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Abstract

Computer simulation of an epistemic landscape model, modified to include explicit

representation of a centralised funding body, show the method of funding allocation has

significant effects on communal trade-off between exploration and exploitation, with

consequences for the community’s ability to generate significant truths. The results show

this effect is contextual, and depends on the size of the landscape being explored, with

funding that includes explicit random allocation performing significantly better than

peer-review on large landscapes. The paper proposes a way of incorporating external

institutional factors in formal social epistemology, and offers a way of bringing such

investigations to bear on current research policy questions.
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1 Introduction

An important topic in social epistemology is the efficient trade-off between exploration (of

new theories, methods, and so forth) and exploitation (of same), seeking both to resolve what

might be an optimal division of cognitive labour, and how such a division might be achieved

(Goldman and Blanchard [2016]). With too little exploration scientists are restricted to

selecting the best theory of a bad lot, never hitting on that most simple and fruitful world

view; with too much exploration, science is swamped by poorly-vetted contenders for our

attention, wasting limited resources that could be put to better use in advancing known

theories and methods.

Previous social epistemology models have focused on the role of internal factors in shifting

the balance between exploration and exploitation. Kitcher ([1990]) and Strevens ([2003]) look

at reward structures (of internal credit, not external monetary rewards) and individual

motivation towards credit or truth. Grim ([2009]) and Zollman ([2010]) look at information
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availability and information transfer between scientists, and at individual beliefs. Weisberg

and Muldoon ([2009]), Alexander et al. ([2015]), Thoma ([2015]), and Pöyhönen ([2016])

look at individual researchers’ social learning strategies.

Current models are limited because they do not account for the influence of external factors

on the exploration/exploitation trade-off. One important external source of direct influence is

the funding allocation mechanism: for academic research supported by grant peer review,

central funding bodies play a key role in determining which research projects are carried out,

and thereby have a direct influence on the division of cognitive labour. The effects of different

funding mechanisms on the exploration/exploitation trade-off in science is already discussed

amongst scientists, in the context of research policy (Brezis [2007]; Graves et al. [2011];

Herbert et al. [2013]; Bollen et al. [2014]; Fang and Casadevall [2016]).

This paper brings the modelling techniques of formal social epistemology to bear on the

role of centralised funding bodies, connecting the modelling literature to the literature on

science funding, including from within philosophy of science (Polanyi [1962]; Gillies [2008],

[2014]). The current work is the first within the modelling lineage outlined above to look at

the effects of an external, institutional factor. By modifying the model introduced by Weisberg

and Muldoon ([2009]) to allow representation of science funding policies, the current paper

brings formal social epistemology closer to having a direct relevance for research policy.

I will argue that the results of the simulations presented based on the modified model are

both significant and surprising. Not only do funding mechanisms matter significantly for the

trade-off between exploration and exploitation, but the simulations show that, under

reasonable parameter values for at least some fields of science, introducing a random element

into the process of project selection leads to better performance, in terms of accumulated

significant truths, compared to funding strategies that rely on historical information, including

project selection by peer review. This is because the role of so-called ‘mavericks’ or

‘explorers’ becomes more important when there is more landscape to explore relative to the

size of the community, and grant peer review biases funding towards more conservative

so-called ‘followers’ or ‘extractors’. On the social epistemology side, the results show a

different way to achieve an effective trade-off between exploration and exploitation, one that is
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more nuanced to the context of a specific field of research. On the science funding side, the

results support, to an extent, the proposal by Gillies and others of explicitly introducing

randomness into the selection process of research projects.

2 Theoretical background

Social epistemology of science has been wrangling for some time with the question of the

efficient trade-off between exploration and exploitation. Flexing our whiggish muscles we

could map the distinction between Normal and Revolutionary science onto this problem

(Kuhn [1970]), but the contemporary, model-driven, economic-language flavoured form of the

problem comes from (Kitcher [1990], [1993]). Kitcher’s models use the transition from

individual pursuit of truth to collective pursuit of truth to show how non-epistemic motives

(for example the pursuit of credit) can lead to better collective epistemic results – specifically

by shifting the above-mentioned trade-off towards more exploration. One line of further work

stayed close to Kitcher’s marginal utility models, but gradually refined the factors that go into

the credit maximisation calculations performed by the scientists in the model, taking into

account subtleties of competition and collaboration, and their effect over time on the

population-level trade-off between exploration and exploitation (Brock and Durlauf [1999];

Strevens [2003]; De Langhe [2014]). A second line looked beyond credit maximisation to the

interaction between scientists as a factor that affects the division of labour: one sub-branch

explored models with a homogenous population of scientists but with varying levels of

connectivity within the population (Grim [2009]; Zollman [2010]), while another sub-branch

explored models with heterogenous populations, with some scientists being more

exploration-oriented than others (Weisberg and Muldoon [2009]; Alexander et al. [2015];

Thoma [2015]; Pöyhönen [2016]). An important methodological innovation of the latter

branch is the introduction of epistemic landscapes, which explicitly add to the model

something for the scientists to explore.

The works surveyed above have given us sophisticated and helpful advice on how to get a

better balance of exploration and exploitation in science: one should

• divide credit equally between contributors,
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• provide credit only to the first discoverers of a breakthrough,

• limit connectivity between scientific groups, and

• provide extra rewards for mavericks.

There is, however, a pernicious shared assumption across all the works above: it is the

scientists themselves, through their individual choices and guided by constraints and incentive

structures, who get to decide what research gets done. This is at best only partially true. There

are more potential research projects and more aspiring researchers than can be supported

(financially, institutionally) at any given time, and so the selection of the (rather small) subset

of research projects that get carried out at any given time is largely under the control of

centralised funding agencies (at least if we limit the scope to academic science). Now, this is

not to say scientists have no control over their research projects; indeed, this degree of

freedom is often the reason given for why talented and educated individuals are willing to

suffer much lower salaries than their colleagues employed in industry or running private

ventures. The freedom of the researcher is, however, limited: she gets to shape her research

proposal, but must strike a balance between what she thinks would be interesting or good for

her career and what might get funded, and even then more often than not her proposal will not

be funded and the project will not take place, thus mattering little to the collective division of

labour. It should be mentioned, though, that once funded the researcher has much more

control over her contribution to the collective pursuit of knowledge, at least until the grant

runs out; in this time-limited domain the models surveyed above would take full force, but

they should be adjusted accordingly. More importantly for our investigation here, the role of

centralised funding bodies and the effects of their selection processes on the division of

cognitive labour should at least be considered if we want a more complete picture of the

exploration/exploitation trade-off.

National funding bodies support much of contemporary science (Kennedy [2012]). The

mechanisms of selection for funding, primarily peer review of prospective research-project

proposals (“grant peer review”), and the selection criteria deployed within these mechanisms,

have gained increasing attention within philosophy of science outside formal social
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epistemology (Gillies [2008]; O’Malley et al. [2009]; Haufe [2013]; Lee [2015]). To start

bridging the conceptual gap between formal social epistemology and studies of science

funding we should introduce some of the concepts used in the latter literature. A good

common starting ground is the view that science aims at discovering significant truths, namely

not just any truths, but truths that will eventually contribute in a meaningful way to wellbeing

(Kitcher [2001]). This is the justification for the public support of science, including basic

science (Bush [1945]). Some funding terminology: research projects have high ’impact’ (ex

post) if they result in significant truths; projects have high ’merit’ (ex ante) if they are

predicted to have high impact.

Polanyi ([1962]) analysed merit as being composed of three components: scientific value,

plausibility and originality. Polanyi notes an essential tension between plausibility and

originality: the more original a project, the more difficult it is to evaluate its plausibility.

Polanyi advocates selection by peer review as a conformist position, that sacrifices the

occasional meritorious original project while ensuring all supported research projects are

plausible, to ‘prevent the adulteration of science by cranks and dabblers’ (p. 8). Gillies

([2008], [2014]) takes an opposing position, arguing that the cost of losing (infrequent) highly

original and meritorious research is much greater than the cost of occasionally supporting

implausible research that ends up being of low impact. As an alternative to peer review,

Gillies advocates random selection, as do Greenberg ([1998]) and Fang and Casadevall

([2016]). We thus find the exploration/exploitation tension at the heart of philosophical

analysis of science funding mechanisms, and are ready to deploy the tools perfected within

formal social epistemology to explore more carefully the relevance of funding mechanisms to

the question of the division of cognitive labour. To do so, I will present yet-another modified

version of Weisberg and Muldoon’s epistemic landscape model, but one that has explicit

representation of centralised funding.

3 Model description

The model represents a population of scientists exploring a topic of scientific interest. They

are all funded by the same central funding body to pursue projects of varying duration,

6



measured in years. Each project’s significance is allocated in advance by the modeller, from a

‘god’s-eye’ perspective (this is the ‘height’ of each point of the landscape).1 When grants end

scientists successfully complete their projects. Their projects’ results contribute to the

collection of significant truths in the field’s corpus of knowledge. Funding mechanisms are

compared by their ability to generate this accumulation of significant truths.

We should note two ways in which this already deviates from the models in existing

literature. One clear deviation is the addition of a funding mechanism, which means scientists

do not simply persist in the model throughout the simulation: sometimes they get renewal

grants and can continue previous research programmes, but sometimes their funding runs out

and they are eliminated from the simulation; meanwhile, new entrants to the field appear and

compete for funding. A more subtle deviation is the time duration represented in the model.

One ‘turn’ in previous models represented a timescale of a few months, whereas one turn in

my simulation is one year. While this is on roughly the same order of magnitude, it would

have an effect on reasonable assumption about how much work a scientist can do per turn, and

also how coarse or fine-grained we should take our model coordinates to be, which influences

reasonable movement strategies (how ‘far’ would a scientist go when transitioning from one

project to the next).

For simplicity, scientists in the model (unrealistically) do not share their findings nor

explore similar projects during research. They only work on the project for which they were

funded and they only share their results at the end of a grant. This is a clear deviation from

previous work that has focused on agent-agent interaction as a dominant factor in division of

cognitive labour. By setting aside the direct interaction factor I show that even when only

considering indirect interaction (via the centralised funding body and via the landscape itself,

as described below) there is a significant effect on the division of cognitive labour. I look

1The assigned value of significance is not meant to represent an objective value of the

research project, nor argue that such assignment indicates such objective value exists. Rather,

the assigned significance represents the intersubjective evaluation of the research project’s

epistemic contributions were it completed, given the notions of wellbeing prevalent in the

society in which the research would take place.
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forward to future work that will consider the interplay of these factors.

Funding is represented as a process of selection. In every time step, the scientists whose

grants have run out are placed in a pool of candidates along with new entrants to the field, and

the modelled funding mechanism selects from this pool of candidates those who will receive

funding and carry out research projects. Modelled funding mechanisms differ in the way they

select individuals, as outlined below.

Actual potential, which can only be known from a god’s-eye perspective, is the

significance of a project’s results, were it successfully completed today. In the absence of

time-dependant merit, actual potential is simply the significance of the project’s results.

However, in the presence of time-dependence the significance could change between the

initiation of the project (at the point of funding) and its completion (at the point of

contributing the results to the relevant corpus). This means that in the presence of

time-dependence, actual potential might diverge from the eventual contribution of the project.

Estimated potential is the scientific community’s ex ante evaluation (assumed, for

simplicity, to be single-valued) of the merit of a proposed project. This prediction is taken to

rely on the known contributions of past projects which bear some similarity to the proposed

project, and so depends on the history of research projects in the field. In representing

decisions based on the research community’s prediction, this selection method is akin to

peer-review.

Past funding is a method of allocating funding to those scientists who already received

funding in the past, and only to them. The model (unrealistically) represents all scientists as

being of equal skill, and so this mechanism cannot be taken to mean the selection of the most

‘intrinsically able’ scientists. Rather, this mechanism is included as a ‘most conservative’

option, not admitting any new researchers to the field beyond the field’s original investigators.

This funding mechanism reproduces the model dynamics of previous work: the same

population persists throughout the simulation.

Under a lottery, all candidates have equal chances of being funded. The lottery option

serves both as a natural benchmark for other funding methods, and as an idealised

representation of the mechanisms proposed by Greenberg, Gillies, Fang and Casadevall.
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The essence of the model is the comparison of the performance of these selection

mechanisms in generating results of high significance over time under various conditions.

To represent in the model the time-dependence of merit, the significance contributions of

different project results are allowed to change over time as a response to scientists’ actions.

Three dynamic processes are included in the model (details in §4.5). Two processes involve a

reduction of significance following a successful project or breakthrough, which reflects the

one-off nature of discovery (a mechanism similar to one of these has been used by Pöyhönen

in his model). The third process involves an increase in significance when a new avenue of

research is opened by a major discovery. Simulations based on the model show that these

dynamic processes have a significant effect on the relative performance of different funding

strategies.

4 Simulation details

4.1 Simulating the epistemic landscape

Like previous work, the model was explored using computer simulations.2 The basic structure

of the landscape simulation follows prior work by representing a research topic with a range

of possible research projects as a two-dimensional configuration space, charted with two

coordinates x and y, with an associated scalar field represented in a third dimension as height

along the z axis. Each (x, y) coordinate pair specifies a different potential research project; the

closer two projects are on the landscape, the more similar they are. The scalar value associated

to the coordinate represents the significance of the result obtained on a successful completion

of the project, were it completed today (allowing for time dependence). The limit to two

spatial dimensions of variation between projects is likely to be unrealistic (Wilkins [2008]),

2Source code for the simulation is available at

<https://github.com/shaharavin/FundingSimulator>. Since my model introduces major

changes, new code was written instead of reusing previously existing code. Nonetheless, I

would encourage future work to rely on existing code, especially when available as

open-source.
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but a higher-dimensional alternative would make the model much less tractable.3

In each run of the simulation, the landscape is generated anew in the following process:

1. Initialise a flat surface of the required dimensions.

2. Choose a random location on the surface.

3. Pick random values for relative height, width along x, and width along y.

4. Add to the landscape a hill at the location chosen in step 2 by using a bivariate Gaussian

distribution with the parameters picked in step 3.

5. Repeat steps 2-4 until the specified number of hills is reached.

6. Scale up linearly the height of the landscape according to the specified maximum height.

This process generates the ‘god’s-eye’ perspective of the research potential of the domain.

Here and later, random variables are used to fill-in parameters whose existence is essential for

the simulation, but where 1. the specific values they take can vary across a range of valid

model targets, and/or 2. there is no compelling empirical evidence to choose a particular

value. This requires, however, several runs of the simulation for each configuration, to average

out the effects of random variation. The control over the number and size of hills allows

variation of ‘ruggedness’, and values used in simulation runs have tended towards higher

ruggedness, as least when compared to Weisberg and Muldoon’s model and similar later

iterations; this is in accordance with the model presented by Pöyhönen.

3A known limitation of low-dimensionality is an artificial amplification of ‘peak shift’

problems, as transition between distant peaks is easier in higher dimensions (Gavrilets [2004]).

This is a problem for any landscape model that features hill-climbers, including this work and

previous work done on epistemic landscapes. The negative effect is much reduced, however, if

agents are allowed to ‘hop’, as in the models of Grim ([2009]) and Thoma ([2015]), or if the

population itself can change, for example in response to funding decisions as presented here.

10



4.2 Simulating agents

The agents in the model represent scientists investigating the research topic. Each agent

represents an independent researcher or small group, and is characterised by its location on the

landscape, representing the project they are currently pursuing, and a countdown counter,

representing the time remaining until their current project is finished. Like Weisberg and

Muldoon’s ‘hill climbers’, agents are simulated as local maximisers. Agents follow the

following strategy every simulation step:

1. Reduce countdown by 1.

2. If countdown is not zero: remain in same location.

3. If countdown is zero: contribute to the accumulated significance the significance of the

current location, and attempt to move to the highest local neighbour.

Note that the update rule, or search strategy, is naive compared to the more advanced

strategies explored by Weisberg and Muldoon, Alexander et al., Thoma and Pöyhönen. This is

because the focus of the current model is on the effects of centralised funding rather than the

effects of researcher strategies. This naive strategy is, however, somewhat realistic if we

interpret the coordinate space as being fairly coarse-grained, and so moving far from one’s

current position would represent a significant (and costly) change to one’s lab equipment and

practices. Furthermore, due to the fact that agents spend multiple turns in the same location,

and the occasional elimination of agents from the landscape, agents tend to have much shorter

‘trajectories’ on the landscape, and so the specific project-choice strategy they pursue matters

less.

In the simulation, the agents are identical, in the sense that any agent, when successfully

completing a project of a given significance, will contribute exactly that amount to the

accumulated significance in the field. This simplification, which also exists in all previous

models mentioned in the introduction, ignores natural ability and gained experience. In the

context of the current model this can be reasoned as representing a particular approach to

science funding, which funds projects, rather than funding people. Focusing on this approach

to funding is informed by the explicit policies of certain funding bodies, for example the
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National Institutes of Health (NIH), reflected, for example, in the institution of blind peer

review. Thus, the results of the current work would not extend to the minority of science

funding bodies, such as the Wellcome Trust, that make explicit their preference to fund people

rather than projects.

The ‘local neighbourhood’ of an agent is defined as the 3 × 3 square centred on their current

position. The attempt to move to the highest neighbour depends on the selection (funding)

mechanism, as discussed below. The ‘accumulated significance’, which is the sum of all

individual contributions to significance, is stored as a global variable of the simulation and

used to compare strategies (a similar measure has been proposed by Pöyhönen as superior to

the success measures used by Weisberg and Muldoon).

In the beginning of the simulation, a specified number of agents are seeded in random

locations on the landscape, with randomly generated countdowns selected from a specified

range of values.4 An example of an initial seeding of agents can be seen in Fig. 1.

In the absence of selection and time-dependence, the course of the simulation is easy to

describe: agents begin in random locations on a random landscape, and as the simulation

progresses the agents finish projects and climb local hills, until, after an amount of time which

depends on the size of the landscape, the number and size of peaks, and the duration of grants,

all agents trace a path to their local maxima and stay there. Since agents increase their local

significance during the climb, the rate of significance accumulation increases initially, until all

agents reach their local maxima, at which point significance continues accumulating at a fixed

rate indefinitely. This is the dynamic seen in Weisberg and Muldoon’s simulation for a pure

community of ‘hill climbers’, and its unrealistic nature highlights the importance of

simulating the time-dependence of significance.

4The seeding of agents at random locations is likely an unrealistic simplification, as the

history of the field, individual training, and social networks are likely to affect the kinds of

projects researchers would consider pursuing. These internal factors, all likely to be relevant

to diversity and epistemic success, are set aside in the current work as it focuses on the role of

the external funding mechanism. Future work will hopefully combine these two streams.
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Figure 1: Landscape simulation with initial seeding of agents. Each number on the landscape
represents an agent at its location, with the value of the number representing the agent’s count-
down. Brightness indicates the height (significance) of each position (project) in the landscape.
Each simulation run a new landscape is generated using the method described in the text.

4.3 Simulating communal knowledge

In addition to their contribution to significance, agents also contribute to the ‘visibility’ of the

landscape.5 The visibility of a project represents whether the scientific community, and

especially funding bodies, can estimate the significance contribution of that project. Initially,

the entire landscape is invisible, representing full uncertainty. Upon initial seeding of agents,

each agent contributes vision of their local region to the total vision. As the agents move, they

add vision of their new local region. Visibility is used in the ‘best_visible’ funding mechanism

described below.

As one anonymous reviewer pointed out, the vision distance of agents may end up playing a

crucial role in the relative success of funding mechanisms, and so the choice of parameters

should be explored carefully. Distance between adjacent coordinates, as in previous epistemic

landscape models, is a measure of similarity between projects. To get a better handle on how

far researchers should be able to ‘see’, we need a better understanding of just how similar two

5Visibility as a model feature has been explored in a different model by Muldoon and

Weisberg ([2011]).
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adjacent coordinates are. One way to do so is to relate the ‘vision’ distance to the ‘movement’

distance. Agent movement was described above as local hill climbing, with a movement

distance of one tile. The justification for this movement rule, which also appears in previous

modelling work, was that agents are constrained by existing laboratory equipment and

practices from changing their research agenda too drastically. However, even given these

inertial constraints there should be room to manoeuvre, and so it follows that landscape

coordinates are coarse-grained with respect to project similarity, such that a one-tile distance

represents a sizeable change in project content.

The movement of agents also allows us to link the theoretical landscape coordinates to

empirical results. Boudreau et al. ([2016]) measured the correlation between the novelty of

research proposals and their peer-review scores. They measured project novelty by the overlap

between key terms describing the proposal (assigned by an independent expert classifier) and

the terms appearing in existing literature. They found a clear pattern, where proposals score

highest when about half their key terms overlap with past literature and half are novel; a

precipitous drop in scores occurs when proposals have more than 70% novel terms (Boudreau

et al. [2016], Fig. 3). If we assume scientists are aware of this pattern, we would expect

progressive research proposals from the same researcher to have about 50% novel terms, or

perhaps a little less, say 40% or 30% novelty, if inertia is taken into account. The existing

movement rule then suggests a one-tile distance on the landscape represents a 50%-70%

content similarity. This would make a distance of two tiles represent 25%-50% similarity, and

a distance of three tiles represent 6%-25% similarity. Given Boudreau et al’s findings, this

would make proposals at distance of three or more tiles from past projects effectively

un-fundable under peer-review. A high degree of myopia (short vision distance) seems

realistic. To account for the difference between movement distance and vision distance, the

vision update rule has been set such that agents can ‘see’ two tiles away: twice as far as they

can move.

Boudreau et al’s findings provide an interpretation of the model’s ‘vision distance’ in terms

of anti-novelty bias. It follows that the representation of visibility in the model as a binary

value (either the community can ‘see’ a potential project or it cannot) is simplistic. A more
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realistic representation will allow partial visibility, with some distance decay effect, such that

the community would still be able to make predictions of significance for less familiar

projects, but these predictions will contain a mixture of an uncertainty element (a random

error due to the novelty of the project) and an anti-novelty bias element. This addition,

however, will be computationally costly, as it will require maintaining multiple versions of the

landscape, both for the real values and for the estimated values, and so it is left for future work.

4.4 Simulating funding strategies

The aim of the model is to explore the effects of funding mechanisms on the population and

distribution of investigators. Since the aim is to simulate current funding practices (albeit in a

highly idealised manner), and since current funding practices operate in passive mode

(choosing from proposals originating from scientists rather than dictating which projects

ought be pursued), the guiding principle of the simulation is that a funding mechanism is akin

to a selection process: at each step of the simulation, the actual population of agents is a

subset of the candidate or potential population, where inclusion in the actual population

follows a certain selection mechanism.

Funding mechanisms are simulated in the following manner, every simulation step:

1. Place all agents with zero countdown in a pool of ‘old candidates’.

2. Generate a set of new candidate agents, in a process identical to the seeding of agents in

the beginning of the simulation.

3. Select from the joint pool of (old candidates + new candidates) a subset according to the

selection mechanism specified by the funding method.

4. Only selected agents are placed on the landscape and take part in the remainder of the

simulation, the rest are ignored.

The simulation can represent four different funding mechanisms:

best selects the candidates which are located at the highest points, regardless of the

visibility of their locations. This simulates a mechanism which selects the most promising
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projects from a god’s eye perspective. This overly optimistic mechanism does not represent a

real funding strategy. Rather, it serves as an ideal benchmark against which realistic funding

mechanisms are measured.

best_visible filters out candidates which are located at ‘invisible’ locations, namely

candidates who propose to work on projects which are too different from present or past

projects. It then selects the candidates in the highest locations from the remainder. This

strategy is closer to a realistic representation of selection by peer review. Note that even this

version is epistemically optimistic, as it assumes the selection panel has successfully gathered

all available information from all the different agents, both past and present.

lotto selects candidates at random from the candidate pool, disregarding the visibility and

height of their locations.

oldboys represents no selection: old candidates continue, no new candidates are generated.

The key parameters for all funding mechanisms are the size of the candidate pool and the

size of the selection pool. The size of the candidate pool, which in turn depends on the size of

the new candidate pool (as the size of the old candidate pool emerges from the simulation),

has been chosen in the simulations such that the total candidate pool is equal in size to the

initial number of agents (except ‘oldboys’ where there are no new candidates). This means the

success probability changes between funding rounds, around a mean which is equal to

1/(average countdown). With an average grant duration of five years, this yields a success rate

of 20%, close to (and in some cases quite a bit higher than) the real value in many

contemporary funding schemes (NIH [2014]). The number of grants awarded each year is set

to equal the number of grants completed each year, maintaining a fixed size for the population

of investigators.

For simplicity, the simulated funding mechanisms do not take into account the positions of

existing agents on the landscape, except indirectly when considering their vision. Future

simulations may consider a selection mechanism which explicitly favours either diversity or

agglomeration, which would have the most direct effect on the question of division of

cognitive labour explored here, though it is not clear whether an actual funding scheme could

be put together that would successfully operationalise and measure diversity (Stirling [2007]).
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4.5 Simulating merit dynamics

To make the simulation more realistic, the significance of projects is allowed to change over

time in response to research activities of the community of investigators. Three such dynamic

processes are included in the simulation:

Winner takes it all: As was made explicit by Strevens ([2003]), the utility gain of

discovery is a one-off event: the first (recognised) discovery of X may greatly contribute to the

collective utility, but there is little or no contribution from further discoveries of X. In the

simulation, this is represented by setting the significance of a location to zero whenever an

agent at that location has finished their project and made their contribution to accumulated

significance. This effect is triggered whenever any countdown reaches zero, which makes it

quite common, but it has a very localised effect, only affecting the significance of a single

project. A similar dynamic has been introduced by Pöyhönen, though in his model only a

fraction of significance is removed. The variation in timescales accounts for this difference:

while it is unreasonable that a scientist would ‘extract’ all the significant results in a single

few-month pass over a field, she is much more likely to do so after exploring it for several

years.

Reduced novelty: When a researcher makes a significant discovery, simulated by finishing

a project with associated significance above a certain threshold, the novelty of similar projects

is reduced. Following Polanyi, who considered novelty to be one of the components of

scientific merit, the effect of reduced novelty is represented by a reduction of significance in a

local area around the discovery.

New avenues: When a researcher makes a significant discovery, it opens up the possibility

of new avenues of research, simulated in the model by the appearance of a new

randomly-shaped hill at a random location on the landscape.6

6Without going into the details for lack of space, an example of this kind of effect can be

seen in the influence of Chargaff’s experiment on the perceived value of the experiment of

Hershey and Chase, which in turn had an effect on the significance of the work of Watson and

Crick (Allen [1975]).
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5 Results and discussion

Here I present the results of simulations in a series of experiments, exploring the relative

success of different funding mechanisms under different conditions.

In the first four experiments, simulation results show a comparison between different

funding mechanisms as a plot of total accumulated significance (arbitrary units) at the end of

the simulation run, averaged over five runs per funding mechanism with different random

seeds. In all simulations the range of countdowns was 2 to 7, and simulations were ran for 50

steps, simulating 50 years of research with grant durations ranging from two to seven years.

5.1 Experiment 1: Only ‘Winner takes it all’

The first experiment starts close to prior work: only one dynamic process is simulated:

‘Winner takes it all’, the elimination of remaining significance in a very localised region

around completed projects. This dynamic process is similar to the one introduced in

Pöyhönen’s model. The main difference from prior work is the introduction of funding

mechanisms, instead of social learning, as the difference maker between experiment groups.

Since preliminary results showed an important role for the size of the landscape, results are

shown for a range of landscape sizes (Fig. 2). For reference, previous work following

Weisberg and Muldoon’s model uses the original size of (100 × 100). The number of peaks

and the number of agents were scaled with the size of the landscape, so that the per-tile

frequency of peaks and agents was kept fixed (at 1/100 and 1/200 respectively).

5.2 Experiment 2: All dynamic mechanisms

The second experiment is identical to the first except each simulation now also incorporates

the ‘Reduced novelty’ and ‘New avenues’ dynamic mechanisms, which are triggered only

when a project of sufficiently high significance is completed. The trigger for

significance-dependant processes was set to 0.7 of the global maximum. Results are shown in

Fig. 3.

To get a sense for how the community is affected by the funding mechanism, I present

visualisations of the state of the landscape at the end of the simulation run for the two funding
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Figure 2: Comparison of significance accumulation under different funding mechanisms for
different landscape sizes. Only ‘Winner takes it all’ dynamic mechanism is at play in the
simulations.
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Figure 3: Comparison of significance accumulation under different funding mechanisms for
different landscape sizes. All three dynamic mechanisms are at play in the simulations.

mechanisms mentioned in the introduction (‘best_visible’ and ‘lotto’) in Fig. 4. Note that due

to the ‘Winner takes it all’ dynamic process it is possible to ‘see’ the past trajectory of

exploration, as completed projects leave behind highly localised points of zero (remaining)

significance. This allows for a visual representation of the division of cognitive labour that

emerges under different funding schemes.

5.3 Experiment 3: Adding a new funding mechanism – ‘triage’

One possible explanation for the relative success of the ‘lotto’ funding mechanism in the

previous experiments is that it allows the community to access previously ‘unseen’ portions of

the landscape, in effect encouraging more exploration than ‘oldboys’ or ‘best_visible’.

However, ‘lotto’ ignores knowledge of expected significance gains even when these are

known, potentially resulting in waste. This suggests an improvement in the form of a novel

funding mechanism, ‘triage’, that provides some funding according to available data within

the vision range of the centralised funding body, and distributes the rest of the funding to
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(a) best_visible

(b) lotto

Figure 4: Landscape visualisation at the end of the simulation run under different funding
mechanisms. Brighter locations represent points of higher (remaining) significance).
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researchers outside its vision range (these may be considered ‘mavericks’ in relation to

previous work).7 Something like ‘triage’ seems to be at play in some contemporary funding

agencies who allocate most funds according to merit-based grant peer review, but allocate

some funds for high-risk research (though this too is often done using grant peer review, albeit

with a different guidance to reviewers). In the simulation I model this mechanism with a

50%/50% divide between ‘best_visible’ within-vision and ‘lotto’ outside-vision. Results for

simulations with only ‘Winner takes it all’ are shown in Fig. 5a and for simulations with all

three dynamic process in Fig. 5b.

5.4 Experiment 4: Varying the degree of myopia

As discussed above, the vision distance of the funding body is likely to play an important role

in the relative success of different funding mechanisms. We have already seen above, from

performance of the ‘best’ funding mechanism, that under full vision selection by merit

performs best. §4.3 argued, from comparison to movement distance, that a vision range of two

tiles is realistic. It is still interesting to explore just how much vision is required for

merit-based selection to outperform funding by lottery. To test this, I ran the simulation with

increasing values of ‘vision range’, under different scenarios.8 Fig. 6 shows a comparison of

accumulated significance at the end of the run across different vision ranges and different

funding mechanisms, on a (150 × 150) landscape with all three dynamic processes.

A vision range of two to three tiles, which seems plausible given the coarse-grained

interpretation of the coordinates, leads to an advantage for ‘lotto’ over ‘best_visible’. Further

relaxation of the funders’ myopia may challenge the significance of some of the results

obtained in previous experiments, though notice that ‘triage’, which incorporates an explicit

element of random selection, maintains an edge over ‘best_visible’ even if vision range is

increased to four or five tiles.
7There are similarities between the ‘triage’ mechanism and the ‘focal randomisation’

mechanism proposed by Brezis ([2007]).
8In the simulation, whenever a new project is started, the area that is added to the region

marked as ‘visible’ is a circle of radius r + 1/2 centred on the new project, where r is the

vision range.
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(a) Only ‘Winner takes it all’.

(b) All three dynamic mechanisms.

Figure 5: Comparison of significance accumulation under different funding mechanisms, in-
cluding ‘triage’, for different landscape sizes.
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Figure 6: Comparison of significance accumulation under different funding mechanisms for
different vision ranges.
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5.5 Experiment 5: Variability of individual epistemic gain

So far, experiments have looked at the accumulated significance at the end of the simulation,

after 50 simulation steps, representing 50 years of research in the domain. This was

considered an appropriate measure from the perspective of evaluating the social epistemic

effectiveness of different funding mechanisms under different conditions. However, we may

worry that funding bodies are not interested merely in long term epistemic gains, but also in

year-by-year, individual-by-individual epistemic gains, which are required to justify to other

branches of government the need for continued support for research.9 We can imagine, for

example, that while funding by ‘lottery’ or ‘triage’ may outperform ‘best_visible’ in the long

run, they may have higher individual variability in terms of epistemic contributions which

would be considered too risky for funders. To test this, I’ve compared the discrete epistemic

contributions of individuals across the 50 years represented in the simulation, across the

different funding mechanisms, using a box-and-whisker plot to demonstrate the distribution of

values. Results are presented in Fig. 7 for a (150 × 150) landscape. In the presence of only the

‘winner takes it all’ dynamic mechanism (Fig. 7a) ‘best_visible’ does indeed provide more of

a minimum-quality guarantee than ‘lotto’, but in the presence of all three dynamic

mechanisms (Fig. 7b) this safeguard advantage disappears.

5.6 Experiment 6: Likelihood of renewal

A key assumption of the model is that, due to the dynamic nature of merit, eventual epistemic

gain is hard to evaluate. If this assumption is carried over to the science policy domain, it

might imply that instead of justifying continued funding based on actual epistemic

contributions, funding bodies may be able to spin a tale about the benefits of the research that

has been historically funded, regardless of its relative merit in relation to other projects that

could have been funded. For a funding body that pursues this ‘hype up past results’ strategy, a

funding mechanism would be preferable not because it leads to high epistemic gains, but

9I would like to thank an anonymous reviewer for raising this concern.

25



(a) Only ‘Winner takes it all’.

(b) All three dynamic mechanisms.

Figure 7: Comparison of individual epistemic contributions under different funding mecha-
nisms.
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because it has a high likelihood of directing funds to previously-funded researchers.10 The

most conservative funding mechanism, ‘oldboys’, was specifically designed to only provide

funds to historically funded individuals (100% renewal). How well do the other funding

mechanisms perform in terms of providing fund renewals? To test this, I’ve compared the

renewal likelihood for individuals across the 50 years represented in the simulation, across the

different funding mechanisms, using a box-and-whisker plot to demonstrate the distribution of

values. Results are presented in Fig. 8 for a (150 × 150) landscape, in the presence of all three

dynamic mechanisms.

Figure 8: Comparison of renewal likelihood under different funding mechanisms.

10There are also less cynical reasons to favour mechanisms that provide continuous funding,

such as buildup of tacit knowledge, re-use of existing facilities, and the attraction of stable

career paths, none of which are included in the current model and may be explored in future

work.
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6 Discussion

The key result is that the choice of funding mechanism has a significant effect on the scientific

community’s ability to generate impactful research, at least for sufficiently large landscapes

(size 100 × 100 and above). Landscape size represents the number of distinct approaches or

projects that can be undertaken to explore a scientific topic, with the two landscape

dimensions (x and y) representing two independent ways in which projects could differ. A

landscape of total size 10,000 represents a situation where we can conceive of 10,000 distinct

hypothetical grant proposal all addressing the same topic (though some would be of much

greater merit than others). This seems too high if we think of a very specialised topic, but,

since the context of this paper is science funding, we should consider all the projects that get

lumped together into a single ‘study section’. Under this reading, a ‘topic’ can be as broad as

‘search for novel cancer therapies’ or ‘search for better understanding of bio-molecular

cellular mechanisms involved in development’, and the number 10,000 seems, if anything, too

low, even given the coarse-grained interpretation of the landscape coordinates argued for in

§4.3. Furthermore, interdisciplinary links between topics, now commonplace, may generate

joint landscapes that are much larger than the specific landscapes corresponding to each

disciplinary topic area. Nonetheless, this context sensitivity should be kept in mind both for

policy relevance (not all research fields are ‘broad’ in the relevant sense) and for experimental

testing of the results shown above.

Funding mechanisms have a significant effect, and size matters, but which mechanisms

perform best? As is clear from the simulations, when only the ‘Winner takes it all’ dynamic

mechanism is in play the ‘best’ funding mechanism is indeed best at accumulating

significance over time, though with various lead margins over the second best strategy.

However, as mentioned above, the ‘best’ funding strategy is not realisable, as it requires a

‘god’s eye’ view of the epistemic landscape. Interestingly, when all three dynamic

mechanisms are at play, the performance of ‘best’ on large landscapes is, within simulation

variability, similar to that of ‘lotto’ and ‘triage’. This suggests that the specific ways in which

scientific merit is time dependant, a phenomenon which is generally recognised but poorly

characterised, has direct relevance to the design of scientific institutions.
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An important factor in the epistemic success of peer-review-based funding mechanisms

relative to non-peer-review-based mechanisms is the ‘vision range’ of scientists. Grant peer

review, represented in the model by ‘best_visible’, is considered the ‘gold standard’ of ex ante

project evaluation and selection, though in the simulations it often performs worse than ‘lotto’

and ‘triage’. As expected, when the ability of reviewers to accurately assign merit to novel

projects increases (greater ‘vision rage’), the relative success of ‘best_visible’ increases

relative to ‘oldboys’, ‘lotto’, and ‘best’ (‘triage’ also benefits from increased vision range).

The empirical work of Boudreau et al. ([2016]) mentioned in §4.3 suggests that reviewer bias

against novel proposals is a real phenomenon. The model presented here sketches how this

bias could lead to significant loss of epistemic opportunity on the community level, and why

we might want to opt for a funding mechanism that is not (or not entirely) based on peer

review.

In addition to relative success with respect to long-term communal epistemic gains, the

simulations were also used to evaluate two other metrics that may be important for funding

institutions: variability of individual epistemic contributions, and likelihood of renewal of

funding. One reason funding bodies might seek low variability is their accountability to the

taxpayer, and they may be asked by the taxpayers’ representatives to show epistemic progress

on an annual level or even on a single grant level (Brennan [2013]). The simulations show that

‘best_visible’ does result in lower variability compared to ‘lotto’, though when all three

dynamic mechanisms are at play this advantage is small and the epistemic price paid is high.

This underscores the above call for further study of merit dynamics, as it may offer an in

principle reason for why governance of science at the single project level is likely to be

counterproductive.

Since evaluation of individual epistemic contributions is hard, another way to increase

accountability is to seek a high renewal rate, with the underlying reasoning that experienced

scientists are better placed to undertake new research projects relative to inexperienced

scientists. The present model challenges this view by representing a counter argument: new

entrants to the field are not encumbered by previous intellectual and material investments, and

are therefore more likely to work on novel or neglected topics. Such topics are likely to be of
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higher epistemic value, especially given merit dynamics. Thus, while ‘oldboys’ and

‘best_visible’ display high renewal rates and relatively low long-term epistemic gains, ‘lotto’,

‘triage’, and ‘best’ display low renewal rates and relatively high long-term epistemic gains.

This may be surprising from a policy and intuition perspective, but follows the thrust of

previous work in social epistemology, that shows increased diversity and exploration

significantly contributes to collective epistemic performance.

The kind of diversity that contributes to communal epistemic success in the current work is

cognitive diversity, namely the range of different (and dissimilar) projects pursued by the

community. Cognitive diversity is linked to individual diversity (the range of individuals that

make up the scientific community) through the introduction of project-choice inertia. An

important aspect of diversity highlighted by the model is diversity over time, represented by a

low renewal rate, which promotes exploration of novel and neglected areas of the landscape. It

should be noted that the model implicitly favours this kind of diversity, by introducing

dynamic processes that reduce local merit (through reduced novelty) while increasing merit at

potentially distant locations (via new research avenues). These processes are historically and

theoretically grounded, but more research is required to evaluate their frequency and

magnitude, and to explore other possible mechanisms that may reinforce or contradict their

effects. In addition, there are reasons to think that allocation of resources to experienced

researchers would have epistemic benefits despite reduced diversity, which would put pressure

on the results presented here. Hopefully these will be explored in future models.

7 Conclusion

This paper presents a way to extend existing epistemic landscape models so that they can

represent selection by a central funding body. The modified model was used in computer

simulations to compare the effectiveness of different idealised versions of selection criteria,

most notably selection based on past successes (akin to peer review), random selection and no

selection. The most significant result from the simulation is that on a large landscape, when a

topic can be explored in many ways that could be very different from each other, random

selection performs much better than selection based on past performance.
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This result fits in with a general result from the body of work on agent-based models of

scientific communities, that shows diversity in the community trumps individual pursuit of

excellence as a way of making communal epistemic progress. The tension of science funding,

between originality and plausibility, is thus a part of the broader tension between diversity and

excellence, between exploration and exploitation.

Previous social epistemology models have focused on the role of internal factors in shifting

the balance between exploration and exploitation. The current work looks at the effects of an

external, institutional factor, with direct relevance to science policy. Hopefully future work in

this vain will continue this trend, to deliver on the challenge set out by Kitcher ([1990], p. 22):

How do we best design social institutions for the advancement of learning? The

philosophers have ignored the social structure of science. The point, however, is

to change it.

We could start by advocating for funding mechanisms that allow for more exploration.

Of course, the results from a single idealised model should not be used to directly shape

policy. Nonetheless, the current model has a role to play within the growing literature looking

at alternative funding mechanisms (Brezis [2007]; Gillies [2008], [2014]; Graves et al.

[2011]; Herbert et al. [2013]; Bollen et al. [2014]; Fang and Casadevall [2016]). As current

institutions are being questioned, the importance of conceptual clarity on key terms increases.

What do we mean by ‘merit’ and ‘impact’? What notions of ‘diversity’ are useful in this

context? Do bibliometric indicators provide relevant evidence for comparing funding

mechanisms? These questions are being debated outside philosophy of science, with real

policies at stake. In New Zealand, the Health Research Council has started a pilot of funding

projects using a gated lottery (Barnett et al. [2015]). Meanwhile, funding bodies in Australia

are actively opposed to this mechanism (Barnett [2016]). The field is known to be hard to

study due to limited access to the grant review process (Chubin and Hackett [1990], [1994])

and due to methodological difficulties in evaluating the impact of research (Dinges [2005]).

For formal social epistemology there could be no better testing grounds for the modelling

techniques developed over the past decade: can our models fix useful concepts and provide

templates for causal mechanisms that could be at play? Could they be used to help shape the
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debate around emerging policy decisions? The answers will come from future work in the

field.
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