
The role of idealizations in the Aharonov-Bohm effect

John Earman1

Abstract On standard accounts of scientific theorizing, the role of idealizations is
to facilitate the analysis of some real world system by employing a simplified
representation of the target system, raising the obvious worry about how reliable
knowledge can be obtained from inaccurate descriptions. The idealizations
involved in the Aharonov-Bohm (AB) effect do not, it is claimed, fit this
paradigm; rather the target system is a fictional system characterized by features
that, though physically possible, are not realized in the actual world. The point
of studying such a fictional system is to understand the foundations of quantum
mechanics and how its predictions depart from those of classical mechanics. The
original worry about the use of idealizations is replaced by a new one; namely,
how can actual world experiments serve to confirm the AB effect if it concerns
the behavior of a fictional system? Struggle with this issue helps to account for
the fact that almost three decades elapsed before a consensus emerged that the
predicted AB effect had received solid experimental support. Standard accounts
of idealizations tout the role they play in making tractable the analysis of the
target system; by contrast, the idealizations involved in the AB effect make its
analysis both conceptually and mathematically challenging. The idealizations
required for the AB effect are also responsible for the existence of unitarily
inequivalent representations of the canonical commutation relations and of the
current algebra, representations which an observer confined to the electron’s
configuration space could invoke to ‘explain’AB-type effect without the need to
posit a hidden magnetic field. The goal of this paper is to bring to the attention
of the philosophers of science these and other aspects of the AB effect which are
neglected or inadequately treated in literature.
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1 Introduction

In recent years philosophers of science have devoted an increasing amount
of attention to the role that approximations, abstractions, and idealizations
play in scientific theorizing; but in view of the complexities involved it is
not surprising that no consensus account has emerged for how these notions
are interrelated and how they function in scientific theorizing.1 It seems
fair to say, however, that almost all of the attention in the literature on
idealizations in physics has focused on one sense of idealization: the target
system is an actual system, which may be as simple as a hydrogen atom or as
complex as the earth’s climate system or even the entire cosmos; the purpose
of the idealization is to further understanding of the hows and why of the
behavior of the target system and/or to facilitate predictions about some
aspect of its behavior; and the idealization involves the intentional use of
falsehoods or distortions in representing (or modeling, if you prefer) the target
system. This sense of idealization gives rise to an obvious puzzle; namely, how
can representations involving falsehoods and distortions function to deliver
scientific knowledge and explanation about the target system? And if not
knowledge and explanation, what do they deliver? Again it is not surprising
that there is no consensus answer to these questions or to the related question
of whether idealizations are essential to or ineliminable from theorizing in
physics.
No attempt is made here to contribute to the discussion of these issues.

Rather the focus is on a different sense of idealization, rarely identified as
such in the philosophical literature: here the target system is an idealization
in the sense of a fictional system, a system which is compatible with what
in the context of inquiry is taken to be a fundamental theory of physics, but
which is not realized in the actual world. On the first sense of idealization,
where the target system is an actual world system, an effect is dismissed as a
mere artifact of the idealization if it disappears when the idealization is made
more realistic. On the second sense of idealization the center of interest is
on effects that should, according to said theory, be exhibited by the fictional
system. The goal of studying such effects is to illuminate the foundations
of said theory and its relationship to predecessor and to competing theories.
The puzzle associated with the first sense of idealization does not apply here

1Two recent and admirably clear, but contrasting, accounts of idealizations can be
found in Norton (2012) and Weisberg (2007, 2013).
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since a false or distorted representation of the target system is not involved;
rather one operates with a precise and exact description of the target system,
which is by construction the fictional system satisfying said description. But
in the place of the first puzzle another arises; namely, how can experiments on
actual systems serve to confirm the predictions of the theory for the behavior
of the fictional system?
The claim made here is that the Aharonov-Bohm (AB) effect is best

viewed as a case of an idealization in the second sense and, further, that
part of the controversy that has swirled around the experimental testing of
this effect is a case of the second puzzle in action.2 Admittedly, when one
first reads a description of a system that illustrates the AB effect involving,
for example, an infinitely long solenoid that perfectly contains its magnetic
flux, the word that pops to mind is “idealization,”and since the first sense of
idealization outlined above is so dominant one naturally supposes that said
solenoid is being used to model an actual world system. Only a little further
reading of the physics literature is needed to dispel this misimpression. What
draws the interest of physicists and philosophers alike about the AB effect
is the (alleged) prediction of QM that the behavior of an electron depends
on the value of the magnetic flux in circumstances where the electron never
enters a region where the magnetic field is non-zero. But such circumstances,
although compatible with QM, are never realized in the actual world. Thus,
the target system in the AB effect is a fictional system, and there is no
idealization in the usual sense– no distorted/false description of an actual
world arrangement of magnets and electrons– but rather an accurate and
precise description of an other-worldly arrangement.3 The AB effect also
satisfies in spades the other characteristic of the second sense of idealization,
for from its discovery down to the present day the AB effect has been the
locus of a lively discussion of the foundations of QM.
To avoid needless confusions it would, perhaps, be best to drop the word

“idealization”in discussing the AB effect. But whatever labels are used the
discussion must confront the question of how experiments on actual magnets

2A classic presentation of the theoretical and experimental aspects of the AB effect is
to be found in Peskin and Tonomura (1989). A more up to date summary of experimen-
tal results and applications is to be found in Tonomura (2010). For a sampling of the
philosophical literature on the AB effect, see Batterman (2003), Healey (1997, 2007), Lyre
(2001, 2009), Mattingly (2006), Maudlin (1998), Nounou (2003), and Wallace (2014).

3Approximations are used in deriving a quantitative expression for the AB phase shift;
but these approximations are under good mathematical control (see Section 5).
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and electrons serve to confirm predictions of QM about what would be mea-
sured in a fictional arrangement required for the AB effect. Of course, there
is a sense in which there is no general problem here since the confirmation of
predictions of a theory about actual world circumstances lends indirect sup-
port to all of the theory’s predictions. But initially the AB effect seemed so
counterintuitive that some physicists doubted that it is a valid prediction of
QM, and in such circumstances it was natural that more direct confirmation
was demanded. It might seem that the response to the demand is simple;
namely, confirmation of the AB effect is obtained when actual laboratory
conditions are suffi ciently close to those that characterize a fictional AB sys-
tem. As will be seen, however, there were critics who argued, in effect, that
close is never close enough. For what is disturbing about the AB effect is that
the magnetic field seems to act where it is not; but, the critics argued, for
any real world experiment they could provide an explanation of the observed
effects entirely in terms of the interaction of the electron with the magnetic
field where it is non-zero. Such skepticism could be countered by showing
that a fictional AB system can be obtained as a well-defined limit of a series
of actual world systems. Thus, once actual world experiments confirm predic-
tions for systems suffi ciently far along in the series any remaining skepticism
about predictions in the limit degenerate into vulgar inductive skepticism.
Such limit results will be discussed in what follows. But at the same time it
should be realized that the skeptics can have a last laugh since in the limit
there emerge unitarily inequivalent representations of the canonical commu-
tation relations (CCR), and the AB effect can be attributed to a choice of
representation inquivalent to the familiar Schrödinger representation rather
than to a magnetic flux that exists outside the electron’s configuration space.
But this is getting far ahead of the story.
To return to situating this paper in the context of the literature on ide-

alizations, the second sense of idealization involved in the AB effect does
not fit happily in the most cited attempts to taxonomize idealizations (e.g.
Weisberg’s 2007, 2013).4 More generally, only recently have philosophers
begun to pay attention to the use of idealizations in exploring the founda-
tions of physical theories, and much remains to be done.5 Also missing from

4This point is argued in detail in Shech and Gelfert (2016).
5The most explicit and detailed account of the exploratory role of idealizations is to

be found in Shech and Gelfert (2016); see also Shech (2015, Section 7), who also discusses
methodological and pedagogical roles of idealizations. But philosophers have not been
completely deaf to such themes; see Redhead (1980) and Yi (2002).
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the philosophical literature is any sense of just how subtle, complex, and
rich an analysis is required for the fictional systems that display the AB ef-
fect.6 Such subtlety and complexity are in contrast with what (allegedly)
happens with one species of the first sense of idealization– so-called Galilean
idealizations– where the falsehoods and distortions of the representation are
used to simplify and render computationally tractable the treatment of the
target system (see McMullin 1985).7 In what follows I attempt to provide
an overview of some of the methodological and foundational issues that have
escaped attention in the philosophical literature, and I will offer some het-
erodox opinions on the issues that have attracted the most attention in the
literature.
The plan of the paper is as follows. Section 2 introduces one set of ideal-

izations used in typical presentations of the magnetic AB effect– an infinitely
long solenoid with various other fictional attributes. Section 3 reviews some
mathematical background needed for the analysis of the AB effect, and these
tools are used to discuss one of the early attempts to dismiss the effect as a
mathematical artifact. Section 4 reveals how the idealizations underlying the
AB effect lead to a potential stumbling block to deriving from the Schrödinger
dynamics of the electron a quantitative prediction of the interference pattern
exhibited by beams of electrons passing by opposite sides of the idealized
solenoid; namely, the Hamiltonian operator for the electron is not essentially
self-adjoint, and until further considerations are brought to bear there is no
unambiguous Schrödinger dynamics. An attempt to justify a particular self-
adjoint extension is discussed. Part of the justification is supplied by a pretty
mathematical result, but also needed is a fleshing out of the idealization with
additional stories about how the fictional attributes are realized. Section 5
analyzes key assumptions that go into standard derivations of the phase shift
in the magnetic AB effect. The derivation can be seen as an attempt to apply
the apparatus of QM to answer a counterfactual question: What would hap-
pen under idealized conditions to the electron interference pattern when the
solenoid is switched on and off? The answer obtained apparently does not
depend on the choice of a particular self-adjoint extension of the Hamiltonian
operator, at least if the boundary conditions at the solenoid border are the
same in the ‘on’and ‘off’versions of the counterfactual scenarios. While this

6Shech (2015) and Shech (2017) are notable exceptions.
7However, simplification and computational tractability are most certainly not features

of some of the most discussed cases of idealization, such as the thermodynamic limit in
models of phase transitions; see Ruetsche (2011, pp. 284-287).
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is a reasonable assumption, there is nothing in the quantum theory itself to
justify it, and only an appeal to additional stories about the realization of
idealized features is availing. In any case, it is pointed out that the AB effect
in a broad sense should read AB effects (plural), involving more than the
phase shifts that occupy most of the attention in the literature. These other
effects most definitely do depend on the choice of self-adjoint extension of
the Hamiltonian operator. Section 6 switches from the God’s eye perspec-
tive in which all of physical space can be observed to that of an embodied
observer who can make measurements only within the electron’s configu-
ration space. The AB-type effects experienced by such an observer will be
attributed by a scientific realist to the presence of a magnetic field that is not
accessible to our observer since it lies outside her configuration space. But an
alternative explanation, not invoking unobservable magnetic fields or other
hidden causes, is available due to the fact that our observer has available a
choice among unitarily inequivalent representations of the CCR. In this way
issues– all too familiar to philosophers of science– about realist vs. instru-
mentalist interpretations of scientific theories find an interesting application
in the analysis of the AB effect. Section 7 discusses experimental tests of the
AB effect and, in particular, why confirmation of the effect was initially so
controversial and how the controversy eventually subsided. Section 8 takes
up critical reaction to Aharonov and Bohm’s suggestion that the AB effect
demonstrates that electromagnetic potentials have a physical significance in
quantum electrodynamics that they lack in classical electrodynamics, and it
traces how this issue was transmuted into the issue of nonlocality of quantum
observables. Conclusions are given in Section 9.

2 The AB effect in outline

2.1 Historical note

The AB effect is so-called because of the seminal influence of the Aharonov
and Bohm (1959) paper– the Physical Review counts 3,364 citations. But
as is often the case with scientific discoveries, this one was anticipated by
other researchers.8 The most important precursor is to be found in the
paper of Ehrenberg and Siday (1949) in which what is now called the mag-

8The most complete extant account of the pre-history of the AB effect is to be found
in Hiley (2013).
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netic AB effect is formulated, leading some commentators to propose that
a proper moniker would be the ESAB effect (see Strocchi and Wightman
1974). Sturrock and Groves (2010) proposed using the “Ehrenberg-Siday
effect” to refer to what is commonly called the magnetic AB effect while
reserving the “Aharonov-Bohm effect”for the electric effect. But others feel
that the standard moniker is appropriate (see Berry 2010).
Reportedly, Ehrenberg and Siday initially thought that their derivation

must contain some flaw, and they sought the help of colleagues in ferreting
it out. Siday’s exasperation in not getting useful advice is recorded in his
remark: “There are all these sodding geniuses poncing around but if they
ever have to do anything —oh yes, that is a different matter isn’t it!”(quoted
in Hiley 2013, p. 10). When Siday met with Max Born to explain the issue,
reportedly Born left the meeting “with a face looking like thunder”(ibid.).
Despite some misgivings, Ehrenberg and Siday eventually decided to publish,
but their paper did not draw much attention, both because it was directed
at the relatively small audience of researchers in electron optics, and because
they did not highlight the implications of the effect for the foundations of
QM. The Aharonov and Bohm paper by contrast put these implications
front and center, and it drew immediate widespread attention, a good bit
of which was initially skeptical. The skepticism was directed both to the
genuineness of the effect itself (see Section 3.3) and to Aharanov and Bohm’s
suggestion that the electromagnetic potentials, rather than the fields, play a
fundamental role in the laws of quantum physics (see Section 8).

2.2 The magnetic AB effect

A typical presentation of the AB effect employs a fictional system with the
following features:

(F1) An infinitely long cylindrical shaped solenoid S∞.

(F2) When the current is turned on in the solenoid the magnetic
field B∞ generated is completely contained within the solenoid.

(F3) The solenoid is impenetrable to an external electron.

Needless to say, none of these features is realized in nature: actual solenoids
can be long but they do not stretch to infinity; actual solenoids leak flux;
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and potential barriers may be high but not infinitely high.9

This fictional system is embedded in a more realistic two slit apparatus,
as shown schematically in Fig. 1. A beam of electrons emitted from the
source, and as it moves through the apparatus it is split in two parts that
pass S∞ on opposite sides. When the beams are recombined at the screen, an
interference pattern is exhibited. According to the Aharonov-Bohm analysis,
QM predicts that the interference pattern will change when the solenoid is
switched on and off and, in particular, the fringe shift will show a systematic
dependence on the total magnetic flux contained in S∞. This is shocking to
intuitions trained on classical mechanics which teaches that the behavior of
a charged particle depends only on the electromagnetic field it encounters
along its trajectory. QM apparently undoes this lesson, at least under the
idealizations (F1)-(F3) which imply that the electrons never encounter a
region where B∞ is non-zero.
The latter fact can be verified by using classical electromagnetism and the

Coulomb gauge to compute the components of the vector potentialA∞ for an
infinitely long cylindrical solenoid of radius R. In polar coordinates (ρ, z, θ),
ρ := (x2 + y2)1/2, where the z-axis is chosen as the axis of the cylinder, the
components of A∞ take the following form:

(A∞)z = (A∞)ρ = 0 (1)

(A∞)θ(ρ) =
Φ∞
2πρ

for R ≤ ρ

=
Φ∞ρ

2πR2
for 0 ≤ ρ ≤ R

where Φ∞ is the magnetic flux through S∞. As expected, B∞ = ∇xA∞ = 0
in the region R3\S∞ exterior to the solenoid, which under idealizations (F1)
and (F2) is the electron configuration space (i.e. the part of physical space
R3 accessible to the electron). Alternatively, one could start with the realistic
case of a solenoid SL of finite length, L < ∞, solve for AL, and verify that
(AL)θ(ρ) converges pointwise to (A∞)θ(ρ) as L→∞ (de Oliveira and Pereira
2008).

In addition to the magnetic AB effect outlined above, there is also an
electric AB effect. However, both the theoretical analysis and the experi-
mental verification of the latter are still being discussed (see Weder 2011,

9“[I]nfinitely repulsive barriers do not really exist”(Magni and Valz-Gris 1995).
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Eskin 2013, Wang 2015, and the references therein). Here I concentrate on
the magnetic effect, so when I speak of the AB effect I mean the magnetic
effect.

3 Some background for the analysis of the
AB effect

3.1 Stokes’theorem

Stokes’theorem is standardly invoked in discussions of the AB effect to con-
clude that for a closed path γ that is the boundary of a surface S

Φ(S) :=

∫
S

B·dS =
∮
γ
A·dx, (2)

where dS stands for a surface element and Φ(S) is the magnetic flux through
the surface S. The theorem asserts that given a continuously differentiable
vector field F in a region R of space and a closed path γ in R, if γ is the
boundary of a two-sided surface S lying entirely in R, then

∫
S
∇xF ·dS =∮

γ
F ·dx. It follows from this theorem that if ∇xF = 0 then F = ∇f ,

where f is a scalar field on R, a consequence that will be used repeatedly
below. If γ lies in a simply connected region R then Stokes’applies since it
is guaranteed that γ is the boundary of a two-sided surface S lying entirely
in R. Since physical space is assumed to be R3, and is therefore simply
connected, Stokes’theorem can be combined with the idealization (F2) to
conclude that for a closed path γ encircling the solenoid,

∮
γ
A·dx = Φ∞, a

result that can also be obtained directly from (1) by integration. However,
Stokes’theorem cannot be applied within the non-simply connected electron
configuration space R = R3\S∞.10 In Section 6 I will consider what would
constitute the AB effect for an embodied physicist who, like the electron, is
confined to R = R3\S∞. But until then I will examine the AB effect from
the God’s eye perspective in which all of physical space can be surveyed.

10The line integral of A∞ for a closed path in R3\S∞ encircling the solenoid is non-zero
whereas

∫
S
∇xA·dS = 0 for any surface lying wholly in R3\S∞.
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3.2 Non-simple connectedness

A good deal of attention in the philosophical literature on the AB effect fo-
cuses on the non-simple connectedness of the electron configuration space.
In one sense there is a good reason for this focus, at least if the AB ef-
fect is understood to require a strictly null intersection between the electron
configuration space and the region of physical space where B 6= 0. For if
the electron configuration space were simply connected then Stokes’theorem
would be applicable, and together with Bcon = ∇xAcon = 0 the theorem
implies that Acon = ∇fcon for some scalar field fcon on the electron configu-
ration space so that Acon can be set to zero by appropriate choice of gauge.
The Hamiltonian operator for the electron in the presence of a magnetic field
is taken to have the form

H = (p− e

c
A)2, p = −i∇ (3)

where, e is the charge of the electron and units have been chosen so that the
mass of the electron is 1/2 and ~ = 1. Thus, the result in question means that
if the electron configuration space were simply connected, the Hamiltonian
can be gauge transformed into a form H0 = p2 that describes a free electron.
But it is at this juncture that two of the deficiencies in the philosophical

literature begin to reveal themselves. First, having arrived at the relation∮
γ
A·dx = Φ∞ for a closed path γ lying in the the electron configuration

space R3\S∞, the impression is sometimes given that there is a simple and
direct way to conclude that the phase shift observed in the set up in Fig.
1 is proportional to Φ∞. For example, typical presentations assert, as if it
were a self-evident truth, that in the AB set up the electron wave function
acquires a phase difference proportional to A·dx as it moves from x to x+
dx (see, for example, Healey 2007, p. 24). But there is no magic direct
route to the wanted conclusion. The problem to be solved is a dynamical
one: the phase shift has to be deduced by comparing the solution to the
Schrödinger equation when the solenoid is turned on with the solution for
when the solenoid is turned off. The dynamical analysis reveals that the
supposed self-evident truth is an approximate truth, which can be made valid
to a high degree of accuracy for high-velocity wave packets (see Section 5.1).
The dynamical analysis also reveals a second deficiency in the philosophical
literature; namely, there is no recognition of the fact that the idealization with
features (F1) and (F3) that give rise to the non-simple connectedness of the
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electron configuration space make the analysis of the dynamics complicated
since these features have the consequence that the Hamiltonian operator for
electron is not (essentially) self-adjoint, which stymies dynamical analysis
until extra assumptions are imported.
Before turning to the details of the dynamics a word needs to be said

about early attempts to show that the AB effect is not a genuine physical
effect.

3.3 Attempt to dismiss the AB effect

Under the idealizations (F1)-(F3) the Hamiltonian operator (3) for the elec-
tron contains the gauge dependent quantity A∞, and it needs to be checked
that the prediction of the AB effect does not depend on the choice gauge for
the vector potential. It was once claimed that this check fails. Two vector
potentials A and A′ are gauge equivalent (i.e. correspond to the same B
field) iff A′ = A + A′′ where ∇xA′′ = 0. If Stokes’ theorem applies, it
follows that A′′ = ∇f . Consider the transformation of the vector potential
A∞ 7→ A′∞ = A∞ +∇f with f := −Φ∞θ

c
.11 In this new gauge formula (1)

is replaced by

(A′∞)θ = 0 for R ≤ ρ (1*)

=
Φ∞ρ

2πR2
− Φ∞

2πρ
for 0 ≤ ρ ≤ R.

In a paper entitled “Nonexistence of the Aharonov-Bohm Effect”Bocchieri
and Loinger (1978) argued since the vector potential for the region accessible
to the electron has been gauge transformed away and the Hamiltonian as-
sumes the form for a free electron, the AB effect has a “purely mathematical
origin”and, consequently, cannot be a genuine physical effect. Their argu-
ment is undermined by the fact that the new gauge is “non-Stokesian”; that
is, since A′∞ is not continuously differentiable and Stokes’theorem does not
apply. For further comments on the inadmissibility of non-Stokesian gauges
see Klein (1979) and Bohm and Hiley (1979).
Bocchieri and Loinger (1978) sought to buttress their case against the

reality of the AB effect by reference to the hydrodynamical reformulation of

11This transformation will appear in a new guise in Section 5.1.
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QM, wherein the state of the system is described by the probability density
ρ := ψψ∗ and the current density j := −i(ψ∗∇ψ − ψ∇ψ∗) = Im(ψ∗∇ψ),
and the Schrödinger equation for the wave function is replaced by a set of
non-linear partial differential equations governing the evolution of ρ and j.
Since these latter equations employ only the electromagnetic fields and not
the potentials, Bocchieri and Loinger concluded that “they leave no room
for the effects of the kind of Aharonov’s and Bohm’s”(1978 p. 482; see also
Bocchieri and Loinger 1981a). Two uses of the hydrodynamical reformula-
tion of QM should be distinguished: to argue against the existence of the AB
effect as a prediction of QM under the idealization (F1)-(F3) (or alternative
idealizations discussed below) vs. to argue that the phase shifts detected in
real world experiments do not count as confirmation of the AB effect because
the hydrodynamical formulation shows that phase shifts in these experiments
can be explained in terms of the local interaction of the electron with the
magnetic field. As will be discussed below (see Section 7) other researchers
besides Bocchieri and Loinger fell in with the latter usage. But the for-
mer usage is problematic since, under the idealization (F1)-(F3), where the
configuration space of the electron is not simply connected, the formal equiv-
alence between the Schrödinger equation and the hydrodynamical equations
of motion is lost, making the comparison between standard QM and the hy-
drodynamical reformulation diffi cult (see Casati and Guarneri 1979). In any
case, if standard QM does predict the AB effect under the idealization (F1)-
(F3) and the hydrodynamical formulation does not, then (one might say) so
much the worse for the latter since all bets should be on the former.
This makes it all the more important to understand in what sense stan-

dard QM predicts the AB effect. That is the goal of the next two sections.

4 The AB effect from the God’s eye perspec-
tive: an initial stumbling block

4.1 The Hamiltonian operator and its self-adjoint ex-
tensions

From the God’s eye perspective from which all of physical space can be sur-
veyed, under the idealizations (F1)-(F3) the Hamiltonian operator for the

electron has the form HA∞ := (p − e

c
A∞)2, where A∞ is given by eq. (1).
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Since it is unbounded, this differential operator expression does not spec-
ify a Hilbert space operator until its domain is specified. To count as an
observable, the operator with specified domain must be self-adjoint12, or
at least essentially self-adjoint (i.e. there is a unique extension to a larger
domain on which the operator is self-adjoint). If the Hamiltonian opera-
tor passes this check then exponentiating the unique self-adjoint extension
yields a strongly continuous unitary group that supplies the dynamics for
the electron, the Schrödinger equation being the infinitesimal version. Under
the idealization (F1)-(F3) the configuration space for the electron is R3\S∞
and the Hilbert space is H = L2(R3\S∞).13 The natural (initial) domain for
HA∞ is D(HA∞) = C∞0 (R3\S∞) which is dense in L2(R3\S∞).14 With this
choice HA∞ does not correspond to an observable since it is not essentially
self-adjoint on D(HA∞) and, thus, does not generate the dynamics.
Now since HA∞ is symmetric on D(HA∞) and since it commutes with

complex conjugation it does have self-adjoint extensions. The multiplicity
of these extensions depends on the choice of two ways of specializing ideal-
ization (F1): either (F1a) where S∞ is taken to have a finite radius R > 0,
or the more severe idealization (F1b) where the radius of S∞ is shrunken
to zero without affecting the value of the flux, leaving a thread of magnetic
flux along the z-axis. In case (F1b) the deficiency indices of HA∞ are both 2
while in case (F1a) they are both ∞. The deficiency indices are the dimen-
sions of the deficiency spaces, and the self-adjoint extensions are in one-one
correspondence with the unitary maps between the deficiency spaces.15 For
the idealization (F1b) the self-adjoint extensions of HA∞are in one-one cor-
respondence with 2x2 unitary matrices, which are parametrized by four real
numbers and, thus, and there is a four-fold infinity of self-adjoint extensions
(Adami and Teta 1995). For the idealization (F1a) there is an infinity-fold
infinity of self-adjoint extensions (de Oliveira and Pereira 2010). The dif-
ferent self-adjoint extensions correspond to different boundary conditions on
the wave function at ρ = 0 for idealization (F1b) and at ρ = R > 0 for

12A linear operator A on a Hilbert space is self-adjoint iff A is symmetric (a.k.a. Her-
mitian) and A’s domain coincides with the domain of the adjoint of A.
13L2(X) denotes the Hilbert space of complex valued square integrable functions on X.

No explicit reference to measure is needed since in all the applications considered Lesbegue
measure is used.
14C∞0 (X) stands for the smooth functions of compact support onX. This is the standard

“test function”space used in rigorous mathematical treatment of Hilbert space operators.
15For the relevant mathematical background, see Reed and Simon (1975, Section X.1).
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idealization (F1a).16

The point to emphasize is that the different self-adjoint extensions ofHA∞

produce different physics; in particular, energy eigenvalues will be different
in different extensions, and the unitary (Schrödinger) dynamics obtained by
exponentiating the different self-adjoint extensions will be different. The
different scattering cross sections for different extensions in the (F1a) ideal-
ization are studied in de Oliveira and Pereira (2010).

On the traditional way of thinking about idealizations, one of the sup-
posed benefits of idealization is simplification and tractability of analysis.
But in the present instance the simplification achieved by applying the ide-
alizations (F1)-(F3) hides a seething complexity in the different ways the
Hamiltonian operator can be made self-adjoint. Another, more idealization
friendly, spin on this finding is to say that what it reveals is that the ide-
alizations (F1)-(F3) do not produce a model of ordinary QM but rather a
model schema that can be turned into a concrete model with a self-adjoint
Hamiltonian in an infinity of physically inequivalent ways. Now the question
becomes: Which of these many inequivalent concretizations of the model
schema is to be used, and why?

4.2 Choosing a self-adjoint extension

The different self-adjoint extensions of the Hamiltonian operator HA∞ cor-
respond to different boundary conditions on the wave function at the border
of the solenoid, and the different boundary conditions can in turn be thought
of as representing different ways the electron can interact with the solenoid
border. For continuously differentiable wave functions the impenetrability
assumption requires a vanishing at the solenoid border of the normal com-
ponent jN of the electron probability current density. By inspection, there
are various suffi cient conditions for meeting this requirement, the most ob-
vious being ψ = 0 (Dirichlet boundary conditions), ∇Nψ = 0 (Neumann
boundary conditions), or ∇Nψ = rψ, r ∈ R, (Robin boundary conditions).
These are suffi cient but not necessary conditions, and there are many other

16The reader who wants to get a feel for what is going on here may wish to start
with the toy example in Reed and Simon (1975, Section X.1). The Hamiltonian operator
−d2/dx2 for a free particle moving on the truncated real line (R,∞), R > 0, is not
essentially self-adjoint on the domain C∞0 (R,∞). There is a one-parameter infinity of self-
adjoint extensions corresponding to different boundary conditions on the wave function as
x+ → R.
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ways to guarantee the vanishing of jN at the solenoid boundary. Aharonov
and Bohm (1959) used the idealization (F1b) (thread of magnetic flux) and
assumed that the wave function vanishes as ρ→ 0. In this subsection I will
work with (F1a) (infinitely long solenoid with radius R > 0). In this case the
Aharonov-Bohm Hamiltonian is the self-adjoint extension H

A∞
AB of HA∞ cor-

responding to Dirichlet boundary conditions where the electron wave function
vanishes at the border ρ = R > 0 of the solenoid. What then is the justifica-
tion for this choice of self-adjoint extension? A possible answer is provided
by a very pretty mathematical result by Oliveira and Pereira (2008).17

Start with a sequence of more realistic Hamiltonians arising from finite
length solenoids surrounded by potential barriers of finite height:

HL,n = (p− e

c
AL)2 + VL,n (4)

where AL is the vector potential for a solenoid of length 0 < L ≤ ∞ and
VL,n(x) := nχL(x), n = 0, 1, 2, ..., where χL is the characteristic function
for the interior of the cylinder SL (i.e. χL(x) = 1 if x ∈ int(SL) and 0
otherwise). The positive potential VL,n acts as a repulsive barrier to electrons;
but with n < ∞ the barrier is not impenetrable since electrons can tunnel
through. Thus, for n < ∞ the electron configuration space is the full R3,
the HL,n act on the Hilbert space L2(R3) and each of these Hamiltonians
is essentially self-adjoint on C∞0 (R3), which is dense in L2(R3)– so there is
nothing untowards for any finite L and n. As the length L of the solenoid
is increased without bound the idealization (F1a) is approached, and as the
height n is the potential barrier is increased without bound the idealization
(F2) is approached. De de Oliveira and Pereira (2008) prove that in the
idealized limit in which L→∞ and n→∞, HL,n converges to the Aharonov-

BohmHamiltonianH
A∞
AB in the strong resolvent sense, independently of order

in which the limits are taken.18

17Shech (2015, 2017) argues that the standard account of the AB effect is flawed because
it offers no satisfying justification for choosing the Dirichlet boundary conditions. I agree.
But I argue below that this choice makes no difference for the predicted phase shift; where
it does make a difference in predictions for scattering of electrons off the cylinder. And
for reasons given below I do not think that, by themselves, the results of de Oliveira and
Pereira (2008) justify the choice of Dirichlet boundary conditions. But I emphasize that
the de Oliveira and Pereira (2008) results are important for the confirmation of the AB
effect (see Section 8).
18What strong resolvent convergence means is roughly this. Consider a sequence {Hm}

of self-adjoint Hamiltonian operators on L2(R3) and the associated one parameter groups
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A justification for the Aharonov-Bohm Hamiltonian requires joining to
the de Oliveira-Pereira result some additional assumptions about how the
idealization with the features (F1a), (F2) and (F3) is realized. For example,
one could imagine that the idealization is achieved by means of the following
supertask: in the first minute a solenoid of length 1 and a step-function po-
tential of height 1 at the solenoid border are erected; in the next 1/2 minute
the solenoid is extended to length 2 and the potential barrier is raised to
height 2; etc. ad infinitum. At the end of two minutes the infinite sequence of
building tasks is completed, resulting in the sought after idealization. Apply-
ing the Oliveira-Pereira mathematical result shows that Dirichlet boundary
conditions and the Aharonov-Bohm Hamiltonian are a by-product. But this
kind of argumentation threatens to make the choice of self-adjoint extension
dependent on this history of the fictional system; for it is not implausible to
conjecture that there are other supertasks using a different sequence of finite-
height repulsive potentials of different shapes that eventuate in the sought
after idealization but produce in the limit different boundary conditions and,
thus, different self-adjoint extensions of the Hamiltonian operator. And in
any case, there is the alternative boring history in which no supertasks are
performed and in which an infinitely high potential barrier has always and
forever surrounded an infinite length solenoid. This history provides no guid-
ance for what boundary conditions or self-adjoint extension should be used.
Needless to say, if the AB effect depends on which fictional history gives
rise to the idealization (F1a), (F2), (F3) then implications of the effect for
foundations of physics have to be tempered accordingly.
Apart from whatever role results like that of de Oliveira and Pereira

do or do not play in justifying a particular self-adjoint extension, they are
important to the confirmation of the AB effect; for they can be used as part of
an argument to show that actual world experiments, which perforce fall short
of the fictional world conditions that characterize an AB system, can lend
support to predictions of the quantum theory about this fictional system.
This matter will be taken up in Section 7. But first it is high time to take
up the details of how the AB effect is supposed to arise in the idealization
(F1a), (F2), (F3).

{Um(t)} obtained by exponentiating the Hms. Suppose that there is a unitary group
U(t) such that ψ(t) := U(t)ψ0 = limm→∞ Um(t)ψ0 for all ψ0 ∈ L2(R3). Then the strong
resolvent limit H∞ of {Hm} can be defined as the generator of U(t).
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5 Deriving the phase shift

The mathematical formalism used below should not cause one to lose focus
on the question that the formalism is supposed to help us answer: What does
QM say would happen under the idealization (F1)-(F3) when the solenoid
is switched on and off? Even with the help of the formalism of QM one
runs into some of the problems, all too familiar to philosophers, with trying
to evaluate counterfactual scenarios. I begin with reviewing the standard
derivation of the quantitative expression for the phase shift. Afterwards I
will evaluate how well the derivation serves to answer the question at issue.

5.1 Explaining the AB phase shift

Standard derivations of the AB phase shift for the setup of Fig. 1 suppose
that the wave function of the electron is in the form of a wave packet that,
after leaving the source, is split into two parts that reach the screen by
different routes labeled γ1 and γ2. The goal is to compute the additional
phase difference in the components of the electron wave function that results
when the solenoid is switched on.
Towards this end consider the formal expression

U(x) := exp(i
e

c

∫ x

x0

A(x′) · dx′) (5)

where x, x0 ∈ R3\S∞ and x0 is a fixed point. If the integral in the exponent
were independent of the contour of integration then (5) would define a uni-
tary map that could be used to transform away the vector potential term in
the electron Hamiltonian, reducing it to the free electron Hamiltonian. To
see this, use polar coordinates in which the God’s eye perspective electron
Hamiltonian takes the form

HΦ∞ = p2
ρ +

1

ρ2
(pθ −

eΦ∞
c

)2 + p2
z, pθ := −i∂/∂θ (6)

and in which (5) assumes the form

U(ρ, θ, z) = exp(i
eΦ∞θ

c
). (7)

Note that– formally at least– UpθU−1 = pθ +
eΦ∞
c

and UHΦ∞>0U−1 =
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HΦ∞=0. But with x, x0 ∈ R3\S∞ the integral in the exponent of (5) is not
independent of the contour of integration and the transformation U(ρ, θ, z)
is singular unless eΦ∞/c is an integral multiple of 2π– U(ρ, θ, z) is discon-
tinuous for some θ∗ as θ+ → θ∗ and θ− → θ∗.19

By means of an Ansatz that uses the transformation (5) localized to
simply connected subregions of R3\S∞ where it is non-singular, Aharonov
and Bohm (1959) supplied a semi-classical approximation to obtain the phase
shift produced by switching on the solenoid. For sake of concreteness, choose
the self-adjoint extensions H

Φ∞=0
and H

Φ∞>0
respectively for HΦ∞=0 and

HΦ∞>0 picked out by Dirichlet boundary conditions. For a simply connected

subregion R1 ⊂ R3\S∞ that surrounds path γ1, Λ1(x) :=
∫ x
x0

ie

c
A(x′) · dx′,

x0, x ∈ R1, is independent of the contour from the fixed point x0 to x; and
similarly for a simply connected region R2 ⊂ R3\S∞ that surrounds path γ2.
Aharonov and Bohm (1959) made an Ansatz asserting that an exact solution
ψ1,Φ∞>0(x, t) = exp(−itHΦ∞>0

)φ1(x, 0) of the unitary dynamics for H
Φ∞>0

(solenoid switched on) with initial conditions φ1(x, 0) at t = 0 that produce
a wave packet concentrated on γ1 is well approximated by the multiplication
of the solution ψ1,Φ∞=0(x, t) of the H

Φ∞=0
(solenoid switched off) dynamics

by the magnetic factor exp(−Λ1(x)), i.e. the exact switched on solution is
well approximated by

ψAB,1(x, t) := exp(−Λ1(x))ψ1,Φ∞=0(x, t) (8)

:= exp(−Λ1(x)) exp(−itHΦ∞=0

∞ )φ1(x, 0);

and similarly for the wave packet ψ2,Φ∞>0(x, t) concentrated on γ2.20

The upshot of the AB Ansatz is that the total wave packet ψAB(x, t) =

ψ1,Φ∞>0(x, t) + ψ2,Φ∞>0(x, t) for the H
Φ∞>0

∞ (solenoid switched on) evolution
should be well approximated by

ψAB(x, t) = exp(−Λ1(x))ψ1,Φ∞=0(x, t) + exp(−Λ2(x))ψ2,Φ∞=0(x, t) (9)

= exp(−Λ1(x)){ψ1,Φ∞=0(x, t) + exp(Λ1(x)− Λ2(x))ψ2,Φ∞=0(x, t)}.
19The discontinuity should not be conflated with so-called multi-valuedness.
20The wave packet of the electron can, to good approximation, remain within the con-

nected region R1 (or R2), but the tails of the wave packet will be spread throughout the
electron’s configuration space.
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Choosing x0 to be at the source of the electrons and choosing the contours
for the Λ1 and Λ2 integrals to be along γ1 and γ2 respectively gives

ψAB(x, t) = exp(−Λ1(x)){ψ1,Φ∞=0(x, t) + exp(

∫
γ1

ie

c
A(x′) · dx′ (10)

−
∫
γ2

ie

c
A(x′) · dx′)ψ2,Φ∞=0(x, t)}

= exp(−Λ1(x)){ψ1,Φ∞=0(x, t) + exp(

∮
γ

ie

c
A(x′) · dx′)ψ1,Φ∞=0(x, t)}

= exp(−Λ1(x)){ψ1,Φ∞=0(x, t) + exp(
ieΦ∞
c

)ψ2,Φ∞=0(x, t)}

where γ = γ1 − γ2, resulting in a prediction of a relative phase change of

exp(
ieΦ∞
c

).21 Unless
cΦ∞
e
is an integer multiple of 2π there should be a fringe

shift. This prediction is gauge invariant since, although both of the factors
exp(±Λ1(x)) are gauge dependent, exp(Λ1(x)) exp(−Λ2(x)) = exp(Λ1(x) −
Λ2(x)) is gauge invariant.
The soundness of the derivation of the phase shift now boils down to the

question of how good an approximation to the exact solution the AB Ansatz
provides. It might seem surprising that only recently have rigorous investi-
gations of this question appeared in the physics literature. For a different
idealized system exhibiting the AB effect to be discussed below in Section
7, Ballesteros and Weder (2009, 2011) have provided– a half century after
the seminal Aharonov-Bohm paper(1959)!– rigorous error bounds for the AB
Ansatz, from which it follows that high velocity Gaussian wave packets do
make the AB Ansatz a good approximation.

5.2 So does the choice of self-adjoint extension matter?

The above derivation of the phase shift was couched in terms of particu-
lar self-adjoint extensions of HΦ∞=0 and HΦ∞>0 corresponding to Dirichlet
boundary conditions at the solenoid border. But nothing in the reasoning is
limited to these particular extensions; the derivation would have worked just

21Manipulations of this sort can be found in many texts; see for example Nakamura
(1990, 356-359). The cynic might say that this derivation looks like a case of seeing the
result one wants and working backwards to an Ansatz that will generate it. There is
nothing wrong with such a procedure as long as the Ansatz can be justified.
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as well as applied to different self-adjoint extensions of HΦ∞=0 and HΦ∞>0

corresponding to, say, Neumann boundary conditions. All that is required
is the assumption that the boundary conditions do not change when the
solenoid is switched on and off. But unless additional physical principles or
additional stories about the history of the realization of the fictional system
are brought to bear, the assumption remains no more than an assumption.
Philosophers who struggle with evaluating questions about counterfactual
scenarios will not be surprised by how tricky it is to answer such questions
even within the constraints provided by the quantum theory.
In any case the AB effect should not be construed so narrowly as to be ex-

hausted by the flux dependent interference patterns observed on the screen
in setups like that illustrated in Fig. 1. More broadly construed, the AB
effect is any experimentally verifiable, systematic dependence of the behav-
ior of electrons on the magnetic flux in situations where the electron never
encounters regions where the magnetic field is non-zero.22 Since different
concretizations of the model schema of (F1)-(F3) (i.e. different self-adjoint
extensions of HΦ∞=0 and HΦ∞>0) do involve different dependencies in the
behavior of electrons on the magnetic flux, the broadly construed AB effect
is not a universal effect but is model specific.
A concrete example of the point is supplied by scattering of electrons off

the idealized solenoid. One advantage of this scenario is that exact solutions
can be obtained without the need to rely on approximations, Ansätze, or
appeals to physical plausibility. Aharonov and Bohm (1959) derived the
scattering cross section for the case of a thread of magnetic flux (idealization
(F1b)) using Dirichlet boundary conditions, but their analysis was criticized
by Feinberg (1963) and Henneberger (1981). Amore solid analysis of this case
was given by Ruijenaars (1983) also assuming Dirichlet boundary conditions.
But more important for our purposes is the analysis of de Oliveira and Pereira
(2010) for the case of solenoid of finite radius. Their analysis shows how the
scattering cross section for this case depends on the boundary conditions at
the border of the solenoid and, thus, on the self-adjoint extension of HΦ∞>0.
In sum, the AB effect, broadly construed, does depend on the concretization
of the idealization schema (F1)-(F3). “The AB effect”is, therefore, a bit of

22An example of this broad understanding is to be found in Eskin (2013) where the
AB effect is taken to mean that there are solutions to the Schrödinger dynamics where “a
physical quantity such a probability density ... or probability current ... depends on the
gauge equivalence class of the magnetic potential” in situations where the magnetic field
vanishes in the electron’s configuration space.
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a misnomer since it points to a family of effects.
It would be sad to have to conclude that the basic question–What does

QM say would happen under the idealization (F1)-(F3) when the solenoid is
switched on and off?– is not well posed until the history of the realization
of (F1)-(F3) is specified. More happily it can be said that while the details
of the answer to the what-would-happen question may depend on how the
details of the what-if scenario are filled in, the existence of observable effects
in the behavior of the electron reflecting the strength of the magnetic flux
inside the solenoid do not so depend. Switching the solenoid on and off
under the idealization (F1)-(F3) corresponds to some difference in the self-
adjoint extension of the electron Hamiltonian, which in turn will produce
some experimentally detectable effects– in phase shifts, scattering, or others.
The correspondence may be one-many until further details are supplied, but
existence of some difference is ensured. Those who find the assurance of such
a weak sense of the AB effect disappointing can console themselves with the
reflection that something is better than nothing.

5.3 An afterword on the role of non-simple connected-
ness

To repeat, the non-simple connectedness of the electron configuration space
is essential to a strictly null intersection between the electron configuration
space and the region of space where the magnetic field is non-zero (recall
Section 3.2), a defining condition of the AB effect. In addition, non-simple
connectedness is crucial to the existence of unitarily inequivalent representa-
tions to be discussed in the next Section.
However, it is important to note that neither non-simple connectedness

nor the idealization which secures this feature is a “difference maker”in the
production of the phase shifts or the other phenomena that are characteristic
of the AB effect; for otherwise there could be no convincing confirmation of
the AB effect from actual world experiments. To take a specific example,
consider again the setup in Fig. 1. Maintain idealizations (F1) and (F2)
(infinitely long solenoid that does not leak flux) but drop (F3) (complete
impenetrability of the solenoid) in favor of a finite step-function potential
barrier. The electron Hamiltonian will be the self-adjoint operator H∞,n of
eq. (4) for some finite value of n and L = ∞. No matter how well concen-
trated the two components of the electron wave packet are on the paths γ1
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and γ2, the tails of the wave packet will spread to the solenoid23 and, thus,
there will be a non-zero probability that the electron will tunnel through
the potential barrier and enter the solenoid, making the electron configura-
tion space the full, simply connected R3. But the derivation of the phase
shift goes through exactly as before– the derivation doesn’t care whether or
not the electron configuration space is simply connected. Of course, when
the electron configuration space is simply connected the phase shift is not
counted as an AB effect; but this is a semantic point, not a point about the
factors responsible for the phase shift. Compare: ‘If the electron configu-
ration space were simply connected then the electron would not exhibit an
AB effect (requiring by definition that the electron’s configuration space is
strictly disjoint from the the region where B 6= 0) vs. ‘If the electron config-
uration space were simply connected then the interference pattern would not
exhibit the phase shift characteristic of the AB effect.’The first assertion is
true by definition of the AB effect while the second is simply false. The point
that while the non-simple connectedness plays no causal role in producing
the observed effects, QM predicts that these effects persist in the presence of
non-simple connectedness.
Some commentators have proposed to understand the AB effect in terms

of a fibre bundle formalism (see Batterman 2003) and the non-trivial holonomies
associated with a non-simply connected base space. Here there is a discon-
nect between two senses of scientific explanation: explanation as unification
where the fibre bundle approach gains traction by uniting the AB effect with
other effects vs. explanation as revealing key causal features where the fibre
bundle approach is silent. Much more needs to be said about the challenges
that the AB effect poses for accounts of scientific explanation, but that will
have to await another occasion.

6 The AB effect from the perspective of an
embodied physicist (or an AB effect with-
out any magnetic field)

Thus far the AB effect has been discussed from the God’s eye perspective
from which all of physical space can be surveyed. But it is also worthwhile

23Recall that according to ordinary non-relativistic QM– which is assumed in most of
the discussions of the AB effect– the wave function spreads infinitely fast.
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to consider the perspective of an embodied observer who, under the ideal-
ization of an infinitely high potential barrier surrounding an infinitely long
cylindrical region of space, is confined to making measurements in the region
exterior to the cylinder. Such an observer faces a familiar case of underdeter-
mination: there are many possible causes hidden within the interior region
of the solenoid (including of course a magnetic flux) that could explain the
behavior of the electrons she observes in the exterior.24 Here I want to re-
port an interesting twist showing that there is also an explanation that refers
purely to the exterior region and does not invoke causes hidden behind the
veil of the infinite potential barrier.
In preparation for this discussion, I will first report some results for the

form of idealization (F1b) in which the radius of the cylinder tends to zero
leaving the flux fixed, with the upshot being a tread of magnetic flux along the
z-axis. The non-simple connectedness of the electron configuration space and
space accessible to our embodied observer will be crucial to these results. Let
M be a differentiable vector field defined on R3\{z = 0} such that Mz = 0
and ∇xM = 0. For example, M might be the field

M = (1/
√
x2 + y2)e,

√
x2 + y2 > 0 (11)

e the unit vector (−y/
√
x2 + y2, x/

√
x2 + y2, 0).

DefineM-dependent momentum operators P by

P = p− αM, α = const, p = −i∇. (12)

It is easy to check that these momentum operators and the usual position op-
erators (acting by multiplication) together satisfy the CCR, i.e. [P x, x] = i,
[P x,P x] = [P x,P y] = 0, etc. on a common dense domain of L2(R3\{z = 0}).
Since only a finite number of degrees of freedom are involved one might think
that an appeal to the von Neumann uniqueness theorem for representations
of the CCR would yield the consequence that these representations are all
unitarily equivalent to the Schrödinger representation. However, the von
Neumann uniqueness theorem requires the Weyl form the CCR (see Reed and

24It would be interesting to compare the underdetermination in this cases with the under-
determination is cosmological models where the event horizon of an observer is analogized
to the infinite potential barrier in the AB setup.
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Simon 1980, 274-275), and the exponentiatedM-dependent momentum oper-
ators can fail to conform to the Weyl CCR. In more detail, P x and P y are es-
sentially self-adjoint on C∞0 (R3\{z = 0}). Denoting their unique self-adjoint
extensions by a overbar, the Weyl CCR require that their exponentiations
to unitary operators satisfy exp(isP x) exp(itP y) = exp(itP y) exp(isP x) for
all s, t ∈ R. For the M-field of eq. (11) this requirement fails unless
1

α

∮
γ
M · dx, with γ a closed path around the z-axis, is an integer multiple of

2π, and when it fails the representation in question is not unitarily equivalent
to the Schrödinger representation (see Reeh 1988 and Arai 1992).25

Similar results carry over to the idealization (F1a). Let us then consider
the point of view of an embodied observer who, like the electron, is confined
to the exterior region R3\S∞ of the infinitely long cylinder of finite radius.
Our observer detects no magnetic field and, therefore, naturally posits as
the electron Hamiltonian the operator for a free-particle in the Schrödinger
representation, viz. H0 = p2, p = −i∇. Unfortunately, the observed behav-
ior of the electron does not accord with this posit; more specifically, there
is no self-adjoint extension of H0 that yields the fringe shifts observed in
interference experiments.26 Since she is familiar with the literature of math-
ematical physics, our observer suspects that something subtle is behind her
conundrum; in particular, she suspects that she is working with the wrong
representation of the CCR. After a bit of calculation she discovers that ac-
cord with experiments is achieved if she uses the free particle Hamiltonian
based on the momentum operator of eq. (12), viz. H̃0 = P2 = (p − αM)2,
with the value of the constant α adjusted appropriately.
Our observer may also notice that the vector field in eq. (11) is the Carte-

sian coordinate version of the electromagnetic vector potential given by eq.
(1) for the region R3\S∞. Thus, her new Hamiltonian is the same form as
the Hamiltonian that would be appropriate if, behind the impenetrable bar-
rier separating her from the interior of the cylinder, there a magnetic flux

Φ∞ and α is equal to
eΦ∞
c
. Her sympathies towards scientific realism tempt

her to conjecture that there really is a magnetic field inside the cylinder and

25This should come as no surprise. For if (P x,P y,P z) were unitarily equivalent to

(px, py, pz) then the Hamiltonian p
2 would be unitarily equivalent to the Hamiltonian P

2

and, thus, since the former does not produce an AB effect neither should the latter, which
is false.
26One of the subtleties here is that although p and P = p − αM are essentially self-

adjoint, their corresponding Hamiltonians are not.
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that this is the explanation of her experimental results. The realist case is
strengthened if different representations are required at different times since,
the realist will urge, the most natural explanation is in terms of different
values of Φ∞ at the different times. But her instrumentalist conscience cau-
tions that such a conjecture borders on metaphysical speculation since no
experiment she can perform in the region to which she is confined can verify
or refute the conjecture. Even if there were no magnetic field behind the im-
penetrable barrier the unitarily inequivalent representations of the CCR on
R3\S∞ would still exist, giving AB-type effects without any magnetic field.
Positing a hidden cause for why one rather than another of the inequivalent
representations is in fact realized is tempting, but giving in to the temptation
requires the leap of faith embodied in scientific realism.
Unitarily inequivalent representations also arise in another approach. Goldin

et al. (1981) start from an insight of the proponents of the hydrodynamical
formulation of QM; namely, it is the electron probability density and proba-
bility current, and not the wave function, that are genuine observables. One
is then led to ask about representations of the commutation algebra of these
observables, just as one asks about the representations of the CCR. For the
idealization of an infinitely long cylinder S∞ of finite radius Goldin et al. find
that in the exterior region R3\S∞ the current algebra for the electron ad-
mits a one-parameter family of unitarily inequivalent representations. Again
scientific realism would urge positing a cause, not directly observable to our
observer, for why some particular representation of the commutation algebra
fits with observable facts in the region R3\S∞; but again instrumentalism
urges skepticism about such posits.
Apart from the issue of realism vs. instrumentalism issue, there is no

mystery about the choice among the unitarily inequivalent representations
of the CCR or the current algebra– it is dictated by the fit with the observed
phase shift. It would be interesting to compare this case to the cases in QFT
and the thermodynamic limit in models of phase transitions where there
is also a choice among unitarily inequivalent representations; but this is a
project for another occasion.

7 Experimental tests

Reports of experimental tests of the AB effect began appearing in 1960 (see
Chambers 1960), the year following the publication of Aharonov and Bohm
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(1959), but it was well into the 1980s before skeptics admitted that solid
experimental confirmation had been established (or at least stopped publish-
ing skeptical articles). The delay was due in part to an obvious conundrum.
Fictional experimentalists inhabiting the fictional world of the idealizations
(F1)-(F3) can build an apparatus fulfilling these idealizations and carry out
the relevant tests of the predicted fringe shifts and scattering cross sections
when electrons fired around or at the flux carrying device. But real world ex-
perimentalists do not have such luxuries; in particular, they have to operate
with finite length, penetrable solenoids that leak magnetic flux. What con-
ditions must an actual world apparatus satisfy in order that it can produce
confirmation of the AB predictions for the fictional apparatus?
As will be detailed in the following section, much of the early discussion

of the Aharonov-Bohm effect was in reaction to their suggestion that, in con-
trast to classical electrodynamics where the electromagnetic potentials play
a merely auxiliary role, in quantum electrodynamics the potentials take on
a physical significance. Thus, the skeptics demanded that for actual experi-
ments to count as confirmation of the AB effect there should be no plausible
way to attribute the actually observed effects to the interaction of the elec-
tron with the electromagnetic field in the region accessible to the electron.
Strocchi and Wightman (1974) argued that there is such a way: No ac-
tual solenoid is protected by an infinitely high potential barrier, and even a
tightly localized wave packet will have tails that spread instantaneously over
the entire configuration space. Therefore,

The solution of the Schrödinger equation always has a tail which
runs into the region of nonvanishing field and that field, by purely
local manifestly gauge-invariant action, produces the effect. It
will not do to argue from finite propagation speed that the effect
will not be felt elsewhere soon enough; in Schrödinger theory
effects can be propagated instantaneously. (p. 2202)

By a “local manifestly gauge-invariant action”they are referring to the hy-
drodynamical reformulation of QM (recall Section 3.3).27

Another apparent road block to experimental confirmation, not relying
on the hydrodynamical reformulation of QM, flows from a theorem due to
Roy (1980). The theorem entails that for a finite length solenoid– which is

27But precisely because of the infinite propagation speed, it is not evident how the
hydrodynamical formulation provides for local action. More on the locality issue below.
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all actual world experimentalists can build– even if surrounded by an infinite
impenetrable cylindrical barrier which confines the electron to the non-simply
connected region exterior to the barrier, the electromagnetic potentials in the
external region can be gauge transformed to an expression involving the fields
in this region alone. (But for future reference, note Roy’s expression for the
electromagnetic potentials involves the fields nonlocally.)
It was realized almost immediately that Roy’s apparent road block could

be circumvented, albeit by means of another fictional system using a toroidal
magnet instead of a cylindrical solenoid. The modified idealization has the
features

(F4) A magnetic field completely contained in a toroidal region.

(F5) The torus is impenetrable to external electrons.

In a note added in proof, Roy (1980) reported that his theorem does not
apply to this new idealization, and he attributed to A. S. Goldhaber and P.
K. Kabir “stimulating observations on the possibility of an Aharonov-Bohm-
type effect when electrons are confined outside a toroidal magnetic field”
(p. 113). A proposal to test the AB effect by measuring the interference
between electrons passing through the hole of the torus and those passing
around it was published by Kuper (1980). Thirteen years prior Tassie (1963)
had described the predicted scattering cross section for electrons moving in a
plane bisecting the idealized torus of (F4)-(F5); no experimental test of the
prediction was described, but the suggestion for a possible test was implicit.28

Actual experiments were soon to follow. Tonomura et al. (1982) detected
a fringe shift for square-torodial magnet made of permalloy. However, Boc-
chieri and Loinger (1982) rejected the notion that the experimental result
counted as confirmation of the AB effect since, they claimed, “the fringe
shift is a mere effect of the Lorentz force on the portion of the electron wave
going into the permalloy” (p. 371). A year earlier they had imagined an
experiment on a toroidal solenoid, and essentially they repeated the Strocchi
and Wightman (1974) line relying on the hydrodynamical reformulation of
QM:

28When the donut hole of the torus is plugged by an impenetrable barrier, making the
electron configuration space simply connected, the predicted scattering cross section does
not depend on the amount of flux in the torus.
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[T]he time evolution of ρ [probability density] and j [current
density]– and more generally, the expectation value of any phys-
ical observable– depends on the [electromagnetic] field strengths
and not the potentials [according to the hydrodynamical formu-
lation]. Therefore the internal magnetic field of the impenetrable
torus does not produce any physical effect. If anything were ob-
served, this would be due to an imperfect impenetrability or to
the existence of stray fields. (Bocchieri and Loinger 1981b p.
449)29

Tonomura and coworkers (see Tonomura et al. 1986 and Osakabe et al.
1986) strove to achieve an experimental realization that closely approximated
the ideal (F4)-(F5). The magnetic field of a toroidal magnet was confined
by coating the magnet with a superconductor layer, taking advantage of
the Meissner effect that quenches the magnetic field. The flux leakage, as
measured by interference electron microscopy, was estimated at less than
h/20e. A coating of copper on the magnet helped to prevent penetration
of the electron. It was estimated that only a 10−6 portion of the incoming
electron wave reached the magnetic field coherently. Did the detection of
a phase shift under these nearly ideal conditions provide, as the authors
claimed, “crucial evidence for the existence of the AB effect”(Tonomura et
al. 1986 p. 794)?
In fact, after the publication of Tonomura et al. (1986) the naysaying on

experimental confirmation of the AB effect died out. From the published lit-
erature I have been unable to determine why this is so. After all, the naysay-
ers of the Strocchi-Wightman-Bocchieri-Loinger camp could have continued
to argue that the near ideal conditions achieved in the Tonomura et al. ex-
periment are not good enough and, indeed, never can be good enough; for
in this, as in any actual experiment, there are stray fields and imperfect im-
penetrability, and this is enough to give purchase to the skeptical arguments
mentioned.
Perhaps of significance is the fact that Tonomura et al. attempted to

make such skepticism sound like unproductive anti-inductivism:

29The reader will recognize the running together of two uses of the hydrodynamical for-
mulation of QM: to argue against he existence of the AB effect for idealized circumstances
vs. to argue that in actual circumstances falling short of the ideal, detection of a phase
shift does not provide confirmation of the AB effect.
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The most controversial point in the dispute over experimental ev-
idence for the AB effect has been whether or not the phase shift
would be observed when both electron intensity and magnetic
field were extremely small in the region of overlap. Since experi-
mental realization of absolutely zero [magnetic] field [in the elec-
tron configuration space] is impossible, the continuity of physical
phenomena in the transition from negligibly small field to zero
field should be accepted instead of perpetual demands for the
ideal; if a discontinuity there is asserted, only a futile agnosti-
cism results. (Tonomura et al. 1986, p. 794)

This appeal to the “continuity of physical phenomena in the transition from
negligibly small field to zero field”would have been more convincing if it had
been accompanied by the type of result of de Oliveira and Pereira (2008)
showing that continuity considerations can be applied because the idealized
AB system can be obtained as the limit of a sequence of actually realizable
systems (recall Section 4.1). Of course, the skeptic could claim that there
remains the possibility that the phase shift would eventually disappear if
experiments are carried out far enough into the sequence with ever smaller
flux leakage and ever diminishing penetration of the electron wave packet
into the magnet. But this does seem like futile agnosticism that would stifle
most inductive inference. Did Tonomura et al. implicitly assume that such
results would be forthcoming? Did the critics relent because they perceived
that continuity considerations were pushing their skepticism towards vulgar
inductive skepticism? Perhaps unpublished sources and interviews will help
to answer these questions, but this is a project for another occasion.
In closing I note that the critics could have pointed out that when the AB

effect is implemented by idealizations (F1)-(F3) there is a discontinuity in
“the transition from negligibly small field to zero field.”In the limit in which
the configuration space of the electron is strictly confined to the exterior of
the solenoid by raising the potential barrier to an infinite height and the mag-
netic flux is strictly confined to the interior by making the solenoid infinitely
long, there emerge unitarily inequivalent representations of the CCR on the
exterior region. The behavior of the electron can be attributed to the choice
of a representation of the CCR unitarily inequivalent to the Schrödinger rep-
resentation assumed in usual treatment of the AB effect. No reference to
a magnetic field confined to the solenoid is required, although the scientific
realist may wish to posit such a field as the best explanation of the observed
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effects. It is plausible that a similar situation for the idealizations (F3)-
(F4) for a toroidal magnet that are supposed to represent the limit of the
experiments of Tonomura at al. (1986).

8 Some foundational issues

Recall that the title of Aharonov and Bohm (1959) is “Significance of Elec-
tromagnetic Potentials in Quantum Theory.”Much of the initial critical re-
action to the paper centered on the paper’s suggestion about the status of
these potentials in QM or, more precisely, in the bastardized theory in which
a quantized electron is subjected an external classical electromagnetic field.
In classical electromagnetism the electromagnetic potentials are gauge de-
pendent quantities, i.e. they overdescribe the physics in the sense that their
values correspond many-one to the intrinsic physical state, a gauge transfor-
mation being a transformation of the potentials that relate values of the po-
tentials corresponding to the same physical state; and further, the potentials
can be altogether eliminated from the laws of classical electromagnetism in
favor of fields, whose values correspond one-one to the physical state. What
the AB effect brought out in dramatic fashion is that the situation changes
in the bastardized quantum-classical theory where it seems that the electro-
magnetic fields underdescribe the physics. But underdescribe in what way?
What is the nature of the something more that is needed? Much of the initial
critical reaction to the AB effect was not directed so much at the effect itself
as at Aharonov and Bohm’s attempt to answer these questions.
Aharonov and Bohm opined that in order to account for the AB effect it

would

[S]eem natural ... to propose that, in quantum mechanics, the
fundamental physical entities are the [electromagnetic] poten-
tials, while the fields are derived from the them by differentiation.
(Aharanov and Bohm 1959, p. 490).

They commented that the obvious objection to this suggestion is that the
bastardized theory, like classical electromagnetic theory, is gauge invariant,
which seems to imply that the electromagnetic potentials “cannot have any
meaning, except insofar as they are used mathematically, to calculate the
fields”(ibid.). But then they retort that “We have seen from the examples
described in this paper that [this implication] cannot be maintained”(ibid.).
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They offer two suggestions for escaping the conundrum to which the AB
effect seems to lead:

First, we may try to formulate a nonlocal theory in which, for
example, the electron could interact with a field that was a finite
distance away. Then there would be no trouble in interpreting
these results, but, as is well known, there are severe diffi culties in
the way of doing this. Secondly, we may retain the present local
theory and, instead, we may try to give a further new interpreta-
tion to the potentials. In other words, we are led to regard [the
value of electromagnetic potentials at points of space [or space-
time] as a physical variable. This means that we must be able to
define the difference between two quantum states that differ only
by gauge transformation. (pp. 490-491)

They did not mention a possible tertium quid in the form of the postu-
lation of additional field-like entities to restore locality.30 The first option
they offered (nonlocal interaction between the electromagnetic field and the
electron) was obviously regarded as a dead end. The second option they ap-
parently regarded as more promising since they promised to show in a future
paper how it might be implemented. But rejecting gauge invariance would
involve a theory very different from the one they use to formulate the AB
effect, and in any case this avenue would also prove to lead to a dead end.
In retrospect it would have been better to adopt a let-the-chips-fall-where-

they-may attitude: start with a commitment to gauge invariance, and then
ask about the nature of the physical quantities needed for a gauge invariant
treatment of quantum electrodynamics; if it turns out that some of these
quantities are nonlocal, so be it; try to understand the nature of this nonlo-
cality, its relation to other senses of nonlocality, and how it can be reconciled
with the requirements of relativity theory.31 Strocchi and Wightman (1974)
did not think that the chips fell very far; for they conjectured that “the equa-
tions of motion for gauge invariant theories can be rewritten in equivalent
manifestly gauge invariant form as equations of motion for local quantities”
(pp. 2201-2202). Other authors saw the chips fall another way. Thus, Bryce
DeWitt (1962) opined that

30This option is pursued by Mattingly (2006).
31Wallace (2014) argues that the AB effect requires neither a rejection of gauge invari-

ance nor a novel form of nonlocality.
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Nonrelativistic particle mechanics as well as relativistic quantum
field theories with an externally imposed electromagnetic field can
therefore be formulated solely in terms of field strengths, at the
expense, however, of having the field strengths appear nonlocally
in line integrals. (p. 2190)

A similar proposal for quantum electrodynamics can be found in Mandelstam
(1962). It is unclear, however, how well DeWitt’s formulation counts as gauge
independent; for it uses a parametrized family of spacetime curves, and the
arbitrariness in the choice of such a family amounts to new degree of gauge
freedom (see Belinfante 1962). Additionally, Aharonov and Bohm (1962)
objected that in DeWitt’s formulation there is no essential nonlocality and
that the “potentials have been eliminated only in a trivial sense (as we might
substitute y = z2 in a linear equation and then assert that the equation is
now nonlinear)”(p. 2192).
However, DeWitt’s article apparently did have one salutary effect. In a

note added in proof he reported:

The author is happy to acknowledge a stimulating correspondence
with Professor Bohm and, although maintaining a different view-
point, wishes to express his wholehearted agreement with the ef-
fort to shift the controversy over the significance of potentials to
the arena of local vs. nonlocal theories. (DeWitt 1962, p. 2193)

At this juncture two comments are appropriate, for although they are obvious
they seem to have escaped the notice most commentators.
The first comment is that if the key issues that emerge from the debate

about the AB effect have to do not with the status of the electromagnetic
potentials but with local vs. nonlocal theories then, although Aharonov and
Bohm’s seminal 1959 article served to force these issues to the forefront of
physicists’consciousness, the issues arise quite independently of the AB ef-
fect. Forget about the idealizations (F1)-(F3) or (F4)-(F5) needed for the
AB effect (requiring that there is a strictly null intersection of the electron
configuration space and the region of physical space where the magnetic field
is non-zero). Focus instead on real world cases where the electron configura-
tion space is the entirety of physical space, which is itself simply connected.
Nevertheless, it must be asked: What is the nature of the observables in a
gauge invariant description of quantum electrodynamics? In what sense are
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they nonlocal? How is this sense of nonlocality related to other forms of non-
locality? Which forms of nonlocality can peacefully coexist with relativity
theory and which cannot? Etc. Thus, despite the fact that non-simple con-
nectedness (of the electron configuration space) is essential, by definition, to
the AB effect, it is not essential to some of the key issues to which it served
to call attention.32 The philosophical literature seems incapable of absorbing
this fact, as if it were under the thrall of the patently invalid inference that
goes: ‘The AB effect uses non-simple connectedness; the AB effect reveals
a _____ [to be filled in] kind of nonlocality; ergo the nonlocality derives
from non-simple connectedness.’ To be sure, if actual physical space or the
configuration space of an actual electron were non-simply connected, then
some form of nonlocality would be in the offi ng. But this form of nonlocality
can tell us nothing about the local vs. nonlocal nature of observables for
actual systems since actual physical space and the configuration space of an
actual electron are simply connected. Nevertheless, as just noted, gauge-
invariant observables for the quantum electrodynamics of actual systems do
have a nonlocal character.
The second comment is that the bastardized form of quantum electrody-

namics in which the AB effect is usually discussed– an external unquantized
electromagnetic field and an electron quantized in non-relativistic QM– is
not a felicitous setting in which to try to resolve issues about locality vs.
nonlocality. A more appropriate context would be relativistic quantum field
theory (QFT). But it is unclear what would constitute an AB effect in terms
of fundamental fields. If, as is arguably the case in QFT, particles are not a
separate ontological category but are just excitations in the quantum field,
then the configuration space of a particle is the configuration space of the
field; and the configuration space of the field is the entirety of physical space,
which may be assumed to be simply connected.33 One can imagine quantiz-
ing a field on a simply connected space divided by a finite potential barrier
into the exterior and the interior of an infinitely long cylindrical region, or
the interior and exterior of a toroidal region, and then taking the limit as
the barrier becomes infinitely high. Alternatively, one can imagine quantiz-
ing the fields on either side of an already existing infinite barrier. If these
scenarios make sense in QFT (which remains to be seen), one could then

32Recall the discussion of Section 5.3
33Of course, mathematically interesting questions can be asked about quantization of

fields on a non-simply connected physical space; but this is another matter.
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study the relation between the fields on either side of the barrier. It is un-
clear what would count as a field-theoretic AB effect in such scenarios. It is
equally unclear what of importance could be gleaned from such an exercise.

9 Conclusion

Aharonov and Bohmmight be faulted for some misdirection in initially focus-
ing attention on the unproductive issue of the reality of the electromagnetic
potentials. But hindsight wisdom cannot gainsay their seminal contribution
to foundations of QM by forcing physicists and philosophers to confront one
aspect of nonlocality in quantum physics. Arguably, this contribution is sec-
ond only to John Bell’s contribution in bringing attention to the nonlocality
associated with quantum entanglement. The relation between the two types
of locality still a matter for discussion.34

The philosophical literature still has not come to grips with some key
issues surrounding AB effect. In particular, there is little awareness that the
idealizations involved in the AB effect do not comport with the standard
accounts of idealizations where the target system is a real world system and
where idealizations in the form of simplified/distorted descriptions of the tar-
get system are used in an attempt to gain knowledge and understanding this
system.35 This conception of the role of idealization in scientific theorizing
would have a hard time explaining why the controversy over the experimental
confirmation of the AB effect was so long lasting.
Nor does the philosophical literature show much awareness of the sub-

tleties required to implement the idealizations involved in the AB effect.
Some of these subtleties have to do with technical issues about essential
self-adjointness of operators. But these technical issues are intertwined with
more general methodological issues, of a type all too familiar to philosophers,
concerned with trying to answer questions about what would happen under
counterfactual scenarios. In particular, it seems that it is hard to say what
QM predicts would happen, say, in scattering experiments under the ide-

34In this authors opinion, there is no substantial connection between the two types of
nonlocality. Bell nonlocality derives from the entanglement of quantum states over local
observables whereas the AB effect reveals a nonlocal aspect of quantum observables. But
this is a matter for another occasion.
35For similar criticisms of standard accounts of idealizations see Shech (2015) and Shech

and Gelfert (2016).
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alizations required for the AB effect without bringing in additional fictions
about how the idealizations are realized.
The literature would also be enriched by devoting more attention to per-

spective on the AB effect offered by the unitarily inequivalent representa-
tions of the CCR and the current algebra that arise when observations are
restricted to the electron’s configuration space, assumed under the AB ideal-
izations to be disjoint from the flux carrying region. There are (at least) three
ways the Stone-von Neumann uniqueness theorem can fail so as to open the
way for inequivalent representations. The most widely discussed one occurs
for systems with an infinite number of degrees of freedom, as in relativistic
QFT (see Ruetsche 2011). The second occurs when the system has a finite
number of degrees but the representations are not strongly continuous, as in
the polymer representations used in loop quantum gravity (see Ashtekar et
al. 2002). The third, discussed here, arises when the configuration space is
not simply connected. Comparisons among these three types of cases may
help to clarify the physical significance of inequivalent representations.
Despite the fact that the AB effect has been picked over by many able

experimentalists, mathematical physicists, and philosophers, it still contains
facets and surprises worthy of further exploration. Such inexhaustibility is
the mark of truly great discovery.
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Fig. 1  Interference experiment for the magnetic AB effect 
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