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1 Introduction

In this paper, I compare theory-laden perceptions with imputed data sets. The

similarities between the two allow me to show how the phenomenon of theory-

ladenness can manifest itself in statistical analyses. More importantly, elucidating
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the differences between them will allow me to broaden the focus of the existing

literature on theory-ladenness and to introduce some much-needed nuances.

One of the main reasons why theory-laden perceptions have been extensively

discussed in philosophy of science is that they pose an apparent threat to scientific

knowledge. As a result, their very existence has been challenged, or dismissed as

merely one of the many potential sources of error inherent in every experimental

framework that we can learn how to control.

In sharp contrast, the topic of statistical imputation has received no attention

in philosophy of science. Yet, imputed data sets are very similar to theory-laden

perceptions, and they are now an integral part of many scientific inferences. Unlike

with the case of theory-laden perceptions, the existence of imputed data sets cannot

be challenged or reduced to a manageable source of error. In fact, imputed data sets

are created purposefully in order to improve the quality of our inferences. They do

not undermine the possibility of scientific knowledge; on the contrary, they are

epistemically desirable.

Accordingly, I propose to substantiate the following three theses:

1. Theory-laden observations need not be treated as an inevitable nuisance.

They can be created purposefully for their epistemic benefits.

2. Some scientific inferences cannot be understood and assessed unless we un-

derstand how and why our observations are theory-laden.

3. The theories loaded onto our observations need not play a role in the justifi-

cation of our scientific models.

This paper comprises three main sections. In the first section, I explain the

thesis of the theory-ladenness of perception and highlight the fact that it has been
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cited as an obstacle to scientific knowledge. This will set the stage for a fruitful

discussion of imputed data sets.

In the second section, I introduce imputed data sets and furnish an example

based on a simulated data set. I also show why statistical imputation is important.

The results presented in that section can be reproduced using the R code provided

on the following websites: http://grmaranda.weebly.com/ or https:

//ulaval.academia.edu/GuillaumeRochefortMaranda/Papers. In

the third and last section, I compare imputed data sets with theory-laden percep-

tions. This provides the philosophical crux of this article.

2 Theory-Laden Perceptions: The Controversy

The expression “theory-laden observation” refers to more than one phenomenon

(Bogen 2014). For example, when we say that our observations are theory-laden,

we can mean that our observation reports are couched in theoretical vocabulary

(see Chalmers 2013; Churchland 1988; Kuhn 1962 for examples). We can also

mean that our theoretical conjectures have directed our attention towards a certain

observable phenomenon (see Couvalis 1997; Brewer and Lambert 2001 for exam-

ples). Here, however, I wish to focus exclusively on the idea that our theoretical

beliefs can determine, at least in part, the content of our perceptual experiences.

This is the thesis of the theory-ladenness of perception.1

To be more precise, the theory-ladenness of perception is a thesis in cogni-

tive psychology. It holds that perception is the result of an unconscious inference

which is determined by top-down theory information and bottom-up sensory infor-

1 I elect to single out this thesis is because I intend to compare imputed data sets with theory-

laden perceptions only. Other versions of the phenomenon of theory-ladenness, although intrinsically

interesting, are not relevant for my purposes.
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mation(Brewer and Lambert 2001; Gregory 1997). This theory can be traced back

to Hermann von Helmholtz (1866):

Following von Helmholtz’s lead we may say that knowledge is neces-

sary for vision because retinal images are inherently ambiguous (for

example for size, shape and distance of objects), and because many

properties that are vital for behaviour cannot be signalled by the eyes,

such as hardness and weight, hot or cold, edible or poisonous. For

von Helmholtz, ambiguities are usually resolved, and non-visual ob-

ject properties inferred, from knowledge by unconscious inductive in-

ference from what is signalled and from knowledge of the object world

(Gregory 1997, p.1122).

It is a thesis that is usually presented as a conjecture meant to provide an expla-

nation for various optical illusions: “Some phenomena of illusion provide evidence

for the uses of knowledge for vision; this is revealed when it is not appropriate to

the situation and so causes a systematic error, even though the physiology is work-

ing normally” (Gregory 1997, p.1122).

One such illusion that is often mentioned in the literature is the Ames room

illusion (see Papineau 1979; Gillies 1993). It involves a non-rectangular room

such that a properly situated observer can perceive two people of similar size as if

they were of different heights. A possible explanation for this illusion is that our

experience is determined not only by the visual inputs (bottom-up information) but

also by our background beliefs (top-down information) about the usual shape of a

room. In other words, the explanation for the illusion is that our perceptions are

theory-laden.

Donald Gillies, for instance, clearly adopts this kind of explanation:

It is easy to understand what is happening here. The brain has the

4



choice of interpreting the visual input according to either of the fol-

lowing theories: T1: The two people are approximately the same size,

but one is much further away because the room is an odd shape. T2:

The room is the usual rectangular shape, and the people are different

sizes. Here, T1 is correct, and T2 incorrect. Yet anyone, on seeing the

Ames room for the first time, will unconsciously opt for T2. This is

perhaps not surprising. Experience has made us all very familiar with

the fact that rooms are nearly always rectangular in shape, while peo-

ple often vary in size. Thus, on the basis of experience, T2 is better

confirmed than T1, although T1 is in fact correct. [...] The Ames room

shows very clearly that ordinary everyday observation is theory-laden

(Gillies 1993, pp.143-44).

Some have even claimed that the credibility of such an explanation is enhanced by

the existence of neural pathways between the higher cognitive centres of the brain

and the visual modules in which the early stages of perceptions occur.

The thesis of the theory-ladenness of perception has been presented as a feature

of scientific practice which can produce scientific knowledge (see Hanson 1958;

Feyerabend 1993; Kuhn 1962 for examples). But it has also been more recently

discussed by philosophers of science because of the apparent threat that it poses to

the possibility of scientific knowledge:2

If all observation is theory-laden, the objectivity of scientific research

might be undermined, for it seems that we may well be unable to tell

2Other version of the thesis of the theory-ladenness of observation have been advanced in support

of scientific realism (Maxwell 2009). In this paper, however, I only address the literature on the

theory-ladenness of perception that focuses on the potential threat that it poses to scientific knowl-

edge.
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whether our perceptions accurately capture aspects of the world. (Cou-

valis 1997, pp.11).

The issue of the role of top-down, or reentrant, neural pathways that

transmit signals from the higher cognitive centers to the perceptual

modules is important to the philosophy of science, since it is the ex-

istence of these pathways that is used as one of the arguments for the

cognitive penetrability, and thus for the theory-ladenness, of percep-

tion [...], thus clearing the way for relativistic theories of meaning and

scientific theories (Raftopoulos 2001, pp.S187).

On the views of perception that Fodor is out to resist, (theoretical)

conception is capable of penetrating perception thoroughly. Theoret-

ical commitments infiltrate observation. Consequently, theory-neutral

observation is impossible, and scientists must decide between com-

peting theories on grounds that are pragmatic and holistic at best –

grounds that Fodor finds insufficient for a satisfactory defense of sci-

entific rationality. (McCauley and Henrich 2006, p.81).

The problem is that if we always justify theories with theories, then we appear

to enter an infinite regress of justification or a vicious circle of justification. It is

thus not surprising that many philosophers have challenged the existence of theory-

laden perceptions (see Fodor 1984) or downplayed their importance as a credible

obstacle to obtaining scientific knowledge.

Jerry Fodor, most notably, has pointed out that we can be victims of optical illu-

sions, such as the Ames room illusion, even if we know how the illusions work (see

Fodor 1984). Therefore, even if our beliefs were capable of influencing the content

of our experiences, that influence is clearly very limited and it is thus unable to

adequately sustain the argument against the possibility of scientific knowledge.
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Moreover, it has been argued that our perceptual experiences play a very minor

role in many experimental frameworks. Scientists often merely observe digits or

needles on a scale (see Fodor 1991). The visual stimuli in such environments are

not ambiguous, vague, or anomalous. Yet the most convincing cases of theory-

laden perceptions involve just such stimuli. Indeed, they are necessary to produce

optical illusions such as the Ames room illusion. Hence, even if we acknowledge

the existence of theory-laden perceptions in some contexts, it is doubtful that they

have much impact on many of our scientific inferences, and they consequently offer

a poor rationale for questioning the possibility of scientific knowledge:

However, note that in all of the above cases the stimuli were either

ambiguous, degraded, or required a difficult perceptual judgement. In

these cases the weak bottom-up information allowed the top-down in-

fluences to have a strong impact on perceptual experience. [...] If

the information to be perceived is whether a needle on an instrument

is registering a 10 on a clear 1-10 scale it is unlikely the theoretical

beliefs of the scientist will be able to override the strong bottom-up

perceptual information. Thus the top-down/bottom-up analysis allows

one to have cases of theory-laden perception, but not necessarily lead

down the slippery slope to relativism. (Brewer and Lambert 2001,

p.S179).

In fact, some philosophers now believe that theory-laden perceptions could at

most be a hindrance to obtaining scientific knowledge in some limited research

contexts in which the visual stimuli are poor. Here is an example:

That our experience is untrustworthy under poor conditions does not

imply that it is always affected by theories, and so does not imply

it cannot be used to test theories objectively. In situations in which
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we carefully examine something in bright light, walk about it, etc.,

we seem unable to make the object look different. In such situations,

our experiences can be used to objectively test theories. This does

not mean, of course, the appearance of things is never deceptive un-

der ideal conditions - perhaps a stick seen through clear and well-lit

water will look bent. However, it does mean that our beliefs are not

determining the way things look, so at least one source of error can be

eliminated (Couvalis 1997, pp.13-14).

In sum, theory-laden perceptions have been recently discussed in philosophy

of science because they seem to accredit a certain form of scepticism about scien-

tific knowledge. The existence of theory-laden perceptions has consequently been

challenged, or they have been dismissed as one of the many sources of potential

error that are inherent in every experimental framework and that we can learn to

control.

Now, this brief overview of the debate about the perceived threat of theory-

laden perceptions to scientific knowledge is of limited interest in and of itself.

What is of interest, however, is that there exists a very similar phenomenon which

has not been examined by philosophers of science even though it is integral to many

scientific inferences. Of even greater interest is that is it not an epistemic nuisance

but rather a desirable phenomenon that can be analysed with mathematical rigour.

Accordingly, I believe that we can now discuss the phenomenon of the theory-

ladenness of observation in a more favourable light. This is what I propose to do

in the following sections.
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3 Statistical Imputation: A Well-Established Scientific Prac-

tice

It is trivial to state that data contain errors. Certain types of errors can be accounted

for by our statistical models. Others can be accounted for on theoretical grounds.

For example, an extreme value in our data set can be rejected because it does not

make any sense according to our best theories (e.g., a body temperature of 60 de-

grees Celsius for a living human being). In other words, we can alter our data set in

conformity with our theoretical beliefs in order to account for errors in our data. In

that sense our final data set can be said to be theory-laden. This kind of inferential

practice has already been noted by philosophers (see Forster 1988 for example).

At this juncture, however, I wish to discuss a very different phenomenon. In

some research contexts, our data are problematic not because they contain errors;

the problem lies in the fact that some of them are missing, i.e., our data set is

incomplete. In such contexts there is no need for recourse to theoretical beliefs

in order to modify our data, but we might need them in order to infer new data

points. To that end, I shall now consider scenarios in which the data (bottom-

up information) are complemented (not altered) by theoretical beliefs in order to

arrive at scientific inferences. Such scenarios have yet to be explored in philosophy

of science.

Data sets with missing data are especially common in social sciences as well

as in clinical and epidemiological research. When the collection of data involves

the participation of many individuals, it is likely that they will mistakenly skip

questions, refuse to answer certain questions, or miss clinical appointments (Sterne

et al. 2009). As a result, statisticians often have to handle missing data in order to

make inferences.

There are many different methods for dealing with missing data, and the effi-
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caciousness of each method depends on the type of missing data involved. Missing

data are of three types. Data can be missing completely at random (MCAR), miss-

ing at random (MAR), or missing not at random (MNAR). This nomenclature can

be found in (Rubin 1976).

In order to elucidate these notions, we must first define some terms. Let X =

(Xi1, Xi2, Xi3, ..., Xip)
T stand for the ith observation of the p variables of a data set,

where i = (1, ..., n). Let j stand for the jth variable, where j = (1, ..., p). Next

consider Xio to be the subset of the variables that are observed for ith observation

and Xim to be the subset of the variables that are missing for ith observation.

We must then define the variable Ri,j. It is an indicator variable that is equal

to 1 if the ith observation of the jth variable is missing and equal to 0 if it is not

missing. This allows us to define the missing value mechanism as follows:

Pr(Ri|Xi)

where

Ri = (Ri1, Ri2, Ri3, ..., Rip)

If Pr(Ri|Xi) = Pr(Ri), then the missing data are MCAR. In other words, if

the non-missing data are simply a random subset of the complete data set, then the

missing data are MCAR. If Pr(Ri|Xi) = Pr(Ri|Xio), then the missing data are

MAR. This means that the probability of obtaining a missing observation depends

only on the observed data. If that probability is also dependent on the unobserved

data, then the missing data are MNAR (see Carpenter and Kenward 2012).

These notions are important because they allow us to assess the use of different

methods to account for missing data. For example, if our missing data are MCAR,

then it might be possible to make sound statistical inferences by eliminating all the

observations that contain at least one missing observation on one of the p variables.

This is called a “complete case analysis”. The drawback to a complete case analysis

10



when the missing data are MCAR is that the number of observations can be quite

low and the power of our tests (the probability of rejecting the null hypothesis when

the latter is false) can therefore also be quite low.

On the other hand, if our missing data are MAR or MNAR, then a complete

case analysis can lead to biased estimates. We there need to treat them quite differ-

ently. We can do so by imputing the missing values, i.e., by inferring the missing

information. This is the main notion that I now wish to discuss in this paper.

In what follows, I will not review the various imputation techniques; the inter-

ested reader is invited to consult the references provided at the end of this article.

My goal is to illustrate statistical imputation, explain how imputed data sets are

similar to theory-laden perceptions, and thus show why theory-laden observations

are created purposefully for their epistemic benefits.

To do this, I shall create a data set with MAR missing data. I shall then compare

various regression estimates. Some will be computed using a complete case anal-

ysis of the data, while others will be computed using a technique called “multiple

imputation” (MI). I shall underscore the benefits of the second method.

The data set with which I shall work consists of 200 observations of three

variables: v1, v2, and v3. Here are the distributions of each variable:

v1i∼U (30, 45)

v2i∼Binomial(1, 0.7)

v3i∼N (2 + 0.9v1i + 0.6v2i, σ2 = 9)

i = (1, 2, ..., 200)

In the following analyses, I shall take for granted that every observation for a given

variable is independent and identically distributed.
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In order to create MAR missing data, I draw from a binomial distribution with

the parameters (1, 0.9). If I draw a 1 and if v3 > 40 or v3 ≤ 34, then I remove

the corresponding observation for v1. If not, then I retain the value for v1 (please

consult the R code for a description of the methodology used). Overall, I remove

55% of the observations of the variable v1.

Now, suppose that the dependent variable is v3. If I were to construct a linear

regression given v2 by ignoring all the missing data (complete case analysis) and

then compare it to the linear regression that I would have obtained if I had no

missing data, then I would obtain the following results:

Figure 1: A linear regression estimate (black line) based on a complete data set (small

circles) and a linear regression estimate (green dashed line) based on an incomplete data

set. The missing data are MAR and v2=0.
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Figure 2: A linear regression estimate (black line) based on a complete data set (small

circles) and a linear regression estimate (green dashed line) based on an incomplete data

set. The missing data are MAR and v2=1.

The two regression lines in Figures 1 and 2 are very different. In fact, it is

apparent that the regression estimates based on the incomplete data (green dashed

lines) set differ significantly from the real function and also from the best estimates

that we can obtain in this situation (the black lines).

We can clearly see that the missing data are a nuisance, and this is where im-

puted data sets come to the rescue. We shall now see that if we use multiple im-

putations (MI) in order to produce an estimate of the function between v1 and v3

for the two different values of v2, the results will be much more satisfying. MI is a

technique that allows us to infer plausible values for the missing data. To be more
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precise, we infer more than one plausible value for each missing datum in order to

account for the variability of the error associated with each inference.

To perform multiple imputation in this case, I shall first use a regression model

in which v3 and v2 are the independent variables and v1 is the dependent variable.

This will allow me to replace the missing observations of v1 with plausible values.

For each replacement value I shall add a random error (please consult the R code

for details). This will create a complete data set on which I shall be able to do a

regression model in which v3 is the dependent variable. I shall then repeat this pro-

cedure 1000 times, take an average of the regression coefficients, and thus obtain

an estimate of the function between v1 and v3 for the two different values of v2.

Here are the results that I obtained using this procedure:
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Figure 3: A linear regression estimate (black line) based on a complete data set (small

circles); a linear regression estimate (blue dotted line) based on 1,000 imputed data sets;

and a linear regression estimate (green dashed line) based on an incomplete data set. The

missing data are MAR and v2=0.
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Figure 4: A linear regression estimate (black line) based on a complete data set (small

circles); a linear regression estimate (blue dotted line) based on 1,000 imputed data sets;

and a linear regression estimate (green dashed line) based on an incomplete data set. The

missing data are MAR and v2=1.

Figures 3 and 4 show that our estimates based on multiple imputed data sets

(blue dotted lines) are much closer to the best linear estimates (black lines) than

those based on the incomplete data sets (green dashed lines). In other words, it is

immediately evident how MI has improved the quality of our estimates.

What is more, I can take the complete data set, eliminate observations based on

the MAR mechanism explained earlier, and compute a regression estimate of v3

in function of v1 and v2 based on the incomplete data set. If I repeat this exercise

10,000 times and take the average of the corresponding regression coefficients,
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then we can form an idea of the bias caused by the missing data. If I do the same

thing for a regression based on 1,000 imputed data sets, then we can also form an

idea of the benefits of the imputation method. Here are the results that I obtained

by doing so (please consult the R code for a description of how these simulations

were performed):

Table 1: Comparison of Regression Coefficients based on 10,000 Simulations

Real Coefficients 2 0.9 0.6

Mean Value of Coefficients (Missing Data) 19.75 0.44 0.34

Mean Value of Coefficients (Imputed Data Set) 4.49 0.83 0.69

Table 1 clearly shows that we have reduced the bias of the coefficients by using

MI. We may thus conclude that MI can improve our statistical inferences.

However, when we work with a real data set, we usually do not know the real

function that relates our variables, we do not have access to the complete data set,

and we do not know the missing value mechanism. We consequently need to use

other methods to assess the benefits of multiple imputations.

In practice, we often need to rely on our knowledge of the data collection meth-

ods in order to justify the hypothesis that we are working under MCAR, MAR, or

MNAR. Let us assume that the MAR hypothesis is well justified and that we need

to know whether our multiple imputation has been successful. In this particular

case, where it is reasonable to suppose that the observations are independent, we

can use a technique called cross-validation.

One of the many ways to implement cross-validation is to remove one observa-

tion from our data set, construct a model, and then compute the square of the differ-

ence between our prediction of the removed observation and that observation. If we

repeat this procedure for every observation in our data set and average the results,

we will obtain a value (LOOCV) that can guide our choice of model: the smaller
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the LOOCV the better (LOOCV stands for “Leave-One-Out Cross-Validation”).

If we compute LOOCV for the different types of regression estimates that we ob-

tained from our data set, then we observe the following results (please consult R

code for details):

Table 2: Comparison of the Leave-One-Out Cross-Validation Score

LOOCV (Complete Data Set) 10.36

LOOCV (Missing Data) 16.61

LOOCV (Imputed Data Sets) 10.47

Table 2 clearly shows that the regression made with multiple imputed data sets is

superior according to the LOOCV score.

We would be able to show very similar results if we had an independent data set

with which to calculate a MSE score, i.e., the mean square difference between the

predictions of our models and the corresponding values given by the independent

data set (please consult the R code for details). The results are shown in Table 3.

Table 3: Comparison of the Mean Square Error Score Calculated with an Independent

Data Set

MSE (Complete Data Set) 8.65

MSE (Missing Data) 16.08

MSE (Imputed Data Sets) 8.99

In sum, whether we look at our example from a perspective in which we know

the real function that relates v3 with v1 and v2 or from a perspective in which we

are trying to assess the quality of our regression models only with the data at hand,

we see that multiple imputation has clear advantages over complete case analysis.

We have thus demonstrated just how helpful it can be to impute missing data and

how we can assess that benefit in practice using cross-validation scores. It should

18



be noted that such scores are used with the observed data only, which have not been

modified in any way.

4 The Comparison between Theory-Laden Perceptions and

Imputed Data Sets

Looking back at the previous two sections, we can see that the imputed data sets

which we have created are fairly similar to theory-laden perceptions. Both are

generated from what can be called “bottom-up information” and “top-down infor-

mation”. In the case of theory-laden perceptions, the bottom-up information is fur-

nished by the visual stimuli; in the case of imputed data sets, it is furnished by the

observed data. When the bottom-up information is degraded, it can be improved

by the top-down information.

Top-down information can be described as empirical generalisations that have

been inductively inferred. These generalisations are usually referred to as “the-

ories”. In the case of theory-laden perceptions, they consist of our background

beliefs about the external world. In the case of the imputed data sets that we have

constructed in the previous section by using a multiple imputation technique, these

generalisations are regression estimates of the function that relates the dependent

variable v1 with the dependent variables v2 and v3. Other imputation methods can

involve different generalisations.

Hence, if the expression “theory-laden perception” is adequate, then the ex-

pression “theory-laden data set” is equally so. In fact, given that data sets are

referred to as “the observations,” imputed data sets can also be said to be theory-

laden observations. The real interest in making such a comparison, of course, is

not purely semantic; it is epistemic.

Unlike in the case of theory-laden perceptions, the existence of imputed data
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sets cannot be challenged. Furthermore, imputed data sets do not constitute an

undesirable obstacle to scientific knowledge. As we saw in the previous section,

we create them purposefully in order to improve our statistical models.

What is particularly noteworthy in the example that I have given is the fact

that we need not worry about an infinite or circular regress of justification when

we rely on imputed data sets. That is because cross-validation techniques allow

us to assess the epistemic benefits of imputation with the observed (non-imputed)

data only. Therefore, the theories used to create the imputed data set are not used

to justify the model we ultimately choose, and that is one of the major epistemic

differences between imputed data sets and theory-laden perceptions (we cannot

compute a cross-validation score with visual stimuli).

In fact, cross-validation is possible because the theories we rely on to impute

data do not alter the observed data but merely complement them. This is a partic-

ularity of imputed data sets that makes them especially interesting from an episte-

mological point of view, since the observed (non-imputed) data can preserve their

neutrality with respect to the theories used for the imputation of the missing data.

It is well known by philosophers of science that we can use our theoretical beliefs

in order to alter the observed data. However, it has not yet been noted that we also

use them to complement the observed data.

At last, we can now enunciate the following three theses:

1. Theory-laden observations need not be treated as an inevitable nuisance.

They can be created purposefully for their epistemic benefits.

2. Certain scientific inferences cannot be understood and assessed unless we

understand how and why our observations are theory-laden.

3. The theories loaded onto our observations need not play a role in the justifi-

cation of our scientific models.
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5 Conclusion

In this paper, I have argued that imputed data sets are analogous to theory-laden

perceptions. I have accordingly shown how theory-laden observations manifest

themselves in some statistical analyses. What is philosophically interesting here,

however, is to realise that inferences based on imputed data sets need not be per-

ceived as being in any way defective. On the contrary, we often purposefully load

our data sets with theories in order to improve our statistical inferences, and we can

obtain evidence that those inferences have been improved using empirical methods

such as cross-validation.

Cross-validation allows us to assess the benefits of statistical imputation using

the observed data only. This is a crucial point. It means that the theoretical assump-

tions which are needed to create an imputed data set do not play a role in justifying

the model that we ultimately choose. The epistemic worries that are usually at-

tributed to theory-laden observations (circular or infinite chains of justification)

consequently dissolve into thin air.

I have illustrated this assertion with a simple example in which I have employed

an imputation method called “multiple imputation”. In doing so I have introduced

important nuances into the existing philosophical literature on the theory-ladenness

of observation. The latter has recently tended to focus narrowly on scepticism,

relativism, and the scientific realism debate. The presentation of uncontroversial

examples of theory-laden observations accompanied by an explanation of why they

matter in science was overdue. This is what I have endeavored to accomplish in

the present paper.
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