.	The	researchers	constructed	networks	for	each	condition,	from	which	they	
generated	differential	networks	by	subtracting	the	strengths	of	specific	interactions	found	in	
one	condition	from	those	found	in	another.	They	also	constructed	a	network	that	integrated	all	
three	conditions.	From	the	integrated	network	they	constructed	an	ontology	(using	CliXO)	that	
correlated	better	with	GO	than	AtgO	1.0.	The	correlation	was	even	better	when	they	
constructed	the	ontology	after	combining	the	original	network	on	which	AtgO	1.0	had	been	
constructed	and	the	new	integrated	network.	They	designated	the	resulting	ontology	AtgO	2.0.	
	
The	total	number	of	terms	increased	only	slightly	between	AtgO	1.0	and	AtgO	2.0.	However,	
the	number	of	genes	assigned	to	the	terms	increased	significantly	(Figure	8).	As	in	the	case	



of	NeXO,	the	researchers	identified	terms	not	in	GO	but	for	which	there	was	evidence	in	the	
published	literature.	These	were	submitted	to	the	GO	curators	and	were	accepted.	They	
also	identified	numerous	genes	associated	with	AtgO	terms	that	mapped	to	GO	terms	that	
had	not	been	so	annotated	in	GO.	These	were	also	accepted	into	GO.	In	this	way	they	used	
AtgO	to	develop	new	mechanistic	hypotheses	for	which	evidence	already	existed	in	the	
published	literature	but	had	not	been	incorporated	into	the	GO	ontology.	
	

	
Figure	8.	A.	Euler	diagram	showing	overlap	of	terms	in	GO,	AtgO	1.0,	and	AtgO	2.0.	B.	
Average	number	of	genes	annotated	to	terms	aligned	with	GO	in	AtgO	1.0	and	2.0	
From	Kramer	(2016),	Chapter	4,	Figure	6.	

	
Much	more	interesting	is	a	case	in	which	AtgO	2.0	facilitated	advancing	an	important	new	
hypothesis	about	autophagy	mechanisms.	This	involved	Atg26,	which	together	with	Atg27	
was	added	to	AtgO:185.	In	AtgO	1.0,	AtgO:185	only	included	Atg11	and	Atg19	(Figure	9).	
Atg11,	Atg19	and	Atg27	had	previously	been	established	to	figure	in	the	cytoplasm-to-
vacuole	targeting	pathway	that	figures	in	the	transport	of	aggregates	of	the	aminopeptidase	
precursor	prApe1	to	the	vacuole	where	it	is	processed	into	mature	Ape1.	Guilt	by	
association	would	suggest	a	similar	role	for	Atg26,	but	previous	studies	in	budding	yeast	in	
which	Atg26	was	knocked	out	had	failed	to	reveal	any	effects	on	generation	of	Ape1	or	in	
any	autophagy	pathway.	However,	in	a	different	species	of	yeast,	Pichia	pastoris,	the	
ortholog	of	Atg26	had	previously	been	shown	to	be	required	for	the	degradation	of	large	
peroxisomes	in	pexophagy.	To	try	to	detect	a	role	for	Atg26,	the	researchers	compared	
wild-type	and	Atg26	mutants	in	a	condition	in	which	prApe1was	overexpressed.	This	
condition	resulted	in	larger	prApe1	aggregates	and	now	Atg26	mutants	exhibited	
decreased	processing.	They	also	demonstrated	larger	prApd1	aggregates	in	the	mutants	
with	microscopy.	Kramer	et	al.	conclude	“these	data	support	a	new	role	for	Atg26	in	the	
processing	of	large	prApe1	aggregates	and	validate	term	AtgO:185,	which	we	hereby	name	
‘prApe1	aggregate	processing.’”	

	



Figure	9.	Similarity	between	gene	pairs	in	AtgO	1.0	on	the	left	and	AtgO	2.0	on	the	
right.	Only	Atg11	and	Atg19	cluster	in	1.0,	and	in	2.0	they	are	joined	by	Atg26	and	
Atg27.	Reprinted	from	Kramer	et	al.	(2017),	Figure	7,	with	permission	from	
Elsevier.	
	

In	the	context	of	the	phenomenon	of	autophagy,	Kramer	et	al.	have	shown	the	potential	of	
ontologies	built	up	from	gene	and	protein	interaction	data	to	identify	new	components	of	
mechanisms	and	to	advance	new	understanding	of	the	operation	of	these	mechanisms.	
They	suggest,	moreover,	that	this	is	a	strategy	that	can	be	applied	more	generally	to	other	
cell	phenomena.	
	
4.	Putting	Ontologies	to	Work	to	Map	from	Genotypes	to	Phenotypes	
	
A	major	interest	in	molecular	biology	is	to	determine	the	phenotypic	effects	of	genetic	
variations—to	be	able	to	map	from	genotype	to	phenotype.	Of	particular	interest	is	to	
understand	why	different	mutations	have	the	same	phenotypic	effect.	Whereas	a	focus	on	
individual	genes	may	fail	to	explain	this,	the	recognition	that	different	mutations	all	affect	
the	same	mechanism	may	provide	the	desired	explanation.	The	reason	focusing	on	
individual	genes	often	fails	is	that	the	effect	of	perturbing	an	individual	gene	often	depends	
on	the	other	genes	that	are	expressed	in	the	cell.	Networks	such	as	the	one	discussed	in	
section	2	provide	a	first	step	towards	being	able	to	understand	the	effects	of	different	
mutations,	but	as	noted	above,	networks	tend	to	be	flat	and	so	do	not	recognize	the	
hierarchical	of	components	of	the	cell	into	mechanisms.		Yu,	Kramer,	Dutkowski	et	al.	
(2016,	p.	77)	characterize	the	limitation:	

In	reality,	however,	genotype	is	transmitted	to	phenotype	not	only	through	gene-
gene	interactions	but	through	a	rich	hierarchy	of	biological	subsystems	at	multiple	
scales:	genotypic	variations	in	nucleotides	(1	nm	scale)	give	rise	to	functional	
changes	in	proteins	(1–10	nm),	which	in	turn	affect	protein	complexes	(10–100	
nm),	cellular	processes	(100	nm),	organelles	(1	mm),	and,	ultimately,	phenotypic	
behaviors	of	cells	(1–10	mm),	tissues	(100	mm	to	100	mm),	and	complex	organisms	
(>1	m).	

The	hierarchy	Yu	et	al.	are	describing	is	a	hierarchy	of	mechanisms—perturbing	a	part	of	a	
mechanism	affects	the	mechanism’s	behavior,	and	that	of	yet	higher-level	mechanisms	of	
which	the	first	is	a	part.	Since	gene	ontologies	provide	relevant	information	about	these	
hierarchies,	Yu	et	al.	drew	upon	them	to	characterize	what	they	term	an	ontotype.	The	
ontotype	is	intended	to	reflect	how	mutations	to	particular	genes	are	mediated	by	the	
hierarchical	mechanistic	organization	within	the	cell,	“representing	variation	at	
intermediate	scales	between	nanoscopic	changes	in	genes	and	macroscopic	changes	in	
phenotype.”	
	
The	strategy	for	developing	an	ontotype	and	using	it	to	reason	about	phenotypes	is	
illustrated	in	Figure	10.	On	the	left	in	panel	A,	a	toy	gene	ontology	is	shown,	with	the	root	at	
the	bottom.	Mutations	are	indicated	for	genes	B	and	D.	At	each	level	in	the	ontology	the	
number	of	genes	associated	with	a	node	or	its	children	are	indicated	by	shading.	This	
characterization	of	mutated	genes	in	terms	of	an	ontology	constitutes	the	ontotype.	
Drawing	on	the	experimental	evidence	about	growth	under	each	combination	of	mutations,	



Yu	et	al.	employed	a	learning	algorithm	to	develop	rules	to	predict	phenotypes	from	the	
features	of	the	ontotype.	Panel	B	shows	the	ontotype	for	five	combinations	of	mutations.	
For	example,	row	3	is	for	a	mutation	to	gene	f	alone.	In	the	lowest	row	of	the	gene	ontology	
only	T4	has	f	as	a	child	and	is	assigned	-1.	At	the	next	two	levels,	T6	and	T7	each	have	one	
affected	child	and	are	also	assigned	-1.	The	learning	algorithm	develops	a	rule	to	associate	
that	row	of	the	table	to	the	empirically	determined	growth	value	of	0.9.	The	set	of	rules	
constitutes	what	the	authors	term	a	functionalized	ontology.	In	mechanistic	terms,	the	rules	
constituting	a	functionalized	ontology	capture	how	mechanistic	organization	of	cells	
mediates	between	alterations	of	parts	and	altered	behavior	of	the	whole	cell.	

	
Figure	10.	A.	Procedure	for	generating	an	ontotype	to	represent	effects	of	gene	
mutations	in	an	ontology	and	then	applying	a	learning	rule	to	discover	relations	to	
growth	phenotype.	B.	Genotypes	mapped	onto	ontotypes	that	are	then	mapped	to	
phenotypes.	Reprinted	from	Yu	et	al.	(2016),	Figure	1,	with	permission	from	
Elsevier.	

	
The	authors	created	functionalized	ontologies	from	both	GO	(FGO)	and	NeXO	(FNeXO)	and	
each	did	significantly	better	than	state	of	the	art	algorithms	at	predicting	growth	for	the	
various	genotypes.	The	authors	attributed	this	success	partly	to	the	hierarchical	
organization	of	the	ontologies,	which	made	apparent	to	the	learning	algorithm	how	
different	mutations	resulted	in	similar	effects	to	mechanistic	components	higher	in	the	
ontology:		

From	the	perspective	of	the	ontology,	all	mutations	or	variants	in	a	genotype	
coalesce	to	the	same	cellular	module,	provided	one	looks	at	a	high	enough	level.	A	
genotype	may	include	some	mutations	that	map	to	the	same	gene,	others	to	the	
same	protein	complex,	still	others	to	the	same	broad	process	or	organelle,	with	all	
mutations	falling	within	the	highest	scale	represented	by	the	cell	itself	(pp.	84-5).	
	

To	demonstrate	further	the	value	of	ontotypes,	the	researchers	employed	FGO	to	predict	
growth	for	all	12,512,503	pairwise	deletions	of	non-essential	genes	in	budding	yeast.	
41,605	genetic	interactions	were	predicted,	concentrated	within	and	between	specific	
terms.	These	are	shown	in	Figure	12,	using	the	color	of	the	nodes	and	edges	to	indicate	
whether	the	connections	within	or	between	terms	are	enriched	for	positive	(blue)	or	



negative	(red)	interactions.	Some	of	these	actions	were	between	distantly	related	terms	in	
GO	such	as	negative	connections	between	“intron	homing”	and	“Phosphatidylinositol-3-
kinase	complex.”	These	would	not	have	been	identified	from	just	examining	the	ontology	
and	represent	potential	mechanistic	connections	to	be	investigated	further.		
	

	
Figure	11.	Hierarchy	structure	of	FGO.	Red	nodes	indicate	terms	with	negative	
enrichment	with	while	blue	nodes	exhibit	positive	enrichment.	Red	edges	indicate	
negative	enrichment	between	terms,	blue	positive	enrichment.	Reprinted	from	Yu	et	
al.	(2016),	Figure	4,	with	permission	from	Elsevier.	

	
The	introduction	of	ontotypes	and	functionalized	ontologies	provides	a	novel	perspective	
on	the	underlying	biological	mechanisms	and	how	alterations	in	mechanisms	result	in	
phenomena.	Studying	the	effects	of	mutations	has	long	being	an	important	strategy	for	
investigating	the	contributions	of	individual	genes	within	a	mechanism,	but	individual	
mutations	only	provide	limited	insight.	Examining	the	effects	of	double	mutants	reveals	
associations	between	genes,	allowing	network	analysis	to	advance	insights	into	the	larger	
mechanism.	Building	an	ontology	provides	a	hierarchical	perspective	of	mechanisms	that	
allows	for	interpreting	the	effects	of	mutations	in	light	of	the	mechanisms	that	are	altered.	
There	has	been	little	discussion	in	the	mechanism	literature	of	how	one	can	use	
mechanistic	knowledge	to	predict	how	specific	alterations	in	parts	of	mechanisms	will	
affect	the	phenomena	that	are	generated,	but	the	construction	of	ontotypes	provides	an	
example	of	how	mechanistic	knowledge	can	be	applied	to	this	problem.	At	the	same	time,	



this	research	shows	how	ontotype	construction	can	result	in	identifying	new	interactions	
that	enrich	the	understanding	of	mechanisms	themselves.	
	
5.	Conclusions	
	
In	this	century	systems	biologists	have	invoked	network	representations	of	vast	bodies	of	
data	to	advance	new	understanding	of	biological	mechanisms.	Costanzo	et	al.’s	analysis	
based	on	gene-interaction	networks,	discussed	in	section	2,	illustrates	how	cluster	analysis	
performed	on	networks	can	guide	new	discoveries	of	mechanisms	and	their	parts.	But	
network	analyses	alone	do	not	capture	the	hierarchical	organization	of	living	cells.	GO,	
based	on	human	curation,	captures	much	of	what	has	been	discovered	about	cellular	
mechanisms	through	more	traditional	mechanistic	research.	Drawing	on	GO	provides	
researchers	a	tool	to	represent	and	use	the	hierarchical	organization	of	biological	
mechanisms	in	their	network	analyses.	By	building	up	an	ontology	directly	from	databases	
(albeit	relying	importantly	on	alignment	with	GO)	NeXO	reveals	new	hierarchical	
organization	that	corresponds	to	mechanisms.	Application	of	both	GO	and	NeXO	provide	
ways	to	apply	mechanistic	organization	to	understanding	biological	networks,	resulting	in	
new	hypotheses	about	mechanisms	and	their	parts	and	operations.	In	section	4	I	showed	
this	in	the	case	of	research	on	the	mechanisms	involved	in	autophagy.	The	ontologies	
constructed	for	autophagy	supported	advancing	hypotheses	of	new	parts	of	known	
mechanisms	and	of	new	mechanisms	that	interact	with	existing	mechanisms.	Section	5	
then	showed	a	strategy	being	employed	to	apply	this	hierarchical	information	to	explain	
mechanistically	why	different	mutations	may	produce	the	same	effects.	
	
The	literature	on	mechanistic	explanation	offers	detailed	accounts	of	the	approach	of	
decomposing	mechanisms	into	components	and	applying	reasoning	strategies	to	build	up	
mechanistic	explanations	of	various	biological	phenomena	(Bechtel	&	Richardson,	
1993/2010;	Craver	&	Darden,	2013).	These	strategies	still	play	an	important	role	in	biology	
and	have	not	been	supplanted	by	the	development	of	new	tools	for	large-scale	data	
collection,	representation,	and	analysis	in	systems	biology.	But	systems	biologists	are	
providing	new	strategies	for	advancing	hypotheses	about	mechanisms.	The	new	tools	for	
representing	networks,	developing	and	applying	ontologies,	and	creating	onotypes,	are	
enabling	systems	biologists	to	advance	new	hypotheses	about	mechanisms	and	their	
components.	Once	these	hypotheses	are	advanced,	more	traditional	research	is	employed	
to	evaluate	them.	But	just	as	philosophical	accounts	of	mechanistic	explanations	in	cell	and	
molecular	biology	have	emphasized	heuristic	strategies	for	developing	mechanistic	
explanations,	the	research	in	systems	biology	provides	a	basis	for	significantly	expanding	
our	understanding	of	how	mechanisms	are	discovered.	
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