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Abstract. Diversity of evidence is widely claimed to be crucial for evidence
amalgamation to have distinctive epistemic merits. Bayesian epistemologists
capture this idea in the variety-of-evidence thesis: ceteris paribus, the strength
of confirmation of a hypothesis by an evidential set increases with the diversity
of the evidential elements in that set. Yet, formal exploration of this thesis
has shown that it fails to be generally true. This article demonstrates that the
thesis fails in even more circumstances than recent results would lead us to
expect. Most importantly, it can fail whatever the chance that the evidential
sources are unreliable. Our results hold for two types of degrees of variety:
reliability independence and testable aspect independence. We conclude that
the variety-of-evidence thesis can, at best, be interpreted as an exception-prone
rule of thumb.
Keywords. evidence amalgamation; Bayesian epistemology; evidence variety;
evidence independence; robustness; triangulation

1. Introduction

Amalgamating evidential elements is something worth pursuing in a wide array
of circumstances. Scientists – from physics (Istituto Nazionale di Fisica Nucleare,
2011; Claveau, 2013, p. 94) to economics (Downward and Mearman, 2007) and
nursing science (Thurmond, 2001) – praise this practice of combining answers from
various sources.

One condition generally believed to be necessary for evidence amalgamation to
generate significant epistemic benefits is that the elements brought together be ‘var-
ied’ or, in other words, that they be “in some relevant sense or senses ‘independent’
of each other” (Woodward, 2006, p. 234). The scare quotes in the previous sentence
indicate that what variety or independence are in this context and how they relate
to the success of evidence amalgamation is not altogether clear. These issues are
the subject of active philosophical investigation.1

Among Bayesian epistemologists, the alleged virtuous relationship between evi-
dential variety and evidence amalgamation is summarized in the variety-of-evidence
thesis.

Variety-of-evidence thesis: Ceteris paribus, the strength of confirmation
of a hypothesis by an evidential set increases with the diversity of the
evidential elements in that set (Claveau, 2013, p. 95).
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Although some scholars have claimed to be able to formally prove this thesis (Ear-
man, 1992; Howson and Urbach, 1993), the wind changed course with the publica-
tions of results by Bovens and Hartmann (2002, 2003): in their Bayesian model of
scientific inference, ‘variety’ does not uniformly lead to more confirmation. Some
assumptions of Bovens and Hartmann’s model have been challenged by one of us
(Claveau, 2013), but the variety-of-evidence thesis ultimately does not universally
hold in his own model.

At the end of Claveau’s article , it is suggested that, even if one accepts his
assumptions, “the conclusion to draw about the variety-of-evidence thesis is not
straightforward.” (Claveau, 2013, p. 103) Indeed, Claveau finds that, in his model,
the variety-of-evidence thesis is false only if it is highly likely that the evidential
sources are unreliable (at least 82 % likely). He thus proposes a strategy to save
the variety-of-evidence thesis from refutation: it “could be interpreted as implicitly
assuming that the evidential sources are sufficiently trustworthy to begin with.”

This proposition cries out for further exploration. Since Claveau’s model is far
from being fully general, a research priority should be to investigate whether, in
different evidential structures, a high probability of unreliable sources is necessary
for the variety-of-evidence thesis to break down. The primary goal of this article
is to report on such an investigation. We show that Claveau’s proposal to save
the variety-of-evidence thesis from refutation by stipulating that reliability must
be minimally probable is a dead end: in extensions of his model, we find that the
variety-of-evidence thesis can sometimes break down even if evidential sources are
most probably reliable.

More generally, this article contributes to a better understanding of how (if at all)
variety contributes to confirmation by studying, like Bovens and Hartmann (2003)
and Claveau (2013), different evidential structures (i.e., how evidential elements and
a hypothesis relate to each other). Like them we represent evidential structures
with the help of Bayesian networks (Pearl, 2009). This strategy allows us to go
beyond arguments based on intuitive considerations by literally computing how
much confirmation a given evidential set should grant to a hypothesis. Although
this strategy has great benefits according to us, the usual caveat about modeling
applies. Models are idealizations. Their conclusions might fail to be real-world
relevant if they are driven by distortions introduced in the idealization process.

The next section describes the assumptions of our model and offer two inter-
pretations of the notion of evidential variety: variety as unreliability independence
and variety as testable aspect independence. In section 3, we assess the variety-
of-evidence thesis by means of pairwise comparisons among evidential structures.
Section 4 pushes further a method introduced by Claveau (2013, sec. 5) to model
degrees of variety instead of only comparing the extremes of minimal and maximal
variety. Our results offer little hope that the variety-of-evidence thesis can be justi-
fied if it is interpreted as an exceptionless generalization. Notably, testable aspect
independence is decisive to the disconcerting conclusion we draw here: when added
to Claveau’s (2013) model, cases of the variety-of-evidence thesis breaking down
occur even if the sources are considered most probably reliable. But the thesis can
still have action-guiding force – at least, that is what we suggest in the conclusion.
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2. Setting up the model

The possible relationships between a hypothesis and its evidence are diverse.
The different structures can be represented by Bayesian networks that include,
among others, a hypothesis variable H and a set of evidential variables Ei. In this
article, we study a class of structures in which, if we interpret the Bayesian network
causally (Pearl, 2009), the evidential variables are effects of the hypothesis. This is
the class on which the Bayesian literature assessing the variety-of-evidence thesis
has focused (Bovens and Hartmann, 2002, 2003; Claveau, 2013).2

Table 1 represents different structures that are studied by Bovens and Hartmann
(2003, ch. 4). As one can see, each evidential variable Ei is an effect of H, but only
indirectly through a variable C, which can be interpreted as a testable consequence
of the hypothesis. Given his specific goal, Claveau (2013) studied even simpler
structures in which testable consequences do not enter. In his models, the hypothe-
sis variable is thus a direct cause of the evidential variables. In this section, we use
structures with testable consequences. The analyzed structures are thus the ones
used by Bovens and Hartmann. Yet, as we will describe below, we accept Claveau’s
argument with respect to the problematic assumption used by Bovens and Hart-
mann to model unreliable sources of evidence. Our contribution is thus to extend
Claveau’s analysis using the more complex evidential structures initially proposed
by Bovens and Hartmann (but without their problematic assumption regarding
unreliable sources).

The evidential structures use four types of propositional variables :
• The hypothesis variable H = {h,¬h}, where h stands for the proposition
that the hypothesis is true and ¬h stands for its negation.

• The testable consequence variable Ci = {ci,¬ci}, where ci stands for the
proposition that a testable consequence of h holds and ¬ci stands for its
negation.

• The evidential variable Ei = {ei,¬ei}, where ei stands for a positive report
regarding the hypothesis, that is, a report to the effect that a testable
consequence of h holds, and ¬ei stands for a negative report.

• The reliability variable Ri = {ri,¬ri}, where ri stands for the proposition
that the evidential source i (the one having as output Ei) is reliable and
¬ri stands for the proposition that the source is unreliable.

All structures in table 1 are associated to a joint probability distribution over
the set of variables {H,C1, C2, E1, E2, R1, R2}, where the subscript on C and R are
omitted when the two possible instances of each type of variable are collapsed into
a single variable. The probabilistic independencies among the variables can be read
off the Bayesian networks using the d-separate criterion (Pearl, 1988, pp. 117-18).
For instance, all five structures share:

• Ri ⊥⊥ H,Cj for all i, j in {1, 2}, which means that, before learning the
evidential report Ei, learning that the associated evidential source is reliable

2 Wheeler and Scheines (2011, 2013) propose different evidential structures, but do not assess
the variety-of-evidence thesis with them. Stegenga and Menon (2017) provide a partial assessment
limited to noting cases of what they call “dyssynergystic evidence”. We had results for evidential
structures in which the hypothesis is caused by other variables rather than being a root node, but
we decided not to present them in this article due to space constraints. We can however report
that the variety-of-evidence thesis is not better supported in this alternative class of evidential
structures.
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Table 1. Diverse evidential structures with Cs as testable consequences
of the hypothesis. The last column gives the likelihood ratios for each
structure according to the assumptions spelled out in section 2.

Type of
diversity

Network
representation Likelihood ratio

A

Shared
consequence
Shared
reliability

H

C

E1 E2

R

LA = qr+αr̄
pr+αr̄

B

Shared
consequence
Independent
reliability

H

C

E1 E2

R1 R2

LB = qr2+2qrαr̄+(αr̄)2

pr2+2prαr̄+(αr̄)2

C

Independent
consequences
Shared
reliability

H

C1 C2

E1 E2

R

LC = q2r+αr̄
p2r+αr̄

D

Independent
consequences
Independent
reliability

H

C1 C2

E1 E2

R1 R2

LD = (qr+αr̄)2

(pr+αr̄)2

G General
structure

H

C1 C2

E1 E2

R1 R2

LG = ωrr(q1+γ)+ωrh(q1+γ−q̄(1+γ)+1)+ωhh
ωrr(p1+γ)+ωrh(p1+γ−p̄(1+γ)+1)+ωhh

or not has no effect on the strength of belief in the hypothesis nor on the
strength of the belief that the testable consequences hold.

• E1, E2 ⊥⊥ H|C1, C2, which means that, once the truth or falsity of the
testable consequences is known, learning the evidential reports has no effect
on the strength of belief in the hypothesis.
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The four structures differ on two dimensions: to what extent reliability and
testable consequences are shared by evidential elements. Each dimension captures
according to us an acceptable, yet partial specification of the notion of ‘variety’ in
the variety-of-evidence thesis.3 Firstly, there are various reasons why one evidential
report might fail to track the state of a testable consequence (e.g., auxiliary hy-
potheses might be flawed, some manipulations in the experiment might introduce
errors, the researchers might simply fabricate results). If two reports share little of
these reasons (e.g., they are provided by different research teams, they use different
techniques), learning that one report is unreliable should not make us substantially
revise our belief that the other report is also unreliable. The two reports thus have
high variety in the following sense:

Variety as (un)reliability independence: Evidential elements are varied
if most reasons why one element would be unreliable are not shared by the
other element(s).

In table 1, structures A and C are less varied in this sense than structures B
and D because reports in the former have fully shared reliability (R1 = R2 = R)
while the latter have fully independent reliability ( R1 ⊥⊥ R2).

Secondly, evidential elements might be more or less varied depending on whether
they report on different aspects related to the hypothesis (the C) or on exactly the
same aspect. In this article, the ‘aspects’ are testable consequences of the hypothe-
sis, but they need not be consequences.4 For instance, other structures could feature
testable causes of the hypothesis. In any case, the rationale for being concerned
that the aspects are varied is that each aspect may fail to perfectly track the state
of the hypothesis. For example, the hypothesis that climate change is proceeding
at a faster pace than anticipated increases the likelihood of various consequences at
regional levels, but the hypothesis neither entails these consequences nor is entailed
by these aspects occurring. We thus have another interpretation of variety:

Variety as testable aspect independence: Evidential elements are var-
ied if the testable aspects of the hypothesis on which they report are dif-
ferent.

In table 1, structures A and B have a fully shared testable consequence, so they
are less varied in this sense than structures C and structure D, which have fully
independent consequences.

There is a common trait to these two notions of variety: in the language of
Bayesian networks, they are about the extent to which the evidential elements
share ancestors (simply parents here). The only difference between the two notions
is that the reliability dimension is about a property that is not related to the
hypothesis under consideration (Ri ⊥⊥ H), while the dimension regarding testable
consequences of the hypothesis (or, more generally, ‘aspects’ of the hypothesis) is
about properties that stand in-between the hypothesis and the evidence. We leave
to another time the investigation of whether this notion of ‘ancestor independence’
can constitute the long sought-for general notion of evidential variety.

3 For recent attempts to spell out a complete characterization of evidential variety in arguments
relying on evidence amalgamation, see Schupbach (2015); Kuorikoski and Marchionni (2016).
Assessing these propositions falls outside the scope of our article.

4 ‘Aspect’ is used for lack of a better word. For comments and the relevant literature on aspects
that are not consequences, see footnote 3.
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Now that we have two notions of variety which fall under the same genus, we
need to complete the specification of our model in order to be able to assess the
variety-of-evidence thesis. We start with prior probabilities for the root variables
H and Ri :

(1) P (h) = h0 and P (ri) = ri

where h0 and ri are parameters strictly between 0 and 1.5 Therefore, the prior
degree of belief that the hypothesis is true is h0 and the prior degree of belief that
the evidential source i is reliable is ri. Inversely, h̄0 is the prior probability that the
hypothesis is false and r̄i is the prior probability that the source i is unreliable.

How unreliability is modeled must be carefully thought through. Bovens and
Hartmann (2003) model an unreliable source as a randomizer: it has a certain
probability α of producing a positive report irrespective of whether the consequence
holds. There are two aspects to this specification. Following Claveau (2013), we
accept one aspect and reject the other.6 What we accept is the irrelevance of an
unreliable source:
(2) P (Ci|ei,¬ri) = P (Ci|¬ei,¬ri) = P (Ci|¬ri)
In words, if it is known that source i is unreliable, learning a positive or a neg-
ative report changes nothing to the probability of the testable consequence. No
revision of belief in the truth of the consequence (and the hypothesis) is called for.
Condition (2) implies that:
(3) P (ei|ci,¬ri) = P (ei|¬ci,¬ri) = P (ei|¬ri) = αi,

which is our third parameter.
The second aspect of Bovens and Hartmann’s specification of an unreliable

source, the randomization aspect, is brought to the fore when we consider struc-
tures with fully shared reliability (structures A and C). In these structures, the
following expression holds:

P (e2|e1,¬r) = P (e2|¬e1,¬r) = α2,

which means that, once it is known that the common source is unreliable, learning
that one report is positive or negative changes nothing to the belief that the other
report will go in one direction. It is a strange assumption to make: while unreli-
ability is shared, the direction of the unreliable report is not. We follow Claveau
(2013, sec. 4) in modeling an unreliable source as being systematically rather than
randomly biased. To do so, the unreliable state of the reliability variable Ri must
be subdivided:

• ¬ri = {bhi , b¬hi }, where bhi stands for the proposition that the source is bi-
ased toward a positive report for the hypothesis regardless of its truth,
and b¬hi stands for the proposition that the source is biased toward a
negative report. The reliability variable thus has three possible states:
Ri = {ri, bhi , b¬hi }.

5 Although we use ri both for the state of variable Ri (its other state being ¬ri) and for a
value of the parameter, namely the prior probability of this state, P (ri), this conflation is unlikely
to generate confusion.

6 We also urge the reader to remember that our modeling choices are not covering all possible
notions of an unreliable source, see Claveau (2013, p. 98).
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Table 2. Probability of a positive report given the values of Ci and Ri

P (ei|Ci, Ri) ri bhi b¬hi
Ci 1 1 0
¬Ci 0 1 0

Probabilities for the two types of bias conditional on the source being unreliable
come straight out of expression (3):

(4) P (bhi |¬ri) = αi and P (b¬hi |¬ri) = ᾱi

Combining 1 and 4, we have that the prior probability of a positive bias P (bhi )
is αir̄i and the prior probability of a negative bias P (b¬hi ) is ᾱir̄i, which are in fact
also what Bovens and Hartmann have. The difference between the two versions
comes from the specification of how likely the evidential reports are conditional
on their parents Ri and Ci, see table 2. The idea here is that, if the source is
reliable, the report will perfectly track whether the consequence holds (first column
of the table). If the source is unreliable, the report will be fully determined by
the direction of the bias. In consequence, if it is only known that a fully shared
source is unreliable but the actual direction of the bias is unknown, learning a first
positive report informs us that the bias is positive and thus requires a revision to
full certainty that the other report will also be positive.7

What remains to be specified is how the consequence variable Ci varies with its
parent, H:

(5) P (ci|h) = pi and P (¬ci|h) = p̄i

(6) P (ci|¬h) = qi and P (¬ci|¬h) = q̄i

The best testable consequences are the ones that are fully sensitive and fully specific.
A fully sensitive consequence always holds if the hypothesis is true: pi = 1. A fully
specific consequence never holds if the hypothesis is false: qi = 0. But testable
consequences rarely have these ideal properties. The only thing we have to require
in order for a positive report to ci to be evidence for h is that the consequence is
more likely to hold if the hypothesis is true than if it is false:

(7) pi > qi.

Now that all parameters are specified, we need a plausible interpretation of
the ceteris paribus clause in the variety-of-evidence thesis. If we are comparing
structures X and Y, the clause that ‘all other things are equal’ implies various
symmetry requirements. First, the initial degree of belief in the hypotheses must
be equal across structures, that is PX(h) = PY (h) = h0. Second, all positive
reports ei in each structure should have the same confirmatory strength for h, i.e.
PX(h|ei) = PY (h|ej) for all i, j = {1, 2}. Sufficient conditions for this constraint
to hold is that the different αi, ri, pi and qi are reduced to single α, r, p, q across the
structures (Bovens and Hartmann, 2003, p. 104).

We now have the ingredients to assess the variety-of-evidence thesis in the context
of the structures represented in table 1.

7 This revision to full certainty is a stringent assumption that is dropped in section 4 where
we introduce degrees of variety.
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3. The variety-of-evidence thesis and structures at extremes on
each dimension of variety

In this section, we focus on structures A to D in table 1, leaving structure G
for the next section. With these four structures, we can interpret the variety-of-
evidence thesis in the following way:

Variety-of-evidence thesis (pairwise comparison): Ceteris paribus, if a
structure X produces more diverse evidential elements than structure Y,
then

PX(h|e1, e2) > PY (h|e1, e2).
The probability P (h|e1, e2), the posterior belief in the hypothesis given two pos-

itive reports, will also be referred to by P ∗(h).
Given our two specifications of the notion of evidential variety in the previous

section, the variety-of-evidence thesis pronounces unambiguously about relative
strength of confirmation for almost all comparisons of the structures A to D. Only
the comparison between structures B and C does not give a clear result because
each structure has more variety than the other on one dimension. We thus focus
on the 5 other comparisons. The results can be summarized in three propositions
(proofs are in appendix A.2)

Proposition 1 (Maximal difference in variety). The strength of confirmation of h
with two positive reports e1 and e2 is, ceteris paribus, stronger in structure D than
in structure A. That is,

P ∗D(h) > P ∗A(h), for all admissible parameter values.

This proposition is implied by the variety-of-evidence thesis because evidential
sources that test for the same consequence and share the same reliability state
(such as in structure A) clearly produce evidence less varied than evidential sources
having the opposite characteristics on both dimensions (such as in structure D).

What about comparisons where structures are differently varied on only one of
these two dimensions? We start by looking at variety on the reliability dimension.

Proposition 2 (Shared vs independent reliability). The strength of confirmation
of h with two positive reports e1 and e2 is, ceteris paribus, stronger in structure B
than in structure A and, similarly, stronger in structure D than in structure C.
That is,

P ∗B(h) > P ∗A(h) and
P ∗D(h) > P ∗C(h), for all admissible parameter values.

This proposition confirms that the result in Claveau (2013, p. 106) cannot be
attributed to the omission of the Ci as intermediate causes of the Ei. By taking
the evidential structures in Bovens and Hartmann (2002, 2003) and only replacing
their dubious assumption about the behavior of unreliable evidential sources, we
save the variety-of-evidence thesis from refutation in these pairwise comparisons.

What remains to be compared are structures that differ only on the number of
consequences tested. It is here that the support for the variety-of-evidence thesis
breaks down:

Proposition 3 (Shared vs independent consequences). Ceteris paribus, the strength
of confirmation of h with two positive reports e1 and e2 is not always stronger in
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structure C than in structure A and, similarly, is not always stronger in structure D
than in structure B. More specifically:

P ∗C(h) > P ∗A(h)⇔ rpq + αr̄(p+ q − 1) > 0.(8)
P ∗D(h) > P ∗B(h)⇔ (r2 + 2rαr̄)pq + (αr̄)2(p+ q − 1) > 0(9)

This time, the proposition is consistent with the result in Bovens and Hartmann
(2003, p. 100). In other words, their assumption about the behavior of unreliable
sources does not matter here: like them, we reach the conclusion that it is sometimes
more confirmatory to test again the same consequence than to test a different
consequence.

Inequalities on the right-hand-side of (8) and (9) have the same form, the sec-
ond inequality being only more complex with respect to the parameters capturing
reliability because it has to cover diverging reliability states (i.e., when R1 6= R2).
These inequalities can be reverse only if p < (1− q), which is simply:

(10) P (ci|h) < P (¬ci|¬h).

In statistical language, this inequality is equivalent to saying that the specificity
of the consequence, P (¬ci|¬h), is higher than its sensitivity, P (ci|h). In causal
language, the condition can be interpreted as saying that h as a cause of ci is closer
to being a necessary cause (if it fails to hold, ci is unlikely to result from something
else) than to being a sufficient one (even if it holds, whether ci occurs hinges on
other factors).

It must be stressed that consequences meeting condition (10) do not form an
odd base to assess a hypothesis. For instance, a recent review of screening tests in
medicine indicates that tests that are more specific than sensitive are more frequent
than the reverse (Maxim et al., 2014, fig. 1 and table A1). A consequence which is
more specific than sensitive can be an extremely good base to validate a hypothesis:
in the extreme case of a perfectly specific consequence of h, i.e., P (¬ci|¬h) = 1,
establishing that the consequence holds would simultaneously establish that the
hypothesis is true because the consequence cannot hold if the hypothesis is false,
i.e., P (ci|¬h) = 0.

Meeting condition (10) is not sufficient to overturn the variety-of-evidence thesis,
other constraints on the four parameters must hold. Figure 1 represents the pa-
rameter regions where the less varied structure in terms of number of consequences
tested dominates the more varied structure. The typical combination where less
variety dominates more variety is when:
-i- There is a low probability that the consequence occurs given that the hypoth-

esis is the case (low p)
-ii- There is a low probability that the sources are reliable (low r)
-iii- There is a high probability that the bias is positive given that the source is

unreliable (high α)
At this point, one might worry that the situations we are discussing characterize

extremely weak evidential sources, so weak that the commonsensical (in contrast
to formal) understanding of what evidential sources are would not count those as
genuine providers of evidence. For instance, if the probability of a positive bias (αr̄)
from a source is almost one, a reasoner who does not have the cognitive resources to
work with extremely fine-grained degrees of belief could use the following heuristic:
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(a) Shared reliability: Structures A vs C.
The reversal region covers 28 % of the ad-
missible parameter space.

(b) Independent reliability: Structures B
vs D. The reversal region covers 18 % of
the admissible parameter space.

Figure 1. Parameter region where confirmation is stronger for struc-
tures where only one consequence is tested instead of two. Each colored
point gives the coordinates in the 4-dimensional space {p, q, r, α} where
the strength of confirmation from both structures is equal. Starting from
this point, any decrease in p, q or r, or any increase in α leads to a strict
reversal of what the variety-of-evidence thesis claims. Given constraint
p > q, the admissible region of the parameter space is the half of the
hypercube behind the diagonal line.

Heuristic for weak evidential sources: If a positive report for the hy-
pothesis comes from a source that is highly likely to be positively biased
(αr̄ . 1), do not consider this report as evidence for the hypothesis (al-
though all assumptions stated in section 2 hold).

This heuristic is justified by the fact that a positive report from such a source ought
to have only a tiny influence on the degree of belief in h. Indeed, the Bayesian
reasoner ought to take into account that the report is most probably attributable
to a positive bias, not to the truth of the hypothesis. Consequently, a real reasoner
who can hardly track minute changes in rational degrees of belief might has well
follow the heuristic in labelling the reports as ‘not evidence’.

If reversals of the variety-of-evidence thesis identified in proposition 3 involved
only extremely weak evidential sources, we might be justified in concluding that
these reversals are not a genuine refutation of the thesis. After all, the thesis is
meant as a guide for practitioners. Its scope of validity could thus be restricted
to what commonsense takes to be actual evidence. This suggestion would follow
Claveau (2013, p. 113) in proposing to “read the result as highlighting the danger
of using extremely weak evidential sources, rather than as a direct refutation of the
variety-of-evidence thesis.”

However, the situations we are considering here are not limited to weak eviden-
tial sources. Although the combination of the three characteristics listed above
is typical, the reversal of the variety-of-evidence thesis can occur with parameter
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Table 3. Examples of how a less diverse structure on the dimensions of
consequences produces stronger confirmation of h. For h, bh

i and ci, we
show the prior probability (∅), the probability when the first evidential
element is acknowledged (e1) and the probability when all evidence is in
(e1, e2).

(a) Comparison of structures with shared reliability. Parameters are: h0 = .5, r = .75,
α = .33, p = .33 and q = 0.01.

P (h|·) P (bh|·) P (ci|·)
∅ e1 e1, e2 ∅ e1 e1, e2 ∅ e1 e1, e2

Structure A i = 1
.50 .79 .79 .08 .39 .39 .17 .67 .67

i = 2

Structure C i = 1
.50 .79 .67 .08 .39 .67 .17 .67

.44
i = 2 .26

(b) Comparison of structures with independent reliability. Parameters are: h0 = .5,
r = .5, α = .25, p = .25 and q = 0.01.

P (h|·) P (bhi |·) P (ci|·)
∅ e1 e1, e2 ∅ e1 e1, e2 ∅ e1 e1, e2

Structure B i = 1
.50 .66 .85 .13 .66

.37 .13 .43 .79
i = 2 .13

Structure D i = 1
.50 .66 .79 .13 .66

.60 .13 .43
.50

i = 2 .13 .17

combinations that do not characterize weak evidential sources.8 Table 3 illustrates
two such situations.9

In panel 3a, we have a credible evidential source (r = .75), a tendency toward
negative bias (α = .33), a low sensitivity of the consequence (p = .33) but an
extremely high specificity (1 − q = .99). This situation involves a low probability
of receiving a positive report, P (e1) = .21, so the first positive report comes as a
surprise. In consequence, there are dramatic adjustments to the probability of a
positive bias (from .08 to .39) and to the probability that the relevant consequence
holds (from .17 to .67). Since the relationship from h to ci is extremely specific,
the jump in the probability of c1 transfers into a jump into the probability of the
hypothesis (from .50 to .79), but since the relationship is weakly sensitive, this jump
translates into only a slight increase in the probability of the other consequence for
structure C (from .17 to .26). There is no surprise when the second evidential
element comes in. If we are in structure A, E2 must be identical to E1 because

8 For instance, our numerical analysis reveals that any combination of the parameters {α, r}
is associated to a reversal of the strength of confirmation between structures A and C (shared
reliability) under some values of the other paramaters (p, q). This is a pretty strong result: in
this comparison, the variety-of-evidence thesis can lead us astray whatever the probability that
the source is positively biased (αr̄). In the comparison between structures B and D (independent
reliability), 98 % of the space α × r is susceptible to reversals; only if we have the combination
of a highly reliable source (r . 1) with a tendency to bias extremely skewed toward a negative
result (α & 0) is the variety-of-evidence thesis not subject to counterexamples.

9 The conditional probabilities in table 3 have been computed using the gRain package in R
(Højsgaard, 2012).
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both are fully determined by the C and R that they share. This is why there is
no probability changed when e2 is registered in structure A. For structure C, it is
possible that c2 6= c1, so there is genuinely new information in learning e2. But e2
is met with suspicion compared to e1. The prior probability of positive bias being
quite higher than before, a bias affecting both reports becomes an explanation more
likely than the possibility that the two consequences, although weakly sensitive,
happen both to hold: the probability of positive bias jumps again (from .39 to .67).
These increasing doubts in the reliability of the source impact the probability of
the hypothesis through the probability of the consequences: it is cut below what
it was based on only one report, which means that e1, e2 disconfirms h compared
to e1. In the end the gap in P (h|e1e2) between the two structures is quite large:
the less diverse structure A dominates by 12 percentage points the more diverse
structure C.

The example in panel 3b, which compares structures with independent reliabil-
ity, has strong similarities with the previous example. Note that some parameters
are somewhat more extreme, with a lower credibility of the sources (r = .5), lower
probability of positive bias (α = .25) and even weaker sensitivity of the conse-
quences (p = .25). Because of low sensitivity of the consequences, the consequence
c2 not related to the first positive report sees its probability increase only slightly
upon learning this report (from .13 to .17). When the second positive report comes
in, it is directly related to a consequence that is quite likely (.43) in the less varied
structure B in comparison to the other structure D (.17). Consequently, the prob-
ability propagates more strongly toward the consequence and, ultimately, to the
hypothesis in the less varied structure than in the other structure.

In both examples of table 3, the heuristic for weak evidential sources does not
apply: the sources are not weak. In fact, the evidential elements confirm quite
strongly the hypothesis, changing its probability from .5 to as much as .85. It
would thus be a grave mistake to disregard this evidence on the alleged ground
that it does not correspond to what commonsense judges to be proper evidence.

This result is pretty damaging to the variety-of-evidence thesis. Yet, one must
keep in mind in interpreting this result that more diversity with respect to the
number of testable consequences increases the strength of confirmation for the ma-
jority of admissible parameter combinations, as Figure 1 illustrates. As soon as
sensitivity (p) is greater or equal to specificity (1 − q) – a condition met in half
of the parameter space – the variety-of-evidence thesis is on safe ground. If the
reverse holds, there is still 44 % of the remaining parameter space where more va-
riety increases the strength of confirmation in the comparison between structures
with shared reliability (subfigure 1a). In the comparison between structures with
independent reliability (subfigure 1b), this fraction is as high as 64 %.

4. Degrees of variety

So far, we have only looked at structures A to D, which differ only in terms of
the number of consequences and the number of reliability variables implicated. As
Claveau (2013, p. 107) notes, the variety-of-evidence thesis does not seem to be
meant to cover only these extreme structures where, on each dimension, we have
either full independence or full dependence. In between these extremes, there is
a continuum of degrees of dependence between the consequences or between the
reliability of the sources. Structure G represents the general case for which the
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four evidential structures discussed so far are special cases. The dotted arrows
between the Ci nodes and the Ri nodes indicate that there can be a probabilistic
association between these variables that cannot be accounted for by the solid ar-
rows in the network. We remain unspecific about the reason for this probabilistic
association. In general causal terms, it might well be that one of the two variables
is causing the other or that they share a cause that is not present in the graph.
Regardless of the reason, the relevance of structure G comes from the fact that it
can capture situations where the reliability of the sources is anywhere in between
being fully independent and being fully shared, and that the same holds for testable
consequences.

The reader might wonder whether this extension to degrees of independence
is really relevant. Does independence of reliability and independence of testable
consequences come in degree? Our answer is a clear ‘Yes’. Start with the dimension
of reliability. One can have various reasons to doubt the reliability of two reports.
Some of these reasons will be shared by the two reports, others not. For instance,
our first evidential element e1 might be a positive report from research team i using
apparatus k. If our second evidential element e2 is a positive report from the same
research team i, but using a different apparatus l, the evidential set {e1, e2} will
come from less reliability independent sources than if we have evidential element
e′2 (instead of e2) that is produced from another research team j with apparatus l.
But it would clearly be too bold to say that this alternative set {e1, e

′
2} comes from

sources that are fully reliability independent; for all we know, they might share the
same flawed auxiliary assumptions, the same publication bias, etc.

A similar point can be made about the testable consequences. Structures in
table 1 already specify that C1 and C2 share a cause, namely H. But why should
this be the only causal relationship between C1 and C2 while not going as far as
lumping them into a single C such as in structures A and B? Examples abound.
Higher average temperatures in a given year in the Canadian Prairies (c1) and in
Eastern Europe (c2) are both relatively sensitive consequences of the existence of
climate change (h), but they can also arise from the El Niño Southern Oscillation. It
is thus neither the case that the climate data for the two regions correlate perfectly
(that would be a case of fully shared consequence), nor that if we condition on the
existence of climate change, the variability in their climate data do not correlate at
all (a case of fully independent consequences).

A serious analysis of the variety-of-evidence thesis must thus take into account
that variety comes in degree. Our plan for the rest of this section is as follows:
first, we describe how we model the degree of reliability independence; second, we
describe how we model the degree of consequence independence; third, we analyze
the variety-of-evidence thesis by interpreting variety as higher degree of reliability
independence; finally, we do the same with the interpretation in terms of higher
degree of consequence independence.

We follow Claveau (2013, sec. 5) in how we model the probabilistic association
between the reliability variables. This association is fully captured by specifying the
joint probabilities for the nine possible combinations of their values (whether each
is reliable, positively biased or negatively biased). The first panel of Table 4 (the
one for structure G) gives a general notation for these nine possibilities. Symmetry
between the two sources – a constraint imposed by our interpretation of the ceteris
paribus clause – is assumed. The last two panels of table 4 give the specific values
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Table 4. Joint probabilities for the reliability variables (from Claveau, 2013).

P (R1, R2) r2 bh2 b¬h2
General structure G

r1 ωrr ωrh ωr¬h
bh1 ωrh ωhh ωh¬h
b¬h1 ωr¬h ωh¬h ω¬h¬h

Fully shared (structures A and C)
r1 r 0 0
bh1 0 αr̄ 0
b¬h1 0 0 ᾱr̄

Independent (structures B and D)
r1 r2 rαr̄ rᾱr̄

bh1 rαr̄ (αr̄)2 αᾱr̄2

b¬h1 rᾱr̄ αᾱr̄2 (ᾱr̄)2

taken by the ω for, respectively, structures with fully shared reliability and fully
independent reliability. Note that each element on the main diagonal of the third
panel is the square of the same element in the second panel. A metric for degrees
of reliability independence can be characterize using this fact.

Define a variable δ ∈ [0, 1] which is meant to be a measure of the distance of
the evidential set to the extreme of fully shared reliability, i.e., when δ = 0 we are
effectively in a situation with only one R, when δ = 1 we have two probabilistically
independent reliability variables (such as in structures B and D), and when δ is
strictly between 0 and 1, independence is only partial. From these considerations,
it can easily be seen that the elements on the main diagonal of the first matrix in
table 4 are:

(11) ωrr = r1+δ, ωhh = (αr̄)1+δ, ω¬h¬h = (ᾱr̄)1+δ.

Specifying the off-diagonal elements is more intricate. Relying on the further
assumption that the marginal (instead of the joint) probabilities of the reliability
variables are not a function of δ, Claveau (2013, p. 109) finds that the off-diagonal
element needed here is

(12) ωrh = r + αr̄ − .5(1 + ωrr + ωhh − ω¬h¬h).

The above elements – the metric δ and the expressions in (11-12) – describe how
we model degree of reliability independence. Now, we propose to do something very
similar to model degree of independence between the consequences. Being what
they are, consequences are not root nodes like the Ri and H are in our evidential
structures. What must be specified is the joint probability of the consequences
given their parent, i.e., P (C1, C2|H).

Table 5 gives the different parameter combinations for this joint probability. For
fully shared consequences (first block of columns), there is no probability mass for
the options in the middle (¬c1, c2 and c1,¬c2) because it is not possible that one
consequence obtains and not the other – this is why the corresponding graphs A
and B depict only one C. For fully independent consequences (second block of
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Table 5. Joint probabilities for the consequence variables. The columns
for fully shared consequences correspond to structures A and B; those for
fully independent consequences correspond to structures C and D; and
the general structure is in Figure G.

Fully shared Independence General structure
P (C1, C2|H) h ¬h h ¬h h ¬h

c1, c2 p q p2 q2 p(1+γ) q(1+γ)

¬c1, c2 0 0 pp̄ qq̄ θh θ¬h
c1,¬c2 0 0 pp̄ qq̄ θh θ¬h

¬c1,¬c2 p̄ q̄ p̄2 q̄2 p̄(1+γ) q̄(1+γ)

columns), the joint probability P (C1, C2|H) can be factorized as P (C1|H)P (C2|H),
as can be read off the corresponding graphs C and D. A comparison of these two
extremes gives a measure similar to the one we have for reliability independence.
We thus use variable γ ∈ [0, 1] for independence of consequences, where we have
a fully shared consequence when γ = 0 and fully independent consequences when
γ = 1. Assuming symmetry as always – i.e., P (¬c1, c2|H) = P (c1,¬c2|H) – and
using the fact that the rows of each column must sum to one, we can solve for the
remaining terms in the last block of columns of table 5:

(13) θh = 1− p1+γ − p̄(1+γ)

2 θ¬h = 1− q1+γ − q̄(1+γ)

2
Equipped with characterizations for degrees of variety on our two dimensions,

we can derive the likelihood ratio for general structure G as presented in table 1
(see appendix A.1 for the derivation). And we are now in a position to assess the
variety-of-evidence thesis under its formulation in terms of degrees.

The variety-of-evidence thesis can now be restated in two ways. The first one is
the reliability independence version :

Degree-of-reliability-independence thesis: Ceteris paribus, ∂P∗
G(h)
∂δ > 0

for all admissible values of p, q, γ, r, α and δ.
Claveau (2013, p. 109) assessed a less general version of this formulation be-

cause his parameter space only spanned r, α and δ. Our first result establishes an
extension of his result in two directions:

Proposition 4. (Range of validity of Claveau’s (2013) result) If the situation is
such that either

(1) the testable consequences Ci are both fully sensitive (p = 1) and fully specific
(q = 0), or

(2) the testable consequence is fully shared by the two evidential elements (γ =
0, so C1 = C2 = C),

then ∂P∗
G(h)
∂δ > 0 if and only if:

(1− 2ᾱr̄)ln(αr̄) + (ᾱr̄)1+δln(α
ᾱ

) < 0.

This inequality is what Claveau (2013, p. 109) found in his analysis of degrees
of reliability independence. The proposition extends the result by showing how
it can hold under specific parametrizations in structure G. The first possibility –



16 FRANÇOIS CLAVEAU AND OLIVIER GRENIER

(a) Reversal regions when conditions in
proposition 4 hold (e.g., γ = 0). Figure 4A
in Claveau (2013) corresponds to a (r×α)-
slice of this graph where q = 0.

(b) Reversal regions when conditions in
conjecture 1 hold (γ = 1). Color tracks
parameter q to show depth.

Figure 2. Regions of the parameter space where confirmation decreases
for some upward movement in reliability independence and for some
value of the other free parameter (either p or γ).

perfectly sensitive and specific consequences – is, in fact, a case where the level of
testable consequences in our model becomes superfluous; no surprise that we reach
the result derived from a model without this level. The second possibility is when
consequences are collapsed into a single variable like in structures A and B. The
proposition shows that, under this specification, the values for sensitivity (p) and
specificity (1 − q) do not influence whether the reversal of the variety-of-evidence
thesis occurs. Figure 2a depicts the regions where reversal occurs under the second
condition in proposition 4. We see that the probability of a reliable source (r,
the vertical dimension), the probability for the direction of bias (α, one horizontal
dimension) and the degree of reliability independence where the reversal occurs
(the color dimension, where blue is the region close to fully shared reliability and
red is the region close to fully independent reliability) are not influenced by the
specificity of the testable consequences ( 1− q, the other horizontal dimension).

As Claveau (2013) emphasizes, the region in figure 2a where confirmation does
not increase monotonically with reliability independence characterizes especially
weak evidential sources. Indeed, no source with a probability of being reliable
above 18 % generates a reversal. At least for the region where α is high, one could
rely on what has been called above the heuristic for weak evidential sources to
claim that the alleged ‘evidence’ should not be counted as evidence to begin with.
It might be a fair argument to make in defense of the relevance of the variety-of-
evidence thesis, but its importance is dwarfed by the next two conjectures. Note
that we call the results below ‘conjectures’ because we only establish them through
numerical analysis. No analytic proofs of these results have been attempted.

Conjecture 1 (Degree of reliability independence under fully independent conse-
quences). If the consequences are fully independent (γ = 1), we have a reversal of
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the degree-of-reliability-independence thesis, that is
∂P ∗G(h)
∂δ

≤ 0

in the following situations:
(1) For any value of r given that the values of the other parameters (α, p, q, δ)

are selected appropriately.
(2) In at least 40 % of the parameter space p× q × α× r.
(3) In at least 12 % of the parameter space p× q × α× r × δ.10

This conjecture is particularly damaging for the degree-of-reliability-independence
thesis. Figure 2b depicts the region in the (q × α × r)-space where the inequality
claimed by the thesis can be reversed (given appropriate values for the other param-
eters). The contrast with the figure next to it is striking. The only difference in the
models that generate these two figures are with respect to the degree of consequence
independence γ: figure 2a shows the reversal region when consequences are fully
shared, while figure 2b covers situations where consequences are fully independent.

The first clause in conjecture 1 captures a property which comes across clearly
in figure 2b: whatever the probability that the source is reliable (vertical axis), it is
possible that more reliability independence generates less confirmation. In contrast,
as soon as sources have more than 1 chance out of 5 to be unbiased, there was no
worries to have about the validity of the degree-of-reliability-independence thesis in
situations depicted in figure 2a (and in the structure explored by Claveau, 2013).
The most striking reversals correspond to the front-upper-left portion of figure 2b:
they occur even though reliability is high (r close to 1), a bias is unlikely to be
toward a positive report (α close to 0) and the testable consequences are highly
specific (low value of q). This region of the parameter space is where any evidence
seeker wants to be. It is thus troubling that the variety-of-evidence thesis fails to
hold even in this region.

The last two clauses in conjecture 1 put this result in perspective. They indicate
proportions of the parameter spaces where the reversal occur. It is important not
to interpret these fractions as probabilities: they would be probabilities only if
each point in the parameter space was as likely. The second clause tells us that,
among the parameters coding for probability of bias (r and α) and the ones for
consequence sensitivity (p) and specificity (q), 2 combinations out of 5 do not give
a monotonic relationship between degree of reliability independence and strength
of confirmation.

Although this proportion is impressively high (it is barely 10 % in figure 2a), one
has to keep in mind that the relationship between degree of reliability independence
and strength of confirmation is never decreasing over the full spectrum of degrees of
reliability independence. Indeed, our result in proposition 2 must be kept in mind:
if one travels all the way from fully shared to fully independent reliability (from
δ = 0 to δ = 1), strength of confirmation is guaranteed to increase. Here comes
the last clause of conjecture 1: if we also add degree of reliability independence (δ)
to the space, then 12 % of the parameter combinations are in the reversal region
(barely 2 % in figure 2a). So the region which respects the relationship postulated

10 Our conjectures are based on extensive numerical analysis and data representation (e.g.,
figure 2b). Our R script, using mainly packages data.table (Dowle et al., 2013) and plot3D
(Soetaert, 2016), can be provided upon request.
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Figure 3. Regions of the (α × q × r)-space where reversals of the
degree-of-reliability-independence thesis occur. The graphs have the same
axes than the ones in figure 2. They differ from each other by their
degree of consequence independence (γ), which are from left to right
{0, .2, .4, .6, .8}. The first graph thus depicts the same situation than
figure 2a (but colors are based on q rather than δ).

by the degree-of-reliability-independence thesis spans by far the greatest share of
the probability space. Yet, the regions where the relationship does not hold are
neither minute nor necessarily characteristic of extremely weak evidence.

To complete our analysis of the degree-of-reliability-independence thesis, we need
to characterize what happens between the two extremes covered by proposition 4
and conjecture 1 and depicted in the two representations in Figure 2:

Conjecture 2 (Degree of reliability independence under intermediate degrees of
consequence independence). The parameter region where the degree-of-reliability-
independence thesis is reversed increases monotonically with the degree of conse-
quence independence.

This conjecture means that proposition 4 corresponds to the best case scenario
for the degree-of-reliability-independence thesis in structure G and conjecture 1 is
the worst case scenario. Figure 3 illustrate the steady progression from best to
worst as degree of consequence independence is increased: as consequences become
more independent, the parameter combinations generating counterintuitive results
with respect to evidential variety increases (from 2 % to 12 %).

Now that we have explored the variety-of-independence thesis as interpreted in
terms of degrees of independence on the dimension of reliability, we are left with
the interpretation on the dimension of testable consequences :

Degree-of-consequence-variety thesis: Ceteris paribus, ∂P
∗
G(h)
∂γ > 0 for all

admissible values of p, q, γ, r, α and δ.
When we were comparing structures A to D, the dimension of consequences

already gave a blow to the variety-of-evidence thesis: having fully independent con-
sequences was not always better for confirmation than having fully shared conse-
quences (see proposition 3). We thus already know that the degree-of-consequence-
variety thesis will not come out unscathed. Without keeping the suspense any
longer, we state the result of our analysis in one main conjecture :

Conjecture 3 (Reversal of the degree-of-consequence-variety thesis). The regions
of the parameter space where an increase in the degree of consequence independence
γ is not accompanied by an increase in the strength of confirmation PG(h|e1, e2)
have the following characteristics:

(1) For any degree of reliability independence δ:
(a) there are reversals even in the region p > 1− q,
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(a) Reversal region under fully shared re-
liability (δ = 0).

(b) Reversal region under fully indepen-
dent reliability (δ = 1).

Figure 4. Regions of the (α×q×r)-space where reversals of the degree-
of-consequence-independence thesis occur. The top two graphs give the
two extreme cases with respect to reliability. The line of smaller graphs
below give intermediate cases corresponding to δ = {.1, .3, .5, .7, .9}.

(b) all combinations of r × α produce a reversals provided that the values
of the other parameters (p, q, γ) are selected appropriately.

(2) As the degree of reliability independence approaches full independence (δ =
1):
(a) all admissible combinations of {p, q} except the single point {1, 0.5}

come to produce reversals provided that the values of the other param-
eters (α, r, γ) are selected appropriately.

(b) the region of the parameter space p × q × α × r where reversals occur
grows, going from .44 to .50 as a fraction of the space.

(c) the region of the parameter space p × q × α × r × γ where reversals
occur shrinks, going from .30 to .25 as a fraction of the space.

These results show that, as with the dimension of reliability, introducing de-
grees in our measure of consequence variety makes the variety-of-evidence thesis
even less supported. When we were making dichotomous comparisons between
fully shared and fully independent consequences, we found that the thesis held for
cases where consequence sensitivity was higher than consequence specificity, see
expression (10). The first result of conjecture 3 is that this safe space is no more.
The second result is that, for any combination of the probability that sources are
reliable (r) and for any strength of directionality in the potential bias (α), the
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degree-of-consequence-independence thesis is subject to counterexamples.11 The
last three results are comparable to what we state in conjecture 2 about the degree-
of-reliability-independence thesis: as independence increases on the other dimension
(here reliability), counterexamples to the version of the thesis under consideration
(here the degree-of-consequence-independence thesis) become more pervasive. This
phenomenon is depicted in figure 4. The phenomenon is less dramatic in this case,
as can be grasped by comparing how much more the sequence of graphs in fig-
ure 3 represents more important changes than the sequence in figure 4. In fact,
the fraction of the full parameter space subject to reversal shrinks somewhat, while
the fraction in the subspace not including degree of consequence independence (γ)
grows. Beyond these peculiarities, a key result is the sheer size of the fractions
involved (the last two results of conjecture 3 to be compared with conjecture 1): to
summarize it in a single number, around 28 % of points in the space made of our
six parameters are such that a slight increase in the diversity of consequences is
not associated to more strength of confirmation. The degree-of-consequence-variety
thesis pronounces wrongly for more than one out of four admissible parameter com-
binations.

5. Conclusion

Variety of evidence matters to confirmation. Yet, contrary to what the variety-
of-evidence thesis claims, the relationship is not always positive. In this article, we
have attempted (following Bovens and Hartmann, 2002, 2003) to formally capture
two notions of variety. First, two sources are varied to the extent that the aspects
of the hypothesis they are testing are independent (variety as testable aspect inde-
pendence). Second, two sources are varied to the extent that the reasons why they
would be unreliable informants with respect to their testable aspect are indepen-
dent (variety as reliability independence). By extending a method introduced by
Claveau (2013, sec. 5) to consider these two dimensions of variety as continua, we
have shown that there are diverse situations where more variety decreases rather
than increases confirmation.

What should we do about the variety-of-evidence thesis given these results? One
option is to question the relevance of our results by arguing that the idealizations on
which they are based are unwarranted. Throughout the article, we have provided
arguments to defend our assumptions when we saw the need to. We leave it to the
skeptics to formulate objections.

If our idealizations and, consequently, our results are accepted, the variety-of-
evidence thesis as a universally quantified generalization must be rejected. The
thesis is however still acceptable under a different interpretation: it can serve as a
rule of thumb for practitioners. We saw that the region of the full parameter space
where confirmation increases with variety is significantly larger than the region
where it does not. In the worst case (i.e., the interpretation in terms of degree of
consequence variety), the regions are in a ratio of 3 to 1. We would need to be
in a world where the probabilities over the parameter space are strangely skewed
toward the problematic parameter combinations for this rule of thumb to be a

11 To compare this result with what we found in our comparison of fully shared and fully
independent consequences, see footnote 8. One can also compare this result to the first result
in conjecture 1 (about the degree-of-reliability-independence thesis), which could only generalize
over r, not α.
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counterproductive guide for practical epistemology. Although this interpretation
rescues the variety-of-evidence thesis, it should also incite us to do better: we
ought to strive for better guides in our epistemic choices than a thesis that directs
us most of the time in an appropriate direction, but frequently fails us.

Appendix A. Proofs

A.1. Likelihood Ratios with Cs as Consequences : General and Specific
Evidential Structures

P (h|e1, e2) can be represented by the likelihood-ratio form :

P ∗(h) = h0

h0 + h̄0L
, where L = P (e1, e2|¬h)

P (e1, e2|h)

Given that the ceteris paribus clause imposes a common h0 across structures, we
can make pairwise comparisons of structures in terms of likelihood ratios directly,
noting that:

P ∗X(h) > P ∗Y (h)⇔ LY > LX .

Likelihood ratio : proof for general structure G. The likelihood ratio for the gen-
eral structure G can be calculated with the first panel of table 4 and the two last
columns of table 5:

LG = PG(e1, e2|¬h)
PG(e1, e2|h)

=
∑
C1,C2,R1,R2

(
∏
i=1,2 PG(ei|Ci, Ri))PG(C1, C2|¬h)PG(R1, R2)∑

C1,C2,R1,R2
(
∏
i=1,2 PG(ei|Ci, Ri))PG(C1, C2|h)PG(R1, R2)

= ωrr(q1+γ) + ωrh(2q1+γ + 2θ¬h) + ωhh(q1+γ + 2θ¬h + q̄1+γ)
ωrr(p1+γ) + ωrh(2p1+γ + 2θh) + ωhh(p1+γ + 2θh + p̄1+γ)

= ωrr(q1+γ) + ωrh(q1+γ − q̄(1+γ) + 1) + ωhh
ωrr(p1+γ) + ωrh(p1+γ − p̄(1+γ) + 1) + ωhh

, using (13)

which is the expression in table 1. �

We can expand this likelihood by substituting the original parameters for the ω.
Using equations (11) and (12), we have:

LG = r1+δ(q1+γ) + (r + αr̄ − .5(1 + ωrr + ωhh − ω¬h¬h))(q1+γ − q̄1+γ + 1) + (αr̄)1+δ

r1+δ(p1+γ) + (r + αr̄ − .5(1 + ωrr + ωhh − ω¬h¬h))(p1+γ − p̄1+γ + 1) + (αr̄)1+δ

= r1+δ(q1+γ) + (r + αr̄ − .5(1 + r1+δ + (αr̄)1+δ − (ᾱr̄)1+δ))(q1+γ − q̄1+γ + 1) + (αr̄)1+δ

r1+δ(p1+γ) + (r + αr̄ − .5(1 + r1+δ + (αr̄)1+δ − (ᾱr̄)1+δ))(p1+γ − p̄1+γ + 1) + (αr̄)1+δ

Likelihood ratios for specific evidential structures can then be calculated by
attributing a value of 0 to δ and γ for shared reliability and shared consequence,
and of 1 for independent reliability and independent consequences :
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Likelihood ratio: proof for structure A (shared reliability, shared consequence).

LA = r1q1 + (r + αr̄ − .5(1 + r1 + (αr̄)1 − (ᾱr̄)1))(q1 − q̄1 + 1) + (αr̄)1

r1(p1) + (r + αr̄ − .5(1 + r1 + (αr̄)1 − (ᾱr̄)1))(p1 − p̄1 + 1) + (αr̄)1

= qr + 0× (q − q̄ + 1) + αr̄

pr + 0× (p− p̄+ 1) + αr̄

LA = qr + αr̄

pr + αr̄

�

Likelihood ratio: proof for structure B (independent reliability, shared consequence).

LB = r2q1 + (r + αr̄ − .5(1 + r2 + (αr̄)2 − (ᾱr̄)2))(q1 − q̄1 + 1) + (αr̄)2

r2(p1) + (r + αr̄ − .5(1 + r2 + (αr̄)2 − (ᾱr̄)2))(p1 − p̄1 + 1) + (αr̄)2

= qr2 + (rαr̄)(2q) + (αr̄)2

pr2 + (rαr̄)(2p) + (αr̄)2

LB = qr2 + 2qrαr̄ + (αr̄)2

pr2 + 2prαr̄ + (αr̄)2

�

Likelihood ratio: proof for structure C (shared reliability, independent consequences).

LC = r1q2 + (r + αr̄ − .5(1 + r1 + (αr̄)1 − (ᾱr̄)1))(q2 − q̄2 + 1) + (αr̄)1

r1(p2) + (r + αr̄ − .5(1 + r1 + (αr̄)1 − (ᾱr̄)1))(p2 − p̄2 + 1) + (αr̄)1

= q2r + 0× (q2 − q̄2 + 1) + αr̄

p2r + 0× (p2 − p̄2 + 1) + αr̄

LC = q2r + αr̄

p2r + αr̄

�

Likelihood ratio: proof for structure D (independent reliability and consequences).

LD = r2q2 + (r + αr̄ − .5(1 + r2 + (αr̄)2 − (ᾱr̄)2))(q2 − q̄2 + 1) + (αr̄)2

r2(p2) + (r + αr̄ − .5(1 + r2 + (αr̄)2 − (ᾱr̄)2))(p2 − p̄2 + 1) + (αr̄)2

= (qr)2 + (rαr̄)(2q) + (αr̄)2

(pr)2 + (rαr̄)(2p) + (αr̄)2

LD = (qr + αr̄)2

(pr + αr̄)2

�
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A.2. Comparison of Confirmatory Strengths with Cs as Consequences

Proof of proposition 1. In terms of likelihood-ratio the proposition is: LA > LD,
for all admissible values of p, q, r, α.

LA > LD

qr + αr̄

pr + αr̄
>

(qr + αr̄)2

(pr + αr̄)2

pr + αr̄ > qr + αr̄

p > q,

which is true by assumption 7. �

Proof of proposition 2. LA > LB and LC > LD, for all admissible values of p, q, r, α.
We start by the first inequality:

LA > LB

qr + αr̄

pr + αr̄
>
qr2 + 2qrαr̄ + (αr̄)2

pr2 + 2prαr̄ + (αr̄)2

qr(αr̄)2 + pr2αr̄ + 2pr(αr̄)2 > pr(αr̄)2 + qr2αr̄ + 2qr(αr̄)2

r2αr̄(p− q) + 2r(αr̄)2(p− q) > r(αr̄)2(p− q)
r + αr̄ > 0

The division by p − q to get to the last line leaves the direction of inequality
unchanged because of assumption 7 p > q. Since r and α are assumed to be always
strictly positive, the inequality holds.

Now the second inequality:

LC > LD

q2r + αr̄

p2r + αr̄
>

(qr + αr̄)2

(pr + αr̄)2

p2r + 2pq2r + 2pαr̄ + q2αr̄ > p2r + 2pq2r + 2pαr̄ + q2αr̄

r(p+ q)(p− q) + 2αr̄(p− q) > 2pqr(p− q) + αr̄(p+ q)(p− q)
r(p+ q − 2pq) + αr̄(2− (p+ q)) > 0

Since p < 1 and q < 1, 2 - (p + q) > 0 is always true. Thus, we need to prove
that p + q - 2pq > 0 is always true :

p+ q − 2pq > 0
p+ q

pq
> 2

1
q

+ 1
p
> 2
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Since 0 ≤ q ≤ 1 and 0 ≤ p ≤ 1, then 1
q ≥ 1 and 1

p ≥ 1, which entail that the
sum of both fractions is superior to 2.

�

Proof of proposition 3.

LA > LC iff rpq + αr̄(p+ q − 1) > 0.
LB > LD iff (r2 + 2rαr̄)pq + (αr̄)2(p+ q − 1) > 0

Starting with the first inequality:

LA > LC

qr + αr̄

pr + αr̄
>
q2r + αr̄

p2r + αr̄

r2p2q + qrαr̄ + p2rαr̄ > r2q2p+ prαr̄ + q2rαr̄

r2pq(p− q) + rαr̄(p+ q)(p− q) > rαr̄(p− q)
rpq + αr̄(p+ q − 1) > 0(14)

Expression 14 being as claimed in the proposition.
To ease the proof for the second inequality, define the following expressions:

A = r2 B = 2rαr̄ C = (αr̄)2

Starting from the inequality implied by the variety-of-evidence thesis, we have:

LB > LD

qr2 + q2rαr̄ + (αr̄)2

pr2 + p2rαr̄ + (αr̄)2 >
q2r2 + q2rαr̄ + (αr̄)2

p2r2 + p2rαr̄ + (αr̄)2

qA+ qB + C

pA+ pB + C
>
q2A+ qB + C

p2A+ pB + C

pq(pA+B)(A+B) + C(p2A+ pB + qA+ qB)
> pq(qA+B)(A+B) + C(q2A+ qB + pA+ pB)

A(A+B)pq(p− q) +AC(p2 + q − q2 − p) > 0
(A+B)pq(p− q) + C(p+ q − 1)(p− q) > 0

(r2 + 2rαr̄)pq + (αr̄)2(p+ q − 1) > 0

�

Proof of proposition 4. To prove that the inequality holds if the first disjunct holds,
we start with the likelihood ratio for the general structure and impose p = 1 and
q = 0:

LG = ωrr(q1+γ) + ωrh(q1+γ − q̄(1+γ) + 1) + ωhh
ωrr(p1+γ) + ωrh(p1+γ − p̄(1+γ) + 1) + ωhh

= ωhh
ωrr + 2ωrh + ωhh
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This likelihood ratio is identical to the expression in Claveau (2013, eq. 11), which
implies that the results in expression (13) and in figure 4 of this article also hold
here.

Proving the second part of the proposition requires more work. Starting from
the likelihood ratio of the general structure and imposing γ = 0:

LG = ωrr(q1+γ) + ωrh(q1+γ − q̄(1+γ) + 1) + ωhh
ωrr(p1+γ) + ωrh(p1+γ − p̄(1+γ) + 1) + ωhh

= ωrrq + 2ωrhq + ωhh
ωrrp+ 2ωrhp+ ωhh

Taking the derivative of this expression with respect to δ:
∂LG

∂δ
= ω′rrq + 2ω′rhq + ω′hh
ωrrp+ 2ωrhp+ ωhh

− (ωrrq + 2ωrhq + ωhh)(ω′rrp+ 2ω′rhp+ ω′hh)
(ωrrp+ 2ωrhp+ ωhh)2

Using the inequality claimed by the degree-of-reliability-independence thesis:
∂LG

∂δ
< 0

(ω′rrq + 2ω′rhq + ω′hh)(ωrrp+ 2ωrhp+ ωhh)
< (ωrrq + 2ωrhq + ωhh)(ω′rrp+ 2ω′rhp+ ω′hh)

ω′rrωhhq + 2ω′rhωhhq + ω′hhωrrp+ 2ω′hhωrhp
< ω′rrωhhp+ 2ω′rhωhhp+ ω′hhωrrq + 2ω′hhωrhq

ω′hhωrr − ω′rrωhh + 2ω′hhωrh − 2ω′rhωhh < 0
The derivatives of the ω with respect to δ are:

ω′rr = ∂ωrr
∂δ

= r1+δ ln(r) = ωrr ln(r)

ω′hh = ∂ωhh
∂δ

= (αr̄)1+δ ln(αr̄) = ωhh ln(αr̄)

ω′rh = ∂ωrh
∂δ

= −0.5(ωrr ln(r) + ωhh ln(αr̄)− ω¬h¬h ln(ᾱr̄))

Substituting these derivatives in the inequality, we have:
ωhhωrr ln(αr̄)− ωrrωhh ln(r) + 2ωhhωrh ln(αr̄)− 2ω′rhωhh < 0

ωrr ln(αr̄)− ωrr ln(r) + 2ωrh ln(αr̄) + ωrr ln(r) + ωhh ln(αr̄)− ω¬h¬h ln(ᾱr̄) < 0
ωrr ln(αr̄) + 2ωrh ln(αr̄) + ωhh ln(αr̄)− ω¬h¬h ln(ᾱr̄) < 0

(ωrr + 2r + 2αr̄ − 1− ωrr − ωhh + ω¬h¬h + ωhh) ln(αr̄)− ω¬h¬h ln(ᾱr̄) < 0
(2(r + αr̄)− 1) ln(αr̄) + ω¬h¬h(ln(αr̄ − ln(ᾱr̄)) < 0

(1− 2ᾱr̄)ln(αr̄) + (ᾱr̄)1+δln(α
ᾱ

) < 0

The last line being exactly the inequality claimed in proposition 4.
�
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