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Introduction

Available evidence suggests that two prokaryotes, an 
archaeon and a bacterium, collaborated (Margulis 1970; 
Stanier 1970; Schwartz and Dayhoff 1978; Doolittle 
1980; McInerney et al. 2014) in the eventual formation of 
nucleated cells with arguably (Booth and Doolittle 2015) 
increased complexity of form and function. However, the 
mechanisms leading to formation of eukaryotes remain a 
mystery (Koonin 2015; López-García et al. 2017; Zachar 
and Szathmáry 2017; Martin et al. 2017).

Mitochondria are eukaryotic organelles derived from 
α-proteobacterial endosymbionts capable of generating 
ATP by oxidative phosphorylation (Gray 2012). The earliest 
eukaryote likely harbored mitochondria, since all character-
ized eukaryotic lineages show evidence of containing (van 
der Giezen 2009), or having once contained (Karnkowska 
et al. 2016), these organelles. Consequently, it has been 
argued that mitochondria, and particularly the ATP that can 
be generated by these compartments, permitted an expanded 
number of proteins, an augmented phagocytic capacity, an 
increase in overt specialization, and the eventual formation 
of complex multicellular organisms (Lane and Martin 2010; 
Lane 2017; Martin et al. 2017). However, the relationship 
between mitochondrial ATP generation and genome expan-
sion has been a matter of contention (Lynch and Marinov 
2015, 2017). Moreover, how and why an endosymbiont not 
yet converted to an organelle might purposefully provide 
ATP to its host is not clear (Martin and Müller 1998).

Here, I propose that the initial driving force allowing 
maintenance of the proto-mitochondrial endosymbiont 
within its archaeal host was production of heat, thereby per-
mitting endurance of lower temperatures. Only afterward 
did ATP generation by the early mitochondrion contribute to 
the increased apparent complexity exhibited by eukaryotes.
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Ancestral Archaea are Hyperthermophilic

High temperatures likely hastened the formation of ances-
tral life by accelerating reactions required for metabolism 
prior to the evolution of more specific and efficient enzymes 
(Wolfenden 2014). Today, while eukaryotes are not found 
at temperatures higher than ~60 °C (Brock 1967; Forterre 
2013), prokaryotic cells can proliferate at temperatures even 
exceeding 120 °C (Takai et al. 2008). Although some bacte-
ria are hyperthermophiles, most enumerated hyperthermo-
philic prokaryotes that proliferate above 80 °C are archaea, 
and the ancestral state of archaea is almost certainly hyper-
thermophily (López-García et al. 2015; Akanuma 2017). 
Only later were archaea able to populate environments of 
lower temperature, including habitats close to the freezing 
point of water (Cavicchioli 2006).

As archaea moved to lower temperatures, they were 
likely to encounter multiple challenges presented by their 
new environment. Most prominently, cells residing at lower 
temperatures require enzymes with greater catalytic power 
than those selected at higher temperatures (Wolfenden 
2014). How structural changes to enzymes promote greater 
catalysis at lower temperatures remains under investiga-
tion, but may include increased conformational flexibility or 
changes to thermodynamic factors associated with transition 
state formation (Sterner and Liebl 2001; Wolfenden 2014; 
Nguyen et al. 2017). In addition to new demands on the 
activity of fully folded enzymes, optimal pathways toward 
protein folding and assembly differ at lower temperatures, 
requiring compensation by mutation or by chaperone activity 
(Sterner and Liebl 2001).

Besides the considerable obstacles to protein function 
brought about by movement from higher to lower tem-
perature, other consequences of a cooler setting are also 
apparent. For example, DNA at high temperature is prone 
to unwind, and in fact many hyperthermophiles express a 
reverse gyrase in an attempt to positively supercoil DNA 
(López-García et al. 2015). Any approach to maintaining 
high helical tension would be maladaptive as cells move 
to lower temperature. Changes in RNA dynamics are also 
likely to be consequential as hyperthermophiles reach lower 
temperatures, and at least one hyperthermophilic archaeon, 
Thermococcus kodakaraensis, harbors a cold-inducible 
RNA helicase (Shimada et al. 2009). In addition, the same 
archaeon has been demonstrated to alter its lipid content 
upon reduction of culture temperature by 30 °C (Matsuno 
et al. 2009), illustrating the necessity for prokaryotes to com-
pensate for membrane fluidity differences at lower tempera-
tures (Siliakus et al. 2017). Gas solubility and the stability 
of metabolites also scale with temperature (D’Amico et al. 
2006; Wolfenden 2014), prompting a further need for adap-
tation. Notably, there may be a trend toward larger genomes 
as the optimal proliferation temperature of archaeal species 

decreases (Laksanalamai et al. 2004; Sabath et al. 2013), and 
a comprehensive analysis suggests that the protein evolu-
tion rate of archaea living at lower temperatures is elevated 
in comparison to hyperthermophilic archaea (Groussin and 
Gouy 2011). Taken together, these findings suggest many 
challenges for hyperthermophilic organisms potentially 
colonizing or traversing lower temperature environments, 
though leaving a high-temperature niche behind may remove 
barriers to genome expansion, variation, and phenotypic 
diversity.

One mechanism by which archaea appear to have adapted 
to reduced temperature is through abundant lateral gene 
transfer (LGT) from mesophilic bacteria already residing at 
lower temperatures (López-García et al. 2015). Such gene 
transfers presumably promoted improved protein folding or 
enzyme activity as organisms moved to colder locations. 
For example, many ancestral hyperthermophilic archaea lack 
specific chaperones, such as Hsp70 proteins, that were later 
acquired during relocation to a lower temperature environ-
ment (Laksanalamai et al. 2004; Petitjean et al. 2012), sug-
gesting that such chaperones may have initially promoted 
polypeptide folding or stability (López-García et al. 2004). 
Moreover, transfer of chaperone genes from a bacterium 
residing at low temperature, Oleispira antarctica, can pro-
mote proliferation of the more thermophilic Escherichia 
coli under cooler conditions (Ferrer et al. 2003). Beyond 
the assistance provided by LGT in improving proteostasis, 
metabolic enzymes selected to perform within hyperthermo-
philes may not retain sufficient catalytic activity at reduced 
temperature (Sterner and Liebl 2001; Nguyen et al. 2017), 
prompting the need for orthologous replacement by genes 
from other organisms.

Hyperthermophilic archaea were clearly able to establish 
themselves within lower temperature environments (Cavic-
chioli 2006; López-García et al. 2015), and also commonly 
transit colder climes in order to seed new locations at their 
preferred temperature (Wirth 2017). However, should the 
piecemeal lateral transfer or slow alteration of genetic infor-
mation be the only path toward the endurance of reduced 
temperature? What if an archaeal cell could efficiently gen-
erate its own heat, allowing the maintenance of elevated 
intracellular temperature even when encountering colder 
habitats?

Mitochondria Generate Heat

In prokaryotes and prokaryote-derived organelles, a protein-
aceous electron transport chain (ETC) converts electronic 
energy to a proton gradient used to power mechanochemistry 
and to drive metabolite movement across membranes (West 
1974; Junge and Nelson 2015; Nishihara and Kitao 2015). 
During operation of the ETC, some energy is inevitably 
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dissipated as heat in the course of each electron transfer 
(Murphy 1989). Moreover, once protons are pumped across 
the mitochondrial inner membrane (IM) by the ETC, they 
can leak back across the IM in a heat-producing futile cycle 
(Brand 2000). Indeed, approximately a quarter of protons 
pumped by the ETC in several mammalian tissues are not 
coupled to performance of useful work, and the magni-
tude of proton leak can range to even higher levels in some 
tissues. While there is debate regarding the reliability of 
subcellular temperature measurements (Baffou et al. 2014, 
2015; Kiyonaka et al. 2015; Suzuki et al. 2015), studies reli-
ant upon divergent approaches to investigating subcellular 
temperature suggest that differences in temperature between 
mitochondria and the cytosol can be quite substantial (Okabe 
et al. 2012; Sakaguchi et al. 2015; Chretien et al. 2017; 
Nakano et al. 2017). Indeed, fully functional mitochondria 
in cultured human cells appear to be maintained at temper-
atures nearly 10 °C higher than the cellular environment 
(Chretien et al. 2017).

In addition, cells can purposely augment thermogen-
esis by expressing proteins promoting mitochondrial heat 
production. For example, uncoupling proteins can further 
increase proton leak, as illustrated by brown fat thermo-
genesis in mammals (Busiello et al. 2015). Or, a cell might 
express alternative oxidases to allow greater flux of electrons 
through the ETC without maximal capture of energy through 
proton pumping, resulting in the conversion of residual 
energy to heat (Moore and Siedow 1991). This approach 
facilitates thermogenesis by some flowering plants (Wag-
ner et al. 2008) and can help maintain plant tissues at up to 
35 °C above ambient temperature (Knutson 1974). Uncou-
pling proteins, like all proteins of the mitochondrial carrier 
family, are likely an eukaryotic invention (Haferkamp and 
Schmitz-Esser 2012). Alternative oxidases, however, are 
also encoded by prokaryotes (Pennisi et al. 2016), includ-
ing by several α-proteobacteria (Roberts et al. 2004; Atteia 
et al. 2004).

Heat Generation Provides an Immediate Selective 
Advantage for Proto-Mitochondrion Maintenance 
During Eukaryogenesis

I suggest a scenario in which a respiring proto-mitochondrial 
endosymbiont was encountered and completely enveloped 
by an archaeal host typically resident at high temperatures. 
Phylogenomic analyses imply that the archaeal host con-
tributing to the formation of eukaryotes may have emerged 
from the recently discovered ‘Asgard’ superphylum of 
archaea (Zaremba-Niedzwiedzka et al. 2017), although the 
precise relationship between these organisms and eukary-
otes requires further elaboration (Da Cunha et al. 2017). 
Most knowledge regarding the ‘Asgard’ superphylum has 

been obtained by the study of genomic fragments recovered 
from organisms within the Lokiarchaeota clade. Lokiar-
chaeal sequences have been recovered from sediments near 
a hydrothermal vent (Spang et al. 2015), and the ancestors 
of Lokiarchaeota and other Asgard members were thermo-
philic (Zaremba-Niedzwiedzka et al. 2017; Williams et al. 
2017), consistent with the idea that a Lokiarchaeota-related 
organism might have been the host of the proto-mitochon-
drial endosymbiont. Lokiarchaeota express the ancient 
Wood–Ljungdahl pathway (Sousa et al. 2016; Williams 
et al. 2017), utilized by both autotrophic and heterotrophic 
organisms (Schuchmann and Müller 2016). Consequently, 
two generalized metabolic scenarios based upon endosym-
biont occupation of a Lokiarchaeota-related host are plausi-
ble. An autotrophic host might have utilized  H2 and  CO2 to 
produce acetyl-CoA and downstream products for consump-
tion and oxidation by the endosymbiont. Alternatively, both 
host and proto-mitochondrion may have fed upon organic 
carbon. Lokiarchaeota and other Asgard members have not 
yet been cultivated, and so the metabolic strategies used by 
these organisms are not yet fully revealed.

Immediately after entry, the proto-mitochondrion need 
not have provided any particular advantage to its host, and 
might have even been a parasite rather than an endosymbi-
ont. However, upon colonization of a novel, cooler environ-
ment, the collection of heat-generating structures enclosed 
within the plasma membrane would allow the host to main-
tain the cell’s internal temperature at a value higher than 
ambient (Fig. 1). Heat would be generated by dissipation of 
energy during passage of electrons through the ETC, and 
indeed it has been suggested that the ETCs of endosymbi-
onts and parasites may have increased latitude to ‘waste’ 
energy as heat (Schoepp-Cothenet et al. 2013). In addition, 
protons pumped to the bacterial periplasm by the ETC or by 
operating the ATP synthase in reverse (Dimroth and Cook 
2004; Campanella et al. 2009) could leak through the bacte-
rial IM, thereby intensifying heat production. Upon move-
ment of the proto-eukaryote to a cooler location, this pro-
posed scenario allows an immediate cooperative advantage 
for both host and endosymbiont. The host cell would receive 
heat required to endure or colonize a lower temperature 
niche, and the endosymbiont would obtain sufficient metabo-
lites from the host to allow continued heat generation and 
to support its own maintenance. By contrast, although ATP 
synthesis is a prominent function of mitochondria, and a link 
between robust mitochondrial ATP production and eukary-
otic complexity can be envisioned (Lane and Martin 2010; 
Martin et al. 2017), views of initial proto-mitochondrion 
establishment based on an exigent need for endosymbiont 
ATP production have been viewed with skepticism. First, 
one must propose that the host cell was incapable of fulfill-
ing its ATP needs under selection and that the endosymbiont 
generated more ATP than it required before encountering the 
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proto-eukaryotic host (Martin and Müller 1998). Second, 
one must assert that this endosymbiont was initially prepared 
and willing to export its ATP to the host, in spite of an initial 
lack of the antiporter currently used to exchange cytosolic 
ADP for ATP (Karlberg et al. 2000) and in the face of evi-
dence suggesting that intracellular bacteria closely related to 
mitochondria may be unwilling to share ATP with host cells 
(Winkler and Neuhaus 1999).

A Move Toward Complexity at Lower 
Temperatures

As this proposed partnership allowed movement of host cells 
and their resident endosymbionts to colder climates, the 
apparent barriers to genome size and diversity presented by 
life at high temperatures (Laksanalamai et al. 2004; Fried-
man et al. 2004; Drake 2009; Groussin and Gouy 2011; 

Sabath et al. 2013) would have been circumvented. Moreo-
ver, the arrangement I propose may have set the stage for 
further progress toward the cellular complexity character-
istic of eukaryotes.

First, after the early eukaryote had initially colonized 
environments of lower temperature, further genetic 
changes and acquisitions would have rendered unnecessary 
a priority on proto-mitochondrial heat generation. Subse-
quently, better coupling of ETC activity to ATP synthesis, 
coincident with the introduction of an antiporter exchang-
ing cytosolic ADP for ATP synthesized in the mitochon-
dria, would have allowed greater ATP availability to the 
early eukaryotic cell (Fig. 2). While debate continues 
regarding the possibility that the archaeal host was capable 
of phagocytosis before encountering the proto-mitochon-
drial endosymbiont, higher ATP concentration may have 
promoted the ability to prey upon other cells already resi-
dent in the new niche of the proto-eukaryote. The acquired 
nutrients could then be directed toward maintenance of a 
more elaborate subcellular organization and increased cell 

Fig. 1  Internalization of heat-generating bacteria could permit 
archaeal colonization of cooler environments. a Ancestral archaeal 
cells eventually forming the proto-eukaryotic host (gray) would 
initially be limited to proliferation at higher temperatures. b The 
archaeon would encounter and enclose a respiring proto-mitochon-
drial endosymbiont (orange). c After sufficient endosymbiont load 
has been achieved, and the heat generated by electron transport and 
proton leak reaches a sufficient value, the proto-eukaryote may with-
stand lower temperatures

Fig. 2  A subsequent switch to higher ATP generation capacity could 
promote increased cellular complexity. a After initially promoting 
heat generation and permitting movement of the proto-eukaryote to 
a cooler location, subsequent genetic changes obviate the need for 
maximal endosymbiont heat production. b Tighter coupling of elec-
tron transport to ATP synthesis then evolves, resulting in increased 
ATP abundance. c Higher ATP output from mitochondria leads to 
increased subcellular compartmentalization and promotes the ability 
to phagocytose other cells (prey prokaryotes in blue)
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mass, further promoting a predatory lifestyle for the proto-
eukaryote (Stanier 1970; Martin et al. 2017). In addition, 
while a matter of contention (Lane and Martin 2010; 
Lynch and Marinov 2015, 2017; Lane 2017), increased 
ATP availability may have led to augmented protein syn-
thesis capacity and to a corresponding expansion in gene 
content. Supporting these possibilities, oxygen solubility 
increases with reduced temperature (Ming and Zhenhao 
2010), and therefore movement to a cooler environment 
could increase ATP production linked to oxidative phos-
phorylation while also allowing for a basal level of heat 
output.

Second, it has been suggested that single cells are gen-
erally in temperature equilibrium with their environment 
(Johnson et al. 2009; Baffou et al. 2014), although argu-
ments focused only upon heat flow from the cell, while 
ignoring the relative ease of raising and maintaining the 
temperature of a small cell volume, may not fully reflect 
the possibility of heating a single cell through metabolism. 
In any case, formation of extensive multicellular clusters 
with a reduced surface-area-to-volume ratio, if containing 
enough cells (Baffou et al. 2014), could certainly promote 
the retention of endosymbiont-generated heat. Indeed, 
large multicellular aggregates and biofilms, consisting of 
both archaea and bacteria, are commonplace (Fröls 2013), 
and large-scale LGT between members of a heat-conserv-
ing conglomerate may have contributed to the transfer of 
genes to the proto-eukaryote from prokaryotic sources 
beyond the proto-mitochondrion (Fig. 3) (Gabaldón and 
Huynen 2003; Kurland et al. 2006; Booth and Doolittle 
2015; Gray 2015).

Finally, I suggest that proto-mitochondrial heat produc-
tion provided additional flexibility to the eukaryotic ancestor 
population that would be difficult to obtain by fixation of 
mutations and gene transfers. Since one might expect sto-
chastic differences in the quantity of heat-producing endos-
ymbionts among a population of proto-eukaryotic cells, such 
a population might be resilient in the face of environmental 
temperature changes. Upon encountering lower tempera-
tures, those cells with more heat-producing endosymbionts 
would flourish, and conversely, upon meeting higher tem-
peratures, those cells with a more limited endosymbiont load 
would prosper (Fig. 4), thereby maintaining a continuous 
lineage of proto-eukaryotes. Additionally, genotypic hetero-
plasmy, with some endosymbiont ETCs better coupled to 
ATP synthesis than others, would allow further tailoring of 
heat production following selective pressure. Later, the cell 
might evolve mechanisms to control endosymbiont load in 
a bid to carefully balance heat generation with the environ-
mental temperature. It is plausible that the need to curb the 
abundance of heat-producing endosymbionts was a driving 
force for the evolution of autophagy, since this process, like 

mitochondria, appears to have been characteristic of the last 
eukaryotic common ancestor (Yang et al. 2017).

Conclusion

As highlighted in this work, mitochondria can be a signifi-
cant source of heat production, and the ability to convert 
energy from electrons into heat may have been the earliest 
basis for integration of the proto-mitochondrion with its 
archaeal host. Such a scenario bridges a conceptual gap 
between endosymbiont entry and the eventual utility of 

Fig. 3  The need to avoid heat loss may indirectly encourage LGT 
from bacteria to the proto-eukaryote. a Single cells carrying heat-
generating endosymbionts are thought to rapidly equilibrate their 
temperature with the environment. b However, archaea often form 
mixed aggregates that include bacteria (colored ovals), and archaea-
containing biofilms can be of significant size (not reflected here). 
By decreasing the surface-area-to-volume ratio, a greater amount of 
endosymbiont-generated heat might be preserved by cells (reflected 
by red cytoplasm). c The formation of large conglomerates of cells 
would facilitate LGT to the early eukaryotic cell while encouraging 
heat retention
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mitochondrial ATP generation in fostering increased com-
plexity. Strong support for this model would be obtained 
by discovery of a modern-day intracellular endosymbiont 
that currently provides heat to its host organism. In addi-
tion, phylogenetic analyses comparing genes and proteins 
from mitochondria, bacterial relatives of mitochondria, 
and the archaeal kin of eukaryotes, with a focus on temper-
ature-related parameters such as guanine-cytosine content, 
amino acid usage, and activity of reconstructed ancestral 
proteins (Akanuma 2017), can provide insight regarding 
the proliferation temperatures of our closest archaeal and 
bacterial ancestors. Finally, continued investigation of 
subcellular heat generation and distribution at the experi-
mental and theoretical levels will be instructive regarding 
a potential role for endosymbiont heat production during 
eukaryogenesis.

Beyond their roles in bioenergetics, mitochondria 
are the location of other widely conserved cellular pro-
cesses. For example, iron–sulfur cluster generation is a 
primary function of mitochondria (Karnkowska et  al. 
2016; Braymer and Lill 2017), and reactions important 
for lipid metabolism or amino acid production can also 
be compartmentalized at these organelles (Makiuchi and 
Nozaki 2014; Ahn and Metallo 2015; Tatsuta and Langer 
2017). While the mitochondrion’s role in stripping energy 
from electrons was undoubtedly significant during the 

emergence of eukaryotes, a broader focus on the many 
functions of mitochondria lying outside of the respiratory 
chain will be informative when considering early eukary-
otic evolution.
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