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Summary

On the basis of the Suppes-Sneed structural view of scientific theories, we take a fresh
look at the concept of refutability, which was famously proposed by K.R. Popper in
1934 as a criterion for the demarcation of scientific theories from non-scientific ones,
e.g. pseudo-scientific and metaphysical theories. By way of an introduction we argue
that a clash between Popper and his critics on whether scientific theories are, in fact,
refutable can be partly explained by the fact Popper and his critics ascribed different
meanings to the term ‘theory’. Then we narrow our attention to one particular theory,
namely quantum mechanics, in order to elucidate general matters discussed. We prove
that quantum mechanics is irrefutable in a rather straightforward sense, but argue that
it is refutable in a more sophisticated sense, which incorporates some observations
obtained by looking closely at the practice of physics. We shall locate exactly where
non-rigourous elements enter the evaluation of a scientific theory — this makes us see
clearly how fruitful mathematics is for the philosophy of science.
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1 Prelude

K.R. Popper [1934, p. 41] famously propounded refutability, or synonymously falsifiability,
as a demarcation-criterion for scientific theories: a theory (considered by Popper logical-
positivistically as a class of sentences closed under deduction) or a hypothesis (a single
sentence) is scientific iff it contradicts some logically possible, observable event (fact, state
of affairs). The standard objection against Popper’s demarcation-criterion, levelled by a
variety of philosophers of science (see Lakatos [1978] and contributors to Schilpp [1974]
and O’Hear [1995]), is that not a single theory accepted by the scientific community is, in
fact, refutable. The scientific community never specifies rejection-conditions in advance
that will be acted upon scrupulously. Science is not Law. This would entail that Popper’s
criterion fails to make sense of science in that the success of science cannot be explained
by the putative fact that all scientists live by this Popperian norm — for they contravene
it. Thus a humble goodbye to refutability.

But can refutability be so easily dismissed? Not according to the following ‘transcen-
dental argument’.

A blunt fact of the scientific enterprise is that some theories (models, hypotheses) are
accepted whereas others are rejected. Another blunt fact is that the phenomena (results of
observation and experimentation) fill a major rôle in this play of acceptance and rejection.
Most if not all scientists see the phenomena playing a decisive rôle: accepted theories are
accepted mainly because they are confirmed by a large variety of established phenomena,
and other theories are rejected mainly because they conflict with certain established phe-
nomena. But then our theories must be such that it is possible for them to be in agreement
and to be in conflict with phenomena — if not categorically then conditionally on some
generally accepted conditions, e.g. simplicity. For if they were not, phenomena could have
little bearing on the acceptance or rejection of theories, contra the two blunt facts. So the
confirmability as well as the refutability of our theories (conditional if not categorical) are
necessary conditions for the possibility of science. Thus refutability cannot be dispensed
with when we want to make sense of science.

An obvious manner to steer away from this collision about refutability is to reject it as
a demarcation-criterion but to retain it as a necessary condition for a theory to be scientific —
confirmability and consistency being other such necessary conditions. But steering away
on this route still commits one to explain what it is that makes a theory refutable. For
otherwise we are still in the target area of Popper’s critics and, when hit, have to admit
that not a single theory rejected by the scientific community can be said to be refutable.

The main purpose of the present paper is to take a fresh look at refutability on the
basis of the structural view of scientific theories. In particular we shall show that one can,
for a particular theory, present set-theoretical definitions of a theory whose scientific char-
acter does not stand in need of commendation to the rational mind — namely quantum
mechanics —, and of its confirmability, its refutability, the phenomena relevant for the
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theory (data) and a few related concepts (Sections 3, 4). Such rigourous renditions have
the virtue they make it in principle possible to prove and to disprove philosophical theses
on the basis of some modest set-theory when it is possible to express these theses faith-
fully in the (perhaps a little enriched) language of set-theory, rather than to make such
theses plausible (or implausible) by examples (or counter-examples) from the practice of
science in past and present. (We presuppose that the axioms of some modest set-theory
are not controversial; cf. the Appendix.) This is not to say that the practice of science of
past and present is irrelevant for the philosophy of science, because the definitions we
shall propound are, of course, inspired by looking closely at the practice of science. But,
as Suppes [1968] has so eloquently argued, it is to say that standards of (informal) rigour
must be obeyed in the philosophy of science as much and as often as possible. We shall
prove that quantum mechanics is irrefutable in a straightforward sense (Section 5). Then
we shall spell out what is needed in order to make it refutable; this will lead to a revised
notion of refutability on the basis of which we shall argue that quantum mechanics is
refutable after all (Section 7). Corollary to these investigations is a clear view how far
informal rigour (supplied by set-theory) can help to elucidate, or even to decide, philo-
sophically significant questions (Section 7). But first of all we need to set the stage by
reviewing briefly how and why refutability went down (Section 2).

2 Duhemian Rhapsody

The main criticisms against Popper’s demarcation-criterion are variations on a theme of
Duhem, composed in his pioneering work [1915], in which he takes an incisive look at
branches of physics in the XIXth century. This incisive look revealed that much more than
just a Theory (T, for brevity) is needed to predict an Observable Event to occur under cer-
tain conditions (ObsEvent(T)). First of all, one needs data (broadly construed: initial and
boundary conditions, values of parameters, constants of nature); secondly, background
knowledge (BackKnow) is required, such as the laws of optics when telescopes or mi-
croscopes are involved; the laws of classical electro-dynamics when pieces of electrical
apparatus are employed; parts of mathematics used in the derivation annex calculation
of the quantitative prediction. And last but not least, there is a seemingly inexhaustible
stock of tacit presuppositions often referred to as ‘the ceteris paribus clause’ and that we
refer to as Pandora’s Box (denoted by Pandora(T), where T between brackets indicates that
each assumption in Pandora’s Box is logically compatible with T — see below). Symboli-
cally (all terms are classes of sentences):

(
T ∧ Data ∧ BackKnow ∧ Pandora(T)

)
−→ ObsEvent(T) . (1)

Duhem essentially observed that whenever the prediction is falsified, logic does not tell
us which conjunct carries the blame, because the conjunct that forms the condition of the
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indicative conditional (1) is negated as a whole:

¬ObsEvent(T) −→ ¬
(
T ∧ Data ∧ BackKnow ∧ Pandora(T)

)
, (2)

which is by virtue of one of De Morgan’s laws equivalent to:

¬ObsEvent(T) −→
(
¬T ∨ ¬Data ∨ ¬BackKnow ∨ ¬Pandora(T)

)
. (3)

So logic compels you to pick on at least one disjunct of (3), but does not tell you which
one. (We have written down statements (2) and (3) symbolically for easy reference to each
of them below, not because we desire to be pedantic.)

In his opus magnum, Popper [1934, p. 50], who had listened to the Duhemian Rhapsody
(he refers to it in several places: see the Index), admitted that “no conclusive disproof of
a theory can ever be produced”. Popper brushed aside the unreliability of experimen-
tal data and the background knowledge as generically implausible carriers of the blame
(op. cit. p. 82 and Popper [1963, p. 112]) — glossing over the enormous problem how to
ground the background knowledge non-inductively. But Pandora’s Box, surely the lead-
ing theme of Duhemian Rhapsody, cannot be brushed aside so easily. For in contradis-
tinction to the other conjuncts, it has prima facie devastating consequences for Popper’s
criterion. The idea is that for every phenomenon which T is supposed to save, it is pos-
sible to invent some hypothesis which in combination with T saves that phenomenon.
In this context the sensational discovery of Neptune in 1848 was often discussed: from
the observation that the orbit of Uranus did not agree exactly with calculations based on
Newton’s law of universal gravitation and his laws of motion (together N for brevity),
it was not deduced that N had to go or that the data were flawed or that the auxiliary
laws of optics governing light-rays through telescopes were wrong (3), but that there was
another planet perturbing the orbit of Uranus — which is an hypothesis from Pandora’s
Box of N.

In general, Pandora’s Box consists of a stock of hypotheses, formulated in the lan-
guage of T — that are all consistent with T, otherwise advancing one of them would
lead to logical disaster for T, rather than opening the possibility to save T from refuta-
tion. The content of Pandora’s Box is seemingly inexhaustible, because human ingenuity
is the limit. Since today we do not know which hypotheses will be found tomorrow (in
Pandora’s Box), a refuted theory can never be said to be beyond resurrection.

Popper [1934, pp. 82–83] had, however, taken care of Pandora’s Box in a manner con-
sistent with his view of science: advancing an hypothesis from Pandora’s Box, H say, is
admissible iff H is independently refutable; that is to say, H must imply at least one testable
statement that is not implied by of T (and same the data and the background knowledge
but) without H. The hypothesis ‘there exists a planet in our solar system that orbits in
accordance with T but which has so far escaped observation’ is a case in point: it leads
to the prediction of seeing a novel body in the heavens that cannot be made without as-
suming its existence. This hypothesis can be refuted by looking through a telescope at a
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particular spot in the night-sky at a particular time. Therefore the hypothesis is admis-
sible. An hypothesis which is not independently testable, Popper baptised ad hoc and he
deemed it unscientific to advance ad hoc hypotheses merely to save your cherished the-
ory from falsification. Scientific behaviour is to seek confrontation with the phenomena,
pseudo-scientific behaviour is to avoid it.

Popper’s response to the presence of Pandora’s Box essentially comes down to denying
its very existence as something separate from T. This looks like ostrich-policy, but it is not,
because for Popper, all tacit assumptions are part and parcel of the theory under inves-
tigation (T); if you mentioned T, you have mentioned it all, thus mentioning Pandora’s
Box is “not necessary” anymore (in Schilpp [1974, pp. 1186–1187, fn. 75]). So

Pandora(T) ⊂ T . (4)

If one denies one of the tacit assumptions of T that is brought to the surface, and subse-
quently replaces it with another assumption (such as H above), we have another theory, T ′

say. Theories T and T′ then are inconsistent, which is no problem for Popper — provided
the tacit assumption is logically independent of T. But this notion of a theory of Popper’s
stands orthogonal to the scientist’s notion of a theory: whether there are seven or eight
or nine planets in the solar system is considered immaterial for N; all three are logically
compatible with N. What Popper’s critics wanted to consider — and what Popper ought
to have considered too — is the falsifiability of N. For Popper, I would dare say, N is
strictly speaking not a scientific theory because it is by itself not refutable (the point of
his critics, see notably Putnam on N in Schilpp [1974, pp. 222–229]), but when we apply
N to our solar system and add some hypothesis about its constitution to it (and take for
granted the background knowledge and the data used in calculations), then we obtain a
refutable theory (which none of his critics denied).

In this context, Lakatos [1978, p. 17] quoted Popper rhetorically asking: “What kind
of clinical responses would refute to the satisfaction of the psychoanalyst not merely a
particular diagnosis but psychoanalysis itself?” Then Lakatos asked (ibid.): “But what
kind of observation would refute to the satisfaction of the Newtonian not merely a par-
ticular version but Newtonian theory itself?” By ‘the theory itself’ Lakatos means N and
by ‘a particular version’ he can be taken to mean: any theory in the language of N that
includes N. The ‘structural view’ on scientific theories will make Lakatos’ distinction be-
tween ‘a theory itself’ and ‘a particular version’ of it rigourously clear, as well as in what
sense Popper’s contention (4) that Pandora’s Box is part and parcel of the theory is correct
(Section 3).

In our view, Popper responded convincingly to Lakatos’ rhetorical question: N would
be refuted if, for example, some planets were to move in rectangular orbits; or if the veloc-
ity of all planets were to decrease when they approach perihelium, rather than increase as
one of Kepler’s laws implies, which are approximately implied by N (in Schilpp [1974, pp.
1004–1006]). Lakatos’ notorious fictional story of “planetary misbehaviour”, allegedly
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illustrating how Pandora’s Box creates trouble for Popper by suggesting the story is
generic, is indeed, as Popper correctly pointed out in Schilpp [1974, p. 1007], “an ex-
tremely exceptional case”: a small perturbation on exactly the expected orbit! (For fur-
ther discussion on falsifiability we refer to Schilpp [1974, pp. 976–1013], Lakatos [1978,
pp. 8–93, pp. 139–151] and Newton-Smith and Worral in O’Hear [1995].)

We further agree with Popper (in Schilpp [1974, p. 86]) that a single, isolated falsifi-
cation does not and should not lead to a rejection of a theory, but one phenomenon re-
peated independently several times does lead to a rejection in the sense of “eliminated as a
contender for truth, not necessarily abandoned” (Popper in Schilpp [1974, p. 1009]). We can
retain the refuted theory as observationally adequate with respect to a certain accuracy and
with respect to a well-delineated class of phenomena, and employ it for other purposes,
e.g. in technological applications. For example, N has been refuted and superseded by
the general theory of relativity, but NASA uses without exception N to launch satellites,
space-shuttles and what have you, it never uses the general theory of relativity.

To conclude this Section, we summarise symbolically what Popper’s inference from (2)
is:

(Data ∧ BackKnow) −→
(
¬ObsEvent(T) −→ ¬T

)
, (5)

where we have used Popper’s claim (4) to eliminate Pandora’s Box. Given Popper’s ‘ten-
tative acceptance’ of Data and BackKnow, we can now deduce that T is falsified as soon
as an experimental result has been established that conflicts with ObsEvent(T). We finally
emphasise that on the basis of the scientists (and Popper’s critics) understanding of what
a scientific theory is, the move from (2) to (5) is a non sequitur, because they reject (4) as a
consequence of their different conception of what a theory comprises.

3 Theories

The specification of some scientific theory (call it T again) involves answering three ques-
tions:

(1) What sort of entity is T and which species is it?
(2) How does T relate to which phenomena?
(3) How does T (not) relate to reality?
In this paper we bracket the deep question (3) and concentrate wholly on questions

(1) and (2).
There are two well-worked out answers to question (1) available. According to the

formal-linguistic view, endorsed by (most of) the logical-positivists, T is a formal-linguistic
entity (or can be faithfully rendered as one): the deductive closure of a set of postulates
formulated in an extensional 1st-order formal language. According to the structural view,
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pioneered by Suppes [1953; 1960] (see Sneed [1979] for the first rigourous treatise of the
structural view on classical mechanics), T is a set-theoretical entity: a set of set-structures
in the domain of discourse of informal, standard set-theory (Zermelo-Fraenkel set-theory,
abbreviated by ZFC; cf. Appendix). We adhere to the structural view, because it has a
variety of well-known advantages over the formal-linguistic view (the present paper we
submit as another illustration to that effect). The language of ZFC, denoted by L∈, is an
extremely simple 1st-order language with only set-variables and the binary membership-
relation as its only primitive predicate. Only sentences of L∈ can be proved on the basis of
ZFC. We mention this explicitly because at some points in this paper we shall introduce
‘sets’ that cannot be defined in L∈ and therefore neither their existence nor any proposition
in which they occur can be proved on the basis of ZFC (see the Appendix A).

Since we shall focus our attention on a single theory, namely quantum mechanics, we
characterise it structurally right now. We first define the set of pentuples consisting of:
some separable Hilbert-space H; some state-operator W, i.e. a member of the convex set
S(H) of all bounded, positive, self-adjoint operators on H having trace equal to 1; some
self-adjoint operator A : H ⊇ DA → H and its spectrum σA; and the (infinitary) Kol-
mogorovian Born-Von Neumann probability measure

P : B(R) → [0, 1], ∆ 7→ P(∆) ≡ Tr WP(∆) , (6)

where B(R) is the Borel-algebra of R and P(∆) the relevant member of the unique spectral
family of A (spectral theorem). We speak of a ‘Born measure’ whenever the state is pure,
i.e. W ∈ P(H). Hence the species of structure that co-defines quantum mechanics is:

QM ≡
{〈

H, W, A, σA, P
〉
| items as just explained

}
. (7)

(Note that it follows immediately that QM 6= ∅, which would amount to a consistency
proof of quantum mechanics iff QM (7) is regarded as a class of models of quantum me-
chanics construed formal-linguistically.) Of course, operator A is supposed to correspond
to the physical magnitude of interest. Needless to say that characterisation (7) can be ex-
tended to consider more than one physical magnitude, or to consider time-dependence,
in which case W becomes a function from R to S(H). Also a more sparse set of more
specific structures can be considered, such as of type 〈L2(R3, d3q), H, σH〉, where H is
the Hamiltonian; in this structure neither a state nor a probability measure occurs. The
early wave-mechanical models that Schrödinger [1927] first considered were of this type.
When all types of quantum-mechanical set-structures are defined, leading to sets QM0,
QM1, . . . , QMn say, then we proceed with their union. For the purposes of the present
paper, however, characterisation (7) suffices.

The general idea behind definitions such as (7) is that in every branch of physics where
phenomena are ‘modelled quantum-mechanically’, such as atomic physics, solid state
physics, quantum chemistry, quantum optics and quantum transport theory, the concept
of a ‘quantum-mechanical model’ can be construed as a set-structure of some type such
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as defined above in (7) or of some sibling type (cf. Suppes [1960]). If a model cannot be
construed as a pentuple of sort (7), it is not and should not be considered as a quantum-
mechanical model. Quantum mechanics is thus identified with all possible quantum-
mechanical ‘models’. This is simple, rigourous and makes lots of sense of the practice
of physics.

A structural definition of a theory helps us immediately to make sense of Popper’s
contention that Pandora’s Box is part and parcel of a theory and of Lakatos’ distinction
between ‘the theory itself’ and ‘a particular version of it’ (see Section 2) — when ap-
plied to quantum mechanics. First Lakatos’ distinction: ‘quantum mechanics itself’ is QM

and ‘a particular version of quantum mechanics’ is a member of QM. Next Popper’s con-
tention: every single ‘model’ we intuitively recognise as purely ‘quantum-mechanical’,
and which could pass by Popper’s lights as ‘a quantum-mechanical theory’, say, is a
member of QM. Any new hypothesis of Pandora’s Box chosen to save quantum me-
chanics when confronted with adverse data, must lead to a ‘model’ one can construe as a
member of QM (7), otherwise we would simply no longer accept the ‘model’ as ‘quantum-
mechanical’. The set QM just is Pandora’s quantum-mechanical box because it contains
every possible quantum-mechanical model. This motivates the following definition:

Pandora(QM) ≡ QM , (8)

modulo enlarging the definition of QM, as discussed in the text immediately following
def. (7). Given some puzzling phenomenon that quantum mechanics is supposed to deal
with, human ingenuity is needed ‘to find the right model’ in the vast class QM.

To specify quantum mechanics further, we have to answer question (2) of how QM re-
lates to which phenomena.

4 Phenomena

A phenomenon is some observable occurrence. Phenomena are qualitative. For quantum
mechanics in particular and for science in general, a phenomenon must be characterised
quantitatively, e.g. as is standardly done in the presentation of the results of some scien-
tific experiment; in science only measurements count. This quantitative characterisation
is called a data structure. Over the years Suppes c.s. have classified all types of data struc-
tures encountered in science, investigated under which qualitative conditions which kind
of data structure comes about, and proved ‘representation theorems’ for data structures;
this programme is called measurement theory (for an historical introduction and overview,
see Diez [1997] and references therein).

For the purpose of the present paper, we need the following type of data structure Dn:
a set consisting of n ∈ N measurement-intervals Ij ≡ [rj, rj+1) ⊂ R and n concomitant
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relative frequencies f j ∈ [0, 1]:

Dn ≡
{
〈Ij, f j〉 ∈ I(R)× [0, 1] | j ∈ n

}
, (9)

where I(R) is the set of all left-closed, right-open real intervals having rational end-
points, i.e. of type [r, s), where r, s ∈ Q. Every single value found in a measurement
of some physical magnitude A falls in some Ij ∈ I(R); these intervals subdivide the mea-
surement scale (always a finite real interval) in accordance to the measurement accuracy.
Every measured value a ∈ Q of magnitude A falling in Ij ∈ I(R), say, is counted and the
total is divided by the total number of measurements n; this yields the relative frequency
f j ∈ [0, 1] of Ij.

Next we lump all possible data structures Dn (9), for every n ∈ N, in a set called D.
The set D@ ⊂ D is the set of all actual data structures of type Dn (9); we define it loosely as
all data structures of this type that represent the measurement results of some experiment
described in a publication in a respectable science journal — we take the index @ also to
refer to the current date on the Gregorian callender, because D@ grows over historical
time. We remark that the notorious background knowledge is used in accepting some Dn

as actual, i.e. in the definition of D@; it therefore need not concern us anymore, because
we simply take it from here. The ‘definition’ of D@ clearly is not purely mathematical (not
some sentence in L∈), unlike the definition of D, but the definition is nonetheless crystal
clear. (Exactly here enters a non-rigorous element in our considerations.) Further, not all
actual data structures Dn ∈ D@ are relevant for quantum mechanics: some are relevant for
astronomy, some for optics, etc. A story has to be told how some Dn is obtained, i.e. in what
kind of experiment (performed or not), in order to decide whether quantum mechanics is
supposed to save it or not. Call this set of all actual relevant and all possible relevant data
structures DQM

@ and DQM, respectively. (The sets DQM

@ and DQM would be akin to Sneed’s sets
of intended and potential applications, respectively, when his ideas were transplanted from
classical to quantum mechanics.) Then DQM

@ = D@ ∩ DQM. No matter how the sets D@ and
DQM are precisely described, we surely always have the following relations:

DQM

@ ⊂ D@ ⊂ D and DQM

@ ⊂ DQM ⊂ D . (10)

Thus all quantum-mechanical set-structures float in a sea of stories that are needed to
connect (some of) them to each other (see Muller [1998, pp. 284–292] for an elaboration
on this). This connexion we define next.

The connexion must capture the Prime Directive of Physics: calculated numbers and
measured numbers should agree. Let Q = 〈H, W, A, σA, P〉 be a quantum-mechanical struc-
ture in QM and let Dn ∈ D. Definitions: Q saves Dn iff the relative frequencies in Dn

coincide with the probability measure P; QM saves Dn iff some Q ∈ QM saves Dn; and
QM has saved the phenomena up till now (or by definition synonymously, is observationally
adequate) iff QM has saved all actual data structures relevant for quantum mechanics. The
set Dn is also a function from a subset D ⊂ I(R) to [0, 1], Ij 7→ f j; so requiring that f j
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coincides with P(Ij) means to say that the restriction of function P to D is identical to Dn.
Succinctly (≡ means: is by definition logically equivalent too):

Saves(Q, Dn) ≡ Dn ⊂ P ∈ Q .

ThSaves(QM, Dn) ≡ ∃ Q ∈ QM : Saves(Q, Dn) .

ObsAdeq(QM) ≡ ∀ Dn ∈ DQM

@ : ThSaves(QM, Dn) .

(11)

(The free occurrence of P in the definiens of Saves(Q, Dn) is not a logical mistake, because
it occurs also in the definiendum: it sits in Q.) Notice that the sea of stories only enters in
determining the range of the universal quantifier in the last-mentioned definition of (11);
everything else is formulated in L∈.

Questions (1) and (2) have now been answered; the theory of quantum mechanics is
specified as the following ordered pair:

〈
QM, DQM

〉
. (12)

We next return to Popper’s demarcation-criterion.

5 The Irrefutability of Quantum Mechanics

The translation and application of falsifiability to quantum mechanics is now clear: quan-
tum mechanics is refutable iff there is a data structure relevant for quantum mechanics
that QM does not save:

Ref(QM) ≡ ∃ Dn ∈ DQM : ¬ThSaves(QM, Dn) . (13)

Suppose that QM does not save a single data structure Dn ∈ DQM. This would have
happened if QM were empty. Would we, then, still consider the theory thus defined ‘sci-
entific’? We venture to answer in the negative. It must be possible for the theory to save
a phenomenon, otherwise we surely would not regard it as scientific. Refutability is not
enough — pace Popper. We define quantum mechanics to be confirmable iff there is a data
structure relevant for quantum mechanics that QM saves:

Conf(QM) ≡ ∃ Dn ∈ DQM : ThSaves(QM, Dn) . (14)

Now suppose QM saves all data structures, not only the relevant ones. Then what?
Then testing quantum mechanics would be a futile activity, because every experimental
result would count as a confirmation of it. Confirmability, too, is not enough — pace
Carnap. So we define quantum mechanics to be scientific iff it is refutable and confirmable:

Sc(QM) ≡ Ref(QM) ∧ Conf(QM) . (15)
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We shall now first prove that quantum mechanics is confirmable but irrefutable. The
confirmability is trivial (it also follows from the irrefutability); we leave it. The theorem
that QM is irrefutable is a corollary of a theorem we prove in the Appendix but explain
here.

Consider the Birkhoff-Von Neumann lattice P(H) of all projectors of a given Hilbert-
space H. We define a state measure as a map µ : P(H) → [0, 1] such that µ(1̂) = 1 and
for every sequence of orthogonal projectors Pj, for j ∈ I (I ⊆ N is an index-set: an initial
sequence of N) it holds that:

µ
( #I⊕

j=0

Pj

)
=

#I

∑
j=0

µ(Pj) , (16)

where #I is the cardinal number of set I. Eq. (16) is just σ-additivity adjusted to the fact
that P(H) is not a Boolean (but an ortho-modular) ortho-complemented lattice. One eas-
ily proves that the state measure µ has all the familiar attributes of a probability measure.
For instance, it is monotonous with respect to the partial-ordering on P(H), and µ(P)+

µ(P⊥) = 1.

Theorem 1. Every state operator W ∈ S(H) generates a state measure µW by means of definition:

µW : P(H) → [0, 1], P 7→ µW(P) ≡ Tr WP . (17)

The concept of a state measure permits us to give a succinct formulation of a celebrated
theorem.

Theorem 2 (Gleason’s Theorem). For dim(H) > 2, every state measure is generated by some
state operator.

For a proof, see the Appendix in Hughes [1989]. From Theorems 1 and 2 it follows there
is a one-one correspondence between state operators and state measures (hence the last-
mentioned’s name).

A state measure is not a Kolmogorovian probability measure because of its domain,
which is an ortho-modular rather than a Boolean lattice. In contrast, a projector-valued
measure P(·) : B(R) → P(H) is not a Kolmogorovian probability measure because of its
range, which is not [0, 1] ⊂ R but P(H); it is called a measure nonetheless because its range
is a spectral family and spectral families relate to B(R) in a manner which, again, reminds
us of a probability measure. The Born-Von Neumann measure from the Probability Pos-
tulate of quantum mechanics (6), however, demonstrably is a Kolmogorovian probability
measure from B(R) to [0, 1]. This raises the question how these three measures relate to
each other. The answer is given by the following two Theorems.

Theorem 3. The composition of a state measure µW : P(H) → [0, 1] and a projector-valued
measure P(·) : B(R) → P(H) is a Born-Von Neumann measure and hence a Kolmogorovian
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probability measure.

Theorem 4 (State Theorem). Every Kolmogorovian probability measure is a Born-Von Neu-
mann measure, i.e. the composition of some state measure and some projector-valued measure.

Theorem 4 is a representation theorem of sorts for Kolmogorovian probability measures:
they can always be written as a particular kind of composition which involves some
Hilbert-space. Worth mentioning is that the proof of the State Theorem does not proceed
by reductio ad absurdum: the relevant Hilbert-space, state-operator and projector-valued
measure are defined explicitly (see Appendix). Theorem 4 also implies, together with
Gleason’s Theorem, the announced Corollary; the proof of this implication is so simple
that we spell it out here.

Corollary. Quantum mechanics is irrefutable, i.e. for every possible data structure, relevant or
not, actual or not, there is a quantum-mechanical structure that saves it.

∀ Dn ∈ D, ∃ Q ∈ QM : Saves(Q, Dn) . (18)

Proof. Given some arbitrary member of the set of data structures D, Dn (9) say. Note
that Dn is a map from I(R) to [0, 1]. Then P ⊃ Dn for every Kolmogorovian probability
measure P : B(R) → [0, 1] whose restriction to the domain of function Dn : Ij 7→ f j
coincides with Dn. There are lots of them, as a moment’s reflection will reveal. Let P0 be
such a probability measure. According to Theorem 4 there is a Hilbert-space, H0 say, a
state measure µW (hence by virtue of Gleason’s Theorem a state operator in S(H0) that
generates it, call it W0), and a projector-valued measure (that determines a self-adjoint
operator by means of the integral equations of the spectral theorem, call it A0), such that
the Born-Von Neumann measure they compose is identical to the probability measure P0.
Then

Q0 ≡
〈
H0, W0, A0, σA0 , P0

〉
∈ QM (19)

saves the given data structure Dn. Q.e.d.

Corollary (18) vindicates the idea that (Pandora’s Box of) quantum mechanics (7) is rich
enough to accommodate all possible data structures Dn ∈ D, hence certainly the ones we deem
relevant for quantum mechanics by virtue of (10).

On the sole basis of our rigourous renditions and of ZFC, we now face the follow-
ing dilemma: either (i) accept quantum mechanics as an unscientific theory, or (ii) reject
Popper’s demarcation-criterion. Choosing for horn (i) is sick: if quantum mechanics no
longer counts as a scientific theory, then arguably there are no scientific theories at all.
But those who choose horn (ii) of the dilemma are now committed to say what makes
quantum mechanics scientific.

They could adumbrate Lakatos’ view of scientific research programmes — a superbly
dubbed questionable hybrid of Popper’s falsificationist view and Kuhn’s sociological
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paradigm view —, and point to the enormous success of the research programme called
quantum mechanics They could thus adopt a Lakatosian demarcation-criterion: a theory
is scientific iff it gives rise to a research programme that has been progressive over a pe-
riod of historical time. They face however the question what to make of the fact that the
Corollary entails, in Lakatosian terms, that the programme will, strictly speaking, never
face anomalies (because this has become a mathematical impossibility); it therefore never
can degenerate. Whenever we have a recipe to save every phenomenon when construed
as a data structure in D (which the proof of the State Theorem indeed provides us with),
then quantum-mechanical research as we know it becomes redundant. We are, then, in
essentially the same predicament as we were before.

One gets the feeling there is something deeply wrong with all of this. But what? In the
rest of this paper we shall try to put the finger on it, repair it and argue that the dilemma
then does not arise anymore.

6 The Refutability of Quantum Mechanics

We are able to prove the State Theorem and by implication Corollary (18) because the uni-
versal quantifiers involved run over the entire set QM: we used the freedom to choose any
state operator and any projector-valued measure without further restriction whatsoever.
But this is not how things are done in the practice of quantum mechanics. Consider the
following three examples.

(a) Suppose a theoretician has saved some relevant actual data structure Dn ∈ DQM

@ by
using the state W0 and normal operator A0 provided by the proof of the State Theorem.
(Observe how strange this already is: in choosing a state and an operator we do not pay
any attention the experiment that produces the data structure.) The experimentator next
measures a different physical magnitude (he uses an entirely different piece of measure-
ment apparatus), but subjects the (same type of) physical systems (electrons, say) to the
same preparation procedure as before. This yields some other data structure, D ′

n ∈ DQM

@
say. This time the theoretician seems strongly committed to use the same state operator as
he used before, i.e. W0, and thus looses his freedom to choose any state operator he likes,
in particular the one that is this time prescribed by the State Theorem in order to save D ′

n.
The theoretician can only do his trick again if he can convince us that for some reason or
other the preparation procedure was not really the same as before, but was such that the
state operator from the proof of the State Theorem miraculously happens to characterise
the ‘new’ preparation procedure. Perhaps it depends on the weather, or on the expan-
sion of the universe, or on vacuum fluctuations, etc. Not a promising line of argument to
pursue. Actual experimentalist seldomly pursue it.

(b) Suppose now that an experimentator gives the theoretician some actual data struc-
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ture Dn ∈ DQM

@ and says to have measured the position of scattered electrons after they
hit a target in some particle accelerator. Now the operators have been fixed in advance:
three of Schrödinger’s multiplication-operators, X : ψ(x, y, z) 7→ xψ(x, y, z), and similarly
Y and Z, one for every direction in R3, acting on Hilbert-space L2(R3, dq); this is the
Cartesian position-operator in Euclidean space. The freedom to choose an operator is gone
and therefore the proof of the State Theorem cannot even be appealed to once.

(c) So far we have deliberately ignored the evolution of physical systems over time
and hence the dynamics of quantum mechanics. As soon as we introduce the unitary
time-evolution, we have that at every instant of time t ∈ R, the state W(t) ∈ S(H) is fixed
if the state at t = 0, W(0) ∈ S(H), is given.

Examples (a) and (b) motivate a re-definition of the relevant type of data structure:

D̃n ≡ 〈 Dn, Wexp, Magn(H) 〉 , (20)

where Magn(H) is some set of operators which are candidates for corresponding to the
physical magnitudes the experimentator has measured. If position is measured, then
Magn(H) = {X, Y, Z} (the multiplication-operators in Cartesian coordinates); if linear
momentum is measured, then Magn(H) = {Px, Py, Py} (differential operators up to mul-
tiplication factor −ih̄ ∈ C). If some scattering experiment is performed and energy
is measured, then we have, on Hilbert-space L2(R3, cos θdθ dϕ r2dr), a set of so-called
Schrödinger-operators Magn(H), which consists of self-adjoint operators of the form H(m, . . .) =

P2/2m + V(. . . ), where V(. . . ) is some (often spherically symmetric) scalar potential
R3 → C, usually with several parameters, indicated by the dots. If the scattered par-
ticles are electrons, say, then the mass m is fixed and we obtain a subset of the mentioned
set. For the choice of the potential V, there is however generally quite some leeway. But
again, the required Hamiltonian will never coincide with the operator from the proof of
the State Theorem because that one is not of the type required here.

The new data-structure (20) also contains a state-operator Wexp ∈ S(H). Of course
some tempering with Wexp should be permitted, Wexp + δ1̂, for some small δ > 0 within
the bounds of experimental accuracy, but not further, because Wexp is supposed to be de-
termined experimentally (see below). It seems odd to consider such comparatively abstract
notions as Hilbert-space operators Wexp ∈ S(H) and the ones in Magn(H) as experimental
data, because quantitative data standardly are rational or integer numbers. It becomes
less odd when we answer the following questions. How does one know that this mem-
ber of S(H) corresponds to the preparation procedure in the laboratory? How does one
know that one of these operators on H corresponds to the physical magnitude that has
been measured? To answer these questions, we make a Sneedian move (Sneed [1979,
pp. 31–35]): for a sufficient number of experiments we have to assume that the measured
relative frequencies coincide with Born-Von Neumann measures of quantum mechanics,
because then, and only then, can we assert to have determined the state-operator and
magnitude operator experimentally. This makes state operators as well as magnitude op-
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erators theoretical terms of quantum mechanics (in the Putnam-Sneed sense), because not a
single state operator or magnitude operator can arguably be determined experimentally
without assuming that some structures from QM save certain phenomena. What is a ‘suf-
ficient number’? That depends on the details of the experiment. Consider a scattering
experiment.

A particle accelerator prepares a beam of electrons in an initial state of a certain en-
ergy, Ein ∈ R say, in the positive x-direction. The initial pure state then is a Gaussian
wave-packet, which is narrow and peaked around px = (Ein/2me)

1/2 and py = pz ≈ 0
in momentum-space L2(R3, d3p); this wave-packet is a solution of the free Schrödinger
equation, because we consider the electrons in the beam to be non-interacting — one ne-
glects their Coulomb-repulsion. In position-space L2(R3, d3q) this state approximates a
plane wave running in the x-direction. There is some leeway in choosing the width of
the packet or even the shape of the packet, but that’s the end of it: choosing for the pre-
pared state the spherically symmetric Bessell-function of n = 2002, say, or a saw-tooth
with erratically decaying tails, say, is here completely out of the question. When the po-
sition and the energy of the electrons scattered by the target are measured, we have —
as we already mentioned above —, a single choice for the position-operator but a range
of choices for the Hamiltonian from the class of Schrödinger-operators, that is, for the
interaction potential V between electron and target. If we succeed in finding a particular
potential, V0 say (by intelligent guessing, perhaps based on classical physics, or by phys-
ical intuition), which leads to a calculated spectrum of H(m, . . .) = P2/2me + V0(. . .) in
agreement with the experiment, then we assume the relative frequencies to coincide with
the Born measure in order to assert we have ‘determined V0(. . .) experimentally’ by using
one experiment. Now the choice for the interaction Hamiltonian in the next experiment,
wherein we only double the energy of the beam of electrons, say, but use the same tar-
get, is heavily constrained by V0(. . .). We are now restricted to use quantum-mechanical
structures of type:

〈
L2(R3, d3q), χ, H0, σH0, P

〉
, (21)

where χ ∈ L2(R3, d3q) is the wave-packet. This restriction makes quantum mechanics
refutable, because the Born measures are now fixed.

Hence all definitions of Sections 2, 3 and 4 can now be repeated with D̃n and D̃ re-
placing Dn and D (with some minor modifications), respectively. In particular the crucial
notion of saving the phenomena becomes:

Saves*(Q, D̃n) ≡ Dn ⊂ P ∈ Q ∧ Wexp ∈ Q ∧ A ∈ Magn(H) ∈ Q , (22)

which evidently is stronger than def. (11). To refute quantum mechanics, you must now
be unable to find an operator in Magn(H) — rather than in the far more encompassing
set of all self-adjoint operators on H —, so that it recovers the given relative frequencies
via the Born-Von Neumann measure. So quantum mechanics is refutable after all, with
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def. (22) replacing def. (11) in def. (13): compute all Born measures, one for each member
of Magn(H), then QM is refuted if for every such Born measure P it holds that Dn 6⊂ P.
Since QM also is trivially confirmable (14), we conclude that quantum mechanics is a
scientific theory after all (15).

We finally remark that in stead of strengthening the definition of DQM

@ , one can also
strengthen the definition of the theory of quantum mechanics (7).

7 Reflections

The claim that quantum mechanics is irrefutable, as we asserted in Corollary (18), turns
out to be untenable, because based on a too weak characterisation of quantum mechanics.
But can we claim to have proved rigourously in ZFC that quantum mechanics is scientific?
Strictly speaking we cannot, for it is not possible to provide definitions in L∈ of the sets
DQM, D@, Magn(H) and Wexp. Precisely here, and only here, do non-rigourous elements
enter our further rigourous arguments. To a certain extent all these sets are ‘vague’ or too
‘open-ended’, and this, and only this, makes all arguments that involve these sets not as
rigourous as proofs of theorems of ZFC in L∈. But eo ipso these arguments are an improve-
ment qua rigour when compared to arguments in prose, because the premises of the afore-
mentioned arguments and the rules of deduction they employ are completely known and
explicit. Further, the delineation of the sets DQM and D@ does not create problems of any
philosophical significance: the philosopher of science can analyse the stories that float in
the sea (Section 3), but there is no point in contravening them. The sets Magn(H) and Wexp

look, however, more promising for the refutability-sceptic as a starting point to doubt the
refutability of quantum mechanics. For consider again our scattering experiment.

Our sceptic might object by raising the question what happens if one cannot find a
suitable potential V0. Must we then consider quantum mechanics to be falsified and aban-
don it? No, we would say, because then the game of testing simply does not come of the
ground: without some V0 quantum mechanics is empirically mute. When there is no
game, there are neither winners nor losers. We can also appeal to the history of quantum
physics: sooner or later always a suitable V0 was found in Pandora’s Box of QM, given the
experimental constraints on Wexp and the theoretical constraints on V0 — just as rectan-
gular orbits for celestial bodies are ridiculous in the context of Newtonian physics, so are
numerous potentials ridiculous in the context of quantum physicists, e.g. V0(r) = −ar2002

for r 6 the radius of our galaxy and = 0 beyond (a > 0); V0(r) = −a exp[br] for r 6 the ra-
dius of our solar system (b > 0), V0 a saw-tooth with erratically decreasing tails, etc. If our
sceptic takes this to be sufficiently firm ground to remain sceptical about the refutability
of quantum mechanics, then we wish her luck, for it seems to be the only ground she has
left to stand on.
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To conclude, the structural view on scientific theories and phenomena, which is set-
theoretical in nature, makes clear exactly where, how and why non-rigourous elements
enter the characterisation and evaluation of a scientific theory (quantum mechanics in
our case); it makes clear what feeble ground the critic of the refutability of this same the-
ory has to stand on; and, last but not least, it makes clear that both the confirmability
and refutability of this theory are respectable notions which surely rank among the nec-
essary conditions for the scientific character of a theory. Finally, the construction of such
rigourous construals of a theory and the data forces us to take a close look at the practice
of science and thereby will enhance our understand of it.
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A Appendix: Proofs

First four remarks about set-theory for cognoscenti. (i) All unbounded quantifiers occur-
ring in this paper range over the initial part of the cumulative hierarchy of all sets cut off
at ordinal rank ω + ω — often denoted as Vω+ω . In this tea-spoon of sets (when compared
to the entire hierarchy) all of the mathematics lives that physics needs and ever will need.
(ii) Set Vω+ω will also act as the separation-set in Zermelo’s separation schema, which
one uses to define sets that exist; we do not mention it explicitly in the definitions pre-
sented in this paper. (iii) To denote that X is in the ordered pair-set 〈X, Y〉, say, we simply
write: X ∈ 〈X, Y〉, although this is formally incorrect — correct is: X ∈2 〈X, Y〉 when
〈X, Y〉 ≡ {{X}, {X, Y}}. (iv) For the natural numbers we take the finite Von Neumann
ordinals (N ≡ ω); then we can write ‘j ∈ n’ in stead of ‘j = 0, 1, . . . , n − 1’. Now we prove
the theorems.
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Theorem 1. Every state operator W ∈ S(H) generates a state measure µW by means of definition:

µW : P(H) → [0, 1], P 7→ µW(P) ≡ Tr WP . (23)

Proof. Theorem (Prugovecki [1981, p. 196]): given that Pj projects onto the 1-dimensional
subspace spanned by normalised Hilbert-vector φj ∈ H, then all φj span the subspace
N ⊆ H upon which the sum-projector projects, and:

( #I⊕

j=0

Pj

)
ψ =

#I

∑
j=0

〈ψ|φj〉φj . (24)

The proof of Theorem 1 consists in verifying that map (23) satisfies the definition of a state
measure, which is trivial when given Theorem (24). Q.e.d.

We call to mind the definition of a projector(-valued) measure: a function from the Borel
algebra of R to some Birkhoff-Von Neumann lattice,

P(·) : B(R) → P(H), ∆ 7→ P(∆) , (25)

such that the following requirements are met (projectors 0̂ and 1̂ play the parts of 0 and 1,
respectively):

P(∅) = 0̂ , P(R) = 1̂ and P(R\∆) = P⊥(∆) , (26)

and further P(·) satisfies the following additivity requirement. Let ∆ j, where j ∈ I ⊆ N, be
a sequence of disjoint Borel sets (∆j ∩ ∆k = ∅ for all j, k ∈ I, but j 6= k); then it holds that
the value of P(·) of the union-set

⋃
j∆j equals the sum of the values of P(·) of the separate

Borel sets ∆j:

P
(⋃

j∆j
)

=
#I

∑
j=0

P(∆j) . (27)

The notion of convergence involved here is that of the strong-operator topology, which is
the norm-topology of the supremum-norm: ||A|| is the supremum of the positive numbers
||Aφ|| ∈ R for all φ ∈ H such that ||φ|| = 1. Sums of projectors only give projectors if the
summands are orthogonal, which is here the case because projectors on disjoint Borel sets
are orthogonal. The range of a projector-measure is called a spectral family of projectors.

Theorem 3. The composition of a state measure and a projector measure on any Hilbert-space is
an infinitary Kolmogorovian measure over the Borel algebra B(R).

Proof. Given some Hilbert-space H, the composition of a state measure and a projector
measure:

µW (·) ◦ P(·) : B(R) → [0, 1], ∆ 7→ µW
(

P(∆)
)

= Tr WP(∆) (28)
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a Born-Von Neumann measure, which is easily verified to be an infinitary Kolmogorovian
probability measure by using eq.(27). Q.e.d.

Theorem 4 (State Theorem). For every infinitary Kolmogorovian probability measure over
B(R) there is some Hilbert-space, some state measure and some projector measure such their com-
position yields the given Kolmogorovian probability measure as in (28).

Proof. We realise that every set L2(R, µ) of square-µ-integrable complex functions on R,
where µ is an arbitrary measure, is a Hilbert-space, because the inner-product, defined in
terms of a Lebesgue-integral, is a measure-dependent entity: 〈φ|ψ〉 ≡

∫
R

ψ∗φdµ; see Pru-
govecki [1981, p. 103]. We are given some infinitary Kolmogorovian measure on B(R), PK

say. We consider the following Hilbert-space:

HK ≡ L2(R, PK) . (29)

We now (i) present a projector(-valued) measure, then (ii) a state operator that together
with the projector measure generates a state measure, and (iii) finally show that their
composition, as in (28), equals the given Kolmogorovian measure.

(i)We associate with every Borel set ∆ an operator 1̂∆ : HK → HK that multiplies a
function φ ∈ HK (29) with the indicator-function on ∆: φ 7→ 1∆φ, where: 1∆(x)φ(x) ≡

φ(x) if x ∈ ∆, otherwise it is 0. The verification that this association yields a projector
measure (25) is elementary, given the following Theorem: an everywhere defined, hence
bounded operator is a projector iff it is self-adjoint and idempotent (Prugovecki [1981,
p. 200). (Note: this spectral family of indicator-functions is the spectral family of the
position-operator only in L2(R3, dx dy dz), not in the Hilbert-space HK.)

(ii) Consider the Constant function C(x) ≡ 1 for all x ∈ R, which is a member of HK;
then ||C|| = 1. Let C be the projector that projects onto the 1-dimensional closed sub-space
of HK spanned by Hilbert-vector C. Operator C qualifies as a state-operator because all
projectors do: C ∈ S(HK). The associated state measure generated by the spectral family
of projectors from (i) is: 1̂∆ 7→Tr C1̂∆ ∈ [0, 1].

(iii) We now have to verify that for all ∆ ∈ B(R):

Tr C1̂∆ = PK(∆) , (30)

where PK is the given Kolmogorovian probability measure on B(R). First we call to mind
that the operator C is a bounded and self-adjoint because all projectors are. Then for every
two φ, ψ ∈ HK one verifies easily that 〈φ | C1̂∆ψ〉 = 〈1̂∆Cφ | ψ〉.

We next choose a basis {φj} ⊂ HK that has the normalised vector C as a member
(the trace does not depend on which basis is chosen to compute it), φ0 ≡ C say. Then
Cφj = δ0jφ0, where δjk is Kronecker-delta.

Using these results, we obtain:

Tr C1̂∆ =
∞

∑
j=0

〈
φj | C1̂∆φj

〉
=

∞

∑
j=0

〈
1̂∆Cφj | φj

〉
=

∞

∑
j=0

〈
1̂∆δ0jφj | φj

〉
. (31)
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This leaves us with a single term (j = 0), which is a definite Lebesgue-integral:

Tr C1̂∆ = 〈1̂∆C | C〉 =

∫

R

(
1∆(x)C(x)

)∗C(x) dPK =

∫

R

1∆(x) dPK . (32)

For every measure µ, the definite Lebesgue-integral over R of the indicator-function of ∆

is equal to the measure of ∆; then for µ = PK:
∫

R

1∆ dPK = PK(∆) . (33)

From eqs. (32) and (33) it follows what we had to prove: identity (30). Q.e.d.
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