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Abstract

The analysis of the classical limit of quantum mechanics usually focuses on the state of the

system. The general idea is to explain the disappearance of the interference terms of quantum states

appealing to the decoherence process induced by the environment. However, in these approaches

it is not explained how the structure of quantum properties becomes classical.

In this paper, we consider the classical limit from a different perspective. We consider the

set of properties of a quantum system and we study the quantum-to-classical transition of its

logical structure. The aim is to open the door to a new study based on dynamical logics, that is,

logics that change over time. In particular, we appeal to the notion of hybrid logics to describe

semiclassical systems. Moreover, we consider systems with many characteristic decoherence times,

whose sublattices of properties become distributive at different times.
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I. INTRODUCTION

The problem of explaining how the laws of classical mechanics arise from the laws of

quantum mechanics is known as the classical limit problem [1]. Usually, the description of

the classical limit of a quantum system focuses on the state of the system. The idea is to

explain the disappearance of the interference terms of quantum states appealing to the de-

coherence process induced by the environment [2]. Generally, the mathematical description

of this process is based on the Schrödinger picture, in which states evolve over time, while

observables and physical properties are taken to be constants. As a result, the structure

of quantum properties remains the same for all times: the quantum logic associated to the

system does not change [3]. Therefore, in these approaches it is not explained how the

structure of quantum properties becomes classical.

The properties of a classical system are represented by subsets of the phase space. The

set of all properties has a Boolean structure, i.e. it is an orthocomplemented and distributive

lattice. This structure is usually called classical logic. Instead, in quantum mechanics the

properties are represented by closed vector subspaces or by their corresponding orthogonal

projectors [4]. The set of all quantum properties is also an orthocomplemented lattice,

but a non-distributive one. This structure is called quantum logic [5]. In this paper, we

will argue that the description of the classical limit in terms of the Schrödinger picture

is inadequate, because it cannot explain the quantum-to-classical transition of the logical

structure of physical properties. If a quantum system undergoes a physical process such

that its behaviour becomes classic, then its logical structure of properties should undergo

a transition from quantum logic to classical logic, i.e. its lattice structure should become

distributive.

In order to give an adequate description of the logic structure transition, we propose

to study the classical limit in terms of the Heisenberg picture, in which observables and

physical properties evolve over time. This perspective allows to consider the time evolution

of the whole lattice of properties. On this basis, we can study the classical limit from a

logical point of view, by describing the manner in which the structure of properties becomes

a Boolean lattice. The aim is to open the door to the study of dynamical logics, i.e., logics

that change over time. In particular, we appeal to the notion of hybrid logics to describe

semiclassical systems. Moreover, we consider systems with many characteristic decoherence
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times, whose sublattices of properties become distributive at different times.

The paper is organized in the following way. In Section II, we introduce the logic structure

of classical and quantum systems, and we discuss the principal difference between them: the

distributive property. In addition, we describe how can be characterized the classical limit

from a logical point of view. In Section III, we present different approaches to decoherence

and we explain how it is usually related with the classical limit process. Moreover, we argue

that the description of the classical limit in terms of the Schrödinger picture is inadequate,

because it cannot explain the quantum-to-classical transition of the logical structure of

physical properties. In order to achieve a time evolution of the logic structure, we propose

to use the Heisenberg picture. In Section IV, we describe the general aspects of the logical

perspective of the classical limit process. We apply this approach to describe the quantum-

to-classical transition in three different cases: (i) systems with one characteristic time; (ii)

transitions from quantum systems to semiclassical systems, in which the quantum logic

evolves to a hybrid semiclassical logic; and (iii) systems with many characteristic times,

whose sublattices become distributive at different times. Finally, in the last section, we

present some conclusions and future perspectives.

II. LOGICAL STRUCTURE OF QUANTUM MECHANICS

When we talk about the logical structure of classical mechanics or quantum mechanics, we

do not refer to the logic which is used to formulate the theory (both of them are formulated

in classical logic), but to the logic structure of the propositions about a classical system or

a quantum system.

The propositions about a classical system are determined by classical mechanics and the

propositions about a quantum system are determined by quantum mechanics. The way in

which classical and quantum mechanics define the set of propositions of a system is by means

of the set of properties of the system. Each property p of a system S is associated with the

following proposition about the system: the system S has the property p.

There is an isomorphism between the set of propositions and the set of properties. Each

logical operation between propositions corresponds to an algebraic operation between the

corresponding properties. Due to this isomorphism, it is customary to use the term “logical

structure” to refer to both structures: propositions structure and properties structure.
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The sets of properties of classical and quantum systems have an orthocomplemented

lattice structure. This implies that there is an order relation ≤ such that for all pair of

properties exists the infimum ∧ and the supremum ∨, and all property p has a complement

p⊥ with adequate properties. All orthocomplemented lattices satisfy certain relations, called

distributive inequalities [6]:

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c).

When the equalities hold, the lattice is distributive. An orthocomplemented and distributive

lattice is called a Boolean lattice. The distributive property is an essential feature which

differentiates classical and quantum lattices of properties.

In classical mechanics a physical system is represented by a phase space and the properties

of the system are represented by the subsets of its phase space. The partial order relation is

given by the inclusion ⊆ of sets. The infimum and the supremum are the intersection ∩ and

the union ∪ of sets, respectively; and the complement of a property p is the complement of

sets pc. The set of classical properties is not only an orthocomplemented lattice, but also

a distributive one, i.e., classical properties satisfy the distributive equalities. Therefore, the

logical structure of a classical system is Boolean.

The quantum case is very different. In quantum mechanics a physical system is rep-

resented by a Hilbert space and each physical observable is represented by a self-adjoint

operator on the Hilbert space [4, 7]. The spectral theorem states that any self-adjoint

operator Â can be represented by its projective measure MA [8–10]. A projective measure

assigns an orthogonal projection operator to each Borel set of the real line: given the interval

I(a, b), MA(I) is an orthogonal projection operator. This mathematical fact was interpreted

by Birkhoff and von Neumann as follows [5]: the projector MA(I) represents the property of

having the value of the observable represented by Â inside the interval I. Hence, according

these authors, the properties of a quantum system are represented by orthogonal projectors,

or by its corresponding closed vector subspaces; and the logic structure of quantum systems

is the algebraic structure of closed vector subspaces. This structure is called quantum logic.

Birkhoff and von Neumann developed the main features of quantum logic and they showed

its differences with the classical lattice of properties [5]. Then, later developments on the

logical structure of quantum mechanics were made by several authors (Varadarajan [11],
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Stubbe and Van Steirteghem [12]; see also Holik et al. [13–15] for more recent developments

and for the relationship between the quantum-logical approach and quantum probability

theory).

Choosing vector subspaces for representing properties instead of subsets introduces crucial

differences in the definition of the algebraic operations of the lattice. As in the classical case,

the set of quantum properties has a partial order relation given by the inclusion of subspaces

and the infimum is given by the intersection of subspaces. However, the supremum and the

complement of properties are different from classical ones. The supremum is given by the

sum of subspaces and the complement of a property is its orthogonal subspace [3]. The

resulting lattice of quantum properties is orthocomplemented, but it is not distributive [6].

Therefore, quantum logic is not Boolean. This implies a very deep structural difference

between classical and quantum theories.

The distributive inequalities are the principal difference between classical and quantum

logic. In the classic lattice, all properties satisfy the distributive equalities, but in the

quantum lattice, only distributive inequalities hold in general. However, for some subsets of

quantum properties the equalities hold. When a subset of properties satisfies the distributive

equalities, they are called compatible properties. It can be proved that a sufficient and

necessary condition for a set of properties to be compatible is that the projectors associated

to the properties commute. Moreover, it can be shown that properties associated to different

observables are compatible if the observables commute. If, on the contrary, two observables

do not commute, some of the properties associated to them are not compatible. Therefore,

by extension, commuting observables are called compatible observables.

The differences between classical and quantum logic are of fundamental importance for

the classical limit problem. If a quantum system undergoes a physical process such that its

behaviour becomes classic, then its logical structure of properties should undergo a transition

from quantum logic to classical logic, i.e. its lattice structure should become distributive.

However, the description of the classical limit of a quantum system usually focuses on the

state of the system. The mathematical description of this process is based on the Schrödinger

picture, in which states evolve over time, while observables and physical properties are taken

to be constants. As a result, the logic structure remains the same for all time. Therefore,

in these approaches it is not possible to describe how the structure of quantum properties

becomes classical.
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In order to give an adequate description of the logic structure transition, we propose

to study the classical limit in terms of the Heisenberg picture, in which observables and

physical properties evolve over time. This perspective allows to consider the time evolution

of the whole lattice of properties. On this basis, we can study the classical limit from a

logical point of view by describing the manner in which the structure of properties becomes

a Boolean lattice.

It is important to remark that, according to Schrödinger equation, a closed system always

evolves unitarily. Even in the Heisenberg picture, if two observables are incompatible at one

time, they will remain incompatible at any time. Therefore, for describing the quantum-

to-classical transition of the logic structure, it is necessary to consider non-unitary time

evolutions.

In Section 4, we will consider transitions between logics induced by non-unitary time

evolutions. Although transitions of these structures were studied before [16], they have not

been related with the decoherence process and the classical limit. We think this perspective

leads to a better understanding of the classical limit process and it is also useful to deal with

hybrid systems.

III. QUANTUM DECOHERENCE AND OBSERVABLES

One important feature of the quantum formalism is the superposition principle, which

implies the existence of quantum interference phenomena. Any attempt to describe the

quantum-to-classical transition should include a mechanism responsible for the suppression

of interference.

The usual approach to this problem is based on the evolution of quantum states. The

general idea is to show that the interference terms of quantum states disappear when the

interaction with the environment is taken into account. This process, known as quantum

decoherence, was introduced by H. Dieter Zeh [17, 18] in the early 1970s, and then it was

developed by the group led by Wojciech Zurek [19–21]. As decoherence is based on the

interaction between the system, considered as an open system, and the environment, it is

usually called Environment Induced Decoherence (EID).

In this approach, we consider a closed system U and we divide it into two subsystems:

the system of interest S and its environment E. If the state of the system U is represented
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by the density operator ρ̂U(t), the state of the subsystem S is represented by the reduced

density operator ρ̂S(t) = TrE(ρ̂U(t)) and the state of the environment E is represented by

the reduced density operator ρ̂E(t) = TrS(ρ̂U(t)). According to the Schrödinger picture, the

closed quantum system U evolves unitarily if no measurements are performed. However, the

subsystem S may undergo a non-unitary evolution. This allows that under certain conditions

the state ρ̂S(t) becomes diagonal after a decoherence time tD. Some authors interpret this

process as the essence of the classical limit.

However, it should be emphasized that, in EID approach, quantum decoherence is de-

scribed from the point of view of the Schrödinger picture. In this representation, the com-

mutator between two observables does not change during the decoherence process. The fact

that the commutator between two observables vanishes indicates that those observables are

compatible. If, on the contrary, the commutator is not zero, the observables are incompat-

ible and the corresponding properties cannot be included in the same Boolean sublattice.

In Schrödinger representation, if two observables are incompatible at the beginning of the

process of decoherence, they will remain incompatible during the entire process. Therefore,

this approach cannot explain how the structure of quantum properties becomes classical.

For this reason, we consider that it is not completely adequate for describing the classical

limit process of a physical system.

Alternative approaches to EID have been proposed in order to deal with quantum de-

coherence in closed systems [22–27]. One of them is the self-induced decoherence approach

(SID), developed from the physical and philosophical point of view in several papers [28–35].

In this approach, decoherence is described from the viewpoint of observables. Instead of us-

ing Schrödinger picture, SID uses Heisenberg picture, in which observables evolve over time.

According to SID, a closed quantum system with continuous spectrum may undergo a deco-

herence process due to destructive interference. The central point of this proposal consists

in a shift of the perspective: instead of splitting the closed system into an open system and

an environment, the division is traced between relevant and irrelevant observables. Then,

the idea is to analyze the time evolution of the mean values of the relevant observables. The

vanishing of the interference terms is interpreted as the result of a decoherence process.

It is important to remark that, according to Schrödinger equation, a closed system always

evolves unitarily. Therefore, even in the Heisenberg picture, if two observables Ô1 and Ô2 do

not commute at the beginning of the process, they will not commute at any time. This can
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be expressed in terms of a new observable [36], given by Ĉ = i
[
Ô1, Ô2

]
. We can interpret

this observable as measuring the degree of compatibility between Ô1 and Ô2: if Ĉ = 0, the

observables are compatible; if Ĉ 6= 0, they are not.

As a concrete example, in a Mach-Zender interferometer, if Ô1 is the observable that

measures which is the path taken by the photon and Ô2 is the observable associated to the

visibility of interference, then Ĉ can be conceived as the tool to measure how compatible

those observables are. In the lab, there are different observables associated with the degree of

classicality; for example, the contrast of the interference fringes in the double slit experiment.

When the experiment is performed and decoherence occurs, it is reasonable to expect that at

the beginning Ĉ 6= 0, but then, after the decoherence time, the observable evolves to Ĉ = 0.

And it is also expected that, in that limit, the interference fringes will vanish. Moreover,

in an experiment with slow and controlled decoherence, it could be possible to measure the

evolution of the observable Ĉ.

According to quantum mechanics, a closed system evolves following the Schrödinger equa-

tion. Since the evolution is unitary, it is impossible to obtain the following process:

Ĉ(t = 0) 6= 0 −→ Ĉ(t) = 0.

However, it has been proved that applying SID approach to systems with continuous energy

spectrum, and choosing suitable relevant observables, a similar transition can be obtained,

but in terms of the mean value [36]:〈
Ĉ(t = 0)

〉
6= 0 −→ lim

t→∞

〈
Ĉ(t)

〉
= 0.

Given the incompatible observables Ô1, with core O1(ω, ω̃), and Ô2, with core O2(ω, ω̃),

both with continuous spectrum, we can compute the commutator Ĉ as follows:

Ĉ(t) = i

∫ ∞
0

∫ ∞
0

∫ ∞
0

(O1(ω, ω̃)O2(ω̃, ω
′)−O2(ω, ω̃)O1(ω̃, ω

′)) ei(ω−ω
′)tÊω,ω′ dω̃ dω dω′,

where
{
Êω,ω′

}
is the energy basis of the space of operators. If O1(ω, ω̃) and O2(ω, ω̃) are

regular functions, then, appealing to the Riemann-Lebesgue theorem, it is possible to prove

the following transition [37]:〈
Ĉ(t = 0)

〉
6= 0 −→ lim

t→∞

〈
Ĉ(t)

〉
= 0.
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This implies that the mean value of the observable Ĉ, which measures the incompatibility

between two observables, goes to zero. Therefore, since SID approach describes decoherence

from the point of view of the observables, it may be an useful tool for studying the quantum-

to-classical transition of observables.

EID and SID approaches are not the only ways to account for non-unitary evolutions

in quantum mechanics. Another strategy to transform the unitary evolution of a closed

system into a non-unitary evolution has been proposed in the cosmological context. Kiefer

and Polarski [27] adopted the Heisenberg picture for the study of the decoherence process

of the universe. In this way, the observable associated with the commutator of two observ-

ables becomes a function of time. This approach allows to study the time evolution of the

commutator of two observables in the cosmological context.

The general idea of Kiefer and Polarski is to consider a time-dependent Hamiltonian.

According to the inflation model, there was an accelerated phase of the early universe called

inflation; the whole structure of the universe can be traced back to the primordial fluc-

tuations in the inflaton field [38–40]. Because of the expansion of the universe, inflaton

fluctuations must be described by a time-dependent Hamiltonian:

Ĥ(η) =
1

2

∫
dk3

{
k
[
â(k)â†(k) + â†(−k)â(−k)

]
+ i

a′

a

[
â†(k)â†(k) + â(−k)â(−k)

]}
where η is the conformal time, â(k), â†(k) are the annihilation operator and the creator

operator respectively, and a is the scale factor of the universe. These three elements are

time dependent; hence the Hamiltonian Ĥ(η) is not constant in time. Kiefer and Polarski

[27] studied the time evolution of the commutator between the general coordinate ŷ(η) and

its conjugate momentum p̂(η). They obtained that the following process is possible:

[ŷ(0), p̂(0)] 6= 0 −→ lim
η→∞

[ŷ(η), p̂(η)] = 0. (1)

In other words, the commutator between the position and momentum operator vanishes

for times longer than the decoherence time. This fact has an important consequence for

the logical structure of the model. The initial algebra, generated by ŷ(0) and p̂(0), is non-

commutative. Therefore, it has associated a non-distributive propositional lattice, revealing

the essential features of what Birkhoff and von Neumann called a quantum logic. On the

other hand, the final algebra at η −→ ∞, generated by ŷ(η) and p̂(η), is a commutative

one. Therefore, it has associated a distributive lattice of propositions, revealing its classical

9



nature. This physical process provides an interesting example of the quantum-to-classical

transition of logical structures.

Finally, it is important to mention another approach to decoherence based in non-

Hermitian Hamiltonians. In standard quantum mechanics, the Hamiltonian is a self-adjoint

operator and its eigenvalues are real numbers. However, there are another formalisms of

quantum mechanics which admit non-Hermitian operators [41, 42]. One example is the

Time Asymmetric Quantum Mechanics, formulated in terms of the rigged Hilbert space,

and developed for describing the radioactive decay of unstable atoms [43]. Other example is

the decoherence formulation based on non-unitary evolutions, in which the interaction with

the environment is characterized by an effective non-Hermitian Hamiltonian [44]. These

generalizations allow non-unitary evolutions for closed systems. The main idea of these ap-

proaches was applied to the study of time evolution of quantum logics by Fortin, Holik and

Vanni in [45].

IV. THE CLASSICAL LIMIT FROM THE LOGICAL POINT OF VIEW

All descriptions of the classical limit of a quantum system should explain the quantum-

to-classical transition of its logical structure. If a quantum system undergoes a physical

process such that its behaviour becomes classical, then its logical structure of properties

should undergo a transition from quantum logic to classical logic; i.e., its lattice structure

should become distributive. Therefore, if we want to describe adequately this process, we

should have at hand a time ordered family of logics, starting with a quantum one, and

ending up with a classical one.

In order to be able to describe the logical classical limit, let us consider a quantum system

that evolves in a non-unitary way and a set of relevant observables represented by self-adjoint

operators, O =
{
Ô1, Ô2, ..., Ôn

}
. We denote V(0) to the algebra generated by the set O at

time t = 0. We also assume that some observables of O are initially incompatible: for some

i and j,
[
Ôi(0), Ôj(0)

]
6= 0.

In what follows, we are going to describe the quantum-to-classical transition in three

different cases: systems with one characteristic time; semiclassical systems, and systems

with many characteristic times.
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A. Systems with one characteristic time

For quantum systems with only one characteristic time, the logical classical limit is

reached in only one step. In this case, the quantum-to-classical transition is given by the

following process: [
Ôi(0), Ôj(0)

]
6= 0 −→

[
Ôi(tD), Ôj(tD)

]
= 0, ∀i, j. (2)

Equation (2) suggests an interesting connection between this approach and deformation

quantization theory. Indeed, the logical classical limit proposed by this paper can be under-

stood as a deformation of a non-commutative algebra and a limit ~ −→ 0. Thus, equation

(2) can be rewritten in the form[
Ôi(0), Ôj(0)

]
6= 0 −→

[
Ôi(tD), Ôj(tD)

]
= ı~ {Oi(tD), Oj(tD)}+ o(~2), ∀i, j. (3)

We will leave the study of the relation between equations (2) and (3) for future works.

After time tD, the evolving operators generate a family of algebras V(t). If the classical

limit is reached successfully, the final algebra V(tD) will be a Boolean algebra, because

the final set of generating operators will commute. This means that initially incompatible

observables become compatible after the decoherence time.

The algebras V(t) have associated orthomodular lattices LV(t). The logical classical limit

is expressed by the fact that, while LV(0) is a non-distributive lattice, LV(tD) is a Boolean

one. In this way, we obtain an adequate description of the logical evolution of a quantum

system.

B. Semiclassical systems

For a quantum system to become completely classical, it is necessary the commutation of

all observables of the system. Notwithstanding, if this condition is strictly applied to all cases

of classical limit, it leaves no room for the description of systems which have in some aspects

a classical behaviour, but in others a quantum behaviour. Important examples, especially for

technology, are the transistors or squids [46], which have classical and quantum properties

simultaneously. Let us suppose that we go to an electronics store to buy a transistor. The

salesman will first find its location in the shelves, then he will take it in order to put it

in a bag and finally he will give it to us. From this point of view, the transistor behaves
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classically: it is an object that can be located in space, and it can be manipulated by classical

means. However, when connected to a circuit, well-known quantum effects take place on

it; for example, the tunnel effect of the electrons inside it. This means that a transistor is

an object with some observables with classical behaviour and with other observables with

quantum behaviour. These kinds of objects are usually known as semiclassical.

Our approach of the classical limit allows us to account for these cases. In the semiclassical

situation, the strong condition (2) turns out to be:[
Ôi(0), Ôj(0)

]
6= 0 −→

[
Ôi(tD), Ôj(tD)

]
= 0, ∃i, j.

In other words, there are some initially incompatible observables which become compat-

ible after decoherence time, but also there are some incompatible observables which remain

incompatible after the characteristic time. From a logical viewpoint, this implies that the

lattices of properties associated to this kind of systems are hybrid lattices.

The focus on hybrid lattices is of particular importance, because it is reasonable to

suppose that, if successfully developed, quantum computers will be semiclassical systems,

represented by hybrid lattices. This is manifested by the fact that some relevant quan-

tum algorithms possess classical and quantum elements in the process of computation [47].

Therefore, hybrid logics might be useful not only for describing the logical structure of a

quantum computer, but also for dealing with the problems related with decoherence.

C. Systems with many characteristic times

Up to this point we have considered quantum systems that have only one characteristic

time. In this way, we explained the transition from a quantum logic to a Boolean or an

hybrid logic. But we have not explored in detail the intermediate steps of this transition.

One way to do this is to consider systems with several characteristic times.

There are a number of examples of physical systems that reach the classical limit in several

steps. From the point of view of the state, this means that its non-diagonal components

vanish at different characteristic times [45]. A concrete example of such a system is an

harmonic oscillator embedded in a bath of oscillators [44].

From a logical point of view, the existence of several characteristic times implies that

the compatibility condition between different observables is fulfilled at different times. This
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condition can be expressed as follows:[
Ô1(0), Ô2(0)

]
6= 0 −→

[
Ô1(tα), Ô2(tα)

]
= 0,[

Ô1(0), Ô3(0)
]
6= 0 −→

[
Ô1(tβ), Ô3(tβ)

]
= 0,

...[
Ôn−1(0), Ôn(0)

]
6= 0 −→

[
Ôn−1(tD), Ôn(tD)

]
= 0.

This means that, among all the initially incompatible observables, some become com-

patible at time tα, others become compatible at time tβ, and so on. If the classical limit

is reached, at the end of the process all the observables will commute with each other. In

terms of the lattice structure, this many-step process implies that the different parts of the

lattice become distributive at different times.

V. CONCLUSIONS

Since the very beginnings of quantum mechanics, many attempts have been made to

recover the laws of classical physics from quantum theory, through a classical limit process.

This process must do the job of turning a quantum system, with a non-distributive logical

structure, into a classical system, with a classical logic structure.

The quantum-to-classical transition was extensively studied in the physical literature

focusing on the state of the system. However, from this perspective observables do not

evolve over time. Therefore, the change of the logic structure of the system is not explained,

it is merely understood as a jump from a quantum logic in the beginning to a Boolean one

at the end.

In this paper, we argued that the description of the classical limit in terms of the

Schrödinger picture is not adequate for explaining the quantum-to-classical transition of

the logical structure of a system. If a quantum system becomes classic, then its logical

structure of properties should undergo a transition from quantum logic to classical logic. In

order to give an adequate description of this transition, we described the classical limit in

terms of the Heisenberg picture, in which the lattice of properties evolves in time. On this

basis, we showed that it is possible to describe how the quantum structure of properties

becomes a Boolean lattice.
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Moreover, we discussed the logical structures associated to a system, not only in the

initial and final times, but also during the transition process. As an example of this non-

trivial logical structure, we presented a physical system with different characteristic times,

in which the classical limit is reached through many steps.

Finally, we applied this logical approach to describe the quantum-to-classical transition in

three different cases: (i) systems with one characteristic time; (ii) systems that change from

a quantum logic to a hybrid semiclassical logic; and (iii) systems with many characteristic

times, whose sublattices become distributive at different times.

We consider that the logical perspective presented in this paper can provide a new insight

for the understanding of the classical limit process. This approach based on the logical

structure of quantum systems does not intend to be exhaustive or complete, but we expect

it to be the kick-off for the study of the dynamical aspects of the logical structures of physical

systems. In addition, such research might be useful for understanding the general quantum

information processing tasks and the new technologies associated with quantum computers,

which involve hybrid logics.
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