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1 Introduction

In its broadest sense, “universality” is a technical term for something quite
ordinary. It refers to the existence of patterns of behavior by physical systems
that recur and repeat despite the fact that in some sense the situations in
which these patterns recur and repeat are different. Rainbows, for example,
always exhibit the same pattern of spacings and intensities of their bows
despite the fact that the rain showers are different on each occasion. They
are different because the shapes of the drops, and their sizes can vary quite
widely due to differences in temperature, wind direction, etc. There are
different questions one might ask about such patterns. For instance, one
might ask why the particular rainbow that I’m currently seeing exhibits the
spacings and intensities of its bows that it does. Perhaps an answer to that
question might need to refer to the particular sizes and shapes of the drops
in the particular rain shower at this time. On the other hand, one might ask
about how it is possible that despite the differences in the lower scale details
about the sizes and shapes of drops in different rain showers, the spacings and
intensities of the bows in the different rainbows are the same. This latter
question concerns the explanation of the (universal) pattern of behavior.
It is arguable that the answer to the former question (or even answers to
the former question for all the different rainbows all taken together) cannot
answer the second question. [Batterman(2002)]

This paper examines what is, in the physics literature, the paradigm ex-
ample of universality; namely the so-called universality of critical phenomena—
certain kinds of phase transitions that systems (fluids and magnets, e.g.) can
undergo. In the next section I describe the phenomena. In section 3 I lay
out the mathematical and physical ingredients required for one to describe
this universal pattern. These include the introduction of a function called an
“order parameter” that serves to represent a surprising change of symmetry
as a system passes through a so-called critical point. Section 4 looks back to
some early work on phase transitions to see how the concept of universality
should be properly defined. One of the most important features is a kind of
stability of macroscopic behavior under changes of microscopic details. Any
explanation of the possibility of universal behavior must account for this type
of stability. In section 5 I briefly discuss how the renormalization group (RG)
can explain the existence of universal behavior, in part by explaining the ex-
istence of this kind of stability. Finally, in section 6 I address some objections
to the RG explanation of universality that have been raised repeatedly in the
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philosophical literature.

2 Universality of Critical Phenomena:

A Paradigm Case

One of the most striking examples of universal behavior concerns the pattern
displayed by molecularly distinct fluids near their so-called critical points.
It is worth spending a bit of time examining this paradigmatic example of
universality.
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Figure 1: Cartoon PVT Diagram for Water [Kadanoff(2013), p. 148]

Everyone knows that water can exist in three distinct phases: as a liquid,
as a solid, and as vapor or gas. One can represent these different phases
graphically using the thermodynamic variables, pressure (P ), volume (V ),
and temperature (T ). In figure 1, the curves show how the pressure depends
on the volume at different fixed values for the temperature. Consider the
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boiling region. This corresponds to the process that takes place when wa-
ter boils in a kettle. Inside the kettle both vapor and liquid coexist. The
special point (Tc, Pc) is called the critical point. It is special in the follow-
ing way. Below the critical temperature (Tc = 647K) and critical pressure
(Pc = 22.9MPa) one finds the region of liquid/vapor coexistence. Above
that critical point, the kettle will no longer contain two distinct phases of
water. There is an abrupt change in the makeup of the stuff in the kettle
at that critical temperature and pressure. For carbon dioxide (as for many
other fluids) the diagram looks exactly the same although there will be dif-
ferent values for the critical temperature and pressure.1 In saying that the
diagram looks exactly the same for carbon dioxide as it does for water, the
important thing is that the shapes of the dotted lines near (Tc, Pc) for both
fluids are identical. So, while water and carbon dioxide are very different
fluids as is evidenced by their very different critical temperatures and pres-
sures, nevertheless near their critical points (“near criticality”) they exhibit
identical behavior. This is universal behavior realized by molecularly very
different fluids.

A remarkable representation of the experimental fact of universality is
provided by a figure in E. A. Guggenheim’s 1945 paper entitled “The Princi-
ple of Corresponding States.” When plotted in reduced coordinates ( ρ

ρc
, T
Tc

),
the coexistence curves for eight different fluids near criticality all collapse
onto the same curve. See figure 2.

One can quantify the universal behavior by introducing a so-called “order
parameter.” For the transition between the boiling region with two coexistent
phases and the region above, define the order parameter Ψ to be the difference
between the densities of the liquid and the vapor in the kettle:

Ψ = |ρl − ρv|.

Then the relation2

Ψ ∝ εβ (1)

describes the shape of the coexistence curve for a fluid. Universality is also
expressed by the fact that β is the same for the different fluids. This is just
what is represented in figure 2.

1For carbon dioxide, Tc = 31.1C(= 304.3K) and Pc = 7.2MPa. Experimentally, it is
a lot easier to realize the critical temperature and pressure of CO2 than it is for water.

2ε = |(Tc − T )/T | and is a measure of how close a system is to its critical temperature
in dimensionless units.
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Figure 2: Universality of Critical Phenomena [Guggenheim(1945)]

Guggenheim’s demonstration of the data collapse is indeed striking. But
it is even more remarkable that the critical behavior of magnets exhibits the
identical scaling relation. For a ferromagnet the order parameter is M , the
net magnetization, and the relation

M ∝ εβ (2)

holds as well with β identical to the value in equation (1).

3 The Ingredients of Universality

3.1 Order Parameters and Symmetries

Exactly what kind of quantities are the order parameters Ψ and M? One can
think of them as thermodynamic properties that allow us to characterize the
qualitative behavior of systems near their critical points. That is, one can
treat these as thermodynamic properties on a par with pressure, temperature,
and volume. As thermodynamic properties they describe the behavior to
be expected as a system is cooled from a temperature above Tc to below
Tc. In the case of Ψ we see that as that temperature is crossed, there is a
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spontaneous appearance of two new states of matter (liquid and vapor). In
the case of M , the magnet exhibits zero net magnetization (it is in a so-
called paramagnetic phase) and spontaneously gains a net magnetization as
the critical temperature is crossed. In both cases, above Tc there exists a
symmetry that is broken upon passing through Tc. For example, in a magnet
in zero external magnetic field, there is rotational symmetry (no preferred
direction) above Tc that is broken upon passing through Tc: All of a sudden
there is a preferred direction of magnetization.

The concept of an order parameter was first introduced3 by Landau in
1937. [Landau(1965), pp. 193–216] The order parameter, as noted, captures
the macro or continuum behavior and reflects the symmetry changes in a
fluid as a parameter (temperature) is varied. But, from the point of view of
statistical mechanics, one needs to think about Ψ and M in a different way.
What, after all, is responsible for there being non-zero values of M below Tc?
The answer has to depend on some kind of lower scale/microscopic features
of the magnet—some fact about the arrangement of (magnetic) spins on a
lattice. Michael Fisher puts this as follows:

To assert that there exists an order parameter in essence says:
“I may not understand the microscopic phenomena at all” (as
was historically, the case for superfluid helium), “but I recognize
that there is a microscopic level and I believe it should have cer-
tain general, overall properties as regards locality and symmetry:
those then serve to govern the most characteristic behavior on
scales greater than atomic.” [Fisher(1998), p. 654]

Once one sees the order parameter as coding for some feature of the mi-
crostructure of the magnet or fluid, one is in the domain of statistical physics.
Now one needs to treat the order parameters as averages and one needs to
consider the possibility of fluctuations in the values of the order parame-
ters. Furthermore, thinking like this actually requires that one distinguish
between the macroscopic scale (the scale of the continuum where the order
parameter is simply a function of thermodynamic macroscopic properties like
temperature and pressure), a mesoscale where fluctuations in aggregates of
atomic scale properties may be important, and the atomic scale where what
matters is the detailed natures of the atoms/molecules and spins. The order
parameter lives in the intermediate region. Here is Fisher again:

3Michael Fisher [Fisher(1998), p. 654] says it’s fair to say Landau invented the order
parameter.
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Significantly, in my view, Landau’s introduction of the order pa-
rameter exposed a novel and unexpected foliation or level in our
understanding of the physical world. Traditionally, one charac-
terizes statistical mechanics as directly linking the microscopic
world of nuclei and atoms (on length scales of 10−13 to 10−8 cm)
to the macroscopic world of say, millimeters to meters. But the
order parameter, as a dynamic, fluctuating object in many cases
intervenes on an intermediate or mesoscopic level characterized
by scales of tens or hundreds of angstroms up to microns (say,
10−6.5 to 10−3.5 cm). [Fisher(1998), pp. 654]

It is reasonable to ask why this works. Why is this foliation of the physical
world successful and appropriate? The answer to this is important for un-
derstanding both how universal behavior is possible and for understanding
how one can explain such universality. That is to say, the existence of meso-
scale features of the world captured by the order parameter is a necessary
condition for universality. And, the explanation of universal behavior em-
ploys methods that exploit the fact that there is a wide separation of scales
between the atomic and the macroscopic with no characteristic lengths in
between.

3.2 Length Scales

Kadanoff describes a “very interesting and fundamental question” concerning
the fact that the world

shows an amazing variety of length scales: There is the Hubble
radius of the universe, 1010 light years or so and the radius of
our own solar system, 1011 meters roughly, and us–two meters
perhaps, and an atom–10−10 meters in radius, and a proton 10−16

meters, and the characteristic length of quantum gravity — which
involves another factor of about 1020.

How these vastly different lengths arise is a very interesting and
fundamental question. . . . However, we can think about how one
describes the region between these lengths. If one is looking
at scales between two fundamental lengths, there are no nearby
characteristic lengths. Similarly in critical phenomena, when-
ever one looks [at] any event which takes place between the scale
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of the lattice constant [the spacing between molecules or spins]
and the much larger scale of the coherence length, one is in a
situation in which there are no nearby characteristic lengths.
[Kadanoff(2000), p. 251]

This lack of characteristic length scales is crucial for both the existence of uni-
versal behavior and for its explanation. In the above quote, Kadanoff refers
to the “coherence length” sometimes also called the “correlation length.” For
a system near criticality the correlation length becomes enormous and for in-
finite systems, it diverges to infinity.4 For a fluid system like the water in the
kettle, the correlation length is a measure of the average size of a region of
vapor (say) in the kettle. Vapor molecules cluster with other vapor molecules
and liquid molecules cluster with other liquid molecules. (The analog of this
in a ferromagnet is that the spins on the lattice sites want to be next to spins
pointing in the same direction. So one has “droplets” of up-spins of a certain
size and “droplets” of down-spins as well.) As the water in the boiling region
(or the spins in the magnet) heat up and approach critical temperatures, the
size of the different droplets get larger and larger. This means that, even
though the physical forces between the molecules (or spins) remain local,
distant molecules (spins) become correlated as a result of existing in the dif-
ferent droplets. In addition, one has large correlated droplets of vapor inside
droplets of liquid inside droplets of vapor . . . . See figure 3.

In the phase diagram of figure 1, the region near critical point inside the
boiling region corresponds to this “fractal like” structure of droplets within
droplets, etc. The reason for is that near the critical point, fluctuations are
dominant and average values for the order parameters essentially lose their
meaning. Orthodox statistical mechanics is unable to describe the critical
behavior because there are fluctuations at all length scales from the macro-
scopic correlation length equal to the size of the system (the kettle), and the
microscopic distance of the range of the forces between molecules or spins.
These fluctuations “cannot probe all the details of the interatomic potential.
Rather they only see certain gross features of the potential: for example the
amount of breaking of an exact symmetry . . . or the distance from the critical
point.” [Kadanoff(1971), p. 104]

Given all these details about what is happening at the micro-, meso-, and
macro-scales in the neighborhood of a critical point, we can now see how
properly to define the universality of critical phenomena.

4I will have more to say about the role of infinite systems below.

7



299

12 Leo P. Kadanoff

yet more appear. Hence, each droplet in Fig. 1.3 has a characteristic appear-

ance like that shown in Fig. 1.4. This clusGring of droplets within droplets

appears until a purely microscopic scare of distances is reached.

oe
Frc. 1.4. Droplets inside of droplets inside droplets . . .

- From this picture we conclude that critical phenomena are connected with

fluctuations over all length scales between ( and the microscopic distance

between particles.

ll. Mean Field Theory

A. Results

A first qualitative picture of near-critical behaviour can be obtained by
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of critical phenomena. However, in another sense, one can discuss phase
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Figure 3: Droplets inside droplets inside droplets . . . [Kadanoff(1976), p. 12]

4 How Universality is Defined

Kadanoff states the “hypothesis of universality” as follows:

All phase transition problems can be divided into a small number
of different classes depending upon the dimensionality of the sys-
tem and the symmetries of the order state. Within each class, all
phase transitions have identical behaviour in the critical region,
only the names of the variables are changed. [Kadanoff(1971), p.
103]

Table 1 exhibits different values for the scaling exponent β for different
phase transitions at criticality.5 We can here see how the scaling exponent
depends upon the dimensionality of the system. The ferromagnetic transi-
tion for a two dimensional film is in a different universality class than the
three dimensional magnet. Notice also that despite remarkable differences

5Table 1 is from data presented in [Kadanoff(1971), p. 102].
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in microstructural makeup, the liquid/vapor systems, superfluid helium, and
the d = 3 ferromagnet are all in the same universality class; that is, the
scaling exponent β appearing in equations (1) and (2) are the same (within
experimental error).

Table 1: Scaling Exponents for Different Transitions

Phase Transition Value of β

Mean Field Theory 1/2
d = 2 Ising Model Ferromagnet 1/8
d = 3 Liquid/Vapor CO2, Xe 0.35
d = 3 Superfluid Helium 4He 0.359
d = 3 Ising Model Ferromagnet 0.315

A full description of a phase transition typically involves two field vari-
ables. Consider the ferromagnetic transition. One can take the external
magnetic field h as a field that can drive a system from one coexisting phase
(up spins) to the other (down spins). The second field is provided by the
reduced temperature, ε, defined above in footnote 2. This field drives the
system closer or away from the critical point. These are the variables to
which Kadanoff refers in his hypothesis of universality above. In terms of
these field variables, the free energy for the system can be written as follows6:
F = F (h, ε). In differential form, this becomes

dF =< M > dh+ < H > dε, (3)

where < H > is an energy. In this differential form we see that the fields h
and ε are paired with two thermodynamically conjugate variables: < M >
and < H >, respectively. For the liquid/vapor transition, the corresponding
pairs of variables are the order parameter Ψ with its conjugate (µ − µc)
related to the chemical potential. When Kadanoff says that “only the names
of the variables change” for systems in the same universality class these are
the changes to which he refers:

(M,h) ↔ (Ψ, (µ− µc))
6The free energy is a measure of the internal energy of the system that is available to

do work.
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The ferromagnetic/paramagnetic phase transition and the liquid/vapor phase
transition are in the same relatively small class.

4.1 Stability

Thus there is a relationship between different phase transitions problems that
leaves invariant various features of those transitions. Here is Kadanoff again:

The theorist can discuss this relation in the following way: He
imagines that yet another field is inserted into the free energy.
Call that other field λ and the operator which is its thermo-
dynamic conjugate, U . Here λ represents a parameter in the
Hamiltonian. Continuous variation from λ = 0 to λ = 1 might
represent the change in the Hamiltonian which takes us from the
Ising model to the Heisenberg model, or from Ni to Fe or from
a nearest neighbor interaction to a next nearest neighbor inter-
action. Therefore, the discussion of λ and its thermodynamic
conjugate U is in effect the discussion of the relationship among
different phase transition problems. [Kadanoff(1971), p. 105]

Consider the ferromagnetic transition. Inserting this new parameter into the
Hamiltonian means that the free energy is now a function, not only of the
magnetic field h and the field ε, but also of the field λ:

F = F (ε, h, λ).

In differential form we now have

dF =< M > dh+ < H > dε+ < U > dλ. (4)

As an example, consider the Hamiltonian for a nearest neighbor Ising
ferromagnet:

HΩ = −Jn.n.
∑
<ij>

σiσj − h
∑
i∈Ω

σi, (5)

where Ω is a region of spins on a d-dimensional lattice, < ij > signals nearest
neighbor pairs on the lattice, Jn.n. characterizes the nearest neighbor spin-
spin coupling, and h is a (uniform) magnetic field.
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Next, let

λ =
Jn.n.n.
Jn.n.

,

be the ratio of the next nearest neighbor spin coupling strength to that of
nearest neighbor coupling strength. Consider the variation of from λ = 0 to
λ = 1.7 This takes us from the nearest-neighbor to next-nearest-neighbor
coupling. Let ε and h be defined as follows:

ε =
(T − Tc(λ))

Tc(λ)
and h =

µβHz

KTc
.

For λ = 0 write the order parameter as function, m0 of h and ε:

< M >= m0(h, ε).

Similarly introducing the distance r between spins, one can write the spin-
spin correlation function g0 as follows:

< σz(0)σz(r) >= g0(h, ε, r).

Then Kadanoff [Kadanoff(1971), p. 106] asserts that “[u]niversality implies
for λ 6= 0”:

< M >= am0(h̄, ε̄), < σz(0)σz(r) >= (ab/d3)g0(h̄, ε̄, r̄),

where
h̄ = bh, ε̄ = cε, r̄ = dr.

This means that the functional forms of < M > and < σz(0)σz(r) > do not
change as λ varies.

Universality, then

. . . implies that the basic thermodynamic functions and correla-
tion functions only depend on λ via a trivial change of variables.
The functional form is the same as at λ = 0. However, the vari-
ables in these functions are changed in that h, ε, and M are
each multiplied by parameters a, b, c, d which depend upon λ.
[Kadanoff(1971), p. 105]

7See also the paper by Robert Griffiths “Dependence of Critical Indices on a Parame-
ter.” [Griffiths(1970)]
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What does this result mean? It means that the Hamiltonians of different
systems—as different as8 nickel and iron, or as different as9 CO2, Xe, and
4He—can be perturbed into one another without changing the nature of the
phase transition problem.10 This, in turn, means that the scaling behavior of
the order parameter will remain unchanged as the transformation (by varying
the value of λ) between Hamiltonians is effected. In other words, many of
the details that genuinely distinguish a lattice of nickel from that of iron
(different interatomic strengths, etc.) are irrelevant for the scaling behavior.
This is best understood as a stability result. The class of systems represented
by their Hamiltonians between which such λ-transformations can take place
without effecting the scaling behavior of the order parameter (whether it is
M , or Ψ, or whatever) is called a “universality class.” It is defined as that
set of systems between which such (perturbative) transformations hold.

This stability under perturbation is the key property of universality. To
explain how universality is possible, then, requires that one explain two fea-
tures:

1. Why are the phase transitions stable under perturbation of the micro-
scopic details of the systems (as encoded in their Hamiltonians)?

2. Why are the universality classes dependent11 upon the symmetry of the
order parameter and the dimensionality of the systems?

5 Explaining Universality

In this section I outline, very briefly, how the renormalization group allows for
an explanation of the two key features of universal behavior just mentioned.
This explanation has been called into question by a number of commentators
and I will consider their objections in the following section. Recall the ingre-
dients of universality. Near criticality, the correlation length is enormous and
there is a droplets-within-droplets structure that exhibits self-similarity (i.e,

8See above quote from Kadanoff.
9See Table 1 above.

10Not all such transitions will preserve the nature of the phase transition problem. In
fact, a perturbation from an Ising Hamiltonian to a Heisenberg Hamiltonian, will take us
from one problem to another.

11Recall Kadanoff’s “hypothesis of universality” quoted at the beginning of this section.
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Figure 4.10 Making blocks. In this illustration a two-dimensional Ising model containing
81 spins is broken into blocks, each containing 9 spins. Each one of those blocks is assigned
a new spin with a direction set by the average of the old ones. We imagine the model is

reanalyzed in terms of the new spin variables.

result of that calculation and one that might depend upon the exact way in which
we chose to define the new spin variable.

The equation for the new value of the new deviation from criticality, t =Kc −K ,
could be described in similar terms. It is reasonable to assume that if the original
system is at its critical point, so is the new description obtained after the block
transformation. Further it is reasonable to argue that the transformation should
engender no singularities, thus requiring that a new temperature-deviation from
criticality would have a linear dependence upon the old deviation. So the remaining
point is to calculate the coefficient in the linear relation and express it in the special
manner given in Eq. (18d).

7. The Wilson Revolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Physical Space; Fourier Space

Before entering into Wilson’s construction of the renormalization group theory, I
should touch upon a point of technique.

The proportionality in Eq. (18d) and Eq. (18c) are representations of scaling,
and the coefficients in the linear relations define the scaling relations among the
variables. Note that here scaling is viewed as a change in the effective values of the

Figure 4: Blocking and averaging to yield a new (coarse-grained) effective
system [Kadanoff(2013), p. 172]

it behaves like a fractal). As a result there are no characteristic scales be-
tween the atomic/lattice spacing and the continuum. Importantly, as noted,
for an infinite system the correlation length actually diverges to infinity.

Kadanoff recognized that one could exploit the droplets-within-droplets
fractal structure to change a Hamiltonian representing a system into a related
effective Hamiltonian by a kind of coarse-graining procedure. This is now
known as the Kadanoff block spin method.

The idea is to group or block spins or molecules and replace them with
an some kind of average.12 In figure 4 there are nine spins per block and
the “averaging” rule is to let the majority rule: If more spins in a block are
up-spins (down-spins), replace those nine spins with a single “block spin”
that points up (down). Now we have a lattice of block spins that looks
pretty much like the original lattice but the spacings between the block spins
is greater. Next one spatially rescales so as to put the new spins on the

12It almost doesn’t matter what averaging or coarse-graining scheme is used. This fact
is just another signature of the stability of phase transitions under perturbation.
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Figure 5: Fixed Point and Universality Class [Fisher (1998) 673]

same lattice as the original. Finally one changes the block spins so that the
exhibit coupling strengths as similar to the original coupling as possible.13 We
now have a new “renormalized” Hamiltonian corresponding to this effective
system. Continued iteration of this procedure leads to a flow (the RG flow)
on an abstract space of Hamiltonians. That is, it induces a dynamics that
takes one Hamiltonian into another as the blocking procedure is repeated.
See figures 5 and 6.

One examines the dynamical flow on this abstract space and looks for
potential fixed points. These are points which when acted upon by the
transformation yield the same point.14 A fixed point is a property of the
transformation itself and all details of the systems that flow toward that fixed
point have been eliminated. Those systems/models (points in the space)

13This part of the procedure is to a certain extent an art. There is no explicit recipe
that one can follow.

14If τ represents the transformation and p∗ is a fixed point we will have τ(p∗) = p∗.
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Figure 6: Fixed Point, Universality Class, and λ-Transformation

that flow to the same fixed point are in the same universality class—the
universality class is delimited—and they will exhibit the same macro scaling
behavior.15 That macro-behavior, in particular, the determination of the
scaling exponent β in equations (1) and (2) can be determined by an analysis
of the transformation in the neighborhood of the fixed point.

Crucially, those systems that actually flow to a fixed point are at criti-
cality. This means that they are infinite systems. As such, those systems
are idealizations. But the infinite idealization is necessary if one is to locate
the fixed points of the RG flow in the abstract space. This is because the
correlation length must diverge to be able to infinitely iterate the RG trans-
formation. Nevertheless, systems that are near criticality (real, large finite
systems) will start off close to the critical systems and their behavior can be
understood by examining the topology of the RG flow in the neighborhood
of the fixed point. So, the RG explains the behavior of near critical, real
systems.16 It explains what is going on in the neighborhood of the critical

15To put this another way: The universality class is the basin of attraction of the fixed
point.

16If it only explained the behavior of idealized infinite systems, it would not be such a
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point in the boiling region of figure 1.
So the fixed point delimits the class of systems that all exhibit similar

behavior near criticality. It also, thereby, justifies the existence of the kind
of perturbative stability Kadanoff describes in his discussion of what we’ve
called the λ-transformations. See, figure 6. Finally, this analysis also demon-
strates that the only important or relevant features (other than being near
criticality) for this common behavior are the dimensionality of the system
and the symmetry of the order parameter in the critical region.

6 Objections and Responses

As noted, a number of philosophers of science have challenged some of the
claims I have just been making. Let me set up my replies to these objec-
tions with another quote from Michael Fisher. In “Scaling, Universality, and
Renormalization Group Theory” [Fisher(1983)] Fisher expresses what, from
a contemporary philosophical perspective, is a rather heretical point of view.

The traditional approach of theoreticians, going back to the foun-
dation of quantum mechanics, is to run to Schrödinger’s equation
when confronted by a problem in atomic, molecular or solid state
physics! One establishes the Hamiltonian, makes some (hope-
fully) sensible approximations and then proceeds to attempt to
solve for the energy levels, eigenstates and so on. However, for
truly complicated systems in what, these days, is much better
called “condensed matter physics,” this is a hopeless task; fur-
thermore, in many ways it is not even a very sensible one!

The modern attitude is, rather, that the task of the theorist is
to understand what is going on and to elucidate which are the
crucial features of the problem. For instance, if it is asserted that
the exponent [β] depends on the dimensionality, d, and on the
symmetry number, n, but on no other factors, then the theorist’s
job is to explain why this is so and subject to what provisos. If
one had a large enough computer to solve Schrödinger’s equation
and the answer came out that way, one would still have no un-
derstanding of why this was the case!’ [Fisher(1983), pp. 46–47]

big deal. Hardly worthy of a Nobel prize!

16



It is clear from this quote that for Fisher our understanding of universal
behavior requires explaining why the pattern depends upon the dimension
of the system and the symmetry of the order parameter. This, of course, fits
nicely with Kadanoff’s definition of universality (section 4) that explicitly
characterizes phase transition problems as depending upon the dimensionality
of the system and the symmetries of the order state.

6.1 Objections: Reutlinger and Lange

Alexander Reutlinger holds that the RG explanation for the universal behav-
ior of critical phenomena (section 5) proceeds in a completely different, intu-
itive, everyday way. He says RG explanations “are not special and quite in-
tuitive in one crucial respect. RG explanations explain the phenomenon that
microscopically different physical systems display the same macro-behavior
. . . by referring to features that those physical systems have in common, al-
though the physical systems at issue are different in many other respects.”
[Reutlinger(2017), p. 144] The “common features” that are supposed to
explain the universal behavior are the common dimensionality and the com-
mon symmetry of the order parameters. To cite these features, according
to Ruetlinger, just is to explain the universal critical behavior of fluids and
magnets.

In a reply to a paper by Collin Rice and me, Marc Lange [Lange(2015)]
argues similarly for what Ruetlinger calls the “commonality strategy.” He
holds that our justification of why minimal models like the Ising model can
be used to understand the behaviors of actual systems also depends upon
citing common features. He asserts that “since the model’s explanatory util-
ity arises from its having certain features in common with the target sys-
tem, the model’s explanatory utility arises from its representing accurately
enough the target system, contrary to B&R’s [Batterman’s and Rice’s] view.”
[Lange(2015), p. 298] Specifically, the claim is that a minimal or “toy” model
can be explanatory if it shares features (dimension and symmetry in the case
of the Ising model) with the actual target, fluid system.

In our paper, Rice and I argue that the justification for the applica-
bility of minimal models derives from the demonstration that the minimal
model is in the same universality class as the target system of interest. The
discussion above aims in part to show how the RG demonstrates this very
fact. Furthermore, and importantly, we have seen that this demonstration
also provides an account of why dimensionality and symmetry are important

17



features characteristic of the universality class.
But Lange asks why do “B&R insist that a minimal model explanation

must explain why the common features are necessary for the macrobehavior
to occur and why these features are present in all members of the univer-
sality class despite their heterogeneous microdetails?” [Lange(2015), p. 303]
The answer to these questions, once one properly understands what it is to
be a universality class, is that one needs to show that those very features
(symmetry and dimensionality) are the important common features. This
fits with the above discussion of the definition of universality (section 4) and
with the insistence by Fisher (in the quote above) that “the theorist’s job is
to explain why [the common exponent β depends upon the dimensionality d
and the symmetry number n]. [Fisher(1983), pp. 47]

Lange does appeal to a passage from Fisher that comes just after the one
quoted above:

We may well try to simplify the nature of a model to the point
where it represents a ‘mere caricature’ of reality. But notice that
when one looks at a good political cartoon one can recognize the
various characters even though the artist has portrayed them with
but a few strokes. . . . [A] good theoretical model of a complex
system should be like a good caricature: it should emphasize
those features which are most important and should downplay
the inessential details.” [Fisher(1983), p. 47]

Lange claims that here Fisher “seems to be supporting a ‘common features
account’: the minimal model, despite being a caricature of some actual sys-
tem, shares with it ‘those features which are most important.’ ”[Lange(2015),
p. 299, fn. 3]

Of course Lange is right about this. But the question is why are those the
features that are important! Without an answer to that question, we neither
have a justification for the use of the minimal model, nor an explanation of
universal behavior.

6.2 Objections: Franklin and Mainwoood

Alexander Franklin has recently argued that the Kadanoff blocking scheme
(aka “real”-space RG) discussed above, cannot explain the possibility of uni-
versal behavior. [Franklin(2017)] He says that
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[b]uilding on Mainwood [Mainwood(2006)] I argue that the [real-
space RG and the field-theoretic RG] approaches ought to be
distinguished: while the field-theoretic approach explains uni-
versality, the real-space approach fails to provide an adequate
explanation. [Franklin(2017), p.1]

Without going into too much detail, I want to argue that this claim is mis-
taken. The error is two-fold. First, the claim rests on a mistaken characteri-
zation of universality (similar to the view held by of Reutlinger and Lange).
On this mistaken view, one fails to realize that to explain universality (as I’ve
discussed above) requires that one explain the dependence of the macropat-
tern on the symmetry and dimension. Second, Franklin’s assertion rests upon
a myth (whose genesis in philosophical discussions, I believe, is Mainwood’s
dissertation [Mainwood(2006)]); namely, that there really are two kinds of
RG explanations, one given by the real-space (or Kadanoff) approach, the
other by a so-called field-theoretic (or Wilsonian) approach.

We have seen above how the real-space approach is supposed to work.
And, it is true that physics textbooks often do refer to the field-theoretic
approach as distinct. In fact, one text upon which Franklin relies makes
the distinction between the two types of RG explanations quite explicit.
[Binney et al.(1992)Binney, Dowrick, Fisher, and Newman] I think this dis-
tinction (between real-space and field-theoretic RG) makes some sense and
does simplify some calculations. However, it begs the important question
when it comes to explaining universality. That is, the so-called “field-theoretic”
approach assumes universality rather than explaining it.

The field-theoretic “explanation” starts with what is known as the Landau-
Ginzburg-Wilson (LGW) Hamiltonian:

H =

∫
ddx

[
1

2
ζ2|∇φ(x)|2 +

1

2
θ|φ(x)|2 +

1

4!
η|φ(x)|4

]
. (6)

For my purposes here it suffices to note two features of this Hamilto-
nian (neither of which is controversial). First, φ(x) is an order parameter
(like Ψ or M) and that, within the LGW Hamiltonian, only even powers of
that order parameter appear. Second, the LGW Hamiltonian is an effective
Hamiltonian. This latter feature means that the LGW Hamiltonian is not a
microscopic characterization of the system. In fact, since it makes reference
to the order parameter φ(x), given the discussion in section 3 it is a mesoscale
Hamiltonian. Thus, unlike the real-space RG explanation that starts with
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microscopic Hamiltonians, the field-theoretic approach begins with a Hamil-
tonian that already ignores various microscopic details that distinguish dif-
ferent systems. Most importantly, the LGW Hamiltonian’s elimination of
odd power terms of the order parameter, is a reflection of the symmetry of
that order parameter.

In other words, the LGW Hamiltonian is designed to represent systems
that share the same dimensionality and order parameter symmetry. There-
fore, it cannot serve to explain why the systems in the universality class have
those properties as common features. It is surely true that condensed mat-
ter physicists often start with the effective (mesoscopic) LGW Hamiltonian,
rather than a more realistic (or at least more detailed), microscopic Hamil-
tonian. They then use this to understand macroscopic aspects captured,
for example, by the power law scaling relations. But what allows them to
start at this mesoscopic scale? What, that is, justifies the use of the LGW
Hamiltonian as the starting point?

Recall Fisher’s remarks in [Fisher(1998)] that Landau’s introduction of
an order parameter introduced a novel foliation of the world into microscopic,
mesoscopic, and macrosopic. The LGW Hamiltonian, lives in the mesoscopic
regime. In that same paper, Fisher argues that work needs to be done to
justify the use of the LGW Hamiltonian:

. . . [O]ne starts from this intermediate level with a physically ap-
propriate LGW Hamiltonian in place of a true (or, at least, more
faithful or realistic) microscopic Hamiltonian; and then one brings
statistical mechanics to bear in order to understand the macro-
scopic level. The derivation and validity of the many types of
initial, LGW Hamiltonians may then be the object of separate
studies to relate them to the atomic level.” [Fisher(1998), p.
654–655, emphases in original]

These latter, “separate studies” aim to relate the mesoscale to the atomic
scale. They include RG investigations of the sort discussed in section 5.
They involve real-space techniques designed to establish the dependence of
phase transition problems on dimensionality and symmetry and they work
by providing in principle demonstrations that near criticality, the details
that genuinely distinguish the systems (and their respective Hamiltonians)
from one another are by and large irrelevant for the upper scale behavior of
interest. It is only after these demonstrations that one is able to justifiably
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appeal to an effective Hamiltonian as representative of a large (universality)
class of distinct systems.

7 Conclusion

As Kadanoff and others (specifically Robert Griffiths [Griffiths(1970)]) have
emphasized, universal behavior reflects a stability of a certain behavior under
perturbation of particular details. The concept of universality also depends
upon a separation of scales and the fact that no nearby characteristic length
(time) scale is present. Finally, it is part of the very concept of universality
of critical phenomena that the (universality) class of systems depends upon
the dimensionality of the system and the symmetry of the ordered state.
Thus, any explanation for how the universality of critical phenomena can
be possible requires demonstrations that the systems are stable under the
appropriate (λ-)perturbation and that the only system features relevant to
the behavior are the physical dimensionality and the symmetry of the ordered
state.

The renormalization group can provide these two demonstrations. It does
so by introducing a transformation on an abstract space of Hamiltonians
corresponding to actual and possible systems and finding fixed points of
that transformation. The Hamiltonians that flow to the same fixed point
are exactly those between which the perturbative (λ) stability holds. They
are also those critical systems that share dimensionality and the appropriate
meso-scale symmetry.

As discussed in section 6 a number of objections have been offered to
this RG explanation. I answer these by looking back at the historical dis-
cussions in which the concept “universality” first appeared as an expression
of similar behavior by radically distinct systems. It seems (to me at least)
that the commonality strategy for explaining universality is misguided. In
fact, since universality is a statement to the effect that the similar behaviors
of critical systems depend only on dimensionality and symmetry, to explain
how universal behavior is possible requires explaining the dependence upon
dimensionality and symmetry. Simply citing those properties as explanans
just won’t do the trick. Finally, appealing to a field-theoretic RG that starts
with an effective Hamiltonian fails to meet the explanatory task. The effec-
tive (LGW) Hamiltonian requires justification. As it is effective, it actually
expresses the very universality one seeks to explain.
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