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Abstract Intertheoretic relations are an important topic in the philosophy
of science. However, since their classical discussion by Ernest Nagel, such re-
lations have mostly been restricted to relations between pairs of theories in
the natural sciences. This paper presents a case study of a new type of in-
tertheoretic relation that is inspired by Montague’s analysis of the linguistic
syntax-semantics relation. The paper develops a simple model of this relation.
To motivate the adoption of our new model, we show that this model extends
the scope of application of the Nagelian (or related) models and that it shares
the epistemological advantages of the Nagelian model. The latter is achieved
in a Bayesian framework.
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1 Introduction

Epistemic relations between pairs of co-existing theories are an important topic
in the philosophy of science. These relations involve a connection between the
laws (or ‘propositions’) of two related theories – typically, the derivability of
knowledge about the empirical domain of one of these theories from knowledge
about the domain of the other theory (see [41]). Historically, most examples
of epistemic intertheoretic relations have been taken from physics. They in-
clude the relation between chemistry and atomic physics, between rigid body
mechanics and particle mechanics, and between thermodynamics and statisti-
cal mechanics. In the last thirty years, philosophical interest in intertheoretic
relations has extended to disciplines like biology (see e.g. [53,58]), ecology (see
e.g. [33]), neuroscience (see e.g. [4,55]), and economics (see e.g. [28]).1 However,
this interest has not been directed at linguistics.

Arguably, the lack of philosophical interest in linguistic intertheory re-
lations cannot be attributed to the absence of linguistic work on intertheory
relations or to linguists’ disinterest in their subject’s methodology. To the con-
trary: The relations between different linguistic subdisciplines – and between
linguistics and neuroscience – have been the topic of much recent research (see
e.g. [10,48]). The availability of large computerized text corpora and the pos-
sibility of statistically probing and manipulating linguistic data sets have fur-
ther lately effected a boost of interest in linguistic methodology (see the recent
textbooks [35], [50], and [47]). The absence of work on linguistic intertheory
relations can then only be explained (i) by the fact that philosophers of science
are not familiar with theories from linguistics, (ii) by the fact that linguists
are not familiar with philosophical models of intertheory relations (assuming
that these models have a satisfactory fit with relations between theories in
linguistics), or (iii) by the fact that philosophers and/or linguists have little
interest in developing or explicating2 new models of these relations (assuming
that the familiar models do not have a satisfactory fit with relations between
theories in linguistics).

In this paper, we explore a particular type of linguistic intertheory relation
which does not allow for an analysis through the familiar models of intertheo-
retic relations from the philosophy of science. This type is instantiated by the
relation between linguistic syntax and semantics in a Montague-style formal
framework. The combination of these two theories has originally been de-
scribed as Montague Grammar, or as Montague semantics (after the work of
the logician Richard Montague; see [37–39]). Since Montague semantics al-
ready specifies – next to the two related theories – the relation between these
theories (which aids the formulation of a model of this relation), it is partic-

1 The investigated theory-pairs include classical genetics and molecular genetics (or bio-
chemistry), ecology and molecular biology, psychology and computational neuroscience, and
macroeconomics and microeconomics.

2 We will see that there, in fact, are models of intertheory relations in linguistics. However,
since these models only play a peripheral role in linguistic practice, they are rarely explicitly
discussed.
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ularly suitable for our purposes. The relative simplicity of this model (w.r.t.
later, more sophisticated analyses of the syntax-semantics relation) facilitates
the initial presentation and epistemological motivation of this model. Subse-
quent developments of this model will then capture more intricate aspects of
this relation.

The poor fit of the familiar models of intertheoretic relations with the lin-
guistic syntax-semantics relation (see above) is due to the fact that linguistic
syntax and semantics describe the behavior of different target domains (i.e.
grammatical structures vs. lexical-compositional meanings) and that the famil-
iar models of intertheoretic relations are restricted to theories with the same
(or largely overlapping) target domains. Since Montague’s syntax-semantics
relation obtains between theories with different target domains, this relation
adds a new member to the spectrum of intertheoretic relations. We will see that
this new relation has a weaker reductive force than the best-studied interthe-
oretic relation, i.e. Nagelian reduction3 [41] (or than its generalized variant,
Nagel-Schaffner reduction [52, 53]), but a stronger reductive force than undi-
rected intertheoretic dependency relations (see e.g. [13,23,36]). We expect that
the development of our model of Montague’s syntax-semantics relation will
show the importance of investigating intertheory relations in linguistics, that
it will help compensate for the absence of models for (one type of) these rela-
tions, and that it will yield new insight into the range of different intertheory
relations.

We have mentioned above that the reductive force of Montague’s syntax-
semantics relation lies between undirected dependency relations and Nagelian
reduction. The different types of intertheoretic relations are related by family
resemblance. Like Nagelian reduction, Montague’s relation serves to derive a
proposition of one theory from a proposition of the other theory. As a result,
our new type of intertheoretic relation shares the rationale of Nagelian reduc-
tion: The relation between linguistic syntax and semantics promotes cognitive
economy and simplicity, explains the success of one theory in terms of the
success of the other theory, establishes the theories’ relative consistency, and
effects a mutual flow of confirmation between the two theories. To support the
introduction of our new, Montague-inspired, model of intertheoretic relations,
the paper will show that this model shares the epistemological advantages of
the Nagelian model.4

The paper is organized as follows: Section 2 presents a Montague-style
framework for the analysis of natural language syntax, semantics, and their
relation and contrasts our model of this relation with the model of reduction
from Nagel [41]. To prepare the epistemological analysis of our model, Section 3
reviews the relevant concepts from Bayesian confirmation and network theory.

3 For many years, Nagelian reduction has been considered a dead end. The present paper
rejects this assumption. This stance is motivated by the observation (recorded in [14]) that
Schaffner’s [53] revised model of Nagelian reduction overcomes the problems of Nagel’s origi-
nal model. For the present purposes, it will suffice to focus only on the Nagelian model. We
outline a Schaffner-style extension of our model in Section 5.2.

4 The epistemic advantages of Nagelian reduction are shown in [15].
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Section 4 motivates the introduction of our new, Montagovian, model of the
syntax-semantics relation. To this aim, it gives a Bayesian analysis of the syn-
tax-semantics relation before and after the establishment of Montague’s syntax-
semantics relation and shows that, after the establishment of this relation, the
two theories are confirmatory of one another. We close the paper by suggesting
a number of extensions to our Montagovian model, which may be developed
in future work. These include the generalization of the presented model to
pairs of multi-proposition theories (see Sect. 5.1) and its incorporation into a
sophisticated variant of Schaffner’s [52] revised model of Nagelian reduction
(see Sect. 5.2).

Our paper brings together two typically disjoint research areas: linguistic
syntax/semantics and Bayesian philosophy of science. We show that the mu-
tual application of these areas yields new insights in both domains. In partic-
ular, by investigating the linguistic syntax-semantics relation, philosophers of
science will become acquainted with a new, non-canonical example of epistemic
intertheoretic relations that resists an analysis through the familiar model(s).
By adapting the familiar model of intertheory relations from the philosophy of
science (i.e. Nagelian reduction) to Montague’s linguistic syntax-semantics re-
lation, linguists will obtain a custom-fit model of this relation which improves
upon the fit of the Nagelian model. Bayesian epistemology provides a new tool
for evaluating the confirmation of linguistic theories by empirical evidence.

We close this introduction with a disclaimer about the goal of our paper:
This paper takes a first step towards developing a model of a new type of inter-
theoretic relation which is instantiated by Montague’s analysis of the syntax-
semantics relation. As a result, the paper develops a simple model of a very
small fragment of linguistic syntax and semantics that will require significant
further development and extension. In virtue of its simplicity, the developed
model will fail to accommodate a fair number of properties of natural language
syntax and semantics which are captured by contemporary linguistic theories.
In virtue of its domain’s small size, the model will only give semantic accounts
of some few syntactic phenomena. Since syntax is structurally much richer than
semantics, even the intended (i.e. sophisticated, maximal-scope) model will
prove unable to explain all syntactic phenomena.5 The need to accommodate
these phenomena through extra-semantic mechanisms (see Sect. 5.2) witnesses
the weak reductive force of the discussed relation (vis-à-vis reduction proper).

2 Montague’s Syntax-Semantics Relation

To provide the relevant background for our analysis of the syntax-semantics re-
lation, we first present the two linguistic theories (or the two parts6 of the the-

5 The relevance of word order for the grammaticality of a sentence is a case in point.
6 Since syntax and semantics cover different target domains (see Sections 1 and 2.2), they

are often described as parts of the same theory, rather than as two distinct theories. Our
choice of these two parts/theories is motivated by the fact that, in addition to formulating a
formal theory of syntax and semantics, Montague’s framework already provides an analysis
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ory) that we aim to relate.7 Section 2.1 describes the elements of the two the-
ories and identifies the mechanism which connects these theories. Section 2.2
compares a Montague-style account of the syntax-semantics relation with the
model of reduction from Nagel [41]. To prepare the Bayesian analysis of our
new type of intertheoretic relation, Section 2.3 identifies Montague’s rules for
the formation of complex syntactic and semantic structures with the objects
of probabilistic evaluations.

2.1 Montague’s ‘Two Theories’-Theory

Montague-style frameworks for the analysis and interpretation of natural lan-
guage syntax constitute a milestone in the understanding of the linguistic
syntax-semantics relation. At the end of the 1960s, there did not exist a suf-
ficiently well-developed formal semantic theory which could be used for the
systematic interpretation of natural language.8 Montague [38] (see [37, 39])
provides such a theory.9 The latter is a model of Church’s [11] typed lambda
calculus, which contains a designated domain of semantic objects for each syn-
tactic category. Over the last forty-five years, Montague’s framework (today
called Montague-style formal semantics, or simply Montague semantics) has
evolved into the standard theory of compositional linguistic semantics and the
syntax-semantics relation. Below, we present a simplified, modern version of
Montague’s framework that incorporates some subsequent developments.10

To enable the systematic interpretation of natural language, Montague-
style semantics assumes that the semantic objects in the domains of the inter-
preting model are associated with expressions from distinct syntactic catego-
ries11 and that the model’s rules for the formation of semantic objects are as-

of their relation. This analysis facilitates the work of the philosopher of science, who is re-
sponsible for the construction of a model of this relation. Our choice of the syntax-semantics
pair is further motivated by the understanding that the ready availability of an analysis of the
syntax-semantics relation indicates the linguistic relevance of this (type of) relation.

7 Note that our discussion of the syntax-semantics relation regards syntax and semantics
as linguistic theories. As a result, our insights into the syntax-semantics relation cannot be
straightforwardly transferred to approaches to formalizing scientific theories (esp. to the syn-
tactic vs. semantic view of scientific theories).

8 Thus, Montague [38] writes, “It is clear [. . .] that [with the exception of [37]] no adequate
and comprehensive semantical theory has yet been constructed” (p. 222). Chomsky [9] sup-
ports this claim by stating that “In the domain of semantics there are [. . .] problems of fact
and principle that have barely been approached, and there is no reasonably concrete or well-
defined ‘theory of semantic representation’ to which one can refer” (p. 183).

9 At around the same time, similar theories were developed by, a.o., Lewis [34], Cresswell
[12], and Bartsch and Vennemann [3].
10 These developments include the interpretation of proper names as individuals (rather

than as sets of properties of individuals). This interpretation has been proposed in Flexible
Montague Grammar (see [26,27,44]).
11 Notably, the designators of semantic objects (which are terms of Montague’s logic IL) are

not themselves linguistic expressions. In particular, since IL is (Henkin-)complete, the con-
flation of the language of IL and of natural language would trivialize our reductive endeavor.
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sociated with the familiar syntactic rules.12 It identifies categorial grammar [1]
(see [40]) as the syntactic theory which best facilitates this correspondence.
This theory describes syntax as an algebra over the set of linguistic expres-
sions E = (En ∪ Ev ∪ Es ∪ . . . ) which generates complex expressions (e.g. the
sentence Bill walks ∈ Es) from simpler expressions (e.g. from the proper name
Bill ∈ En and the intransitive verb walk ∈ Ev) via syntactic operations like
concatenation.

For the combination of proper names with intransitive verbs, the behavior
of concatenation is governed by the rule Gs (see [39, rule S4]). In this rule,
[AB′] is the result of concatenating the expressions A and B′ (in that order),
where A is a singular name (e.g. Bill) and B′ is the result (e.g. walks) of repla-
cing the verb B (here, walk) by its third person singular present form.

Gs. If B ∈ Ev and A ∈ En, then [AB′] ∈ Es.
To facilitate the presentation of Montague-style semantics, we limit ourselves
to a syntactically poor fragment of English that only contains proper names,
intransitive verbs, and declarative sentences or clauses. As a result, the be-
havior of concatenation is only governed by the rule Gs, such that the set of
syntactic rules, G, is identified with the singleton {Gs}. Our fragment is then
identified with the closure of the set E under the rule Gs. By introducing other
concatenation rules, we can easily extend our fragment to syntactically more
diverse subsets of English.

We next turn to the semantic theory: We have noted above that formal
semantic models contain a designated semantic domain for each syntactic cate-
gory. Thus, a model for our small fragment will include a domain of individuals
Dn, a domain of properties of individuals Dv, and a domain of truth-values (or
of propositions) Ds. The interpretation function I relates the domains in E and
D = (Dn∪Dv∪Ds) by assigning, to each Ek-expression, c, (where k designates
a syntactic category) a model-theoretic object, C, in the semantic domain Dk,
such that I(c) = C. In this way, the function I will assign, to the name Bill, the
individual Bill (i.e. ) and will assign, to the verb walk, the property ‘walk’.

From the above interpretations, truth-values (here, the truth-value of the
sentence Bill walks) are obtained via a semantic correlate, Ss, of the rule Gs

(see [39, rule T4]). In the specification of the rule Ss, we abbreviate ‘I(c)’ as
‘JcK’. ‘JBK(JAK)’ is interpreted as the functional application of the denotation
of B to the denotation of A:

Ss. If JBK ∈ Dv and JAK ∈ Dn, then JBK(JAK) ∈ Ds.

As a result of the above, the semantics of our fragment constitutes an alge-
bra 〈D, S〉 over the set of basic model-theoretic objects (where S = {Ss}). The
described relation between the syntactic and the semantic algebra is captured
in Figure 1.

Our previous presentation has suggested the existence of an injective homo-
morphism between the syntactic and the semantic algebra. However, in prac-

12 This is what Bach [2] has called the ‘rule-by-rule’ approach to the syntax-semantics cor-
respondence (see [45, p. 13]).
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cf. (Montague, 1973, rule T4). In the specification of Ss, we abbreviate ‘I(c)’ as

‘JcK’. ‘JBK(JAK)’ is interpreted as the functional application of the denotation

of B to the denotation of A:

Ss. If JBK 2 Dv and JAK 2 Dn, then JBK(JAK) 2 Ds.

As a result of the above, the semantics of our fragment constitutes an algebra hD,

Si over the set of basic model-theoretic objects (where S = {Ss}). The described

relation between the syntactic and the semantic algebra is captured in Figure 1.

semantic domains, D semantic algebra

{x | x walks} T,F

Dn Dv Ds Ss

En Ev Es Gs

Bill walk Bill walks

syntactic categories, E syntactic algebra

Figure 1. The syntax-semantics map.

Our previous presentation has suggested the existence of a homomorphism

between the syntactic and the semantic algebra. However, in practice, not every

element of the syntactic algebra is associated with a unique element of the se-

mantic algebra (s.t. the syntax-semantics relation is not a function; cf. (Partee,

b; Hendriks, 1993)).11 In particular, proper names are systematically ambiguous

between objects in the domain, Dn, of individuals and objects in the domain,

D0
n, of generalized quantifiers over individuals (i.e. of second-order properties of

individuals). The interpretation of names as generalized quantifiers is required

11Its non-functional character distinguishes the linguistic syntax-semantics relation from the

relation between (first-order) logic and its set-theoretic semantics.

Fig. 1 The (injective) syntax-semantics map.

tice, the situation is more complicated: For example, since Montague interprets
intransitive verbs (e.g.walk ∈ Ev) and common nouns (e.g.man ∈ Ec) as ele-
ments of the same semantic domain, Dv,13 the homomorphism h between syn-
tax and semantics is not injective (see Figure 2).

The situation is further complicated by expressions (e.g. presuppositional
verbs like suck) which take complements of different syntactic categories (here:
determiner phrases [DPs], including proper names; see (ex.a)) and complement
phrases [CPs] (see (ex.b)).

(ex) a. [dpRain] sucks. / [dpBill] sucks.

b. [cpThat it is raining today] sucks.

The category-neutrality of these expressions may be taken to suggest that
different occurrences of the same expression are interpreted in different se-
mantic domains, such that the syntax-semantics relation is also not a function
(see [27,44]). Several modern accounts (e.g. [51, pp. 341–342], [20]) explain the
above DP/CP-neutrality by assuming that expressions which take comple-
ments of different categories are lexically ambiguous. On these accounts, suck
is polysemous between the verb suck1 whose occurrences combine with a DP
(and are interpreted as elements of the domain Dv) and the verb suck2 whose
occurrences combine with a CP (and are interpreted as elements of the do-
main of properties of propositions, Dv′). The resulting relation between the
syntactic and the semantic algebra is captured in Figure 2.

13 As a result of this interpretation, distributional differences between common nouns and
intransitive verbs can only be explained through syntax. Montague does not regard this
delegation of explanatory power as a defect of his framework. To the contrary: He attributes
“the fact that Ajdukiewicz’s proposals have not previously led to a successful syntax” to “the
failure to pursue the possibility of syntactically splitting categories originally conceived in
semantic terms” (see [39, p. 249, fn. 4]).
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10 REDUCTION, CONFIRMATION, AND THE SYNTAX-SEMANTICS RELATION

by the interpretation of universally quantified noun phrases (e.g. every woman) as

generalized quantifiers over individuals, by the possibility of coordinating names

with quantifier phrases (cf. the complex noun phrase Bill and every woman), and

by the restriction of coordination (here, and) to expressions which receive an in-

terpretation in the same semantic domain. While some occurrences of the name

Bill will thus be interpreted as the individual Bill (here, JBillK = ), others will be

interpreted as the property of all of Bill’s properties (here, JBillK0 = {P | P ( )})12.

To accommodate the obtaining of truth-values through the application of a

generalized quantifier to a property of individuals, we supplement the semantic

rule Ss by the rule S0
s. The latter is specified below:

S0
s. If JBK 2 Dv and JAK 2 D0

n, then JAK(JBK) 2 Ds.

Figure 2 illustrates the resulting relation between the elements of the syntactic

and the semantic algebra.

semantic domains, D semantic algebra

{x | x . . .} {p | p . . .} T,F

Dn Dv Ds SsDv Dv0

En Ev Es GsEc Ev0Ev

h
h

h h h

Bill man walk/ suck2 Bill walks/
suck1 Bill sucks1

syntactic categories, E syntactic algebra

Figure 2. The syntax-semantics relation.

12Intuitively, JBillK0 abbreviates the interpretation of the term �P.P (bill), where P is a variable

over first-order properties of individuals and where bill is the individual constant for Bill, .

Fig. 2 The non-injective syntax-semantics map.

More recent accounts explain the above DP/CP-neutrality by assuming a
covert definite determiner that combines with a CP in the subject of presup-
positional verbs like suck to form a DP (e.g. Kastner [30]; see [22, 56]) or by
assuming a nominalization operation at the level of Logical Form that shifts
truth-values (or propositions) to individuals, or to generalized quantifiers over
individuals (see [8, 49]). On both of these accounts, CP-taking occurrences of
verbs like suck are still interpreted in the domain Dv, such that they preserve
the injective map from Ev to Dv. The availability of different (syntactic and se-
mantic) explanations for the DP/CP-neutrality of suck illustrates the intricate
connection between syntax and semantics.

Remarkably, the non-injective nature of the Montagovian syntax-semantics
relation does not have an effect on the injectivity of the homomorphism be-
tween syntactic and semantic rules (at least for the above examples). The
reason for this is that the combinatorial behavior of common nouns and their
interpretation is governed by different syntactic and semantic rules14 than the
behavior of intransitive verbs, such that common nouns require the introduc-
tion of different syntactic and semantic rules. A similar observation holds for
the combinatorial behavior of (the interpretations of) CP-selecting intransitive
verbs like suck2.

To keep the to-be-developed model as simple as possible, we temporarily
ignore these other rules. The extension of the above via multiple pairs of syn-
tactic and semantic rules is discussed in Section 5.1. Since Kastner [30] analyzes

14 In particular, common nouns (e.g. man) combine with a determiner (e.g. the/a, inter-
preted as a function from properties of individuals to sets of such properties) to form a DP
(here: the man/a man, interpreted as a set of properties of individuals) (see [39, rules S2, S4;
T2, T4]).
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the occurrence of the subject from (ex.b) as a DP, his account handles the
formation and interpretation of (ex.b) through the familiar rules Gs and Ss.

We close our presentation of the Montagovian account of the linguistic
syntax-semantics relation with an observation about the aims and scope of
linguistic syntax and semantics, and about the different kinds of data which
they are designed to capture. In particular, while the aims and scope of catego-
rial grammar are completely standard15, the aims and scope of model-theoretic
semantics – as presented here – only constitute a proper subclass of the typical
aims and scope of semantics. This is due to our focus on semantic rules like
Ss, which capture the ‘combinability’ of semantic interpretations:

Traditionally, linguistic semantics16 (incl. Montague-style formal seman-
tics) is concerned with the compositional interpretation of natural language
sentences and with the sentences’ truth- and entailment-conditions. Relevant
semantic data include speakers’ ability to ‘compute’ the compositional mean-
ing of a sentence from the meanings of the sentence’s syntactic constituents
and their mode of combination, speakers’ evaluation of sentential truth or
falsity (in a given context), and speakers’ judgement about the obtaining of
inferential relations between sentences.

Our emphasis on the ‘combinatorics’ of linguistic meanings (see the rule Ss)
suggests a focus on semantic understanding, i.e. on the compositional compu-
tation of sentence meaning. This computation will succeed for pairs of expres-
sions (e.g. the string [Bill] [walks]) which allow the application of the semantic
value (or ‘meaning’) of one expression to the semantic value of the other ex-
pression (here: the application of a property of individuals (i.e. walk) to an
individual (i.e. Bill)), and will fail for pairs of expressions (e.g. the string [Bill]
[every woman]) which do not allow this application.

Remarkably, semantic understanding (or semantic understandability) of a
given sentence is strongly reflected in the sentence’s grammaticality. This is
due to the ‘type-checking’ role of syntax, which rejects expressions (e.g. the
ungrammatical string [Bill] [every woman] from above) whose constituent ex-
pressions cannot be meaningfully combined.17 The non-combinability of these
constituents then explains the lack of meaningfulness of the larger expression.

As a consequence of our focus on semantic rules, we hereafter largely ne-
glect sentential truth and entailment in favor of grammaticality. This neglect is
further justified by the fact that, without specifying the meaning of individual
words (or phrases), we cannot evaluate the truth or falsity of sentences con-

15 Thus, this theory is concerned with the formation of complex linguistic expressions (e.g.
sentences, clauses) from simpler expressions (e.g. individual words, phrases), and is suppor-
ted by strings of expressions which reflect the assumed process for the formation of com-
plex expressions.
16 We here understand ‘semantics’ as ‘compositional semantics’.
17 Admittedly, the type-checking role of syntax may already involve much of the (pre-

sumed) work of compositional semantics. This is illustrated by Kastner’s syntactic analysis
of (ex.b) as (ex.c), whose subject DP (which is required for a successful type-check of the
sentence) is obtained by applying the covert definite determiner ∆ to a CP:

(ex) c. [dp∆ [cpThat it is raining today]] sucks.
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taining these words (or phrases). Without identifying the rules of Montague’s
logic IL or the meaning postulates which constrain the set of semantic models,
we cannot judge whether one sentence entails another.

Because of our focus on syntactic and semantic rules, the predominant
support of semantic rules by semantic understandability, and the reflection of
understandability in grammaticality, all salient evidence for the rules in G and
S lies in strings of expressions whose structure reflects the assumed formation
process. As a result, only syntactic rules are supported by direct evidence (s.t.
syntax fits the phenomena). Semantic rules are mostly supported by indirect
evidence (s.t. the relevant part of the empirical access of semantics is through
syntax). The different degrees of directness of support for syntactic and seman-
tic rules motivates our identification of syntax with the phenomenological18

(i.e. ‘reduced’) theory and of semantics with the fundamental (i.e. ‘reducing’)
theory.

The identification of semantics with the fundamental theory is in line with
Montague’s (historical) view of the primacy of semantics, which regards syntax
as a mere “preliminary to semantics” [38, p. 223, fn. 2]. Admittedly, in light
of the greater structural richness of syntax w.r.t. semantics, the identification
of semantics with the fundamental theory has since been much contested (see
e.g. [9,30,56]). However, to reflect the Montagovian idea behind the presented
model of the syntax-semantics relation – and to capture the direct support of
rules in G –, this paper will nevertheless identify semantics with the fundamen-
tal theory. The adequacy of the syntax-semantics relation which is obtained on
this model will determine the relative success of the proposed model. Propo-
nents of the ‘fundamentality’ of syntax may use a close version of the presented
model (with r replaced by h as the relevant inter-rule relation) to capture the
relation between semantics and syntax.

This completes our presentation of a Montague-style account of the syntax-
semantics relation. We next compare this account to the model of intertheo-
retic reduction from [41].

2.2 Montague’s Syntax-Semantics Relation and Intertheoretic Reduction

In Section 1, we have described Montague’s syntax-semantics relation as the
instantiation of a specific type of intertheoretic relation. To emphasize the sim-
ilarities and differences of our Montagovian model to the account of reduction
from Nagel [41, Ch. 11], we next describe the relation between syntax and se-

18 Our use of the terms phenomenological and fundamental is in accordance with the
treatment of theories in physics. Our adoption of these terms in linguistics is motivated by
the wish to avoid reference to the ‘reduced’ and the ‘reducing’ theory (see Sect. 1). Nothing
more depends on this terminology.
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mantics on the Nagelian model.19 We then compare the Montagovian account
of intertheoretic relations to the Nagelian account.

In the following, we assume a phenomenological theory, T2, and a fun-
damental theory, T1. These theories are associated with sets of propositions
T2 = {T 1

2 , T
2
2 , . . .} and T1 = {T 1

1 , T
2
1 , . . .}, respectively. As is well known,

Nagelian reduction is a three-step process that involves the connection of terms
in the non-logical vocabulary of T1 and T2 via bridge laws (step (i)), the substi-
tution of the terms from T1 by their bridge-law correspondents from T2 (step
(ii)), and the derivation (via auxiliary assumptions) of every proposition in T2
from the result of replacing the relevant terms in a proposition of T1 by their
bridge-law correspondents (step (iii)) (see [41, pp. 353–354]).

For example, on the Nagelian account, the reduction of the theory of the
ideal gas from thermodynamics [TD] to the kinetic theory of gases from statis-
tical mechanics [SM] involves (i) the connection of the temperature variable T
from TD with the term for the mean kinetic energy of a particle 〈Ekin〉 from
SM, (ii) the substitution of 〈Ekin〉 by T in the laws of the theory of the ideal
gas, and (iii) a demonstration of the fact that the result of this substitution
follows from the Newtonian equation of motion and the definitions of pressure
and kinetic energy (assuming that the molecules are point particles, that they
collide elastically, and that the velocity distribution is isotropic). Because of
the general familiarity of the Nagelian model of reduction – and since the above
sketch of this model contains all relevant information for an insightful compar-
ison with our Montagovian model –, we refrain from describing the Nagelian
model in greater detail. For a careful presentation of (a modern version of)
this model, the interested reader is referred to [14].

Analogously to the above, the Nagelian reduction of the linguistic syntax-
semantics pair would involve (i) the connection of the names of the elements
in D and E with the designators of the semantic and syntactic operations from
the rules in S and G, (ii) the substitution of the names of the elements in D
and the operations from the rules in S by their bridge-law correspondents from
E and G in the designators of the rules from S, and (iii) the derivation of every
rule (or ‘proposition’) in G from the corresponding proposition in S.

In particular, step (i) connects En with Dn, Ec and Ev with Dv, Ev′ with
Dv′ , and Es with Ds, and connects expression concatenation, ⁅ · ⁆ with function
application, λyλx.y(x).20 Step (ii) converts a copy of the rule Ss (in (1a)) into
the rule from (1b) by replacing every occurrence of ‘Dn’ by ‘En’, of ‘Dv’ by
‘Ev’, and of ‘Ds’ by ‘Es’, and by replacing every occurrence of ‘λyλx.y(x)’ by
the operator ‘⁅ · ⁆’. Step (iii) trivially derives a variant of the rule Gs from the
result of this conversion.

19 We will see below that – because of the interpretation of bridge laws as statements about
the inclusion relation between the extensions of terms of the two theories – the Nagelian
model can, in fact, not be applied to the syntax-semantics pair. To allow a direct comparison
of the Montagovian with the Nagelian model, we temporarily ignore this inapplicability.
20 To accommodate the word-order profiles of different languages (e.g. ‘subject-verb-object’

vs. ‘verb-subject-object’), we here use an order-invariant version, ⁅ · ⁆, of the concatenation
operation [ · ] from Gs. The order-(in)variance of concatenation is discussed below and in
Section 5.2.
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(1) a. If Y ∈ Dv and X ∈ Dn, then Y (X) ∈ Ds.

b. If Y ∈ Ev and X ∈ En, then ⁅Y X⁆ ∈ Es.
c. If Y ∈ Ec and X ∈ En, then ⁅Y X⁆ ∈ Es.

Note that, since the rule (1c) is not a syntactic rule of English (i.e. it yields
ill-formed strings of the form [Bill] [man]), we neglect the result, (1c), of replac-
ing ‘Dv’ by ‘Ec’ in Ss. The possibility of using the Nagelian model to derive
syntactic rules which are not members of G again illustrates that Montague’s
syntax-semantics relation has a weaker reductive force than Nagelian reduc-
tion. We will see below that our model of Montague’s syntax-semantics relation
avoids the obtaining of non-G rules like (1c).

The above example shows that our Montague-style model of the syntax-
semantics relation and the Nagelian model of intertheoretic reduction agree
with respect to the connectability of the two theories (cf. step (i)). Yet, while
Nagel’s model satisfies this requirement through the formulation of syntac-
tic bridge laws (which connect pairs of terms in the vocabulary of the two
theories), our Montagovian model satisfies this requirement through the as-
sumption of a relation r := h−1 between the objects of the semantic and the
syntactic algebras ([38], [45, pp. 15–20]; see Figure 3). This relation generalizes
the inverse image of the interpretation function I from Section 2.1, such that
r(Dk) = {I−1(a) | a ∈ Dk} ⊆ Ek. Since the relation r also establishes connec-
tions between the rules of the two theories (s.t. r(Ss) = Gs), our Montagovian
model obviates Nagel’s substitution step (ii) and, thus, avoids the obtaining
of non-G rules like (1c).REDUCTION, CONFIRMATION, AND THE SYNTAX-SEMANTICS RELATION 11
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Fig. 3 The semantics-syntax relation.

In our model of Montague’s syntax-semantics relation, the replacement of
Nagelian bridge laws by the relation r is made necessary by the definition of
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bridge laws as inclusion relations between the extensions of terms in T1 and
T2.21 As a result of this definition, it holds for all pairs of terms, t1 and t2,
from T1 and T2, that t2 applies to all objects to which t1 applies. Since model-
theoretic semantics and categorial grammar have non-overlapping target do-
mains (s.t. they do not satisfy the inclusion-of-extensions requirement on
terms), their objects need to be connected in some other way. The assumption
of the relation r := h−1 between the algebraic formulations of T1 and T2 serves
this purpose.

In our Montagovian model, the replacement of bridge laws by the relation r
also obviates the specification of the relation between magnitude parameters,
which is required in the Nagelian model (see [53]): To accommodate the mag-
nitudes of physical properties (e.g. the degrees Kelvin of a gas’ temperature),
Nagelian bridge laws specify a functional dependence relation f between the
magnitudes, τ1 and τ2, of the properties denoted by the terms t1 and t2 (s.t.
τ2 = f(τ1)). Since the relevant properties in linguistic syntax and semantics
are magnitude-free, our Montagovian model does not (need to) specify such a
relation.

Notably, the semantic characterization of connectability, which is adopted
in our Montagovian model, also improves upon the adequacy of the Nagelian
model – especially upon its proximity to scientific practice. Nagel’s model of
reduction is based on the syntactic view of scientific theories (see [6,25]), which
reconstructs theories as axiomatic logical systems whose language is bifurcated
into observational terms (which refer to directly observable entities) and non-
observational theoretical terms (whose meaning is determined by the axioms of
the theory). Their centrality to scientific theories also gives theoretical terms
a prominent role in Nagel’s model of reduction. However, when establishing
relations between theories, scientists do not – above all – link the theories’ non-
observational vocabularies (e.g. the thermodynamic term temperature and the
statistical mechanical equation ‘2n3k 〈Ekin〉’). Rather, they establish relations be-
tween the corresponding semantic objects (here: between the concept ‘temper-
ature’ and the mean kinetic energy of a particle). Our reconstruction of Mon-
tague’s model of the syntax-semantics relation captures this semantic perspec-
tive.

The semantic characterization of connectability is not the only salient prop-
erty of our model of Montague’s syntax-semantics relation: This model is also
defined by the non-functional character of the relation r (and by the result-
ing non-symmetry of the associated intertheoretic relation): The Nagelian and
the Montagovian model both characterize reduction as a directed dependency
relation. However, the common conception of Nagelian bridge laws as bicondi-
tional statements (see [53, p. 622], [31, p. 310]) conceals this property.22 As a

21 This characterization of Nagelian bridge laws is due to Schaffner [53, pp. 614–615] (see
[54, pp. 411–477]). However, since it generalizes Nagel’s categorization of bridge laws as
meaning-entailments, conventional stipulations, or matters of fact (see [41, pp. 354–355]), we
here treat it as a proper part of Nagel’s model.
22 Notably, Nagel himself only demands that bridge laws take the form of one-directional

conditional statements (see [41, pp. 354]). The common conception of Nagelian bridge laws
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result, this conception represents the Nagelian reduction relation as a symmet-
ric relation. In contrast, the Montagovian model represents this relation as an
asymmetric relation. To emphasize the symmetric character of Nagelian reduc-
tion (as commonly conceived), we will sometimes describe this relation as an
undirected relation.23 For simplicity, we hereafter identify Nagel(ian) Reduc-
tion with the common conception of Nagelian reduction.

Figure 4 compares Montague’s account of the syntax-semantics relation
(right) with the Nagelian account of reduction (left).
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Fig. 4 The Nagelian model (left) and the Montagovian model of intertheoretic relations
(right).

Note our use of dashed (rather than dotted) arrows in the above figure
(and in Figure 3). This notation is required by the directedness of the syntax-
semantics relation, such that the arrows from Figures 2 and 4 have a different
denotation: While the arrows from Figure 2 represent Montague’s homomor-
phism h, the arrows in Figure 3 and in the right part of Figure 4 represent its
inverse image (i.e. the relation r).

For future reference, we define intertheoretic relations on the Nagelian and
the Montagovian model in terms of their salient properties as follows:

Definition 1 (Nagel Reduction) A type of undirected (i.e. symmetrically
represented) dependency relation, described in [41] (see [53]) which is defined
by the existence of intertheoretical connections between terms in the non-
logical vocabulary of the two related theories and by the derivability of every
proposition in the phenomenological theory from a corresponding proposition
in the fundamental theory.

Definition 2 (Montague’s Relation) A type of directed (or non-symmetri-
cally represented) dependency relation, inspired by [38], which is defined by
the existence of intertheoretical connections between objects of the two related
theories and by the resulting trivial derivability of every proposition in the

as biconditional statements can be attributed to the fact that all examples of bridge laws
from [41, Ch. 11] are biconditionals.
23 For a discussion of this issue – and for a Nagelian solution –, the reader is referred to [32]

and [14].
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phenomenological theory from a corresponding proposition in the fundamental
theory.

The commonalities and differences between intertheoretic relations on the
Nagelian and the Montagovian model are captured in Figure 5.

Montague’s Syntax-Semantics Relation 15

REDUCTION, CONFIRMATION, AND THE SYNTAX-SEMANTICS RELATION 11

semantic domains, D semantic algebra

{x | x . . .} {p | p . . .} T,F

Dn Dv Ds SsDv Dv�

En Ev Es GsEc Ev�Ev

r
r

r r r

Bill man suck1 suck2 Bill sucks

syntactic categories, E syntactic algebra

Figure 3. The syntax-semantics relation.

T1

T2

bridge laws

Gs

Ss

the relation r

Figure 4. The Nagelian model (left) and the Montagovian mo-
del of reduction (right).

Derivability

8
>>><
>>>:

®
NR

´
Syntactic interth. connectability (via bridge laws);

®
MR

´
Syntactic interth. connectability (via bridge laws),
Undirected dependency

Semantic interth. connectability (via the relation r),
Directed dependency

Figure 5. Montague Reduction vs. Nagel Reduction.

References

Ajdukiewicz, Kazimierz. 1935. Die syntaktische Konnexität, Studia Philo-

sophica 1, 1–27.

Bartsch, Renate and Theo Vennemann. 1972. Semantic Structures,
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It is clear from the above that our model of Montague’s syntax-semantics
relation instantiates only one particular type of intertheoretic relation. There
are many others, ranging from ‘strict’ Nagelian Reduction (see Def. 1) via the
‘weaker’ Nagel-Scha↵ner reduction [50,51] (see Sect. 5.2) to undirected depen-
dency relations (see e.g. [13, 21, 34]). We expect that the relation between
model-theoretic semantics and categorial grammar be found in the mid-range
of this spectrum.

We close the present subsection with a number of caveats about the linguis-
tic syntax-semantics relation: Our previous considerations have identified Mon-
tague’s syntax-semantics relation as a weak, i.e. directed, variant of Nagel Re-
duction. Significantly, however, Montague’s syntax-semantics relation is even
weaker than has been previously established. This is due to the greater struc-
tural richness of syntax in comparison to semantics, such that Montague’s
syntactic rule Gs contains more information than the semantic rule Ss. Word
order and agreement are a case in point: To ensure the ‘right’ formation of sim-
ple English sentences (in which the third person singular form of an intransitive
verb combines with a proper name which occurs on its left), Montague’s rule
Gs uses the order-sensitive concatenation operation [ · ]. Without this order-
specification, nothing would prevent the concatenation of expressions which
violate the language’s word-order profile (e.g. subject-verb-object for English).
As a result, the rule from (1b) could yield either the expression Walks Bill or Bill
walks. This observation contributes to our description of Montague’s syntax-
semantics relation as a distinct type of intertheoretic relation, rather than as
strong Nagelian reduction.

Our characterization of the linguistic syntax-semantics relation as a weak
intertheoretic relation requires one further clarification: All popular accounts of
intertheoretic relations (incl. [39]) assume that the phenomenological and the
fundamental theory have the same (or largely overlapping) target domains. On
this account, the two theories both make more-or-less the same claims (e.g.
about the behavior of a given physical system). We have argued above that this
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the ‘weaker’ Nagel-Schaffner reduction [52, 53] (see Sect. 5.2) to undirected
dependency relations (see e.g. [13,23,36]). We expect that the relation between
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We close the present subsection with a number of caveats about the linguis-
tic syntax-semantics relation: Our previous considerations have identified Mon-
tague’s syntax-semantics relation as a weak, i.e. directed, variant of Nagel Re-
duction. Significantly, however, Montague’s syntax-semantics relation is even
weaker than has been previously established. This is due to the greater struc-
tural richness of syntax in comparison to semantics, such that Montague’s syn-
tactic rule Gs contains more information than the semantic rule Ss.24 Word
order and agreement are a case in point: To ensure the ‘right’ formation of sim-
ple English sentences (in which the third person singular form of an intransitive
verb combines with a proper name which occurs on its left), Montague’s rule
Gs uses the order-sensitive concatenation operation [ · ]. Without this order-
specification, nothing would prevent the concatenation of expressions which
violate the language’s word-order profile (e.g. subject-verb-object for English).
As a result, the rule from (1b) could yield either the expression Walks Bill or Bill
walks. This observation contributes to our description of Montague’s syntax-
semantics relation as a distinct type of intertheoretic relation, rather than as
strong Nagelian reduction.

Our characterization of the linguistic syntax-semantics relation as a weak
intertheoretic relation requires one further clarification: All popular accounts of
intertheoretic relations (incl. [41]) assume that the phenomenological and the
fundamental theory have the same (or largely overlapping) target domains. On
this account, the two theories both make more-or-less the same claims (e.g.

24 In virtue of this observation, Montague’s syntax-semantics relation is also not an instance
of the interpretability relation between theories (see [57]). This relation holds of two theories,
T1 and T2, if there exists some extension, T ∗

1 , of T1 via a recursive set of explicit definitions
such that every consequence of T2 is a consequence of T ∗

1 (see [17, p. 495]).
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about the behavior of a given physical system). We have argued above that this
is not the case for our syntax-semantics pair:25 While categorial grammar ac-
counts for the well- (or ill-)formedness of syntactic structures, model-theoretic
semantics accounts for the compositional properties of these structures’ inter-
pretations. Admittedly, the interpretation relation I establishes a firm connec-
tion between the objects of the two theories. However, this does not change
the fact that the reductive achievement of Montague’s syntax-semantics rela-
tion will be comparatively weaker than the achievements of (strong or weak)
reductions between shared-domain theories.

The admonitions from the last two paragraphs all characterize our new type
of intertheoretic relation. While some of these admonitions will be ignored in
the rest of this paper, their neglect would distort our representation of the
syntax-semantics relation. To enable a Bayesian analysis of our model of this
relation, we next discuss the use of probabilities in linguistic syntax and seman-
tics. This discussion is followed by a primer on Bayesian confirmation and
network theory (in Section 3).

2.3 Montagovian Rules and Probabilities

Our presentation of Montague’s theory of the syntax-semantics relation has
presupposed the existence of two sets of rules, G and S, for the formation
of complex syntactic and semantic objects. Like hypotheses of any scientific
theory, these rules are obtained via the scientific method (discussed, here, for
the formulation of the rule Gs): Following the isolation of syntactically simple
sentences in a given data-set (typically, an electronic text collection like the
British National Corpus), linguists abstract information about the sentences’
structural properties and propose a hypothesis (here, Gs) about their forma-
tion. Hypotheses are tested through the analysis of strings of expressions in
other (new) corpora: A given string (e.g. the sentence Bill walks) is taken to
support the hypothesis if its structure does, and to question the hypothesis if
its structure does not reflect the assumed formation process (i.e. if it positively
resp. negatively instantiates Gs).

To enable a Bayesian analysis of our model of the syntax-semantics re-
lation, we assign a probability to every syntactic and semantic rule. A rule’s
probability is informed by the frequentist data which are available at the time.
Thus, the probability of the truth of the hypothesized rule Gs will be very high
(or low) if a very large (resp. small) percentage of the expressions of the de-
scribed form instantiates Gs. We expect that the frequentist probability of a
given rule will influence a linguist’s psychological confidence in the rule’s de-
scriptive adequacy. In particular, if a very large (or small) percentage of the

25 Notably, relations between theories with different target domains may not be identified
with heterogeneous reductions, whose constituent theories do not share the relevant pred-
icates: Many heterogenous reductions (e.g. the reduction of thermodynamics to statistical
mechanics) still have a common target domain (here: observable phenomena in macroscopic
systems like gases).
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expressions of a given form instantiates Gs, the linguist’s belief in the truth
of Gs will be similarly high (resp. low).

Our previous considerations have defined the probability of a given rule
via the frequency of the rule’s positive instantiations in a given sample. We
have already argued in Section 2.2 that the relation of direct instantiation by
linguistic objects is restricted to syntactic rules. We will see below that this ob-
servation plays an important role in the confirmation of the two theories before
their relation has been established (i.e. in the two theories’ pre-‘reductive’ 26

confirmation) (see Prop. 1, Sect. 4.1). The semantic rule Ss derives its support
from the linguistic support of the rule Gs via the assumption of the relation r.
The probability of Ss is thus obtained via the probability of its syntactic coun-
terpart.

This concludes our discussion of the reductive and probabilistic aspects of
the Montagovian framework. We precede our introduction to Bayesianism with
one final caveat: Importantly, our attribution of probabilities to Montagovian
rules does not constitute a probabilistic extension of Montague semantics. The
central aim of this paper is methodological, not substantive. Consequently, we
do not intend any revisions or additions to (our fragment of) Montague-style
formal semantics. The attribution of probabilities is only a means to an end,
i.e. the possibility of providing a Bayesian analysis of the presented model of
the linguistic syntax-semantics relation. To achieve this end, it will suffice to
restrict ourselves to the use of probabilistic variables. While nothing prevents
us from inserting actual values, the use of such values is not necessary for the
success of our analysis.

3 A Primer on Bayesianism

We analyze a rule’s evidential support via Bayesian confirmation theory: The
central idea of this theory is the interpretation of confirmation as probability-
raising and the associated distinction between two notions of probability, rela-
tive to the receipt of a new piece of evidence: The initial, or prior, probability
of a proposition H (for ‘hypothesis’) is the probability of H before the evi-
dence E has been considered. The final, or posterior, probability of H is the
probability after E has been considered.

Bayesian conditionalization on E requires an update of the prior probabil-
ity, P(H), to the posterior probability, P ′(H), of H, where P ′(H) is typically
expressed in terms of the original probability measure, i.e. P ′(H) = P(H|E),
provided that P(E) > 0. Our use of Bayes’ Theorem, a result from probability

26 To emphasize the weak nature of this relation w.r.t. reduction proper, we hereafter write
reductive in scare quotes.
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theory, yields the following expression for the posterior probability of H:

P(H|E) =
P(E|H)P(H)

P(E)
=

P(E|H)P(H)

P(E|H)P(H) + P(E|¬H)P(¬H)
(1)

=
P(H)

P(H) + P(¬H)x

In the above, the expression x := P(E|¬H)/P(E|H) is the likelihood ratio.

According to Bayesian confirmation theory, a piece of evidence E confirms
the hypothesis H if the posterior probability of H (given E) is greater than
the prior probability of H, i.e. if P(H|E) > P(H). The piece of evidence, E,
disconfirms H if P(H|E) < P(H) and is irrelevant for H if P(H|E) = P(H).27

While the case of two propositions is easy to compute, the confirmatory
situation is often much more complicated. This is due to the fact that the re-
spective hypothesis may have a fine structure and that different pieces of evi-
dence may stand in certain probabilistic relations to one another. As we will see
in due course, the relation between linguistic syntax and semantics, upon which
we focus in this paper, exhibits a similarly high degree of complexity.

Bayesian networks prove to be a highly efficient tool for the computation
of the above-described scenarios.28 A Bayesian network is a directed acyclical
graph whose nodes represent propositional variables and whose arrows encode
the conditional independence relations that hold between the variables. In the
rest of this paper, we call parent nodes nodes with outgoing arrows and call
child nodes nodes with incoming arrows. Root nodes are unparented nodes;
descendant nodes are child nodes or the child of a child node, etc.

By the special choice of graph, paths of arrows may not lead back to them-
selves (s.t. the graph is acyclical). Variables at each node can take different
numerical values, which are assigned by the probability function P. As a result,
Bayesian networks do not only provide a direct visualization of the probabilis-
tic dependency relations between variables, but come along with a set of effi-
cient algorithms for the computation of whichever conditional or unconditional
probability over a (sub-)set of the variables involved we are interested in.

We illustrate the use of Bayesian networks by framing the confirmatory
relation between the hypothesis H and a piece of evidence E. To do so, we first
introduce two binary propositional variables,H and E (printed in italic script).
Each of these variables has two values (printed in roman script): H or ¬H
(i.e. ‘the hypothesized rule is true’ resp. ‘false’), and E or ¬E (‘the evidence
obtains’ resp. ‘does not obtain’). The relation between E and H is represented
in the graph in Figure 6.

27 Bayesianism is presented and critically discussed in [16] and [29]. These texts also discuss
Jeffrey conditionalization, which is an alternative updating rule. For an introduction to
Bayesian epistemology, the reader is referred to [21] and [24].
28 For an introduction to Bayesian networks, see [43,46]. The monograph [5] discusses ap-

plications from epistemology and the philosophy of science and provides a short introduction
to the theory of Bayesian networks.
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Fig. 6 Bayesian network representation of the dependence between E and H.

The arrow from H to E denotes a direct influence of the variable in the
parent node on the variable in the child node. The truth or falsity of the hypo-
thesis affects the probability of the obtaining of E.

To turn the graph from Figure 6 into a Bayesian network, we further re-
quire the marginal probability distribution for each variable in a root node (i.e.
the prior probability, P(H), of H) and the conditional probability distribution
for every variable in a child node, given its parents. In the present case, the
latter involves fixing the likelihoods P(E|H) and P(E|¬H). From these dis-
tributions, we can then obtain all other probabilities via Bayesian networks.
As will be relevant below, the graph’s probability distribution respects the
Parental Markov Condition (PMC). According to this condition, a variable re-
presented by a node in a Bayesian network is independent of all variables repre-
sented by its non-descendant nodes in the Bayesian network and is conditional
on all variables represented by its parent nodes.

4 Montague’s Syntax-Semantics Relation and Confirmation

Our previous efforts have restricted themselves to the presentation of our Mon-
tagovian model of the linguistic syntax-semantics relation. To motivate the in-
troduction of this model as a model of a new type of intertheoretic relation (in
addition to the established Nagelian model), we next provide a Bayesian anal-
ysis of this model. This analysis will be used to show that the proposed model
shares the epistemological advantages of the Nagelian model.

To simplify the Bayesian analysis of our model of Montague’s syntax-
semantics relation, and to facilitate its comparison with the Bayesian analysis
of Nagel-Schaffner reduction from [15], we focus on the relation between the
rules Gs and Ss. These rules are associated with the propositional variables G,
respectively S.29 The intertheoretic relation between linguistic syntax and se-
mantics can then be represented via the graph in Figure 8. For simplicity, we
assume that the rule Gs is supported by exactly one (set of) piece(s) of evi-
dence. As has been explained in Section 2.3, we take evidence for a given syn-
tactic rule to be an intuitively well-formed linguistic expression whose struc-
ture reflects the rule’s assumed formation process. The replacement of the
arrows from Figures 1 to 4 by arrows of the form −→ (see Fig. 6) is moti-
vated by our interest in probabilistic dependence relations between proposi-
tional variables (rather than in the relation r). Below, these arrows capture
the dependence of the probability of the truth of the syntactic rule Gs on the

29 The restriction to singleton sets of rules (s.t. G = {Gs} and S = {Ss}) enables us to
drop the subscript ‘s’ from Gs and Ss.
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probability of the truth of the semantic rule Ss. The conditional dependency
of Gs on Ss enables us to obtain an aligned chain of arrows. As a result, we
can represent a flow of evidence from the syntactic to the semantic theory.

Figures 7 and 8 display the graphs associated with the dependence relations
between S,G, and E before and after the establishment of Montague’s syntax-
semantics relation.
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Fig. 7 Pre-‘reductive’ dependence relations between S, G, and E.
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Fig. 8 Post-‘reductive’ dependence relations between S, G, and E.

We determine the confirmation of S and G via their relevant probabilities,
beginning with the pre-‘reductive’ situation (in Sect. 4.1; see Fig. 7). The com-
parison of this situation with the post-‘reductive’ situation (in Sect. 4.3; see
Sect. 4.2, Fig. 8) will show that Montague’s relation between linguistic syntax
and semantics raises the joint (prior and posterior) probabilities of the two
theories and improves the flow of confirmation between these theories.

4.1 Pre-‘Reductive’ Confirmation

Let P1(S) and P1(G) be the marginal probabilities of the root nodes S and G
of the Bayesian network in Figure 7, where P1 is the relevant probability mea-
sure. Let P1(E|G) and P1(E|¬G) be the conditional probabilities of the child
node E. For convenience, we use the following abbreviation scheme:

P1(S) = σ , P1(G) = γ , (2)

P1(E|G) = π , P1(E|¬G) = ρ

We assume a positive confirmatory relation between E and G, such that π > ρ.
From the network structure in Figure 7, we can read off the conditional and

unconditional independencies E ⊥⊥ S|G and S ⊥⊥ G, such that P1(S|E) = P1(S).
Evidence E does not confirm (or disconfirm) S. Hence, there is no flow of
confirmation from the syntactic to the semantic theory. In the absence of the
relation r : S → G, the variables S and G are probabilistically independent
before the establishment of their relation. This fact is captured by equation (3):

P1(S,G) = P1(S)P1(G) = γ σ (3)
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By (3), the prior probability of the conjunction of S and G equals the product
of the marginal probabilities of the positive instantiations of the root nodes.
Using the methodology from [5], we obtain the posterior probability of the con-
junction of S and G as follows:

P ∗1 :=
P1(S,G,E)

P1(E)
=

P1(S,G,E)∑
S,G(S,G,E)

=
γ π σ

γ π + γ̄ ρ
(4)

The denominator of the rightmost fraction in (4) is a convex combination of π
and ρ weighed by γ, where γ̄ := 1− γ.30

We close the present subsection by assessing the degree of confirmation of
the conjunction of S and G. To do this, we use the difference measure d (see
[7]) which is defined for our case as follows:31

d1 := P1(S,G|E)−P1(S,G) (5)

Thus, E confirms G if the consideration of E raises the probability of the con-
junction of S and G. By calculating d1, we show that this is indeed the case:

d1 =
γ γ̄ σ (π − ρ)

γ π + γ̄ ρ
(6)

If we assume that γ, π, ρ, and σ lie in the open interval (0, 1), where π > ρ,
the above fraction is always strictly positive. We summarize our observation
in the following proposition:

Proposition 1 E confirms S and G iff E confirms G.

This completes our investigation of the joint probability of S and G before
Montague’s relation of G to S. We next investigate the joint probability of S
and G after such a relation has been established.

4.2 Post-‘Reductive’ Confirmation

To determine the confirmation of S and G in the post-‘reductive’ situation (see
Fig. 8), we must first restate the probability distributions from the previous
subsection. In particular, since G is no longer a root node in Figure 8 (and
is, thus, not assigned a prior probability), we replace the equation P1(G) = γ
from (2) by the equations from (7), where P2 is the new probability measure:

P2(G|S) = 1 , P2(G|¬S) = 0 (7)

The equations from (7) are warranted by Montague’s relation r. All other as-
signments are as for P1. Our introduction of the new measure P2 is motivated
by the move to a different probabilistic situation and by the need to assign

30 We will hereafter abbreviate ‘1− x’ as ‘x̄’.
31 As is discussed in [19] (see [18]), results may depend on our choice of confirmation mea-

sure. Whether (and to what extent) they do, will be a question for future research.
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to the received Montagovian propositions possibly distinct probabilistic val-
ues. Equality statements of the form P2(S) = P1(S) ensure the possibility of
comparing the confirmation of S and G in the two situations.

As is encoded by the arrow from S to G in Figure 8, Montague’s relation r
effects a flow of evidence from syntax to semantics. The confirmation of S is
defined simply as follows:

Proposition 2 E confirms S iff π > ρ.

According to the above proposition, the evidence E confirms the proposition S
if (as has been assumed in Section 4.1) E supports G. The equations in (7)
ensure a positive flow of confirmation from G to S.

On the basis of the above, the conjunction of S and G has the following prior
and posterior probabilities: (All calculations are included in the Appendix.)

P2(S,G) = σ (8)

P ∗2 := P2(S,G|E) =
π σ

π σ + ρ σ̄
(9)

The degree of confirmation of the conjunction of S and G under the measure P2

is recorded below:

d2 := P2(S,G|E)−P2(S,G) =
σ σ̄ (π − ρ)

π σ + ρ σ̄
(10)

This completes our investigation of the probabilities and confirmation of
the conjunction of S and G in the post-‘reductive’ situation. To show the epis-
temic value of our Montagovian model of intertheoretic relations, we next com-
pare the conjunction’s probabilities and confirmation in the two scenarios. We
accept the establishment of an intertheoretic relation if it raises the conjunc-
tion’s probabilities or evidential support, and reject (or ignore) it otherwise.

4.3 Comparing Situations

We begin by comparing the prior probabilities of the conjunction of S and G
in the two situations from Sections 4.1 and 4.2. While the propositional vari-
ables S and G are independent before the establishment of their relation, they
have become dependent after the establishment of this relation. This is due to
the fact that G is no longer a root node in Figure 8. To compare the joint
probabilities of S and G in the two scenarios, we assume the identity of P2(G)
and P1(G), and of P2(E|G) and P1(E|G). By the first equality in (7), we fur-
ther assume the equality in (11), such that γ = σ.

P2(G) = P2(G|S)P2(S) = σ (11)

Using the above, we calculate the difference, ∆0, between the conjunction’s
pre- and post-‘reductive’ prior probabilities, and obtain

∆0 := P2(S,G)−P1(S,G) = σ σ̄. (12)
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Intuitively, Montague’s syntax-semantics relation is epistemically valuable if
the prior probability of the conjunction of S and G is higher after the establish-
ment of a relation between Ss and Gs, i.e. if ∆0 > 0. Since we assume that all
non-r-based probabilities are non-extreme, we know that the former is indeed
the case.

The difference, ∆1, between the conjunction’s posterior probabilities under
the measures P2 and P1 is also strictly positive:

∆1 := P2(S,G|E)−P1(S,G|E) =
π σ σ̄

π σ + ρ σ̄
(13)

To show the truth of this statement, we use the above assumptions together
with the fact that π > ρ.

The post-‘reductive’ confirmation of our propositions witnesses a similar in-
crease. To establish this, we calculate the difference between the conjunction’s
pre- and post-‘reductive’ degree of confirmation under the difference measure,
and obtain

∆2 := d2 − d1 =
σ σ̄2 (π − ρ)

π σ + ρ σ̄
. (14)

As can be read off from the expression in (14), the positivity of ∆2 – and the
attendant positive confirmatory impact of Montague’s syntax-semantics rela-
tion – is conditional on the requirement that σ ∈ (0, 1) and that π > ρ.

The above-observed increase in the joint probabilities and evidential sup-
port of the conjunction of S and G corresponds to the increase in a conjunc-
tion’s probabilities and support after the execution of a Nagelian reduction
(see [15]). In particular, since Nagelian bridge laws and Montague’s relation r
both set the posterior probability of the truth of the ‘phenomenological’ propo-
sition (given the truth of the ‘fundamental’ proposition) to 1, Montague’s re-
lation between categorial grammar and model-theoretic semantics achieves an
equally large32 boost in confirmation as the Nagelian reduction of a ‘suitable’33

proposition-pair. This observation is captured below:

Observation For suitable pairs of propositions, the establishment of an inter-
theoretic relation along the lines of Montague’s syntax-semantics relation is
epistemically equally advantageous as Nagel Reduction.

32 To ensure the comparability of the post-‘reductive’ situation from Section 4.2 with the
post-reductive situation from [15] – which assumes Schaffner’s [52] revised model of Nagel
Reduction (see Sect. 5.2) –, we let the posterior probability of the truth, T∗

1, of the cor-
rected version of the ‘fundamental’ proposition (given the truth, T1, or falsity, ¬T1, of the
‘uncorrected’ fundamental proposition) and the truth, T2, of the uncorrected version of the
‘phenomenological’ proposition (given the truth, T∗

2, or falsity, ¬T∗
2, of the corrected ‘phe-

nomenological’ proposition) both be 1 (resp. 0).
33 Here, suitable is defined as ‘allowing the application of the described procedure for the

establishment of the relevant intertheoretic relation’. As a result, suitable propositions for
Nagelian reduction have a common target domain and contain surjectively related predi-
cates.
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5 Future Work

We close our paper by suggesting two possible extensions of our model of
Montague’s syntax-semantics relation that may be further developed in future
work. These extensions include the adaptation of this model to fundamental
theories with multiple propositions (in Sect. 5.1) and its adaptation to a variant
of Schaffner’s [52] revised model of Nagelian reduction (in Sect. 5.2). We will
see that the latter accounts for the structural richness of grammatical rules
and that it elucidates the relation of strong analogy between the original and
the ‘corrected’ version of each proposition in the phenomenological theory.

5.1 Extension I: Relations between ‘Larger’ Theories

The previous section has shown that our Montagovian model of the syntax-
semantics relation increases the joint probabilities and degree of confirmation
of the conjunction of pairs of theories with a single propositional element. Mon-
tague’s relation r from Section 2.2 suggests an easy generalization of this result
to pairs with more comprehensive phenomenological theories (e.g. to syntactic
theories with more categories of expressions, see Fig. 2) in which the behav-
ior of the syntactic operations is governed by a larger set of rules.34 The in-
tertheoretic relation between these ‘larger’ theories is represented by the graph
from Figure 9. In the graph, we call the variables S, G, and E from Section 4
‘S1’, ‘G1’, and ‘E1’, respectively. The variables Si, Gi, and Ei (with 1 <
i ≤ n ∈ N) are associated with new (semantic or syntactic) rules and their
supporting pieces of evidence.
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Figure 8. Post-reductive relations between pairs of propositions hSk, Gki.

As is captured in Figure 8, the homomorphism h e↵ects a pairwise reduction,

which reduces categorial grammar to model-theoretic semantics by reducing G1

to S1, G2 to S2, G3 to S3, etc.35 As a result, the probability of linguistic syntax

33Since the variables, S and S0, of the rules Ss and S0
s are only probabilistically independent

before the reduction, Proposition 1 extends to the three-member set {Gs, Ss, S0
s}.

34Montague’s rule G9, cf. (Montague, 1973), is an example of such a new rule.
35For simplicity, we again ignore other semantic propositions S0

k (with k 2 N) for which it holds

that h(S0
k) = h(Sk) = Gk.

Fig. 9 Post-‘reductive’ relations between pairs of propositions 〈Sk, Gk〉.

As is captured in Figure 9, Montague’s relation r effects a pairwise relation
between the above rules, which relates categorial grammar to model-theoretic
semantics by relating G1 to S1, G2 to S2, G3 to S3, etc. As a result, the proba-

34 The (syntactic and semantic) rules for the behavior of common nouns (see fn. 14.) are
examples of such new rules.
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bility of linguistic syntax ‘related’ to semantics will correspond to the product
of the probabilities of all individual proposition-pairs:

P2

(⋂

k

〈Sk,Gk〉
)

= P2(S1,G1)P2(S2,G2)P2(S3,G3) . . . (15)

= P2(S1)P2(S2)P2(S3) . . . , (by (7))

respectively

P2(
⋂

k

〈Sk,Gk|Ek〉) = P2(S1,G1|E1)P2(S2,G2|E2)P2(S3,G3|E3) . . .

= P2(S1|E1)P2(S2|E2)P2(S3|E3) . . . (16)

However, the stipulation of independent morphisms between all pairs 〈Sk, Gk〉
does not assign to the linguistic syntax-semantics relation an optimal epistemic
value. This is due to the multiplication properties of real numbers in the open
interval (0, 1), such that the probability of the conjunction decreases in inverse
proportion to the number of its conjuncts. But this contradicts our intuition
(reflected in much work in formal semantics and in [15, p. 326]) that the estab-
lishment of relations between ‘larger’ (multi-proposition) theories shares the
epistemological advantages of the establishment of relations between ‘smaller’
theories.

Admittedly, the observed decrease in the joint probabilities of larger theo-
ries is also a problem for Nagelian reduction. However, Montague-style seman-
tics provides a strategy for avoiding this problem. This strategy is based on
the possibility of constructing (the objects in) certain semantic domains from
(the objects in) other domains:35 Our presentation of categorial grammar and
model-theoretic semantics from Section 2.1 has assumed that all semantic do-
mains (especially the domains Dn, Dv, and Dn) are equally basic. However, in
Montague-style frameworks, this is in general not the case. In particular, to en-
able the compositional interpretation of natural language, Montagovian models
only contain basic domains for individuals (i.e. the set Dn) and truth-values
(i.e. the set Ds) (see [37–39]). From the elements of these domains, elements of
all other domains (e.g. the members of the set Dv) are obtained via semantic
operations like function-space formation (s.t. Dv ⊆ {f | f : (Dn → Ds)}).

We expect that these constructibility relations between domains will es-
tablish connections between objects of the fundamental theory (and similarly,
for the phenomenological theory) which result in mutual probabilistic depen-
dencies between same-theory propositions. A full development of this sophis-
ticated variant of our Montagovian model of intertheoretic relations, and an
assessment of its epistemological merits, will be provided in a sequel to this
paper.

35 A similar observation applies to syntactic categories (see [1]).
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5.2 Extension II: Schaffner-Style Relations

Section 2.2 has identified our model of Montague’s syntax-semantics relation
as a model of a weak type of intertheoretic relation. We have attributed this
weakness to the fact that the syntactic rule Gs contains more structural infor-
mation than the semantic rule Ss. We have used this fact to argue for the lower
reductive strength of Montague’s syntax-semantics relation vis-à-vis Nagelian
reduction.

Notably, however, Nagelian reduction also does not enable the full reduc-
tion of phenomenological to fundamental propositions. For example, in the re-
duction of thermodynamics to statistical mechanics, Nagel’s model is unable
to derive the exact Second Law of thermodynamics, in which entropy does not
fluctuate in equilibrium.36

Schaffner’s revised model of Nagelian reduction from [52,53] (see [42]) im-
proves upon the reductive accuracy of the Nagelian model. To do this, it
introduces a dedicated level of ‘corrected’ propositions of the two theories and
demands that the corrected version of each proposition of the fundamental the-
ory be obtained from the original proposition via auxiliary assumptions and
that the corrected version of each proposition of the phenomenological theory
be strongly analogous to the original proposition.37 The resulting model is
captured in Figure 10. In the figure, T ∗1 and T ∗2 are the ‘corrected’ versions of
the propositions T1 and T2, respectively.

12 REDUCTION, CONFIRMATION, AND THE SYNTAX-SEMANTICS RELATION

T1 T ⇤
1

T ⇤
2T2

aux. assump’s

bridge laws

strong analogy

T1 T ⇤
1

T2 T ⇤
2

Figure 6. Generalized Nagel-Scha↵ner reduction.
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We expect that the introduction of a level of corrected propositions will
also improve the success of our model of Montague’s syntax-semantics relation.
In Section 2.2, we have already noted that the syntactic correlate of function
application will not contain any information about word order. We have at-
tributed this observation to the fact that semantics contains much less struc-
tural information than syntax. However, since word order is a very stable pro-
perty of a language, the specification of a language’s word order-type will al-
low us to supplement this information. In particular, since strong analogy is

36 Nagelian reduction can only derive a variant of this law, in which thermodynamic en-
tropy does fluctuate in equilibrium.
37 For a detailed presentation and discussion of generalized Nagel-Schaffner reduction, the

reader is referred to [52] and [14].
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a contextual relation, we can say that ⁅Y X⁆ is only strongly analogous to its
order-sensitive variant [XY ] in the context of subject-verb-object (SVO) lan-
guages. This strong analogy will allow us to ‘adjust’ the rule from (1b) to the
syntactic rule from (2). The latter describes the combination of intransitive
verbs with a name which occurs on their left.

(2) If Y ∈ Ev and X ∈ En, then [XY ] ∈ Es.

Since the rule (1b) is equivalent to the rule (2) in SVO-contexts, a Schaffner-
style variant of our Montagovian model will derive the ‘right’ concatenation
rule for proper names and intransitive verbs.

Apart from accounting for the structural richness of syntactic rules, the
supplementation of information about a language’s word-order type helps elu-
cidate Schaffner’s ‘strong analogy’ relation: Since its introduction in [52], this
relation has been criticized for its vagueness and context-dependency. These
properties are witnessed by the fact that there is no general characterization of
strong analogy and that what counts as strongly analogous differs from case to
case. Our Schaffner-style variant of Montague’s syntax-semantics relation ans-
wers some of the criticisms against strong analogy. In particular, it shows that,
for a clearly delineated case (i.e. the relation between the rules (1b) and (2)),
strong analogy is a well-defined relation38 which serves its intended purpose.

The elaboration of the described variant of our model of Montague’s syntax-
semantics relation, and a demonstration of its (expected) epistemic advanta-
ges, is left for another occasion. We close the paper with a summary of our
main results.

6 Conclusion

In this paper, we have presented a model of a new type of intertheoretic re-
lation which is inspired by a Montague-style formal semantic framework for
the analysis and interpretation of natural language syntax. We have identified
the commonalities of our Montagovian model of the syntax-semantics rela-
tion with the classical model of Nagelian reduction and have established their
salient differences. In particular, we have observed that our model of Monta-
gue’s syntax-semantics relation can capture directed dependency relations be-
tween pairs of theories with non-overlapping target domains, which cannot
be captured by the Nagelian model. To show the epistemic rationale behind
our new type of intertheoretic relation, we have demonstrated that – like its
Nagelian counterpart – the Montagovian relation raises the posterior probabil-
ity of the conjunction of the two related theories and increases the flow of con-
firmation between them. Finally, we have identified two strategies for the ex-
tension and improvement of our model of Montague’s syntax-semantics rela-
tion.

38 Thus, (a) is strongly analogous to (b) if all members of E which are mentioned in (b)
belong to an SVO-language and if (a) is the result of replacing all occurrences of ⁅Y X⁆ by
occurrences of [XY ].
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Appendix: Proofs and Calculations for Section 4

We have calculated the pre-‘reductive’ probabilities of the conjunction of the
positive instantiations of S and G in Section 4.1. The joint distribution,
P2(S,G,E), of the (post-‘reductive’) graph in Figure 8 is given by the expres-
sion

P2(S)P2(G)P2(E|G).

Using the methodology from [5], the prior probability of the conjunction of S
and G is obtained as follows:

P2(S,G) =
∑

E

P2(S,G, E) = π σ + π̄ σ = σ (17)

We yield the posterior probability, P ∗2 := P2(S,G|E), of the conjunction of S
and G thus:

P ∗2 =
P2(S,G,E)

P2(E)
=

π σ

π σ + ρ σ̄
(18)

To obtain the difference ∆0, we calculate

P2(S,G)−P1(S,G) = σ − σ2 = σ σ̄ .

This proves the following proposition:

Proposition 3 ∆0 = 0 iff σ = 0 or 1; ∆0 > 0 iff σ ∈ (0, 1).

The difference,∆1, between the conjunction’s pre- and post-‘reductive’ pos-
terior probabilities is obtained as follows:

∆1 := P ∗2 −P ∗1 =
π σ − π σ2

π σ + ρ σ̄
=

π σ σ̄

π σ + ρ σ̄
(19)

From the difference measure

d2 := P2(S,G|E)−P2(S,G) =
σ σ̄ (π − ρ)

π σ + ρ σ̄
, (20)

we calculate the difference, ∆2, between the conjunction’s degree of confirma-
tion before and after the establishment of Montague’s syntax-semantics rela-
tion as follows:

∆2 := d2 − d1 =
σ σ̄ (π − ρ)− σ2 σ̄ (π − ρ)

π σ + ρ σ̄
=
σ σ̄2 (π − ρ)

π σ + ρ σ̄
(21)

This completes our proofs and calculations for Section 4.
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