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Abstract 
 
The p-value is the probability under the null hypothesis of obtaining an experimental result 

that is at least as extreme as the one that we have actually obtained. That probability plays a 

crucial role in frequentist statistical inferences. But if we take the word ‘extreme’ to mean 

‘improbable’, then we can show that this type of inference can be very problematic. In this 

paper, I argue that it is a mistake to make such an interpretation. Under minimal assumptions 

about the alternative hypothesis, I explain why ‘extreme’ means ‘outside the most precise 

predicted range of experimental outcomes for a given upper bound probability of error’. 

Doing so, I rebut recent formulations of recurrent criticisms against the frequentist approach 

in statistics and underscore the importance of random variables. 
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On the Correct Interpretation of P-values and the Importance of Random 
Variables 
 

1. Introduction. A frequentist approach1 to theory testing (FA) dictates the following 

decision rule with regards to the null hypothesis (H0)2. It can be stated as follows: 

If the probability of observing an experimental outcome that is at least as extreme as the one 
we have actually observed is too low given that H0 is true, then we should reject H0. 
 

That probability is called ‘the p-value’ and this general definition is one on which every 

statistician (scientist) can agree. For instance, here is how Eric-Jan Wagenmakers defines the 

p-value: 

The probability of encountering a value of a test statistic that is at least as extreme as the one that is actually 
observed, given that the null hypothesis is true (Wagenmakers 2007, 799) [emphasis added]. 
 

 Complications arise when we wish to cash-out the meaning of the term ‘extreme’. 

According to one particular interpretation that we often encounter in the philosophical and 

in the scientific literature, ‘extreme’ means ‘improbable’. It is such that we can demonstrate 

that (FA) is inadequate.  

 In this paper, I explain why we must discard that faulty interpretation. Under minimal 

assumptions about the alternative hypothesis, I argue that the word ‘extreme’ means ‘outside 

the most precise predicted range of experimental outcomes for a given upper bound 

probability of error’. By the same token, I show why random variables are important. They 

                                                        
1  There are two main schools of thought in frequentist testing:  the Fisherian and the Neyman-Pearson. The 
decision rule presented here is more adequate for a Neyman-Pearson framework. According to the latter, the 
rejection of H0 implies the acceptance of an alternative hypothesis (H1). The Neyman-Pearson approach 
accordingly aims to minimise the probability of rejecting H0 when H0 is true (the type-I error) and to minimise 
the probability of rejecting H1 when H1 is true (the type-II error). Fisher, on the other hand, was against a 
formal treatment of the type-II error. He also criticised the ‘accept/reject’ procedure and preferred to interpret 
the p-value as providing degrees of evidence against H0. I will alert the reader when the differences can matter. 
2 The null hypothesis is the default hypothesis. It is the one that we accept unless the evidence suggests that we 
should reject it. 
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allow us to give precise measures of dispersion and of central tendencies under H0, which in 

turns allow us to determine a precise range for our predictions. The main motivation for this 

work is to root-out many criticisms of (FA) that are now entrenched3 in the philosophical and 

scientific literature. 

In the first part of this paper, I make it clear that (FA) is inadequate if we take ‘extreme’ 

to mean ‘improbable’. Firstly, I demonstrate how a frequentist decision procedure could 

suggest two incompatible courses of action to be taken at the same time (reject H0 and do 

not reject H0). To do this, I combine two very similar arguments against (FA). One of them 

has been put forward by Daniel Greco (2011) and the other, by Elliott Sober (2008).  

Secondly, I show that many inferences would not make any sense. To bring this point home, 

I present an argument that has been brought back to light by Wagenmakers (2007). I also 

discuss an interesting variation on that argument (Greco 2011).  

In the second and third part, I explain why it is a mistake to interpret ‘extreme’ as 

‘improbable’ and argue that it means ‘outside the most precise predicted range of 

experimental outcomes for a given probability of error’ when we make minimal assumptions 

about the alternative hypothesis. I also underscore the fact that random variables are 

particularly valuable to frequentist theory-testing.  As a result, I solve the problems 

mentioned in the first part of this paper.  

Unless specified otherwise, I will always assume that we are in a Fisherian context, i.e., 

one where there is no formal treatment of the alternative hypothesis. I will use expressions 

such as ‘reject H0’ and ‘decision rule’. But a true Fisherian might want to ready ‘we have 

evidence against H0’ and ‘rule of inference’. 

                                                        
3 What I mean by ‘entrenched’ is that they are recurrent and appear in high-profile publications. 
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2. A Faulty Interpretation of P-values 

2.1 One Experiment, Two Incompatible Decisions to Take 

There are many critical arguments against (FA) that rest on an interpretation of the 

word ‘extreme’ as ‘improbable’. In this section, I present two of them and reach a 

contradiction. The first one has recently been put forward by Daniel Greco (2011). Greco 

maintains that Fisher’s decision procedure to reject H0 (see footnote 1) validates the 

following argument called ‘the probabilistic modus tollens’ (PMT)4: 

“(P1)  If the null hypothesis is true, then the value for the test statistic will probably not be 
at least as extreme as x. 

 
(P2) The value for the test statistic is at least as extreme as x. Therefore: 
 
(C) Probably, the null hypothesis is false” (Greco 2011, 611) [emphasis added]. 
 

He then goes on to show that PMT is invalid with the help of the following example: 

What’s wrong with PMT? I roll a die 10 times. The sequence of number showing on the face of the die is as 
follows: 4, 4, 1, 3, 1, 3, 6, 3, 4, 3. Call this sequence S. Now, consider the hypothesis that the die is fair –each face 
is equally likely to come up, and each roll is independent from the rest. The probability that I should obtain 
sequence S upon rolling the die 10 times, on the hypothesis that the die is fair, is quite low (in particular, it is 
the same as the probability for any other particular sequence: 1/6 to the tenth power). But I did obtain sequence 
S. PMT would tell us to conclude that the die is probably not fair. But this would be silly (Greco 2011, 311-312) 

Here, Greco correctly points out that every possible experimental outcome will be 

very improbable (1/6 to the tenth power). This means, according to him, that for any x that 

we might choose in (P1), our observations will be at least as improbable (i.e., as extreme) as 

x. S certainly is, thus we should reject H0. In fact, if we follow this line of reasoning, we will 

                                                        
4 Elliott Sober coined the expression ‘probabilistic modus tollens’. I shall also explain why he claims that it is 
invalid. 
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always reject H0, which is very silly indeed5. Therefore, (FA) cannot be wholly adequate. 

But things get even worse when we interpret that very same experiment with the help 

of the p-value, like Sober does (Sober 2008, 55)6. Here is the formal interpretation of the p-

value when we take ‘extreme’ to mean ‘improbable’: 

(Def1) A p-value is the probability of the disjunction of all the possible experimental 
outcomes that are at least as improbable as the event that we observed given that H0 
is true. 

In order to determine the p-value in this case, that definition implies that we should compute 

the sum of the probability of obtaining S and of all the other possible outcomes that are at 

least as improbable as S, i.e., all of them. This obviously implies that our p-value will be equal 

to 1 and that we will never reject H0. Now that is troubling to say the least. We can actually 

infer a contradiction if we follow both lines of reasoning: A (We should reject H0) and not-A 

(It is not the case that we should reject H0).  

Of course, neither Greco nor Sober claim that frequentists cannot find a better way to 

test whether or not a die is fair. But they have to endorse the idea that such a contradiction 

can be inferred if we follow the frequentist rules of decision: the probabilistic modus tollens 

and the inference rule based on the p-value (see introduction). I will ultimately show that 

they are mistaken. 

2.2 Inexplicable Decisions 

The previous problem appears to be relatively local. It depends heavily on the fact that 

experimental outcomes are equiprobable. But there are even more serious problems 

                                                        
5 Ian Hacking traces back the origin of that fallacy to John Arbuthnot (1710) (Hacking 1965, 75). 
6 Sober actually discusses an experiment involving a coin. But the point is essentially the same. 
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afflicting (FA) when we interpret ‘extreme’ as ‘improbable’. In what follows I expound an 

argument that we can find in (Wagenmakers 2007, 782)7. 

Consider two distributions under H0: f(x) and h(x). Both are defined in Table 1. 

Suppose that both of our test statistics is equal to 5. 

Table 1: different p-values for x=5 

Distribution x=1 x=2 x=3 x=4 x=5 x=6 

f(x)|H0 0.5 0.3 0.1 0.06 0.03 0.01 

h(x)|H0 0.5 0.3 0.1 0.045 0.03 0.025 

 

As we can see, they are both as extreme (improbable) given their corresponding distribution 

under H0. Their probability is equal to 0.03. However, the p-values are quite different (see 

Def1). The p-value associated with f(x)|H0 is equal to 0.04 and the p-value associated with 

h(x)|H0 is equal to 0.055. This means that we will reject H0 with the test involving f(x) but 

not with the test involving h(x) if the significance level8 of our tests is equal to 0.05. We will 

do so even if the test statistic is as extreme (improbable) in both cases. This is 

incomprehensible and this problem is quite serious because it does not depend on any 

particular kind of distribution.  

 The incomprehension stems from two assumptions. Firstly, if an observation is too 

improbable (extreme) to keep f(x)|H0, then an equally improbable (extreme) observation 

under h(x)|H0 should lead us to reject h(x)|H0 as well. Secondly, we should not take into 

                                                        
7  Wagenmakers’ article also provides references to other scientific work in which we can find the same 
argument. 
8 The significance level of a test (𝛼 for short) is the threshold that determines if a p-value is low enough to reject 
H0. 
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account the probability of an unobserved state (x=6) in order to implement our decision to 

keep or reject the hypotheses. Here is how Harrold Jeffreys ironically describes the situation: 

“What the use of P implies, therefore, is that a hypothesis that may be true may be rejected 

because it has not predicted observation results that have not occurred. This seems a 

remarkable procedure” (Jeffrey 1961, 385). 

 The second assumption is obvious from a Bayesian or a likelihoodist perspective. 

From a Bayesian point of view we are interested in computing the posterior distribution over 

our hypotheses, given the actual observations only. From a likelihoodist perspective we are 

interested in comparing the probability of the actual observations given under competing 

hypotheses. But in the cases presented above we are not comparing H0 with any other 

hypotheses and we are not even interested in computing the probability of H1. In fact, from 

a frequentist point of view, hypotheses do not have probabilities. Clearly, we are facing 

different inferential paradigms and the frequentist one seems thick with paradoxes. 

Now, we can further exploit the difference between the p-value and the probability of 

a test statistic in order to reach another kind of unacceptable result in a context where we 

would specify an alternative hypothesis –as one would do if she were following the Neyman-

Pearson methodology. Here is an interesting example by Greco. Let us look at Figure 1 (the 

original figure from Greco’s article) and imagine that our test statistic is 2.5 and that our p-

value is less than 0.01. 
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Figure 1 

 

 

According to Greco, while it is true that the probability of observing a statistic at least 

as extreme as 2.5 is very low according to H0 and very high according to H1, the actual 

probability of observing 2.5 is lower according to H1 than it is according to H0: “In fact, while 

it is quite unlikely on the null hypothesis that the test statistic should take the value of 2.5, it 

is even more unlikely on the alternative hypothesis” (Greco 2011, 622-23). Therefore, says 

Greco, the p-value leads to the wrong conclusion. The test statistics is clearly more extreme 

under H1…or is it? 

Greco actually makes a mistake here. The fact is that the probability of observing a test 

statistic of 2.5 is the same under H0 and H1. It is equal to 0 because we are dealing with 

probability density functions. When a random variable is continuous, a probability is defined 

as an integral of the associated density function and the area under a curve at any point is 
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always 0. We can only determine to probability that our test statistic falls within a given 

interval.  

More specifically, it is a mistake to interpret the value of a density function f(x) for a 

given x as a probability. A density function f(x) can take values that are much greater than 1. 

For example, a uniform distribution f(x) over the interval [0, 0.2] will always be equal to 5. 

This does not mean that Greco’s point is lost. We could easily imagine a ‘discretised’ 

version of H0 and H1 (where the mass distributed on each outcomes is a probability) in order 

to make the same point. However, Greco’s mistake raises an interesting question. If every 

possible value that a continuous variable X can take is attributed a probability of 0, then how 

can we ever determine that one value is more extreme (improbable) than any other? How 

could (Def1) seriously be applicable at all? It looks as if it is impossible to define a reasonable 

critical region9 for a test that involves density distributions. This ‘puzzle’ should be a serious 

hint that we might have been working with the wrong definition of ‘extreme’ all along.  

In the next section, I solve this ‘puzzle’, and explain why ‘extreme’ was never meant to 

mean ‘improbable’. I show that all of the problems that have been discussed so far dissolve if 

we take the time to understand the kind of inference we wish to make within (FA). I also 

revisit the ‘fair die’ experiment, to make my case more vivid.  

My aim in this paper is not to show that (FA) embodies the best inferential procedure. 

I aim to show that (FA) stands on its own, i.e., that it does not generate paradoxes of the kind 

I have presented in this section. Hence, I will not make a thorough comparison between (FA) 

and other approaches, like the Bayesian approach. Instead, I will reach three main objectives.  

                                                        
9 A critical region is a set of extreme outcomes such that we would reject H0 if our test statistic belonged to it. If 
every possible outcome is as extreme as any other, then the critical region includes (or excludes) all of them, 
which is unreasonable. 
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Firstly, I will show why it is false to claim that if an observation is too extreme to keep 

f(x)|H0, then an equally improbable observation under h(x)|H0 necessarily lead us to reject 

h(x)|H0. Secondly, I am going to justify why frequentists need to take into account the 

unobserved values over which we define a distribution. Finally, I shall argue that a frequentist 

test will not suggest that we should both keep and reject H0, as it was implied by the 

combination of Greco’s and Sober’s critical comments. Doing so, I will propose a sound 

definition of the p-value. 

 

3. Extreme values are not determined independently from a given 
distribution 

The criticisms presented in the previous section all rest on the same fundamental 

mistake. To highlight it as clearly as possible, I will make an analogy by expounding a simple 

(non-probabilistic) inference about a distribution. Suppose that we wish to make an 

inference about the way in which a cooperative shares its profits. We assume that it shares 

them equally among its members. There are 100000 members and an amount of 10 dollars 

to share. Therefore, our assumption implies that everyone will receive 0.0001 dollar.   

Naturally, we cannot falsify the assumption about the distribution of the profits simply 

by pointing out that a member has received the very small amount of 0.0001 dollar. We do 

not first determine what constitutes an amount of money that is too big or too small 

(extreme); make observations; and then make an inference about the way in which the 

cooperative distributes its profits. This is absurd. We cannot define the set of extreme 

amounts (anything above or below 0.0001 dollar) independently from the distribution that 

we wish to test. 
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The same goes for a frequentist test. We cannot define what is extreme regardless of 

the distribution that we are testing. For instance, consider f(x)|H0 as defined in Table 1. It 

would be mistake to stipulate that 0.03 is too improbable (extreme); observe x=5; and then 

infer that f(x)|H0 is an inadequate distribution because it implies that the probability of 

observing x=5 is 0.03. With such an inferential method, we would always reject every 

continuous distribution under H0 and every discrete distribution under H0 that has a mode 

(i.e., the most probable outcome) with a probability that is smaller or equal to 0.03. In other 

words, we would be able to make inferences about mass or density distributions without 

even knowing any of their properties. That would be a remarkable procedure. 

The mistake lies in the fact that when we take ‘extreme’ to mean ‘improbable’, we 

stipulate that there is a degree of improbability that qualifies an outcome as being extreme 

and that degree is determined independently from the distribution under H0 that we are 

putting under test. That mistake is being made when it is claimed that x=5 is equally extreme 

under both distributions in Table 1 because they are equally improbable. It is also committed 

when it is claimed that our observation is more extreme under H0 than under H1 in Figure 1 

because it is less probable under H0. Furthermore, it is at the root of Greco’s ‘die experiment’. 

In that example, he stipulates that S is too extreme (improbable) by standards that are 

independent from the distribution that he is testing; observes S and then rejects H0. Now, I 

am not disputing the fact that this is an incorrect inference. I am saying that this is not an 

inference that would be sanctioned by the frequentist approach. 

In a frequentist test, H0 specifies the parameter(s) of the distribution of a test statistic. 
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The goal of the test is to figure out if the distribution of the mass or of the density10 over the 

possible outcomes of our experiment is reasonable under H0. To achieve that goal, we need 

to make a prediction with the distribution under the assumption that H0 is true. But in many 

cases we cannot predict which value a random variable will take. We can define distributions 

for which the probability of each possible experimental outcomes is as close to 0 as we want.  

 However, a distribution can allow us to predict a probable range of experimental 

outcomes. For example, we can predict with probability 1 that our experiment will yield one 

of the possible outcomes allowed by a distribution. This would be 100% accurate, but very 

imprecise. Of course, the idea is to strike the perfect balance between accuracy and precision. 

In fact, when we have no idea about what would be the true density if H0 were false, 

a frequentist test consists in predicting the most precise (smallest) range of experimental 

outcomes, given a certain upper bound probability of error, under the assumption that H0 is 

true. If the result of an experiment falls outside the predicted range, then H0 is rejected. 

Extreme outcomes are thus defined as those who fall outside the most precise predicted 

range of outcomes for a given upper bound probability of error. This implies that we need to 

know the distribution that we are testing in order to define what is extreme. This was not the 

case when we considered extreme outcomes to be improbable outcomes. 

Consider the following example. Figure 2 represents a normal distribution under H0 

with a mean of 0 and a standard deviation of 5. The vertical blue lines determine three 

standard deviations from the mean. 

                                                        
10 When we are dealing with discrete variables, we talk about the distribution of mass and when we are working 
with continuous variables, we talk about the distribution of density. 
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Figure 2 

 

The random variable involved here is continuous and it is such that if we have a very precise 

instrument to measure the magnitude of this variable, then it is certain that we will observe 

something that is very improbable. Therefore, it would be a mistake to make an inference 

about this distribution based on the probability of our observation. It is simply impossible to 

make an interesting prediction about one outcome. 

But if we examine the mean of this distribution and the dispersion of the random 

variable with respect to that central tendency, we see that the most precise predicted range 

of outcomes for a given upper bound probability of error will be centred on the mean. The 
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length of that range will vary according to the upper bound probability of error that we allow. 

Naturally, the extreme outcomes will lie in the tails of that distribution. In other words, an 

extreme observation in that case would be one that is too far from the mean of that 

distribution (i.e., too deviant). 

This is actually how R. A. Fisher analyses tests involving normal distributions (0,1). He 

makes it clear that the ‘extreme’ values are not those that are improbable (they are all 

improbable), but those that are too deviant: 

Twice the standard deviation is exceeded only about once in 22 trials, thrice the standard deviation only once 
in 370 trials, while Table II. shows that to exceed the standard deviation sixfold would need nearly a thousand 
million trials. The value for which P =.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a 
limit in judging whether a deviation is to be considered significant or not. Deviations exceeding twice the 
standard deviation are thus formally regarded as significant (Fisher 1925, 47-48).  

 

On the other hand, if we examine the uniform density distribution over the interval 

[0,1] that is depicted in Figure 3, we quickly realise that the random variable is equally 

dispersed around the mean (0.5) such that our experimental outcomes will  have no tendency 

to be close or far from the mean within that interval. Each blue line determines 1 standard 

deviation from the mean and they all contain the same density.  

This means that there is no such thing as the most precise range of prediction given 

an upper bound probability of mistake that is greater than 0. For example, if we set the upper 

bound probability of error to 0.05, we will find an infinity of ranges of prediction that are 

equally precise (of the same length). Only an observation that would fall beyond the interval 

[0,1] would lead us to believe that the distribution is inadequate. In such a theoretical 

scenario, the probability to obtain an observation that lies in the critical region under H0 is 
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zero. Such a result would be decisive against H0. 

Figure 3 

 

In sum, whether or not we are dealing with a density or a mass function, the inferential 

procedure is relatively simple. Firstly we identify the most precise predicted range of 

outcomes under H0 for a given upper bound probability of error. Secondly, we determine if 

our observation falls outside that range. If it does, then we reject H0. This inferential 

procedure is very different from the one depicted by Greco in section 2. 

Now, it is possible to find the most precise predicted range for a given upper bound 

probability of error under H0 for any kind of distribution. For example, if the distribution is 
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asymmetric (see Figure 4), the required predicted range will be longer on one side of the 

mode and shorter on the other side. Moreover, if the distribution is multimodal, then we will 

find a union of disjoint predicted ranges. 

 Once we have made our predictions and performed our experiment, it is possible to 

determine what would have been the smallest upper bound probability of error that would 

exclude our observation from the predicted range. That probability will give us the p-value. 

If it is smaller equal to the initial upper bound probability of error, then we know that our 

observation fell outside our predicted range. 

Under minimal assumptions about the alternative hypothesis, the p-value can thus be 

defined as follows: 

(Def2) A p-value is the smallest upper bound probability of error under H0 that would 
exclude our observation from the most precise predicted range of experimental 
outcomes. 

 

This definition is more precise than the more general definition given in the introduction. 

When we do not know anything specific about the alternative hypothesis, (Def2) gives the 

probability to obtain a result that is at least as extreme as the one that we have observed. 

It is also important to notice that (Def2) gives a central function to random variables. 

They allow us to give precise measures of distance that allow us to determine the precision 

of our predicted range under H0. They also us to identify the most precise range of prediction 

because they make it possible to determine a variety of central tendencies and measures of 

dispersion. For example, without random variables there is no such thing as a mean and there 

is no measure of dispersion like a variance. It is therefore not surprising to see that some 
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textbooks straightforwardly define a statistical hypothesis as a statement concerning the 

distribution of random variables: 

“A statistical hypothesis is a statement about the probability distribution of a random 
variable” (Hines et al. 2003, 266) [emphasis on ‘random variable’ added] 
 
“Definition 3. A statistical hypothesis is an assertion about the distribution of one or more 
random variables” (Hogg & Craig 1995, 284) [emphasis on ‘random variable’ added]11 
 

4. Setting the Record Straight 

4.1 The Strange Case of Table 1 

Equipped with this corrected definition of the p-value and of the word ‘extreme’, we 

can now solve the problems expounded in section 2 more explicitly. If we look at Table 1, we 

can now easily explain why we would reject f(x) under H0 and not h(x) under H0. When we 

consider f(x)|H0, the most precise predicted range for an upper bound probability of error of 

0.05 includes the elements in the following set: {1, 2, 3, 4}.  Therefore, the element in the set 

{5, 6} are extreme values. Since we observe x=5, then we reject H0. 

On the other hand, there is no such thing as the most precise predicted range for 

h(x)|H0, given an upper bound probability of error of 0.05 (we cannot find a unique one). The 

best we can do is to give the most precise range of prediction for an upper bound probability 

of error of 0.025. Accordingly, the predicted range would include the elements in the 

following set: {1, 2, 3, 4, 5} and x=6 would be the only extreme value. Since we observe x=5, 

we do not reject H0. 

                                                        
11 That definition is more precise since there might be more than one variable involved in a statistical test. 
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Given the two tests, we would also reach the exact same conclusion with the p-value. 

Given that we have observed x=5, the smallest upper bound probability of mistake that would 

exclude x=5 from the most precise predicted range is 0.04 when we consider f(x)|H0 and 

0.055 when we consider h(x)|H0. Thus for an upper bound probability of error equal to 0.05, 

we know that x=5 falls outside the predicted range when we consider f(x)|H0, but not when 

we consider h(x)|H0. 

Obviously, under this interpretation, x=5 is not as extreme under f(x)|H0 and under 

h(x)|H0. Hence there is no paradox. It is not true that if we observe an extreme outcome 

under f(x)|H0, then we should also reject h(x)|H0 because what we observe is equally 

improbable given their respective distribution. The evidence that we have against a 

distribution under H0 is that we have observed something that falls outside the most precise 

predicted range for an upper bound probability of error of 0.05. That range is simply not the 

same for different distributions. 

Furthermore, we can see why it is justified to take into consideration the probability 

of outcomes that are not observed in order to make an adequate inference. We need to 

consider the mass or the density over every possible outcomes in order to determine the 

predicted range and the range of extreme outcomes. Pace Jeffreys, there is nothing 

particularly counterintuitive about this procedure.  

Here is an analogy to illustrate this. To evaluate an archer, we can measure just how 

much further from the centre the arrow could have hit an officially regulated target. If that 

distance is very small, then we can have an indication that the archer was not very good on 

this occasion. In other words, it makes a lot of sense to make an inference based on possible 
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(unobserved) hits. 

4.2 The Puzzle of Figure 1 

 Moving on to another puzzle, we saw that Figure 1 sets the conditions for a Neyman-

Pearson test where an alternative hypothesis H1 is defined. In that specific scenario, we know 

that the alternative hypothesis defines a distribution with a mass that is essentially located 

to the right of the distribution under H0. Under these conditions, we will impose a slightly 

different restriction on our predicted range under H0 and the definition of ‘extreme’ and ‘p-

value’ will have to be slightly modified as well. This is because the assumptions about the 

alternative hypothesis are not minimal. 

We can think of a Neyman-Pearson test as providing two mutually exclusive predicted 

ranges of possible outcomes. One prediction will be made under H0 and the other one under 

H1. Both ranges are constructed such that if an outcome does not belong to one of them, then 

it belongs to the other. 

The conditions of the test are such that for a given upper bound probability of error 

under H0 we will maximize both the accuracy (not the precision) of our predicted range 

under H0 and the accuracy of our predicted range under H1. This equivalent to maximizing 

the probability to make a true prediction under H1 given an upper bound probability of error 

under H0. The point is to maximise the probability to obtain a correct prediction under H1 

when H1 is true for a small probability to obtain an incorrect prediction under H0 when H0 

is true. 

Just like before, the extreme outcomes will be the ones that fall outside the predicted 
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range under H0 and the p-value will be the smallest upper bound probability of error that 

excludes the outcome that we have obtained from the predicted range under H0 that satisfies 

the previous restrictions. The rule of decision will be the same as before. 

 Now, Figure 1 shows that an extreme outcome is not necessarily less probable under 

H0 than under H1 (I am pretending here that the distribution is discrete and not continuous). 

But once we carefully explain the inferential procedure behind a Neyman-Pearson test, there 

is nothing particularly puzzling about that fact. Perhaps one might wonder if we could not 

minimize the upper bound probability of error under H0 by including our observation (2.5) 

in the predicted range under H0. The gain in accuracy under H0 would be greater than the 

loss of accuracy under H1. But this is not a problem for (FA). It simply suggests that the test 

can be improved. One cannot criticise an inferential approach with a poorly designed test. 

Hence, we can solve the puzzle presented12 by Figure 1. 

4.3 Is the Die Fair or Not? 

 Finally, it is now possible to understand why the ‘fair die’ test does not lead to a 

contradiction. In a nutshell, it was a mistake to rely on the improbability of the experimental 

outcome in order to infer that we should reject H0. That much was said in section 3. But the 

mistake runs deeper.  

In fact, there is very little that we can do if the distribution of our test statistic under 

H0 is a uniform distribution. The only extreme outcomes are the ones that fall outside the 

                                                        
12  I would like to point out that the puzzle is not very convincing. The only difference between the two 
distributions in Figure 1 should be a difference of parameters. It is not obvious to see what kind of parameter 
would create both distributions when we change its value. 



 21 

interval defined by its parameters (i.e., results that should not happen). But an extreme result 

only mean that those parameters are wrong. In other words, an extreme outcomes implies 

that the die has more than 6 faces and this is not what we intend to test when we want to 

know if our die is fair or not. Not only did Greco misidentified the critical region of the test, 

but the test was not even the right one. 

If we define our test correctly, our decision procedure will not suggest two 

incompatible courses of action to be taken at the same time.  Here is how the experiment 

could be made. For starters, we roll a fair die 50 times13 and obtain the following sequence S 

(the sequence should be read from left to right and from the top to the bottom)14. 

 

 

 

 

 

 

 

                                                        
13 Here I make 50 rolls instead of ten because it validates the following chi-square test and it makes every 
possible vectors very improbable. 

14 A computer simulation of a fair die generated the latter (see Annex). 
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Rolling a Fair Die X50 (simulation on R with the TeachingDemos package) 

 

 

Secondly, we study the ‘behaviour’ of the random vector that corresponds to the 

possible frequencies of each possible values of the die. That vector follows a multinomial law 

that can be stated as such:  

𝑃(𝑋1 = 𝑥1, … , 𝑋6 = 𝑥6) =
50!

𝑥1! … 𝑥6!
𝜋1

𝑥1 … 𝜋6
𝑥6  

Thus, what we have here is a multinomial experiment and our aim is to tell if our six 

parameters 𝜋𝑖  are equal to 1/6. The statistical hypothesis that we wish to test in this case can 

be written as follows: 



 23 

𝐻0: 𝜋1 = 𝜋2 = 𝜋3 = 𝜋4 = 𝜋5 = 𝜋6 = 1/6, 

and our observed statistic is (9, 7, 7, 7, 13, 7). 

At this point, what is important to realise is that all the vectors that we might observe 

will be very improbable when H0 is true. When we maximise the mass function, we obtain a 

probability of 0.0001081195 (see Annex). Thus, we are one step away from reaching one of 

the disastrous conclusions that we inferred in section 1. Indeed, if we consider the 

probabilistic modus tollens; take ‘extreme’ to mean ‘improbable’; and consider 

0.0001081195 to be ‘too improbable’; then we will always reject H0 because every possible 

vector will be at least as improbable as 0.0001081195. 

But if we interpret ‘extreme’ as ‘outside the most precise range of prediction for a 

given upper bound probability of error’, then we safely avoid that disastrous conclusion.  

What H0 implies is that our observation should not be ‘too far’ away from the mode of the 

multinomial law because our range of prediction will be centred on that mode. Therefore, we 

have to focus our attention on the improbability of our observations to be at least as distant 

from the mean under H0 as the values of the possible experimental outcomes associated with 

the significance level α, as opposed to the probability of our observations per se.  In this case, 

our observation does not fall outside the predicted range. 

In order to show this (things are easier to visualise in 2 dimensions), we can actually 

take a shortcut and study a different test statistic by using a “Goodness of Fit” test. Such a test 

examines the difference between the frequencies that we are supposed to observe under H0 

and the frequencies that we actually observe. If we do that test (see Annex), we obtain a chi-
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square statistic of 3.52 with 5 degrees of freedom (df=5)15, and a p-value of 0.6204. 

According to (Def2), we do not reject H0 with a significance level of 0.01 because the 

p-value indicates that our observation does not fall outside the predicted range. To convince 

ourselves of this, we can look at Figure 4, which shows a chi-square density function with 5 

degrees of freedom. We can immediately tell that the most precise predicted range will be on 

the left side of the positive real number axis and that it will be of a longer length on the right 

side of the mode than on the left side of the mode. We also tell that 3.52 will sit comfortably 

within the predicted range for a reasonable chance of error (not too big).  

 

 

 

 

 

 

 

 

                                                        
15  We define the distribution with 5 degrees of freedom because once we have counted the observed 
frequencies for 5 dimensions of our random vector, we can simply deduce the frequency associated with the 
remaining dimension. 
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FIGURE 4 

 
 

In short, what I have shown is that we cannot avoid the hard work of studying the 

central tendencies and the dispersion of the distribution under H0 in order to make a ‘fair 

die’ experiment. It is the only way to find out if our test statistic is too deviant for the 

distribution (whether it is discrete or continuous) to be reasonable. Of course, as my 

examples show, the probability of our test statistic under H0 can be very low. But this is to 

be expected under H0. Therefore, this information does not provide any evidence against the 

adequacy of the distribution under H0. 
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5. Conclusion. In this paper I have argued that it is a serious mistake to interpret ‘extreme’ 

to mean ‘improbable’ as we try to analyse the nature of frequentist statistical inferences. That 

mistake is the source of many critical arguments against the frequentist approach. In this 

paper, I have argued that we can dismiss such arguments by explaining why ‘extreme’ cannot 

possibly mean ‘improbable’ and why it should mean ‘outside the most precise predicted 

range for a given upper bound probability of error’, when we make minimal assumptions 

about the alternative hypothesis.  

One of the key ideas that I have put forward is that we cannot define what is extreme 

independently from the distribution that we are considering. I have also given an appropriate 

definition for the p-value. Doing so, I have also stressed the importance of random variables 

in order to give precise measures of dispersion and of central tendencies. They are essential 

to establish the precision of our predictions. 

 For the most part of this paper, I have worked under a Fisherian framework (where 

there is no formal treatment of the type-II error). I have also assumed that we do not know 

anything specific about the alternative hypothesis. I did so because those are the conditions 

under which most the criticisms presented in section 2 are defined. But I have also explained 

how to extend my conclusion to a context where we make stronger assumptions about the 

alternative hypothesis. As discussed in section 4.2, the resulting definition of ‘extreme’ and 

‘p-value’ will essentially stay the same but the restrictions on the predicted ranges will be 

slightly different. 

 Overall, my aim was to show that the frequentist approach to theory testing was not 

undermined by the kind of paradoxes that were presented in section 2. In that respect, I 

argued that it was not internally incoherent. But whether or not this approach provides a 
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good epistemic framework in comparison with other inferential paradigms remains open for 

debate. This is a difficult question because the frequentists do not assign probabilities to 

hypotheses. Nevertheless, it would be interesting to study the extent to which an adequate 

epistemic interpretation of frequentist tests and of the p-value would yield compatible 

(incompatible) epistemic judgments in comparison with other approaches, such as the 

Bayesian approach. This is a topic for a future work. 
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Annex 

Here is the program that I used to obtain S with R: 

  library(TeachingDemos)  

dice(rolls=50, ndice=1, sides=6, plot.it=TRUE)  

Here is the program that I used to perform a ‘Goodness of Fit’ test with R: 

 vect=c(9,7,7,7,13,7)   

vectprob=c(1/6,1/6,1/6,1/6,1/6,1/6) 

chisq.test(vect, p=vectprob) 

Here is the program that I used to maximise the multinomial mass funtion with R:  
a=factorial(50) 

  b=factorial(8) 

  c=factorial(9) 

denom=(c^2)*(b^4) 

d=(a/denom) 

frac=1/(6^50) 

d*frac 
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