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Abstract

Over many years, Aharonov and co-authors have proposed a new interpretation
of quantum mechanics: the two-time interpretation. This interpretation assigns
two wavefunctions to a system, one of which propagates forwards in time and
the other backwards. In this paper, I argue that this interpretation does not
solve the measurement problem. In addition, I argue that it is neither necessary
nor sufficient to attribute causal power to the backwards-evolving wavefunction
〈Φ| and thus its existence should be denied, contra the two-time interpretation.
Finally, I follow Vaidman in giving an epistemological reading of 〈Φ|.
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1 Introduction

It is uncontroversial to say that there is no (global) consensus as to which inter-

pretation of quantum mechanics should be adopted. In this paper, I will evaluate

a new interpretation proposed by Aharonov, Gruss [2], Cohen and Landsberger [9]

called the Two-Time Interpretation (TTI)1, which claims to be local, determin-

istic and to predict and explain novel phenomena. I will concentrate on whether

this interpretation solves the measurement problem: since a prerequisite for join-

ing the panoply of interpretations of quantum mechanics (QM) is to solve the

measurement problem. I will argue that it does not.

The measurement problem arises as follows. When a measuring device2 mea-

sures a system initially in the state |ΨS〉 = α |↑x〉 + β |↓x〉, the joint state of the

system and apparatus evolves, by linearity, to

|ΦS+A〉 = α |↑x〉S |up〉A + β |↓x〉S |down〉A . (1)

The macroscopic measuring device is now entangled with the system and the

composite system is in a superposition with respect to the product state basis.

However, we never experience macroscopic superpositions, such as measuring de-

vices pointing at both ‘up’ and ‘down’. Rather, the measuring device will appear

to display a single definite outcome.

In practice, in order to get empirical content from the formalism we apply

a set of rules for measurement (sometimes called ‘the measurement algorithm’

[43]): write the state in the basis of the measured quantity/observable, and the

pointer, αi |ai〉 |Ai〉, and then interpret |α1|2 as the probability (Pr) of finding

state |a1〉. In the case above, the measuring device is either found in the state

|up〉 with Pr = |α|2 or |down〉 with Pr = |β|2. Thus one way of describing the

measurement problem is to say that this algorithm lacks a justification and ‘to

solve the measurement problem we need to give a well-formulated theory which

explains the success of the measurement algorithm’ [42].

In this paper I evaluate whether the TTI can solve this measurement problem.

As the TTI arises from a particular reading of the two-state vector formalism

(TSVF), I will first, in section 2, discuss the TSVF. In section 3, I outline the key

tenets of the TTI as well as its proposed solution to the measurement problem.

1The two papers cited explicitly expound the TTI, but other papers such as [3] and [4] hint at it,
since — as will become apparent shortly — the TTI naturally arises out of a wider research programme.

2As usual, we model a measurement by a composite unitary operator U that takes the measuring
device to one of several distinguishable (orthogonal) states depending on the system’s state. Thus, a
measuring apparatus that measures spin-x behaves as follows:

U |↑x〉S |ready〉A → |↑x〉S |up〉A

U |↓x〉S |ready〉A → |↓x〉S |down〉A .
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Section 4 first investigates whether the TTI explains the success of the measure-

ment algorithm, and then whether it is well-formulated. In section 5, I argue that

there are further problems facing this interpretation, and in section 6 I advocate

an alternative reading of the situation.

2 What is the two-state vector formalism?

The two-state vector formalism (TVSF)[4, 1] alters the traditional formalism of

QM by assigning an additional state vector 〈Φ| to a system, as well as the usual

state vector, |Ψ〉. The latter state vector |Ψ(t0)〉 unitarily evolves according to the

Schrödinger equation, under U . However, the state 〈Φ(t1)| evolves unitarily back-

wards in time under U † and thus is called the ‘backwards-evolving state vector’.3

Combined they form the two-state vector,

〈Φ| |Ψ〉 (2)

which also evolves unitarily. The philosophical motivation behind TSVF is to re-

move the time asymmetry implicit in the standard QM formalism, which Aharonov

et al. [11] see as originating in the usual conception of state, rather than being

inherent in QM. Using final and initial conditions is more time-symmetric than

just initial conditions.

The TSVF is not an interpretation of QM: rather it is a mathematical for-

malism that applies to pre- and postselected (PPS) ensembles. A preselected

ensemble is a prepared ensemble: all the systems gave the same outcome of a par-

ticular measurement at t0. For example, it might be specified that the electrons

in a Stern-Gerlach experiment are all initially |↑〉z. A postselected ensemble is

defined analogously: e.g. those systems that gave the value ai for observable A at

time t1 (>t0).

t0

t1

Figure 1: Preselection at t0: Sz = + 1
2 . Postselection at t1: Sx = + 1

2 .

Postselection can be viewed as specifying a final condition for the system just as

preparation/preselection specifies an initial condition. A PPS system (a member

of a PPS ensemble) therefore has two boundary conditions: a final as well as an

3In what follows, for brevity 〈Φ| denotes the generic backwards-evolving state.
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t0

t1

Sx=+1/2

Figure 2: An intermediate measurement
of Sx in the period t0 <t <t1 finds the
eigenvalue + 1

2 with Pr = 1.

t0

t1

Sz=+1\2

Figure 3: An intermediate measurement
of Sz in the period t0 <t <t1 finds the
eigenvalue + 1

2 with Pr = 1.

initial condition.4 These boundary conditions (and therefore the two-state vector)

are defined by measurement outcomes, as shown in Figure 1. We envisage that

measurements are made on the system in the period t0 <t <t1, as shown in Figures

2 and 3. Note how the situation differs from classical mechanics: classically,

if we know the initial condition and the dynamics (the Hamiltonian) then the

information contained in the final condition is redundant. However, in QM there

is, for some measurements, no way even in principle to predict the result. Thus,

specifying a final condition gives us more information about the system than just

an initial condition.

Next, a method of determining the probabilities of outcomes of different mea-

surements on PPS systems is needed. This is given by the Aharonov, Bergmann

and Lebowitz (ABL) rule [1] which tells us, given an initial state |a〉 and a fi-

nal state |b〉, the probability that an intermediate projective measurement of the

non-degenerate operator C yields eigenvalue ci. We begin with the formula

P(ci|a, b) =
P(b|ci)P(ci|a)

ΣjP(b|cj)P(cj |a)
. (3)

Note that this expression is derived from the probability calculus: the Hamiltonian

is set to zero and the only physical assumption is that ci screens off b from a, i.e.

the intermediate measurement is projective. Using Pr(g|f) = | 〈g|f〉 |2, we find:

P(ci|a, b) =
| 〈b|ci〉 〈ci|a〉 |2

Σj | 〈b|cj〉 〈cj |a〉 |2
. (4)

In the case of non-trivial time evolution, the ABL rule becomes:

P(ci|a, b) =
| 〈b|U(tb, t) |ci〉 〈ci|U(t, ta) |a〉 |2

Σj | 〈b|U(tb, t) |cj〉 〈cj |U(t, ta) |a〉 |2
. (5)

For the PPS system shown in Figures 1-3, the ABL rule gives Pr = 1 for

an intermediate result of Sz = +1
2 and likewise for Sx = +1

2 . For Sy = +1
2 ,

Pr = 1
2 . The ABL rule is time-symmetric in the sense that, if the initial and final

states are exchanged, then provided the Hamiltonian is time-reversal invariant,

4In practice, measurements on postselected ensembles involve doing a measurement on the whole
preselected ensemble, then performing a selective measurement and discarding the results for systems
that do not pass the postselection.
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the probabilities do not change. Note that for convenience the self-Hamiltonian

(i.e. the Hamiltonian of the measured system) is often set to zero by advocates of

this programme (for example, [9, p.138]), a practice which I follow in this paper.

Gell-Mann and Hartle refer to the ABL rule as a “time-neutral formulation of

quantum mechanics” [25, p.7].

Does TSVF have any advantage over the standard formalism? According to

proponents of the TSVF, certain features of QM that would otherwise be opaque,

are brought to light through the prism of the TSVF. For instance, discussing the

path of a quantum particle through an interferometer is a fraught task: did the

particle pass through both slits? Can we, or should, we assign a trajectory? In

this connection, Vaidman suggests that the TSVF is illuminating: in particular,

it is the right formalism for describing the past of a quantum particle [40, 19].

Additionally, the proponents of TSVF claim that the novel notion of ‘weak values’

naturally arise within this framework. The basic idea is that not all measurements

are of the strong projective type assumed in the ABL rule (and in all the traditional

treatments stemming from von Neumann 1932, ch.5-6): it is possible to weaken

the interaction between the measuring device and system to such an extent that

the measurement effectively no longer disturbs the system, which thus remains in

its initial state. However, the results of such a ‘weak’ measurement contain such a

large uncertainty in the pointer variable that an individual measurement will often

reveal very little about the system. In TVSF, the ‘weak value’ of an observable O

on a system preselected as |Ψi〉 and postselected as |Ψf 〉 is defined as

Ow =
〈Φf |O |Ψi〉
〈Φf |Ψi〉

(6)

where |Ψi〉 and |Φf 〉 can be any two states provided 〈Φf |Ψi〉 6= 0. Thus defined,

weak values can be very counterintuitive; the weak value of a spin component of

a spin-12 particle was measured to be 100 [6]. Unsurprisingly, the interpretation

of weak values is controversial; in particular, it is disputed whether they represent

a weaker feature of the system, or are complicated interference phenomena in

the measuring device [20, 34]. But according to Aharonov and Vaidman, these

novel phenomena (weak values) are “very difficult to explain in the framework of

standard quantum mechanics”: and yet TVSF does explain them, while giving all

the same empirical predictions as orthodox QM [4, p.3].

In the standard formalism, probabilities of measurement outcomes are given

by the Born rule applied to preselected systems. This is formally recovered from

the probabilities given by the ABL rule applied to PPS systems by assuming

that nothing is known about the backwards-evolving state 〈b|. Summing over a

complete orthonormal basis — which amounts to not specifying a final state —

recovers the Born rule for state |a〉.5 Further, when no postselection measurement

5Another way of seeing this point is to take the postselection measurement operator PB=b just to

be the identity operator in the formulation of the ABL as P(ci|a, b) =
|PB=bPc=ci

|a〉|2

Σj |PB=bPc=cj
|a〉|2 [4, p.406].
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is made, the weak value reduces to the expectation value of the observable con-

cerned. Thus, the standard formalism is recovered by making the final condition

one that assumes no postselection. Aharonov and Rohrlich claim this choice of

boundary conditions is the source of the time-asymmetry in standard QM: “by

imposing an initial but not a final boundary condition, we have already sent the

arrow of time flying” [3, p.137].

Next, I will consider the ‘ontological’ interpretation of the two-state vector.

3 The two-time interpretation (TTI)

Aharonov et al. introduce the Two-Time interpretation (TTI) and claim it is

a deterministic, local and ontological interpretation of QM, that also solves the

measurement problem [2, 9]. In section 3.1, I will consider the status of the

backwards-evolving wavefunction within TTI and whether TTI is a hidden variable

theory, before explicating their reasons for thinking it is local and deterministic.

Then, in section 3.2, I will review their proposed solution to the measurement

problem.

3.1 The interpretation of 〈Φ|
This interpretation claims that there really is a backwards-evolving state vector

〈Φ| (just as much as there is a forwards-evolving state |Ψ〉). Therefore, at every

moment in time there is a two-state vector (and therefore two Hilbert spaces)

associated with the system. Ordinarily |↑〉x is taken to describe the system after a

projective measurement of Sx with outcome ‘up’ at t1. In TTI, 〈↑|x in Figure 1 de-

scribes the system even before the postselection measurement (Sx at t1). Further,

if 〈Φ| is on equal footing with the usual state vector |Ψ〉 and an ontological reading

of the quantum state is taken (as the TTI proposes6), then 〈Φ| has, presumably,

causal power. Thus, as might be expected from a time-symmetric theory, there

is retrocausality in the TTI [9, p.143]: “future and past are equally important in

determining the quantum state at intermediate times, and hence equally real” [18,

p.10].

This ontological interpretation of 〈Φ| in TTI goes beyond TSVF in two re-

spects. First, the role of 〈Φ| in the weak values formula (6) and the ABL rule (4)

does not require it to be assigned to the system at the earlier time t, t0 < t < t1.

In these formulas, one could consistently interpret it merely as the mathematical

dual of the vector that describes the system later at t1. Secondly, whilst mea-

surements on PPS systems may, prima facie, seem contrived or artificial because

6Aharonov and Gruss deny an epistemological interpretation which “pretends only to give a set
of logical rules regarding our knowledge of reality, and does not attempt to explain any underlying
processes taking place” [2, p.2].
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sometimes many intermediate measurement results must be discarded7, in fact in

the TTI the PPS ensemble is more fundamental than the PS ensemble. The seem-

ingly artificial nature of performing measurements on PPS systems stems simply

from our ignorance until time t1 of the backwards-evolving wavefunction, 〈Φ|. If

we somehow knew 〈Φ| before t1, we could perform the intermediate measurement

only on the systems that would later pass the postselection, and we would thus

not need to throw any intermediate measurement results away. Thus, the TTI

takes the PPS system to be the more complete and natural description of the

system even prior to the postselection measurement; systems have “an inherent

final boundary condition just as all systems have an initial boundary condition”

[9, p.135][26, p.11]. Thus, “in order to fully specify a system, one should not only

preselect, but also postselect a certain state using a projective measurement” [18,

p.10].

Now recall that if QM is a fundamental and universal theory, the quantum

state |Ψ〉S with which we usually describe a system S, is really just a factor

of a state |Ψ〉U = |ϕ〉S ⊗ |Ψ〉P ⊗ ... which describes the whole universe [9, 27].

Accordingly, this interpretation holds that, in addition to the initial quantum

state of the universe, there is a final quantum state of the universe, of which the

backwards-evolving state of S is just a part. Whilst the final state of the universe

is unknown, Aharonov et al. make some assumptions about its form.

These initial and final states of the universe are referred to by Aharonov and

Gruss as the ‘history vector’ |ΨHIS〉 and the ‘destiny vector’ 〈ΦDES | respectively

and the latter records the result of every measurement ever made [2, p.3]. As

the only type of time evolution is unitary, no information is lost. As well as the

two-state vector 〈Φ| |Ψ〉, the formalism defines the two-time density matrix, which

in the particular case of 〈ΦDES | and |ΨHIS〉 is,

ρ = |ΨHIS〉 〈ΦDES | . (7)

Of course, since 〈ΦDES | and |ΨHIS〉 are, a priori, unrelated kets, ρ in (7) is

not hermitian — unlike usual density matrices. For more details on this novel

conception of state, cf. [10, p.13], which also formulates this novel ‘two-time’

conception of state in the Heisenberg representation.8

I now turn to how the TTI relates to three key topics: hidden variables, non-

locality and determinism.

7Note, however, that it is possible, according to [8], to perform a weak measurement on a single
particle, where all measurement results are used. My thanks to an anonymous referee for bringing this
example to my attention.

8Note, however, that the formulation in [10] diverges from the TTI outlined in this paper, since the
TTI is usually advertised as a local theory (cf. section 3.1.2 below), whereas [10] involves a form of
non-locality that goes beyond the familiar QM-theoretic non-separability of entangled systems. This,
more extreme, dynamical non-locality is manifest, for example, when a quantum particle is described
as passing through one slit but exchanging a form of momentum non-locally with the other slit.
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3.1.1 Is TTI a hidden variable theory?

Is TTI a hidden variable theory like the pilot-wave theory (Bohmian mechanics)?

Whilst the backwards-evolving wavefunction 〈Φ| exists at every instant of time,

it is hidden from us. Only at the later time t1 in Figures 2 and 3 are we able to

discover that 〈Φ| = 〈↑|x in the interval t0 < t < t1. Indeed, if we were able to

access 〈Φ| prior to the postselection measurement, superluminal signalling would

be possible, contradicting the no-signalling theorem (see [9, p.142]). Therefore,

in the sense that it exists (according to TTI) and yet one is ignorant of it, 〈Φ|
is a hidden variable. And as in other hidden variable theories, the statistical

features of quantum mechanics stem from our ignorance of the hidden variables.

Thus, probability in the TTI has an epistemic, rather than ontic, nature; “the

probabilistic nature of quantum events can be thought of as stemming from our

ignorance of the backwards-evolving state, reintroducing the classical concept of

probability as a measure of our knowledge” [9, p.134].

However, TTI is not a hidden variable theory in the traditional sense. Usually a

hidden variable theory claims that the system has definite values of an observable

even when it is not in an eigenstate of that observable (or in the case of TTI,

is neither in a forwards-evolving eigenstate nor a backwards-evolving eigenstate).

But in the TTI, there are no extra value assignments in this sense.

3.1.2 Is the TTI local?

Aharonov and Gruss explicitly claim that the TTI is a local theory [2, p.1]. Of

course, the predictions of QM violate Bell’s inequalities, and so it is commonly

claimed that any hidden variables must be non-local. This raises the question:

how does the TTI square with Bell’s theorem?

Whilst the proponents of the TTI do not explicitly relate their novel conception

of state, 〈Φ| |Ψ〉 as in equation 2 or ρ as in equation (7), to the hidden variable λ

mentioned in the assumptions of Bell’s theorem, I think it is clear [7] that they

deny that the settings in the two wings of the EPR-Bell apparatus are independent

of each other, simply because the measurement outcomes are ‘recorded’ in 〈Φ|DES
and so the apparatus settings that Alice and Bob choose is encoded in 〈Φ|DES .

Thus these settings are not independent.9

More generally, setting aside the exact formulation of assumptions of a Bell

theorem: the question arises how should we understand ‘locality’ for a theory

which, like the TTI, involves retrocausality. Usually, locality requires that no

event can causally influence another event outside of its future lightcone. In the

TTI, the natural suggestion is therefore that locality requires that no event can

9That is, in terms of Shimony’s jargon [33] of parameter independence and outcome independence:
it seems to me that, taking the TTI’s novel state ρ to be the schematic hidden variable λ in Shimony’s
conditions, TTI violates parameter independence. Nevertheless, despite this parameter dependence, we
still have the no-signalling property.
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causally influence another event outside of its future or past lightcone.

3.1.3 Is the TTI deterministic?

Aharonov et al. say that the TTI is a deterministic theory, albeit in a special

way. To assess this claim, recall the core idea of determinism: a theory is a set of

models T = {Mi}, where Mi is a possible history of the system i.e. an assignment

at each time of a state to the system; and T is deterministic if and only if, for all

M1 and M2 in T , if M1 and M2 agree on the state of the system at some given

time t, then they agree on the system’s state for all future times [17].

From this definition, it is clear that whether a theory counts as deterministic

will very much depend on the conception of ‘state’. To avoid trivially ensuring

determinism, the information encoded in a ‘state’ must be intrinsic to the time

in question. To take an everyday example (following [17]): obviously, ‘Fred was

fatally wounded at noon’ logically implies that Fred later died. But it does not

imply that the processes leading to Fred’s death were deterministic. They might

well have been stochastic, and at the time of the wound, his death might even

have been improbable. Thus, the apparent determinism in this case is ‘cheating’:

it arises from encoding in a statement about noon (an attribution of a ‘state’ at

noon, i.e. ‘fatally wounded’) information about the future (Fred’s later demise).10

Thus, whether QM is a deterministic theory will depend how the ‘state of

a system’ is defined and this is entwined with one’s view of the measurement

problem [21]. Insofar as there is no consensus on the measurement problem, there

is no consensus as to whether QM is deterministic. For example, in the textbook

spontaneous collapse QM theory, the state is the wavefunction and this theory is

indeterministic. By contrast, in the pilot-wave theory the state of the system is

described by the wavefunction and the particles’ position, and consequently the

theory is deterministic.

What about the TTI? Aharonov et al. claim that the theory is ‘two-time

deterministic’: “the state of the system at any given time is completely determined

by its two-state at any single time in the course of history” [9, p.142]. Thus, if the

notion of state is the two-state vector 〈Φ| |Ψ〉 of equation (2) rather than usual

state vector |Ψ〉, then, they claim, the TTI is deterministic, like the pilot-wave

theory. This has an epistemological construal akin to the pilot-wave theory. In

the pilot-wave theory, were we to know the position of the particles in addition to

the wavefunction, then predictability of measurement outcomes would be restored.

Likewise, it seems that were we to know the generic backwards-evolving state 〈Φ|,
the TTI claims we would know the measurement outcomes.

The new terminology ‘two-time determinism’ is important, since the TTI flouts

the standard definition given above: by defining the state as two-time state 〈Φ| |Ψ〉,
10See [17] for discussion of natural conditions on the notion of state, in order to make determinism

nontrivial.
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their notion, arguably, ‘looks ahead’ to the future in the same way that the descrip-

tion ‘fatally wounded’ does. In the last part of section 5, this claim of ‘two-time

determinism’ is explored further.

3.2 A review of TTI’s solution to the measurement

problem

For TTI to count as an interpretation of quantum theory, it must propose a reso-

lution to the measurement problem. The proponents of TTI describe the measure-

ment problem as arising from the ‘discrepancy’ [2, p.1] between the superpositions

that result from unitary evolution and single measurement outcomes. Here I re-

view their strategy for solving this problem [2, p.4] [9, p.139] [18, p.14].

We envisage that, using the notation from Section 1, the system, apparatus

and environment begin in the following state:

|Initial〉 = (a |↑〉+ b |↓〉)⊗ |ready〉 ⊗ |ε〉 , (8)

which unitarily evolves to

(a |↑〉 ⊗ |up〉+ b |↓〉 ⊗ |down〉)⊗ |ε〉 ; (9)

the measuring device then interacts with the environment, encoding the interfer-

ence in the environment in the usual decohering manner to

a |↑〉 ⊗ |up〉 ⊗ |εup〉+ b |↓〉 ⊗ |down〉 ⊗ |εdown〉 , (10)

where |εup〉 and |εdown〉 are orthogonal (or nearly so).

Next, the backwards-evolving final boundary condition of the entire system,

expressed as a bra is taken to be

〈Final| = 〈φ| ⊗ 〈up| ⊗ 〈εup| . (11)

Crucially, the state of the measuring device is chosen to be a single member

|up〉 of the measurement basis. But the particle could have been measured in the

interval between the initial time and the final time; and so it is in an arbitrary

state: |φ〉 = c |↑〉 + d |↓〉. Thus, in the intervening interval between the initial

measurement to final measurement, the complete description of the composite

system is given by the two-time density matrix (cf. equation (7)),

ρ = |Initial〉 〈Final| = [a |↑〉⊗|up〉⊗|εup〉+b |↓〉⊗|down〉⊗|εdown〉][〈φ|⊗〈up|⊗〈εup|]
(12)

Once the environmental degrees of freedom are traced over, the reduced density
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matrix becomes (cf. equation 17 [2, p.4])

ρreduced = Trερ ≈ |↑〉 ⊗ |up〉 〈φ| ⊗ 〈up| (13)

Thus an effective reduction has occurred and a single measurement outcome,

namely ‘up’, obtained.

4 Does the TTI resolve the measurement prob-

lem?

Recall from section 1 that the criterion for solving the measurement problem was

to provide ‘a well-formulated theory which explains the success of the measurement

algorithm’ [42]. I will now argue, by considering the rationale for the choice of final

measuring device state (equation 11), that the TTI does not explain the success

of the measurement algorithm. At the end of this section, moreover, I will also

argue that the TTI construes the concept of measurement in a suspicious way.

The choice of the final measuring device state in equation 11 is crucial to the

TTI’s strategy for establishing single measurement outcomes. If instead the final

state were a superposition, for example,

〈Final| = 〈φ| ⊗ (〈up| ⊗ 〈εup|+ 〈down| ⊗ 〈εdown|) (14)

there would be no effective reduction upon tracing over the environment. Instead

the measuring device would remain in a macroscopic superposition. We would get

ρreduced = Trερ ≈ |↑〉 |up〉 〈φ| 〈up|+ |↓〉 |down〉 〈φ| 〈down| ; (15)

rather than as in equation (13)

ρreduced = Trερ ≈ |↑〉 ⊗ |up〉 〈φ| ⊗ 〈up| . (16)

Thus, a single measurement outcome would not be obtained.

A prima facie justification of the choice in equation 11 is that at the later time

the measuring device was observed to be in the state ‘up’, rather than ‘down’ or a

superposition. However, I submit that this justification based on experience (‘we

observed the measuring device pointing to ‘up”) begs the question. Rather than

explaining the success of the measurement algorithm (and thus the theory telling

us why we obtain single measurement outcomes), this appeal to our experience

puts the outcome ‘up’ into the formalism by hand — rather than specifying the

dynamical processes that give rise to such outcomes.

However, Aharonov et al. give an alternative justification of the measuring

device state in terms of a characterisation of all measurement devices: they say

that “each measuring device has a final boundary condition equal to one of its
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possible classical states” [2, p.4], [9, p.136], [18, p.6]. Thus, their strategy is to

appeal to all measurement devices, and thereby ultimately to cosmology. The idea

is that the state of the measuring device in the final state of the universe, 〈Φ|DES ,

is such that, when it is evolved backwards to t1, its state is 〈up|. This requires

〈Φ|DES to have a certain form.11

1. Unitary evolution usually entangles systems into superpositions which then

decohere. In order that the backwards unitary evolution of a given final

measuring device state in 〈Φ|DES does not cause it to be a superposition by

t1, it must be a ‘measurement-type’ state that is stable under decoherence.

2. Certain assumptions about 〈Φ|DES are required so as to recover the right

probabilities. For instance, if |Ψ〉DES is identical to |Ψ〉HIS , then accord-

ing to the ABL rule the probability of an outcome O = on is proportional to

| 〈Ψ|PO=on |Ψ〉 |2, while according to the Born rule, the probability is propor-

tional to | 〈Ψ|PO=on |Ψ〉 | [38, p.595]. Thus, this interpretation must stipulate

that |Ψ〉DES 6= |Ψ〉HIS .12

Aharonov and Gruss [2] argue for the form of 〈Φ|DES as follows. Of an ensemble

E of systems in the state |Ψ〉 = Σiai |ai〉, a random subset of systems (with a size

proportional |a1|2) are in the state |a1〉 and a random proportion |a2|2 are in the

state |a2〉 etc. The final states specified are elements of the measurement basis

and so satisfy condition 1 above. Furthermore, 〈Φ|DES is stipulated not to be

identical to the dual of |Ψ〉HIS but also is stipulated to recover the right empirical

probabilities, thus satisfying condition 2.

However, I submit that picking out the probabilities in this way does not

constitute an explanation of the measurement algorithm. Firstly, no dynamical

law has specified how certain (single) outcomes obtain. Secondly, the probabilities

of single measurement outcomes are just fixed by fiat to be in accordance with the

Born rule. Therefore this amounts to stipulating that the measurement algorithm

works— and this is no explanation at all.

In their recent paper [9, p.136], Aharonov et al. argue that the Born rule need

not be a contingent feature of the world resulting from a specific and ad hoc final

state stipulation in the TTI. They claim that the Born rule, rather than any other

statistical rule, follows “in the infinite N limit, from the compatibility of quantum

mechanics with classical-like properties of macroscopic objects” [9, p.136]; (this

claim is also discussed in [11]). Whilst this is of course a very interesting pro-

posal, I submit that it is not relevant for the debate at hand since it takes as a

11Appealing to cosmology to solve the measurement problem, especially in light of the philosophical
furore about the ‘past hypothesis’ [44, 22], may seem to be a dubious move but I will here set this aside,
since as we will see shortly, the TTI proposal faces more specific problems. However, issues about
〈Φ|DES will recur in section 5.

12Note this prohibition might be motivated independently of this interpretation of quantum mechan-
ics. Gell-Mann and Hartle found that assuming |Ψ〉DES = |Ψ〉HIS “essentially permits no dynamics
at all” [25, p.22]. Additionally, they claim that that current electromagnetic observations “may sup-
ply a probe of the final condition that is sufficiently accurate to rule out time-symmetric boundary
conditions” [25, p.3], according to Davies and Twamley [46].

12



premise the classical behaviour of macroscopic systems: but it is the occurrence

of this behaviour (in particular single measurement outcomes as prescribed by the

measurement algorithm, rather than macroscopic superpositions) that needs to be

explained if we are to resolve the measurement problem.

Thus, I conclude that the TTI does not explain the success of the measurement

algorithm. Finally, there is another, more general, problem. The TTI takes mea-

surement to be primitive in three places, in a way that, famously, Bell [15] argued

is suspicious: since measurement is presumably a physical process, it should be

explained using our best physical theory, rather than taken as primitive.13

First: both the forwards and backwards-evolving wavefunctions are defined

in terms of measurement outcomes at particular times. It cannot be that mea-

surement is merely a convenient way of discovering properties of the system at t0

and t1 which define |Ψ〉 and 〈Φ| respectively, since according to the TTI, 〈Φ| is

a property or state of the system at the earlier time t0. Second: even if the two-

state vector can be defined without reference to measurement, it was shown above

that the final state of the universe has to be a privileged measurement-type state

capable of determining definite states for measuring devices. Third: measurement

is conceptually picked out by the fact that only at the time of measurement is

it relevant to the physics that there are two vectors |Ψ〉 and 〈Φ| describing the

system; they evolve independently the rest of the time.

To sum up this section: I have argued, in two stages, that the TTI proposal

does not solve the measurement problem.

5 Problems: properties and parsimony

In this section, I outline some difficulties in the TTI about properties: problems

that arise from taking 〈Φ| ontologically seriously. Then I question whether 〈Φ|
should indeed be taken ontologically seriously, and ultimately I argue that we

should not be committed to 〈Φ|.
In QM, we face a problem of understanding indeterminate property possession

stemming from superpositions. On more traditional construals of the measurement

problem, this, rather than explaining the success of the quantum algorithm, is

the heart of the issue [42]. I will now argue that the existence of 〈Φ| seems to

exacerbate this problem rather than solve it. The idea will be that not only do

we not understand indeterminate property possession: it also seems hard to make

sense in TTI of determinate property possession.

The TSVF reveals counterintuitive consequences of postselecting, such as the

three box paradox (see [5],[37], [4, p.406]). In this set-up, the ABL rule tells us that

13One philosophy of science that will not be concerned about measurement being primitive is oper-
ationalism. However, operationalists (such as Fuchs and Peres [24]) will claim that no interpretation
of quantum mechanics is necessary in the first place since, according to operationalism, physics is only
concerned with the outcomes of experiments.
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an intermediate measurement will find a particle in box 1 with certainty but also

in box 2 with certainty. However, the probability of finding the particle in both

boxes is zero. This demonstrates the failure of the product rule for PPS systems

(see [39],[4, p.408]). As the TTI adopts an ontological reading of 〈Φ|, it imbues

such counterintuitive consequences with ontological significance, in a manner the

TSVF formalism need not be committed to. For instance, if adherents of the TTI

were committed to the EPR criterion of reality14, then in the three box case, it

seems they would need to ascribe contradictory properties to the system.

Even if we do not consider exotic cases like the three box paradox, there

are other counterintuitive consequences. If the forwards-evolving and backwards-

evolving states, |Ψ〉 and 〈Φ|, are eigenstates of two (not necessarily identical)

quantities, then equal treatment of them suggests that two eigenvalues should be

attributed to the system. In support of this suggestion: in [10], for example, it

is claimed that only eigenstates represent ‘intrinsic properties’. (To be faithful to

the Heisenberg representation focus of [10], this idea should be expressed as: only

“a set of deterministic operators”, that is “operators whose measurements do not

disturb each other and have deterministic outcomes” [10, p.2] represent properties

of the system.) Furthermore, adding the backwards-evolving wavefunction (or, in

the language of [10], “adding a second of deterministic operators on top of the

ones dictated by the initial state”) amounts to “enlarging the assortment of sys-

tem properties” [10, p.7]. This means that the Heisenberg indeterminacy relation

does not always hold in the TTI15, in the sense that the two eigenvalues could be

of incompatible observables such as position and momentum [35, p.803].

If a system is in a particular eigenstate, we traditionally say that the eigenvalue

for that eigenstate represents a property of the system. But if 〈Φ| is the eigenstate

〈↑|x and |Ψ〉 is the eigenstate |↑〉z and these reflect properties of the system, this

leads the following problem, as discussed in [5]. If Sx = +1
2 and Sz = +1

2 and these

eigenvalues represent properties of the system, it seems an intermediate normal i.e.

strong measurement of the spin component Sπ/4 =
Sx+Sy√

2
along the π/4 direction

in the x−z plane ought to yield the value 1√
2

[5, p.28]. Yet this is an impermissible

value; as with all components of spin, the outcome of a normal, rather than weak

measurement must be either +1
2 or−1

2 . Hence, assigning two eigenvalues to a given

system while expecting them to reflect properties of the system which we can treat

in a straightforward or intuitive way, is hard to do.16 Thus, whilst in standard

14“If, without in any way disturbing a system, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there exists an element of reality corresponding
to that quantity” [23, p.777].

15As will be discussed shortly, since the Heisenberg indeterminacy relation holds for a vector in a
single Hilbert space, the result that it does not hold is perhaps incidental given that in the TTI there
are two Hilbert spaces assigned to the system. My thanks to an anonymous referee for emphasising
this.

16A speculative comment: perhaps we could diagnose the above problems (contradictory elements of
reality, the failure of the product rule and Heisenberg uncertainty relation etc.) as resulting from an
overabundance of properties one might be led to naively ascribe to a system given the TTI’s conception
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QM there is a problem about understanding indeterminate property possession

(for systems not in an eigenstate of the given quantity), the TTI faces difficulties

understanding property possession even for systems that are in eigenstates.

Proponents of the TTI might reject the traditional conception of properties cor-

responding to eigenvalues17 and provide an alternative criterion of reality: (one

such proposal is Vaidman’s ‘weak elements of reality’ [37]). This proposal is espe-

cially relevant since the traditionally impermissible 1√
2

value just mentioned can

be ‘weakly’ measured on the system. Yet, if 〈Φ| only represents ‘weak’ properties,

we may doubt that its existence is really on a par with |Ψ〉.
Given the difficulties assigning properties to a system described by 〈Φ| |Ψ〉, we

can conclude that at the very least more need to be said by proponents of the

TTI. However, such a project is motivated by an ontological commitment to 〈Φ|:
and I will now argue that this commitment should be doubted.

As discussed in section 3.1.3, determinism requires that the state of the system

at any time (importantly, this includes the state of the system during the interme-

diate measurement time) is fixed by the ‘state’ (which in the TTI is the two-state

vector) at a single time in the course of the system’s history. Whilst at the time

of the intermediate measurement, we cannot access 〈Φ|, and thus we cannot at

that time predict with certainty the measurement outcome, adding 〈Φ| is what is

meant to determine the state of the system and thus, the measurement outcome.

However, generic pre- and postselection (and consequently the two-state vec-

tor) do not generally determine the outcome of the intermediate measurement.

They do so (under our governing assumption that the self-Hamiltonian is zero)

only in the special case where the intermediate observable is either identical to or

a function of the pre or postselection observables, as shown in Figure 4. If the

order of the measurements is reversed or the intermediate observable measured

is incompatible with the pre and postselection observables, the outcomes are not

determined. Unless the boundary conditions (PPS) are special, the outcome of

the intermediate measurement is still probabilistic (indeed otherwise the ABL rule

would be redundant as the probability of an outcome would be either 0 or 1).

This leads to two questions:

1. Since this theory is supposedly deterministic, what determines the interme-

diate result when 〈Φ| and |Ψ〉 do not?

2. In the case where 〈Φ| does determine the intermediate result, what deter-

mines 〈Φ|?
According to the TTI, both questions have the same answer: there is an initial

state of the universe |Ψ〉HIS and a final state of the universe 〈Φ|DES as discussed

of quantum reality. Indeed, Price [31] questions whether “adding an additional wavefunction ‘coming
from the future’ to standard QM and interpreting both wavefunctions in an ontic manner”... “fail[s] to
exploit the ontological efficiency possible in a retrocausal model” [31, p.79] and suggests that “a single
beable may be able to play both roles”.

17Indeed, a recent paper [9, p.142] suggests that this is the case.
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t0

t1

Sy=+1/2 OR -1/2

Figure 4: An intermediate measurement of Sy in the period t0 <t <t1 finds the eigenvalue + 1
2 with

Pr = 1
2 OR − 1

2 with Pr = 1
2 . This contrasts with the intermediate results in Figures 2 and 3 where

the outcome was certain.

in section 3.1 and these boundary conditions determine all measurement outcomes.

In section 3.1.3, two-time determinism held that the physical state at any time is

determined completely by the two-state vector at any time. However, the defini-

tion of two-time determinism must be altered to ‘the physical state is determined

completely given the initial and final state of the universe.’18 The generic two-

state vector fails to determine all measurement outcomes and so the final state

〈Φ|DES is needed to restore determinism.19

However, this move undermines the treatment of 〈Φ| and |Ψ〉 in the two-time

interpretation as ontological equals. Adding the generic backwards-evolving wave-

function 〈Φ| is not sufficient to determine the intermediate measurement outcomes:

it only does so if it is special (defined by a postselection observable that is a func-

tion of the intermediate observable). Even when the backwards-evolving state

does determine the intermediate measurement outcome (such as in Figures 2 and

3), it is not necessary to think that 〈Φ| causes it. Whilst it is consistent to think

of 〈Φ| as determining the outcome in these special cases, one could equally hold

that the intermediate measurement changes |Ψ〉 to |Ψ′〉 which then determines

that postselection outcome (and thus defines 〈Φ|). Thus, attributing causal power

is neither necessary nor sufficient for determining single measurement outcomes.20

Agreed, the mere availability of this alternative explanation — that the inter-

mediate measurement determines the postselection measurement outcome rather

than vice versa — does not of course compel one to accept it. Indeed, by claim-

18Clearly, this is just an outline: more needs to be said about how 〈Φ|DES determines measurement
outcomes and about its relation to the generic backwards evolving state 〈Φ|. As discussed in this section,
the postselected state of the system 〈Φ| often does not suffice to determine the intermediate outcome
and thus it is presumably the measuring device state in 〈Φ|DES that determines the intermediate
measurement outcome. But this raises the question: in what sense is the measuring device sensitive to
state of the system if the reading is determined by its later state as encoded in 〈Φ|DES? In particular, in
our familiar treatment of quantum measurement, repeating a measurement on the same system (which
has a zero self-Hamiltonian) gives the same outcome again: how will this familiar feature be recovered?
Here I am grateful to Emily Adlam.

19That is: determinism is restored in the two-time, and so ‘looking ahead’, sense discussed in section
3.1.3.

20Agreed, these considerations are themselves ‘time-neutral’ in the sense that one could equally argue
that if we attribute causal power to 〈Φ|, then attributing causal power also to the usual forwards-evolving
|Ψ〉 is not necessary nor sufficient for definite measurement outcomes. (Thanks to Emily Adlam for this
point). But I think a theory with only retrocausality is very counterintuitive, and so in this article, I
only scrutinize attributing causal power to 〈Φ|.
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ing that it is neither necessary nor sufficient to attribute causal power to 〈Φ| for

ensuring single measurement outcomes, I am not claiming that there is no project

in QM for which retrocausality may be important. But I am claiming that adding

a causally efficacious backwards-evolving state is not the ingredient that needs to

be added to quantum reality in order to solve the measurement problem.21

Hence, in order to ensure single measurement outcomes it is neither necessary

nor (in most cases) sufficient to attribute ‘causal power’ to 〈Φ| and thus there is

reason to doubt its existence. At the very least, it seems to have causal power

to a lesser degree than the forwards-evolving state. This is reminiscent of the

pilot-wave theory, where the wavefunction contributes to determining the motion

of — ‘kicks’ the corpuscles — but the corpuscles do not ‘kick’ back [13], [29, p.79],

[16, p.39]. Does the forwards-evolving wavefunction affect the backwards-evolving

wavefunction but not vice versa? If so, then this theory might be said to violate

the action-reaction principle in the same way that the pilot-wave theory has been

accused of doing [13].

Thus, I believe that, even by their own lights, Aharonov et al. should re-

ject the existence of 〈Φ| — or at least, its existence as on an equal footing with

|Ψ〉. Aharonov et al. are committed to ontological parsimony [9, p.143]; their

dissatisfaction with other interpretations such as the Everett and pilot-wave inter-

pretations stems from their “requiring additional entities” and hold that “entities

are not be multiplied beyond necessity” [2, p.2]. The postulated final state of

the universe 〈Φ|DES is vital to the success of TTI; it ensures that macroscopic

superpositions are not predicted and it determines measurement outcomes. The

generic backwards-evolving state 〈Φ| is not so industrious: and hence ontological

parsimony suggests one should not be committed to its existence.

6 A positive proposal

I have argued that the ontological reading of the backwards-evolving wavefunction

in TTI has many undesirable features. However 〈Φ| seems highly suggestive as it

arises from physical practice (postselection) and leads to novel phenomena (weak

values): thus, I would now like to end by endorsing an alternative interpretation.

Instead of Aharonov’s proposal, I favour Vaidman’s interpretation of 〈Φ| [38].22

If the backwards-evolving state of the measuring device is ‘up’ just in the

case that is what is later observed, then it is an encoding of our knowledge at a

later time. This epistemological interpretation is more modest; no causal power is

attributed to 〈Φ|. Further, 〈Φ| does not encode any properties of the system prior

21Nor is my argument an objection to Price’s argument [31]. Price’s argument looks at the conse-
quences of having a time-symmetric ontology (namely that under certain assumptions, time-symmetry
implies retrocausality), whereas I am concerned with whether we should have a time-symmetric ontology
in the first place.

22For a full exposition of Vaidman’s views on the many worlds interpretation and TSVF, see [41].
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to the postselection and so the difficulties around property possession and assigning

two eigenvalues disappear. Moreover, this epistemological interpretation requires

no assumptions about the final state of the universe. However, removing these

problems comes at a price — one can no longer claim to have an interpretation of

quantum mechanics.23 Yet, since I have argued that the TTI does not solve the

measurement problem, I believe this is a more natural reading of 〈Φ|.

6.1 〈Φ| and Everett

This epistemological reading of 〈Φ| fits naturally into the Everettian framework.

In the TTI’s strategy to solve the measurement problem, tracing over the en-

vironment in the two-time density matrix left one measurement outcome (‘up’).

However, this reduction was only effective (yielding an improper rather than a

proper mixture); the complete system (including the environment) is still in a

superposition after the measurement. In the Everettian picture, both branches of

the superposition still exist as distinct (emergent) worlds. However, 〈up| leads to

the effective reduction, pointing to one branch. Thus, as suggested by Vaidman

[38, p.593], the backwards-evolving state can be used to index which Everettian

world you were previously in. Whereas in the TTI, an unusual weak value would

be evidence for unusual final boundary conditions, in the Everettian picture it

would be evidence of being in a low amplitude branch.

Indeed, the idea of a final state of the universe that cannot be known about

(though it has to have a special form and contain records of all the measurements

ever made) and yet causally determines the present by propagating backwards

in time is, I think, no more plausible than positing a multiverse. Further, the

novel phenomena such as weak values that motivated the TVSF and TTI fit well

within the Everettian framework. As such, this proposal captures the desirable

features of the TTI: without the difficulties outlined in this paper. However, this

alternative proposal may not sit comfortably with adherents of the TTI; their

philosophical motivation was to find a time-symmetric quantum theory and the

Everettian branching structure is clearly asymmetric in time (see [45, ch.5]).

7 Conclusion

Whilst the TTI involves many interesting ideas, such as weak measurement, I

believe that these ideas do not currently amount to an interpretation of QM, since

— as I have argued — the two-time interpretation fails to solve the measurement

problem. Since the empirical probabilities were put in by hand to the postulated

final state of the universe without an underlying dynamical reason, this algorithm

23Recall that I argued in section 4 that specifying a particular outcome in accordance with our
experience begs the question in the context of solving the measurement problem as it stipulates, rather
than explains, single measurement outcomes.
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was left unexplained (section 4). Further, few would count the theory as well-

formulated since the notion of measurement is primitive. In addition, I have

argued that it is neither necessary nor sufficient for ensuring single measurement

outcomes to attribute causal power to 〈Φ|. This militates against the existence

of 〈Φ|. So I have advocated rejecting the TTI and its ontological reading of 〈Φ|
(section 5). However, Vaidman’s epistemological reading of 〈Φ| was seen to be

successful, particularly within the Everettian framework (section 6).
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