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Abstract

This paper develops axiomatic foundations for a probabilistic theory of

causal strength as difference-making. I proceed in three steps: First, I mo-

tivate the choice of causal Bayes nets as an adequate framework for defin-

ing and comparing measures of causal strength. Second, I prove several

representation theorems for probabilistic measures of causal strength—

that is, I demonstrate how these measures can be derived from a set of

plausible adequacy conditions. Third, I use these results to argue for a

specific measure of causal strength: the difference that interventions on

the cause make for the probability of the effect. I conclude by discussing

my results and outlining future research avenues.
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1 Introduction

Causation is a central concept in human cognition. Knowledge of causal re-
lationships enables us to make predictions, to explain phenomena, and to un-
derstand complex systems. Decisions are taken according to the effects which
they are supposed to bring about. Actions are evaluated according to their
causal contributions to an event.

Since the days of Aristotle, causation has been treated primarily as a quali-
tative, all-or-nothing concept. A huge amount of literature has been devoted to
the qualitative question “When is C a cause of E?” (e.g., Hume, 1739; Suppes,
1970; Lewis, 1973; Mackie, 1974; Woodward, 2003). The comparative question
“Is C or C’ a more effective cause of E?” starts to get explored as well (e.g.,
Chockler and Halpern, 2004; Halpern and Hitchcock, 2015). By contrast, the
quantitative question “What is the strength of the causal relationship between
C and E?” is relatively neglected. This is surprising since causal judgments
regularly involve a quantitative dimension: C is a more effective cause of E
than C’, the causal effect of C on E is twice as high as the effect of C’, and so
on (e.g., Rubin, 1974; Rosenbaum and Rubin, 1983; Pearl, 2001).

Principled proposals for explicating causal strength are rare and spread
over different disciplines, each with their own motivation and intended con-
text of application. This includes cognitive psychology (Cheng, 1997; Icard
et al., 2017), computer science and machine learning (Pearl, 2000; Korb et al.,
2009, 2011), statistics (Good, 1961a,b; Holland, 1986; Cohen, 1988), epidemiol-
ogy and clinical medicine (Poole, 2010; Broadbent, 2013), philosophy of science
(Suppes, 1970; Eells, 1991), political philosophy and social choice theory (Bra-
ham and van Hees, 2009), and legal theory (Rizzo and Arnold, 1980; Hart
and Honoré, 1985; Kaiserman, 2017). Although these approaches use a com-
mon formalism—probability theory—, the proposed explications differ sub-
stantially (see the survey of Fitelson and Hitchcock, 2011). This may be due
to the different purposes to which the measures are put: measuring predic-
tive power, expressing counterfactual dependence, apportioning liability, and
so on. The challenge for a philosophical theory of causal strength is to char-
acterize the various measures and to evaluate whether we should prefer one
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of them over its competitors, or whether we should use different measures in
different contexts.

The paper proceeds as follows. Section 2 specifies the sense of causal
strength explicated in this paper: the difference that causes make to their
effects. I also motivate causal Bayes nets as an appropriate formal frame-
work for this project. Section 3 derives representation theorems that char-
acterize causal strength measures in terms of the adequacy conditions that
they satisfy. These theorems lend support to preferring the difference measure
ηd(C, E) = p(E|C)− p(E|¬C) over its competitors. Section 4 discusses possible
objections while Section 5 sketches future research questions and concludes.
All proofs are contained in the online appendix.

2 Interventions and Causal Bayes Nets

Causes do not always necessitate their effects. We classify smoking as a cause
of lung cancer although not every regular smoker will eventually suffer from
lung cancer. The same is true in other fields of science, e.g., when we con-
duct psychological experiments or choose an economic policy: interventions
increase the frequency of a particular response, but they do not guarantee
it. Therefore, causal relevance is often explicated as statistical relevance or
probability-raising: C is a cause of E if and only if C raises the probabil-
ity of E (e.g., Reichenbach, 1956; Suppes, 1970; Cartwright, 1979; Eells, 1991).
A cause is the more effective the more it raises the probability of an effect.
Probability-raising captures the intuition that many causes make a difference
to their effects without necessitating them.

It is well-known that purely probabilistic accounts of causality struggle to
account for the asymmetry of causal relations. They dissolve the crucial differ-
ence between a causal inference (does bringing about C increase the probability
of E?) and an observational inference (does learning C increase my confidence
that E?). This is not the same: statistically associated variables, such as the
number of ice cream sales and swimming pool visits on a particular day, need
not be connected causally. More likely, they have a common cause, such as
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temperatures and sunshine hours (cf. Reichenbach, 1956). Furthermore, un-
like the cause-effect relation, statistical relevance is symmetric: if C raises the
probability of E, then E also raises the probability of C.

Pearl (2000, 2011) notes that the problem is principled: causal claims go
beyond the pure associational level that is encoded in probability distributions.
They express how the world would change in response to interventions. Hence,

“[e]very claim invoking causal concepts must rely on some premises
that invoke such concepts; it cannot be inferred from, or even de-
fined in terms of statistical associations alone.” (Pearl, 2011, 700)

The interventionist account of causation offers a principled solution to this
problem. The idea behind probability-raising is modified to the effect that a
variable C is a cause of another variable E if and only if an intervention on C
changes the probability that E takes a particular value.1 Because the interven-
tion breaks the influence of the other causes of C, it removes spurious corre-
lations. After intervening on the number of swimming pool visitors (e.g., by
closing the pool for renovation works), learning the number of visitors (zero)
does not tell us anything about temperatures or ice cream sales. By now, the
interventionist account of causation is prevalent in philosophical discussions
of causality (Meek and Glymour, 1994; Woodward, 2003, 2012) as well as in
scientific applications such as causal search and discovery algorithms (Pearl,
2000; Spirtes et al., 2000).

For interventionists, causal reasoning is relative to the choice of a causal
model M: a set of variables with a joint probability distribution and specific
causal dependencies. The latter are represented by a directed acyclical graphs
(DAG) G, consisting of a set of vertices (=variables) and directed edges (e.g.,
Figure 1). DAGs codify Pearl’s “causal assumptions” underneath our causal
reasoning. Each variable is assumed to be independent of its non-descendants,
given its direct causes (=its parents)—this is the famous Causal Markov Condi-
tion. Causally interpreted DAGs endowed with a joint probability distribution
over the variables are called causal Bayes nets. In a DAG, an intervention on C

1The probability function p(·) can be interpreted objectively (frequencies, propensities,
best-system chances) or as subjective degrees of belief, dependent on the context.
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Figure 1: Two DAGs with and without an intervention on the cause C. The ar-
rows leading into C (dotted) are disrupted by the intervention, the intervention
itself is represented by a dashed arrow.

amounts to breaking all arrows that lead into C, and to control the value that
C takes. This can consist in setting C to a particular value, but also in impos-
ing a specific probability distribution on C (e.g., in medical trials, patients are
randomly assigned to treatment and control groups).

The two graphs in Figure 1 show a causal graph before and after a (hy-
pothetical) intervention on C. I denote variables by italic letters (e.g., C) and
use regular roman letters for particular values they take (e.g., C,¬C, C′)—see
Bovens and Hartmann (2003). The intervention on C is represented by the
node IC. Activating IC controls the value of C and removes the influence of the
parent nodes A and B. Intervening on C leads to an augmented causal model
M∗ with modified DAG G∗ and probability distribution p∗, represented by the
right graph of Figure 1. Since intervening on C does not alter the way C acts
on causally downstream variables, we set p∗(·|C) = p(·|C) for all values of C.

This paper combines the probabilistic and the interventionist perspective. I
measure the causal strength of C for a target effect E as the degree to which C
makes a difference to E in the post-intervention distribution p∗. This approach
preserves the asymmetry of causal relations: if we had intervened on E instead
of C, all arrows into E in Figure 1 would have been cut, making C and E
statistically independent. Causal strength between C and E would have been
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nil. Moreover, by cutting the arrows that lead into C, the intervention removes
possible spurious correlations between C and E due to their common causes A
and B.2

I now add some precision to these ideas. A variable C = (ΩC, C) in a
causal Bayes net corresponds to a set of possible values ΩC and a σ-algebra
C: a set of subsets of ΩC which contains ΩC itself and is closed under natural
set-theoretic operations such as union and complement. For instance, if C is a
real-valued variable (ΩC = R), then a particularly “natural” σ-algebra for ΩC

is the Borel σ-algebra: it contains single numbers such as {2} or {3}, but also
intervals such as [2, 3), (−1, 1] or [10, ∞). In the rest of the paper, we often
replace the set-theoretic formalism by propositions about the values of C. It is
more intuitive and the mathematical structures (e.g., the associated σ-algebras)
are fully isomorphic.

A causal model M = (G, p(·)) of the interaction between C and E is
a directed acyclical graph G which includes, among others, the variables
C = (ΩC, C) and E = (ΩE, E). It also contains a probability distribution
p(·) over the variables in G. We can also define the post-intervention model
M∗ = (G∗, p∗(·)) that emerges from M by intervening on C, and cutting all
edges that run into C. Causal strength depends on the features of the model
M∗ = (G∗, p∗(·)) that emerges from M by intervening on C, and in particular
on the joint probability distribution over C and E. A causal strength measure
maps, in essence, elements of C × E (e.g, the pair (C, E)) to a real number, de-
noted by η(C, E).3 More precisely, we explicate causal strength contrastively:

2Technical details of this approach are discussed in Korb et al. (2009) and Korb et al. (2011).
They also discuss the problem of non-causal paths between C and E via known common ef-
fects. Such paths introduce a non-causal probabilistic dependency between C and E. Following
their suggestion, I deactivate all non-causal paths between C and E: causal strength between
C and E should not be affected by whatever values their joint effects take. For evaluating
the effects of university education on salary, we should not condition on joint effects such as
driving a Porsche or becoming a U.S. senator.

3This definition shows why it was necessary to introduce the technical concept of a σ-
algebra: we do not only want to talk about causal strength between variables that take par-
ticular values, but also about more general features such as a variable exceeding a particular
threshold. For instance, we can now determine the causal effect that temperatures greater than
30 °C have on the occurrence of thunderstorms in the afternoon.
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as a function of how C, as opposed to another value of C, affects the post-
intervention probability of E. This brings us to the following very general ade-
quacy constraint (reference to M∗ suppressed for the sake of convenience):

Generalized Difference-Making For a putative cause C ∈ C and a putative
effect E ∈ E , there exists a C’ ∈ C and a real-valued, continuous function
f : [0, 1]2 → R such that for the causal strength of C on E, η(C, E):

η(C, E) = f (p∗(E|C), p∗(E|C′))

where f is non-decreasing in the first argument and non-increasing in the
second argument.

The idea of causal strength as difference-making is an intuition shared by
counterfactual, probabilistic and interventionist accounts of causation alike.
Causal strength is the higher, the more probable E is given C, and the less
probable E is given the contrastive value C’. How C’ should be chosen is a
matter to which I will get back in the next section.

Generalized Difference-Making quantifies causal strength with respect to
a particular causal model. Similarly, it focuses on a single background con-
text, sidestepping a substantial discussion in the field of probabilistic causation
(e.g., Cartwright, 1979; Dupré, 1984; Eells, 1991). This makes intuitive sense:
when we investigate the relationship between beer consumption and obesity,
causal strength depends on characteristics of the population such as age, di-
etary habits and general lifestyle. Compared to couch potatoes, active athletes
are less likely to gain weight when they drink two or three pints a day. Causal
strength claims are always relative to such a choice of context, symbolically
represented by other variables that have an effect on the probability of E (e.g.,
A and B in the DAG of Figure 1). Similarly, causal strength depends on the
levels of the cause variable that we compare (i.e., three vs. two, or five vs.
zero pints per day). This choice is codified in the post-intervention distribu-
tion p∗(·). By contrast, I do not include external factors such as typicality,
defaults and normative expectations, which have been argued to affect causal
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judgments (Knobe and Fraser, 2008; Hitchcock and Knobe, 2009; Halpern and
Hitchcock, 2015). I discuss objections to my approach in Section 4.

Notably, causal strength is blind to the presence of multiple paths lead-
ing from C to E, or the number of mediators between C and E (see Figure
2). This choice is conscious. Mediating variables are often not directly mea-
surable. When we administer a medical drug (C) to cure migraine (E), there
are numerous mediators in an appropriate causal model that includes C and
E. However, the medical practitioner, who has to choose between different
drugs, is mainly interested in the overall effect that C has on E (how often
does migraine go away?), not in the details of causal transmission within the
human body. η(C, E) amalgamates the effects of C on E via different paths into
one number—the total effect of C on E (e.g., Dupré, 1984; Eells, 1991). This
does not rule out a path-specific perspective, quite to the contrary. Measures
of path-specific effect supervene on elementary measures of causal strength
that quantify causal strength between adjacent variables (e.g., Pearl, 2001). In
this sense, this paper lays the foundations for path-specific analyses of causal
strength.

C

M1

M2

E

Figure 2: Mediators on the paths linking cause C and effect E.
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3 Probabilistic Measures of Causal Strength

Generalized Difference-Making does not specify how C′ should be chosen and
how p∗(E|C) and p∗(E|C′) should be combined. This leaves open a number of
ways to explicate causal strength. Some candidate measures of causal strength
that align with Generalized Difference-Making are surveyed in Fitelson and
Hitchcock (2011) and recapitulated in Table 1.

How should we deal with this plurality of measures of causal strength? Two
major attitudes are possible. First, there is monism: there is only one adequate
measure (or equivalence class of measures) of causal strength. Second, there
is pluralism: no single measure satisfies all the conditions that an adequate
measure of causal strength should possess. This is perhaps the default view.
After all, intuitions about complex concepts such as causal strength may pull
into different directions and lead to a set of adequacy conditions which a single
measure cannot possibly satisfy. This is at least the lesson one might draw
from the analogous projects of finding a probabilistic explication of evidential
support, or the coherence of a set of propositions (e.g., Fitelson, 1999; Meijs,
2005; Brössel, 2013; Crupi, 2013).

I contend that the prospects for causal strength monism are more promis-
ing. This monism is qualified: it is based on understanding causal strength
as counterfactual difference-making, as informing our expectations on the ef-
ficacy of interventions on C.4 Within the explicative framework outlined by
Generalized Difference-Making, there is a single adequate measure of causal
strength, namely ηd(C, E) = p∗(E|C)− p∗(E|¬C) (Eells, 1991; Pearl, 2001).

In what follows, I present two different constructive arguments in favor
of ηd and a negative argument against probability ratio measures. The argu-
ments establish that the prospects for monism in measuring causal strength are
brighter than in other debates, such as measuring coherence, confirmation and
explanatory power. Ordinally equivalent measures—that is, measures that im-

4Whether this monism transfers to measuring causal strength as degrees of actual causa-
tion or “cause in fact” (Halpern and Pearl, 2005a,b)—that is, as a basis for attribution and
responsibility—is outside the scope of this paper. Icard et al. (2017) investigate this question
by a combination of theoretical and empirical methods.
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Pearl (2000) ηph(C, E) = p(E|C)

Suppes (1970) ηpr(C, E) = p(E|C)− p(E)

Eells (1991) ηd(C, E) = p(E|C)− p(E|¬C)

“Galton” (covariation) ηga(C, E) = 4p(C) p(¬C)[p(E|C)− p(E|¬C)]

Lewis (1986) ηr(C, E) =
p∗(E|C)

p∗(E|¬C)

Cheng (1997) ηc(C, E) =
p(E|C)− p(E|¬C)

1− p(E|¬C)

Good (1961a,b) ηg(C, E) = log
1− p(E|¬C)

1− p(E|C)

Table 1: Some prominent measures of causal strength. I follow the labels of
Fitelson and Hitchcock (2011).

pose the same causal strength rankings on any set of cause-effect pairs—will
be identified with each other. Formally, two measures η and η′ are ordinally
equivalent if and only if for all cause-effect pairs (C1, E1) and (C2, E2) in a causal
model M,

η(C1, E1) > η(C2, E2) if and only if η′(C1, E1) > η′(C2, E2)

Ordinally equivalent measures can be represented as monotonically increasing
functions of each other. Typical cases are addition or multiplication of a con-
stant, or rescalings of the type η′ = log η. In other words, ordinally equivalent
measures may use different scales, but they agree in all comparative judgments
and share most philosophically interesting properties.

The following subsections provide representation theorems for measures of
causal strength and use these theorems to buttress normative arguments for a
particular measure (up to ordinal equivalence). The representation theorems
have independent value, too: they allow to translate any normative evaluation
of the adequacy conditions—also an evaluation that is fundamentally differ-
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ent from the one I propose—into a corresponding ranking of causal strength
measures.

3.1 Argument 1: Separability and Difference Measures

Suppose we examine how an intervention on a class of students, such as in-
creasing the assignment load (C), affects their exam results. The result variable
R can take three values: pass with honors (R1), regular pass (R2) and fail (R3).
Suppose we know the causal strength of more assignments for passing with
honors (i.e., η(C, R1)) and also the causal strength of more assignments for reg-
ular passes (i.e., η(C, R2)). Since passing is just the disjunction of regular pass
and pass with honors, the causal strength of C for R1 ∨ R2 should exceed the
causal strength for both R1 and R2 only if both are indeed caused rather than
prevented by C. In other cases, causal strength for the aggregate effect should
be down. This is equivalent to the following: causal strength increases under
adding a disjunct to the effect when the cause is positively relevant to the dis-
junct, and decreases when it is negatively relevant. We obtain the following
adequacy condition:

Separability of Effects For C ∈ C and mutually exclusive E, E′ ∈ E :

η(C, E∨ E′) > η(C, E) if and only if p∗(E′|C) > p∗(E′|C′)
η(C, E∨ E′) = η(C, E) if and only if p∗(E′|C) = p∗(E′|C′)
η(C, E∨ E′) < η(C, E) if and only if p∗(E′|C) < p∗(E′|C′)

From Separability of Effects and Generalized Difference-Making, it is pos-
sible to prove the following representation theorem:

Theorem 1 (Representation Theorem for Difference Measures) All measures
of causal strength that satisfy Separability of Effects and Generalized Difference-
Making are of the form

η(C, E) = p∗(E|C)− p∗(E|C′).
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This theorem implies that η(C, E) must be the difference of the rate of E under
C and a relevant contrast class C’. All such measures satisfy the equality

η(C, E∨ E′) = η(C, E) + η(C, E′)

for mutually exclusive E and E’, allowing for an easy computation of aggregate
causal strength from causal strength of the disjuncts.

For choosing C’, there are two particularly natural candidates. First, the
choice C′ = ΩC (=no restrictions on the value of C) leads to a measure that
quantifies how much C raises the “natural” occurrence rate of E (cf. Pearl,
2011, 717).

ηpr(C, E) = p∗(E|C)− p∗(E).

Second, we can choose C′ = ¬C and measure the difference between the pres-
ence and absence of C (Eells, 1991):

ηd(C, E) = p∗(E|C)− p∗(E|¬C)

This measure captures the degree to which E depends on C. For instance, in
a randomized controlled trial (RCT) where we compare two levels of a drug,
ηd quantifies the difference in incident rates between the treatment and the
control group.

While both measures are natural and frequently cited candidates for mea-
suring causal strength, there is a clear argument for preferring ηd. We ap-
ply causal strength in contexts where we intervene, or could hypothetically
intervene on the cause. Both measures depend, to some extent, on the post-
intervention probability distribution of C—and in particular, on the relative
frequency of the alternative values to C—say, C1, C2 and C3. This dependency
is not problematic because it expresses the relevant contrast class (e.g., do we
compare the efficacy of a new drug to a placebo, to the previous standard
treatment, or to a mixture of both?).

However, in addition to this, ηpr introduces a strong dependence on the
base rate of C because p∗(E) = p∗(C)p∗(E|C) + p∗(¬C)p∗(E|¬C). This conse-
quence is hardly acceptable. Causal strength should not depend on pragmat-
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ically motivated decisions expressed by the post-intervention frequency of C
and ¬C, such as the number of patients that we allocate to the treatment and
control group. In particular, causal strength in a treatment-control experiment
should not be highly sensitive to whether the treatment group consists of 100
participants and the (possibly heterogenous) control group of 50 participants,
or the other way round. Both experiments should allow for the same kind of
causal strength inferences, but for

ηpr(C, E) = p∗(E|C)− p∗(E) = (1− p∗(C)) · (p∗(E|C)− p∗(E|¬C))

the range of possible causal strength values is [−1/3, 1/3] in the first case and
[−2/3, 2/3] in the second case. This is clearly an undesirable consequence.5

Since these arguments pertain to the choice of C’ and can be generalized be-
yond the particular function that combines p∗(E|C) and p∗(E|C′), C′ = ¬C will
be a default assumption in the remainder of the paper.

Note that both measures satisfy two important causation-prevention sym-
metries which will be important later on. I follow Fitelson and Hitchcock
(2011) in explicating the degree to which C prevents E as the degree to which
C causes ¬E, that is, the absence of E. To be able to measure causation and
prevention on the same scale, we demand that the (preventive) causal strength
of C for ¬E is the negative of the causal strength of C for E.

Causation-Prevention Symmetry (CPS)

−η(C, E) = η(C,¬E)

Evidently, only measures of causal strength which take both positive and neg-
ative values can satisfy CPS. Positive causal strength indicates positive causa-
tion, negative causal strength indicates prevention, η(C, E) = 0 denotes neutral
causal strength.6 Those who share the basic intuition behind the Causation-

5The proposed argument is typical of causation as difference-making. For questions of
causal attribution that arise in the debate about actual causation, empirical evidence suggests
that we judge statistically abnormal causes to be stronger than statistically normal causes
(Kominsky et al., 2015; Icard et al., 2017).

6This should not be conflated with causal irrelevance. A cause can be relevant for an effect,
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C X E

Figure 3: A DAG representing causation along a single path.

Prevention Symmetry, but do not want to subscribe to particular scaling prop-
erties, can still accept the following purely ordinal version of the symmetry: if
C is a stronger cause of E1 than of E2, then C prevents ¬E1 more than ¬E2.

Weak Causation-Prevention Symmetry (WCPS)

η(C, E1) > η(C, E2) if and only if η(C,¬E1) < η(C,¬E2)

3.2 Argument 2: The Multiplicativity Principle

How should causal strength combine on the single path of Figure 3? If causal
strength is the ability of the cause to make a difference to the effect, then
overall causal strength should be a function of the causal strength between the
individual links. But which function g : R2 → R should be chosen such that
for an intermediate cause X, η(C, E) = g(η(C, X), η(X, E))?

A couple of requirements suggest themselves. First of all, g should be sym-
metric: the order of mediators in a chain does not matter. Whether a weak
link precedes a strong link, or vice versa, should not matter for overall causal
strength. Second, it seems that overall causal strength cannot be stronger than
the weakest link in the chain: If C and X are almost independent, it does not
matter how strongly X and E are correlated: causal strength will still be weak.
Similarly, if both links are weak, the overall link will be even weaker. On the
other hand, if one link is maximally strong (e.g., η(C, X) = 1), then the strength
of the entire chain will just be the strength of the rest of the chain. Perfect con-
nections between two nodes neither raise nor attenuate overall causal strength
(see also Good, 1961a, 311–312).

and yet, the overall effect can be zero, e.g., when contributions via different paths cancel out.
This is different from a case where there is no causal connection between C and E.
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A very simple operator that satisfies all these requirements is multiplica-
tion. This suggests the following principle:

Multiplicativity If the variables C and E are connected via a single path with
intermediate node X, then for C ∈ C, E ∈ E , and X ∈ X :

η(C, E) = η(C, X) · η(X, E)

As a corollary, we obtain that for a causal chain with multiple mediators, e.g.,
C → X1 → . . .→ Xn → E,

η(C, E) = η(C, X1) · η(X1, X2) · . . . · η(Xn−1, Xn) · η(Xn, E)

Multiplication may not be the only operator that fits the bill. However, it is
clearly the simplest one and ceteris paribus, simplicity is an added benefit for
an explicatum (Carnap, 1950, 5). The simple mathematical form contributes
to theoretical fruitfulness, as we see in the above equation for longer causal
chains.

Second, multiplicativity agrees with a lot of scientific practice. Suppose
there is a linear dependency between variables E and X, modeled by the equa-
tion E = αX + i. In those cases, the regression coefficient α is commonly
interpreted as indicating the size of the causal effect that X has on E. When X
depends linearly on C, too (e.g., X = βC + i′), the relation between C and E
reads E = αβC + αi′ + i, and the regression coefficient between both variables
is equal to αβ—in agreement with Multiplicativity.7

Third, suppose that in the absence of C, it is very unlikely that E:
p∗(E|¬C) ≈ 0. In such circumstances, causal strength is the higher the more
likely C is to bring about E. Modeling causal strength as a linear function of
p∗(E|C), up to a given degree of precision, is particularly intuitive. I call this
the Proportionality Principle.8 It is not difficult to prove that Multiplicativity

7Incidentally, this condition assumes transitivity of causation, which is warranted for
C′ = ¬C (Korb et al., 2011; Halpern, 2016).

8Formally, Proportionality can be defined as follows. Suppose f : [0, 1]2 → R is an analytic
function that represents η mathematically, in agreement with Generalized Difference Making.
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holds up to arbitrary degree of precision when Proportionality holds. Hence,
Multiplicativity also flows from a natural way to think about the strength of
necessary causes. Indeed, if C is necessary for X, and X is necessary for E, then
C is also necessary for E and the equation p∗(E|C) = p∗(E|X) · p∗(X|C) holds,
vindicating Proportionality (and Multiplicativity). These three independent
arguments validate Multiplicativity as a simple, attractive and conceptually
sound principle.

We can now characterize all measures that satisfy Multiplicativity alongside
Generalized Difference-Making:

Theorem 2 (Representation Theorem for ηd) All measures of causal strength that
satisfy Generalized Difference-Making with the contrast class C′ = ¬C and Multi-
plicativity are ordinally equivalent to

ηd(C, E) = p∗(E|C)− p∗(E|¬C)

The probability difference is a simple and intuitive quantity that measures
causal strength by comparing the probability that different interventions on C
impose on E. Indeed, ηd is straightforwardly applicable in statistical inference.
For example, in clinical trials and epidemiological studies, ηd(C, E) reduces to
Absolute Risk Reduction, or ARR (see Section 3.4). Holland (1986, 947) calls ηd

the “average causal effect” of C on E—a label that is motivated by the fact that
ηd aggregates the strength of different causal links. Pearl (2001) uses ηd as the
basis for developing a path-sensitive theory of causal strength.

Finally, ηd can be written as ηd(C, E) = p∗(E|C) + p∗(¬E|¬C) − 1. In
this representation, causal strength depends linearly on two salient quantities:
p∗(E|C) and p∗(¬E|¬C). They express the probability that C is sufficient for E
and the probability that C is necessary for E (see also Pearl, 2000). ηd shares this
property with Icard et al.’s (2017) measure of actual causation.

Then,
∀ε > 0 ∃δ > 0 : ∀α > 0, 0 < x < 1, y < δ : | f (αx, y)− α f (x, y)| < ε

Proving Multiplicativity from Proportionality is a matter of straightforward calculus.
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C E1 E2

Figure 4: An effect E2 which is irrelevant regarding the causal relation between
C and E1.

3.3 Argument 3: Dilution and the Ratio Measures

How strongly does C cause the conjunction of two effects—E1 ∧ E2—when C
affects only one of them positively, and the other effect (say, E2) is independent
of C and of E1? In such circumstances, we may call E2 an “irrelevant effect”.
This situation is represented visually in the DAG of Figure 4.

There are two basic intuitions about what such effects mean for overall
causal strength: either causal strength is diluted when passing from E1 to
E1 ∧ E2, or it is not. Dilution means that adding E2 to E1 diminishes causal
strength, that is, η(C, E1 ∧ E2) < η(C, E1). Conversely, a measure is non-
diluting if and only if in these circumstances, η(C, E1 ∧ E2) = η(C, E1). This
amounts to the following principle:

No Dilution for Irrelevant Effects For C ∈ C, E1 ∈ E1, E2 ∈ E2, let E2 ⊥⊥ C,
E2 ⊥⊥ E1 conditional on C. Then η(C, E1 ∧ E2) = η(C, E1).

Non-diluting measures of causal strength that satisfy Difference-Making
can be neatly characterized.9 In fact, they are all ordinally equivalent to the
probability ratio measure (Lewis, 1986), as the following theorem demon-
strates.

Theorem 3 (Representation Theorem for ηr and ηr′) All measures of causal
strength that satisfy Generalized Difference-Making with the contrast class C′ = ¬C
and No Dilution for Irrelevant Effects are ordinally equivalent to

ηr(C, E) =
p∗(E|C)

p∗(E|¬C)

9Incidentally, the premises of the No Dilution condition are compatible with a prima facie
correlation between E1 and E2. However, this correlation vanishes as soon as we control for
different levels of C.
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and its rescaling to the [−1; 1] range

ηr′(C, E) =
p(E|C)− p(E|¬C)

p(E|C) + p(E|¬C)
.

This result can be interpreted as a reductio ad absurdum of probability ratio
measures. After all, given the lack of a causal connection between C and E2,
it is plausible that C causes E1 ∧ E2 to a smaller degree than E1. Rain in New
York on November 26, 2016 (C) affects umbrellas sales in that city (E1), but it
does not affect whether FC Barcelona will win their next Champions League
match (E2). Therefore, the causal effect of rain on umbrella sales should be
stronger than the causal effect on umbrella sales in conjunction with Barcelona
winning their next match. This is bad news for ηr and ηr′ .

The problems extend beyond the class of probability ratio measures. Con-
sider the following restriction of No Dilution to the class of causal prevention:

No Dilution for Irrelevant Effects (Prevention) For C ∈ C, E1 ∈ E1, E2 ∈ E2,
let E2 ⊥⊥ C, E2 ⊥⊥ E1 conditional on C, and let C be a preventive cause of
E1. Then η(C, E1 ∧ E2) = η(C, E1).

Together with the Weak Causation-Prevention Symmetry, this adequacy con-
dition is sufficient to single out a particular class of measures:

Theorem 4 (Representation Theorem for ηcg) All measures of causal strength
that satisfy Generalized Difference-Making with the contrast class C′ = ¬C, No Di-
lution for Irrelevant Effects (Prevention) and Weak Causation-Prevention Symmetry
are ordinally equivalent to

ηcg(C, E) =


p∗(E|C)−p∗(E|¬C)

1−p∗(E|¬C)
if C is a positive cause of E

p∗(E|C)−p∗(E|¬C)
p∗(E|¬C)

if C is a preventive cause of E

For the case of positive causation, this measure agrees with two prominent
proposals from the literature. The psychologist Patricia Cheng (1997) derived

ηc(C, E) :=
p∗(E|C)− p∗(E|¬C)

1− p∗(E|¬C)
(1)
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(that is, ηcg without the above case distinction) from theoretical considerations
about how agents perform causal induction and called it the “causal power”
of C on E. Cheng’s measure is in turn ordinally equivalent to the measure

ηg(C, E) = log
p∗(¬E|¬C)

p∗(¬E|C)
= log

1− p∗(E|¬C)

1− p∗(E|C)

that the statistician and philosopher of science I.J. Good (1961a,b) derived from
a complex set of adequacy conditions. This ordinal equivalence, noted first by
Fitelson and Hitchcock (2011), is evident from the equation below.

ηc(C, E) =
−p∗(¬E|C) + p∗(¬E|¬C)

p∗(¬E|¬C)
= − 1

eηg(C,E)
+ 1

The two previous theorems elucidate that ηr and ηcg are based on the same
principle: No Dilution for Irrelevant Effects. Since this property is highly sus-
picious, the representation results also provide evidence against ηcg and its
cognates ηc and ηg, ruling out a prima facie attractive class of alternative mea-
sures.

3.4 Application: Quantifying Causal Effect in Medicine

A classical case of measuring causal strength concerns Randomized Controlled
Trials (RCTs) in medicine. The various outcome measures can be translated
into our framework by writing observed relative frequencies of certain events
as conditional probabilities under the different levels of the cause (i.e., the
treatment level). For example:

RR =
p∗(E|C)

p∗(E|¬C)
(Relative Risk)

ARR = p∗(E|C)− p∗(E|¬C) (Absolute Risk Reduction)

RRR =
p∗(E|C)− p∗(E|¬C)

p∗(E|¬C)
(Relative Risk Reduction)
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It is not difficult to relate these measures to measures of causal strength.
For example, RR is just the familiar probability ratio measure ηr, whereas ARR
turns out to be the difference measure ηd. RRR = RR −1 is ordinally equivalent
to ηr.

Normative arguments in favor or against causal strength measures carry
over to these effect size measures. Since the probability ratio measure ηr satis-
fies No Dilution for Irrelevant Effects, so do RR and RRR. The value of those
measures does not change when irrelevant propositions are added to the ef-
fect. This can have extremely undesirable consequences. The causal effect of
a painstiller on relieving headache is, according to ηr, as big as the causal ef-
fect of that drug on relieving headache and a completely unrelated symptom,
e.g., lowering cholesterol levels. ηr grossly misrepresents causal relevance: it
conceals that the high causal strength of the drug for both symptoms taken
together is exclusively due to its effect on pain relief. Doctors may be misled
into prescribing the drug for lowering cholesterol levels, even if it is ineffective
for that purpose.

On the other hand, the defining properties of ηd, such as combining causal
strength along a single path with the formula ηd(C, E) = ηd(C, X) · ηd(X, E),
suit clinical practice very well. For example, doctors can see that overall causal
strength must be weak if one of the links is tenuous. These theoretical features
nicely square with decision-theoretic and epistemic arguments for preferring
absolute over relative risk measures in medicine, such as the neglect of base
rates in relative risk measures, and the sufficiency of ηd for identifying the most
promising treatment (Stegenga, 2015; Sprenger and Stegenga, 2017). Briefly,
the scientific application confirms our theoretical diagnosis: ηd is superior to
ηr and other probability ratio measures.

4 Discussion of the Results

Let us take stock. The previous section has provided three independent ar-
guments for regarding ηd as a default measure of causal strength. The first
argument was based on the Separability of Effects property, the second on the
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Multiplicativity Principle, and the third on the No Dilution Principle. The first
two arguments showed that ηd is the only measure that satisfies those desir-
able properties. The third argument, by contrast, points out problems with the
probability ratio family and related measures (ηr, ηr′ , ηcg, ηc, ηg) based on the
No Dilution property.

Each individual argument makes a good case. Cumulatively, things look
even better since the three arguments operate independently from each other.
Still, one may have principal doubts about uniqueness claims for causal
strength measures. I will now play advocatus diaboli and introduce two mea-
sures that neither have the attractive properties of ηd nor the problematic prop-
erties of the No Dilution measures (e.g., ηr, ηcg).

Imagine, for example, that a medical drug has two side effects—diarrhea
and sore throat—which are independent of each other. Both side effects are
caused with the same strength t. One may want to say that the overall side
effect of the medical drug is also equal to t since there is no interaction between
both effects.

Conjunctive Closure For C ∈ C, E1 ∈ E1 and E2 ∈ E2, with E1 ⊥⊥ E2 conditional
on C, the following implication holds:

η(C, E1) = η(C, E2) = t ⇒ η(C, E1 ∧ E2) = t (2)

This principle facilitates calculations because we can now infer the strength
of a cause C for an aggregate effect from the strength of C for the individual
effects. Measures that satisfy Conjunctive Closure can be characterized neatly
(Atkinson, 2012):

Theorem 5 (Representation Theorem for ηcc) All measures of causal strength
that satisfy Generalized Difference-Making with the contrast class C′ = ¬C and Con-
junctive Closure are ordinally equivalent to

ηcc(C, E) =
log p∗(E|C)

log p∗(E|¬C)

Although this measure fails to satisfy Separability of Effects and Multi-
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E1 C E2

Figure 5: A DAG representing a common cause structure.

plicativity, it may be a reasonable measure in contexts where we would like to
quantify the average strength of a cause for a variety of independent effects.
See Figure 5 for an illustration. For that causal structure, it is always the case
that

min(ηcc(C, E1), ηcc(C, E2)) ≤ ηcc(C, E1 ∧ E2) ≤ max(ηcc(C, E1), ηcc(C, E2))

This property does not square well with the view of causal strength as
difference-making, but it captures a plausible principle for averaging causal
strength judgments.

Finally, one can investigate measures of causal contribution (e.g., Hall,
2004; Kaiserman, 2016; Beckers and Vennekens, 2017). Suppose we ask what
is the stronger cause of a car accident (E): drunk driving (C1) or bad weather
conditions (C2)? One may answer that C1 is a stronger cause of E than C2 if and
only if C1 makes E more expected than C2. In other words, a cause of an effect
is stronger than another cause if it has a higher likelihood of producing the
effect. This property, called Effect Production, is appealing in contexts where
we want to attribute the occurrence of an event to one of its causes.

Effect Production For C1, C2 ∈ C and E ∈ E ,

η(C1, E) > η(C2, E) if and only if p∗(E|C1) > p∗(E|C2)

Cases where C is known with certainty suggest a further adequacy con-
straint. If two events are logically equivalent given C, it makes sense to treat
them the same with respect to the causal strength that C has for them. After
all, knowing that C has occurred, we cannot distinguish between them any
more. Formally:
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Conditional Equivalence Assume that E1 and E2 are logically equivalent
given C. Then η(C, E1) = η(C, E2).

It is easy to show that the Conditional Equivalence property characterizes the
Pearl-Halpern measure ηph:

Theorem 6 (Representation Theorem for ηph) All measures of causal strength
that satisfy Generalized Difference-Making with contrast class C′ = ΩC and Con-
ditional Equivalence are ordinally equivalent to

ηph(C, E) = p∗(E|C)

The Pearl-Halpern measure ηph has been defended for measuring actual causal
power (Halpern and Pearl, 2005a,b). It is also used in proposals for determin-
ing causal contributions among several causes of an event (Kaiserman, 2016,
2017). To underscore the different angle of the discussed measures, consider a
case of causal overdetermination (e.g., Lewis, 1973):

An assassin puts poison into the king’s wine glass (C). If the king
does not drink the wine, a (reliable) backup assassin will shoot him.
The king drinks the wine and dies (E).

The Pearl-Halpern measure ηph(C, E) = p∗(E|C) ≈ 1 judges the assassin’s
action as a strong cause of the king’s death, even if the king’s fate was sealed
anyway. The measure ηd(C, E), however, disagrees (and so do other contrastive
measures that compare C and ¬C): due to the presence of the backup assas-
sin, poisoning the wine barely made a difference to the king’s death, and
ηd(C, E) ≈ 0. The two groups of measures also diverge in cases where an
action produces an effect, but by doing so, preempts an even stronger cause.

Here is a line of argument for preferring the Pearl-Halpern explication ηph:
contrastive causal strength measures such as ηd judge poison in the wine as a
weak cause when a backup cause is present (the second assassin). But there
is a sense in which poisoning is always a strong cause of death. Routine vac-
cinations are similar examples. We would not say that a vaccine is causally
ineffective just because the overall risk of contracting the disease is low. By
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relativizing our explications to particular contexts, we seem to have lost an
important aspect of strong causes: the capacity to secure an effect in a large
variety of circumstances.

However, we can reconstruct this intuition in the proposed account, too.
First, not each cause that secures the effect is universally strong. An um-
brella is generally sufficient for protecting the person carrying it from get-
ting wet. In the context of a desert climate, however, we would hesi-
tate to identify umbrellas as strong causes of staying dry. Similarly, vac-
cinations can be more effective in some contexts and less effective in oth-
ers. Think of a yellow fever vaccination, for example. If somebody trav-
els to a region where yellow fever is endemic and gets vaccinated before-
hand, contrastive causal strength measures deliver the right result: vaccina-
tion is highly efficacious (p∗(Disease Contraction|Vaccination, Exposure) �
p∗(Disease Contraction|No Vaccination, Exposure)). In No Exposure con-
texts, however, vaccination makes almost no difference to the risk of contract-
ing yellow fever. The reason that most people don’t seek yellow fever vaccina-
tion is that for them, the relevant context is No Exposure. Causal sufficiency,
which is the concept explicated by the Pearl-Halpern measure ηph, is differ-
ent from causal strength. Crucially, it does not take into account that we only
intervene on a cause if we believe the benefits to be substantial.10

In general, such examples show that causal strength has a plurality of
senses supported by our intuitions, not all of which are explicated by ηd. But
exhausting these senses was never the goal of this paper. Rather, I explicated
causal strength as difference-making (“how would E change if I intervened
on C?”). Within that perspective, the arguments for ηd remain compelling—at
least to the degree that ηd is an excellent default measure and that the choice of
other measures requires special justification. Tables 2 and 3 give an overview
over which measure satisfies which adequacy condition, and how the repre-
sentation theorems relate to each other.

10However, if immunity to the yellow fever virus rather than contraction risk is the desired
effect, then the vaccination turns out to be a very strong cause independent of the choice of
context (Exposure vs. No Exposure).
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Property
Measure GDM(ΩC) GDM(¬C) CPS WCPS CE EP SE MUL NDIE NDIEP CC
Pearl-Halpern (ηph) yes (yes) no yes yes yes no no no no no
Probability Raise (ηpr) yes no yes yes no yes yes no no no no
Difference (ηd) no yes yes yes no no yes yes no no no
Probability Ratio (ηr, ηr′) no yes no no no no no no yes yes no
Cheng/Good I (ηcg) no yes yes yes no no no no no yes no
Cheng/Good II (ηc, ηg) no yes no no no no no no no no no
Conjunctive Closure (ηcc) no yes no no no no no no no no yes

Table 2: A classification of different measures of causal strength according to the
adequacy conditions they satisfy. GDM = Generalized Difference-Making (in both ver-
sions), CPS = Causation-Prevention Symmetry, WCPS = Weak Causation-Prevention
Symmetry, CE = Conditional Equivalence, EP = Effect Production, SE = Separability
of Effects, MUL = Multiplicativity, NDIE = No Dilution for Irrelevant Effects, NDIEP
= No Dilution for Irrelevant Effects (Prevention), CC = Conjunctive Closure.

Contrast Class C′ = ΩC
Separability of Effects ηpr Theorem 1
Conditional Equivalence ηph Theorem 6
Contrast Class C′ = ¬C
Separability of Effects ηd Theorem 1
Multiplicativity ηd Theorem 2
No Dilution ηr, ηr′ Theorem 3
No Dilution (Prevention) + WCPS ηcg Theorem 4
Conjunctive Closure ηcc Theorem 5

Table 3: An overview of the measures with the adequacy conditions that characterize
the representation theorems.

5 Conclusion

This paper provides axiomatic foundations for a probabilistic theory of causal
strength within the causal Bayes nets framework. Synthesizing ideas from the
probability-raising and the interventionist view of causation, I have proposed
to formalize causal strength as a function of the probability difference that
interventions on a cause C make to the effect E.

I have characterized various measures of causal strength in terms of repre-
sentation theorems, derived from a set of adequacy conditions. Such a charac-
terization makes it possible to assess the merits of the different measures in the
literature by means of assessing the plausibility of the adequacy conditions. By
doing so, this paper creates a methodological bridge to other projects in formal
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epistemology, such as explications of degree of confirmation, coherence, and
explanatory power.

On the basis of these representation results, I have put forward arguments
for using ηd(C, E) = p∗(E|C) − p∗(E|¬C) as a default measure of causal
strength. Indeed, also Holland (1986) and Pearl (2001) build their discus-
sion of (path-specific) causal effects on ηd as underlying the baseline measure.
However, they do not provide a philosophical defense of their choice—a gap
which this paper closes. The theoretical analysis also agrees with practice- and
decision-oriented arguments for ηd, as pointed out in the previous sections.

What remains to do? First, I aim at linking this framework to questions
about the magnitude of a causal effect, such as the difference of group means
(e.g., Cohen’s d or Glass’s ∆). ηd, for once, might be extended naturally into
this direction.

Second, this work can be connected to information-theoretic approaches
to causal specificity (Weber, 2006; Waters, 2007; Griffiths et al., 2015). The
more narrow the range of effects that an intervention is likely to produce, the
more specific the cause is to the effect. How does this concept relate to causal
strength and to what extent can both research programs learn from each other?

Third, the properties of the above measures in complicated networks (e.g.,
more than one path linking C and E) have not been investigated. Is it possible
to show, for example, how degrees of causation along different paths can be
combined in an overall assessment of causal strength, e.g., similar to Theorem
3 in Pearl (2001)?

Fourth, I would like to spell out how this model connects to research on
actual causation and the significance of (statistical) normality and (prescriptive)
norms in causal reasoning (Knobe and Fraser, 2008; Hitchcock and Knobe,
2009; Halpern and Hitchcock, 2015; Kominsky et al., 2015; Icard et al., 2017).

Fifth, this research has implications for probabilistic explications of explana-
tory power (McGrew, 2003; Schupbach and Sprenger, 2011; Crupi and Tentori,
2012, e.g.,). In spite of the tight conceptual connection between explanatory
power and causal strength (Eva and Stern, 2017), the measures cannot be easily
related to each other. A possible reason is that explanatory power focuses—
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unlike most investigated measures of causal strength—on how C reduces (sub-
jectively perceived) surprise in E. That is, it compares p∗(E|C) and p∗(E). Ex-
ploring this relationship is another challenge for further research.

These are all open and exciting questions, and it is not difficult to come
up with others. I hope that the results presented in this paper are promising
enough to motivate further pursuit of an axiomatic theory of causal strength.
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