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Abstract

Observables have a dual nature in both classical and quantum kinematics: they are

at the same time quantities, allowing to separate states by means of their numerical val-

ues, and generators of transformations, establishing relations between different states.

In this work, we show how this two-fold role of observables constitutes a key feature in

the conceptual analysis of classical and quantum kinematics, shedding a new light on

the distinguishing feature of the quantum at the kinematical level. We first take a look at

the algebraic description of both classical and quantum observables in terms of Jordan-

Lie algebras and show how the two algebraic structures are the precise mathematical

manifestation of the two-fold role of observables. Then, we turn to the geometric re-

formulation of quantum kinematics in terms of Kähler manifolds. A key achievement

of this reformulation is to show that the two-fold role of observables is the constitutive

ingredient defining what an observable is. Moreover, it points to the fact that, from

the restricted point of view of the transformational role of observables, classical and

quantum kinematics behave in exactly the same way. Finally, we present Landsman’s

general framework of Poisson spaces with transition probability, which highlights with

unmatched clarity that the crucial difference between the two kinematics lies in the way

the two roles of observables are related to each other.

∗This work has received funding from the European Research Council under the European Community’s

Seventh Framework Programme (FP7/2007-2013 Grand Agreement n◦263523, ERC Project PhiloQuantum-

Gravity).
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1 Introduction

In the contemporary usage, the ‘kinematical description’ of a physical system has come to

signify a characterization of all the states accessible to the system and all the observables

which can be measured. These are the two fundamental notions of kinematics, and each is

associated with different areas of mathematics: the set of all states is generally conceived as a

space and is hence described by means of geometric structures; the set of all observables, on

the other hand, is generally conceived as an algebra and is accordingly described by means

of algebraic structures.

Of course, the notions of ‘state’ and ‘observable’ are closely related—much in the same

way that, in mathematics, geometric and algebraic methods are. One first obvious such

relation is the existence of a ‘numerical pairing’ between states and observables. If we

respectively denote by S and A the space of states and algebra of observables of a certain

physical system, then the numerical pairing is a map:

⟨·, ·⟩ : S ×A −→ R

(ρ,F) 7−→ ⟨ρ,F⟩.

In the geometric formulation of classical kinematics, where the notion of state is primitive—

it is the starting point from which the other notions are built—, this numerical pairing is

seen as the definition of an observable and is rather denoted by F(ρ): observables are in-

deed defined as smooth real-valued functions over the space of states [1,5]. On the contrary,

in the algebraic formulation of quantum kinematics, the primitive notion is that of an ob-

servable and the numerical pairing is used instead to define states: the latter are considered

to be linear (positive) functionals over the algebra of observables [43]. Accordingly, in the

algebraic setting, the numerical pairing is denoted by ρ(F). Formally, the transformation

which allows to switch between these two points of view on the numerical pairing ⟨ρ,F⟩
(the geometric, where ⟨ρ,F⟩=: F(ρ), and the algebraic, where ⟨ρ,F⟩=: ρ(F)) is called the

Gelfand transform [19, 34].

As is well-known, one crucial difference between classical and quantum kinematics is

the interpretation of the number ⟨ρ,F⟩. Whereas in the former the numerical pairing is inter-

preted as yielding the definite value of the physical quantity F when the system is in the state

ρ , in the latter the numerical pairing can only be interpreted statistically—as the expectation

value for the result of measuring the observable F when the system is prepared in the state ρ .

Because of this feature, the conception of observables as quantities having well-defined val-

ues at all times cannot be straightforwardly applied to the standard formulation of quantum

kinematics. This difficulty has surely been one of the main sources of insatisfaction towards
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the quantum theory. In fact, one could argue that all hidden variable theories are (at least par-

tially) motivated by the will of reconciling quantum kinematics with such a conception. But,

as the various results from von Neumann, Gleason, Bell, Kochen and Specker have shown,

the clash between the standard quantum formalism and the interpretation of observables as

quantities is irremediable [8, 21, 29, 37].

Yet, although the numerical pairing and the associated conception of observables-as-

quantities has dominated much of the attention, both classical and quantum observables play

another important role in relation to states: they generate transformations on the space of

states. The progressive disclosure of the intimate link between observables and transforma-

tions is, in my opinion, one of the most important conceptual insights that the 20th century

brought to the foundations of kinematics. A much celebrated result pointing in this direc-

tion is of course Noether’s first theorem, which relates the existence of symmetries to the

existence of conserved quantities [30]. For some particular observables, this relation is now

included in the folklore of theoretical physics—for instance, by defining linear momentum,

angular momentum and the Hamiltonian as the generators of space translations, space rota-

tions and time evolution respectively [44]. This notwithstanding, the idea that a systematic

relation between observables and transformations may constitute a key feature in the con-

ceptual analysis of classical and quantum kinematics has remain somewhat dormant, despite

some attempts to draw more attention to it [4, 12, 22, 23, 32].

The goal of this paper is to insist on the usefulness of investigating the conceptual struc-

ture of both classical and quantum kinematics through the looking glass of the two-fold

role of observables. Rather than considering “states” and “observables” as the two funda-

mental notions, we will henceforth distinguish observables-as-quantities and observables-as-

transformations and consider what we call the “fundamental conceptual triad of Kinematics”

(Figure 1). Through their numerical role, observables allow to distinguish, to separate dif-

ferent points of the space of states; on the other hand, when viewed as the generators of

transformations on the space of states, they instead allow to relate different states. Under-

standing precisely in which manner these two different roles are articulated to give a con-

sistent account of the notion of “observable” will be the key question of our analysis. We

will explain in detail how the two-fold role of observables is manifest in the mathematical

structures used to describe the space of states and the algebra of observables of classical and

quantum systems, and we will use this common feature to shed a new light on the funda-

mental traits distinguishing the Quantum from the Classical. As it will be shown, quantum

kinematics can be characterized by a certain compatibility condition between the numerical

and transformational roles of observables.
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Fig. 1 – The fundamental conceptual triad of kinematics.

But before entering into the details, let us first briefly sketch the content of the paper.

In section 2 we will review the standard formulations of classical and quantum kinemat-

ics, where the first is casted in the language of symplectic geometry and the second in the

language of Hilbert spaces. In both cases, the algebra of observables has the structure of

a Jordan-Lie algebra. This is a real algebra equipped with two structures, a commutative

Jordan product and an anti-commutative Lie product, which respectively govern the numer-

ical and transformational roles of observables. From this point of view, the only difference

between the classical and quantum algebras of observables lies in the associativity or non-

associativity of the Jordan product, but it is a priori unclear what this means.

In section 3, we move on to discuss the geometric formulation of quantum kinematics,

which stresses the role of the geometric structures inherent to any projective Hilbert space.

The Jordan-Lie structures of the algebra of observables are mirrored by two geometric struc-

tures on the quantum space of states: a symplectic and a Riemannian structure. A key

achievement of this reformulation is to show that the two-fold role is the constitutive ingre-

dient defining what an observable is. Moreover, it points to the fact that, from the restricted

point of view of the transformational role of observables, classical and quantum kinematics

behave in exactly the same way.

However, a satisfactory comparison of the classical and quantum Jordan structures re-

mains somewhat elusive at this stage, mainly because the language of Kähler manifolds fails

to provide a unifying language for describing both kinematics. Thus, in section 4 we finally

turn to Landsman’s proof that any state space can be described as a uniform Poisson space

with transition probability. As we will show, this framework highlights with unmatched clar-

ity that the crucial difference between classical and quantum kinematics lies in the way the

two roles of observables are related to each other.
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2 Standard formulation of kinematics

2.1 Standard classical kinematics
Symplectic geometry has become the framework per se of mechanics, up

to the point one may claim today that these two theories are the same.

Symplectic geometry is not the language of mechanics, it is its essence and

matter. [25]

P. Iglesias-Zemmour

Classical Hamiltonian mechanics is casted in the language of symplectic geometry [1,

5, 14, 35, 39, 42]. In this formulation, the starting point is the classical space of states of the

system S C, which is identified with a finite-dimensional symplectic manifold.

Definition 1. A finite-dimensional symplectic manifold is a differentiable manifold S equipped

with one additional structure: a two-form ω ∈ Ω2(S), called the symplectic form, which is

closed and non-degenerate. This means:

i) ω is an anti-symmetric section of T ∗S⊗T ∗S,

ii) dω = 0,

iii) ω , seen as a map from T S to T ∗S, is an isomorphism.

The group TC of classical global state transformations is the group Aut(S) = Symp(S)

of symplectomorphisms1. It is the subgroup of diffeomorphisms ϕ : S −→ S leaving invariant

the symplectic 2-form: ϕ∗ω = ω , where ϕ∗ω is the pull-back of the symplectic form2.

The Lie algebra tC of classical infinitesimal state transformations is the Lie algebra

associated to the group of global transformations. It is the Lie algebra Γ(T S)ω of vector

fields leaving invariant the symplectic 2-form: Γ(T S)ω = {v ∈ Γ(T S) |Lvω = 0} where L

denotes the Lie derivative3.

1Sometimes, these transformations are also called canonical transformations.

2A diffeomorphism ϕ : S −→ S induces a map Φ : C ∞(S,R)−→ C ∞(S,R) defined by:

∀ f ∈ C ∞(S,R),(Φ f )(p) = f (ϕ(p)).

This in turn allows to define the push-forward ϕ∗ of vector fields and the pull-back ϕ ∗ of n-forms by:

∀v ∈ Γ(T S), (ϕ∗v)[ f ] := v[Φ f ],

∀α ∈ Ωn(S), (ϕ ∗α)(v1, . . . ,vn) := α(ϕ∗v1, . . . ,ϕ∗vn).

3For a given two-form α ∈ Ω2(S), the Lie derivative with respect to the vector field v ∈ Γ(T S) is given by

the so-called “Cartan’s magic formula”: Lvα = (ιvd +dιv)α , where ιvα := α(v, ·) ∈ Ω1(S).
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Finally, classical observables are defined as smooth real-valued functions over the space

of states. The algebra of observables C ∞(S,R) has the structure of a Poisson algebra:

Definition 2. A Poisson algebra is a real (usually infinite-dimensional) vector space A C

equipped with two additional structures: a Jordan product • and a Lie product ⋆ such that:

i) • is a bilinear symmetric product,

ii) ⋆ is a bilinear anti-symmetric product,

iii) ⋆ satisfies the Jacobi identity: f ⋆ (g⋆h)+g⋆ (h⋆ f )+h⋆ ( f ⋆g) = 0,

iv) ⋆ satisfies the Leibniz rule with respect to •: f ⋆ (g•h) = ( f ⋆g)•h+g• ( f ⋆h),

v) • is associative.

The Lie product of a Poisson algebra is very often called the Poisson bracket and denoted by

{·, ·}.

In this case, the commutative and associative Jordan product • is simply the point-wise

multiplication of functions. The Lie product, on the other hand, is defined in terms of the

symplectic structure by:

∀ f ,g ∈ C ∞(S,R), { f ,g}= f ⋆g := ω(d f ♯,dg♯), (1)

where d f ♯ := ♭−1(d f ) and ♭ denotes the so-called musical vector bundle isomorphism de-

fined by

♭ : TpS ∼−−→T ∗
p S

v 7−→ωp(v, ·).

The fact that ω is a 2-form implies the anti-commutativity of the product thus defined,

whereas the Jacobi identity follows from the closedness of the symplectic form.

Let us make a series of comments on the definition of the Poisson algebra of classi-

cal observables in order to motivate the terminology and explain the relation between the

algebraic structures and the two-fold role of observables in classical kinematics.

First, axioms i) and v) turn (A C,•) into a Jordan algebra4. Moreover, notice how

the very definition of the Jordan product of two classical observables involves solely their

numerical role: f •g is defined as the observable whose value at each state is the product of

the values of the observables f and g at the the same state. Conversely, the set spec( f )⊂ R
of values of the observable f is in fact completely determined by its position within the

4A real Jordan algebra (A ,•) is a commutative algebra such that, moreover, F • (G •F2) = (F •G) •F2

for all F,G ∈A . This concept was introduced by the German theoretical physicist Pascual Jordan in 1933 [26].
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Jordan algebra (A C,•) [32]. Indeed, it may be defined as

spec( f ) :=
{

α ∈ R
∣∣∄g ∈ (A C,•) such that ( f −α1)•g = 1

}
,

in exact analogy with the definition of the spectrum of a linear operator5. In this sense, the

Jordan structure of the algebra of classical observables completely encodes their numerical

role.

Similarly, axioms ii) and iii) turn (A C,⋆) into a Lie algebra. Only axiom iv) estab-

lishes a relation between the otherwise unrelated Jordan and Lie structures of the algebra of

classical observables. Given an observable f ∈ A C, consider the linear operator v f whose

action on any element g ∈ A C is defined by v f (g) := f ⋆g. The Leibniz rule states that the

linear operator v f is in fact a derivation on the Jordan algebra (A C,•). Now, derivation on

an algebra of smooth functions over a manifold are nothing but vector fields:

Der(C ∞(S,R),•) = Γ(T S),

and it is easy to show that the derivative operator v f leaves the symplectic form invariant.

Hence, the Leibniz rule guarantees the existence of a map

v− : A C −→ tC (2)

that, to any classical observable f associates an infinitesimal state transformation v f . The

vector field v f is more commonly called the Hamiltonian vector field associated to f , and

v− the Hamiltonian map. It is the technical tool that captures the transformational role of

classical observables. In particular, the susbset tCA of Hamiltonian vector fields represents

the set of infinitesimal transformations arising from classical observables.

From this point of view, the Jacobi identity is the requirement that this map be a mor-

phism of Lie algebras: (A C,⋆) tC.
v− Indeed, axiom iii) may be rewritten as:

v f⋆g(h) = v f ◦ vg(h)− vg ◦ v f (h) =: [v f ,vg](h).6

5Recall that, given a vector space V and a linear operator A acting on V , the spectrum of A is defined as

spec(A) :=
{

α ∈ R
∣∣ (A−α IdV ) is not invertible

}
.
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Moreover, since the kernel of the map v− is the set of constant functions7, we then have the

isomorphism of Lie algebras

(A C/R,⋆)≃ tCA . (3)

In other words, “up to a constant”, the transformational role of classical observables is found

by simply forgetting the Jordan product and focusing on the Lie structure.

To sum up, the following picture emerges (see also Figure 2). In the standard geo-

metric formulation of classical kinematics, the primitive notion from which one constructs

all the others is the notion of ‘state’. Classical observables are defined by their numerical

role, which yields the commutative Jordan algebra (C ∞(S,R),•). To this is added a second

non-commutative structure, the Lie product or Poisson bracket, induced by the symplectic

structure present on the classical space of states and which allows to define the transforma-

tional role of observables.

numerical role
of observables

Jordan structure
(commutative,

associative)

STATES

symplectic
structure

transformational role
of observables

Lie structure
(non-commutative,

non-associative)

v−

Fig. 2 – Relation between the conceptual and mathematical structures of classical kinematics (stan-
dard formulation). States (boxed) are the primitive notion; the numerical role of observables (in bold
typeface) is used to define classical observables; the transformational role is only defined in a third
stage. The geometric symplectic structure induces the algebraic Lie structure which in turn governs
the transformational role of observables. The numerical role, on the other hand, is captured by the
presence of the algebraic Jordan structure, which appears not to have a geometric counterpart.

6v f and vg being linear operators on the real vector space A C, one can consider their composition v f ◦ vg.

This fails to be a derivative operator (and hence a vector field), but the commutator v f ◦ vg − vg ◦ v f is again a

derivative operator.

7Here, we suppose that the space of state is a simply connected manifold. In the general case, the kernel of

v− is the center of (A C,⋆), that is, the set of locally constant functions.
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2.2 Standard quantum kinematics

In the standard formulation of quantum kinematics, the starting point is an abstract Hilbert

space H , usually infinite-dimensional. In order to facilitate the comparison with the clas-

sical case, we will again identify the mathematical structures used to describe the four fun-

damental structures: the space of quantum states S Q, the group of quantum global state

transformations T Q, the Lie algebra of quantum infinitesimal state transformations tQ and

the algebra of quantum observables A Q.

Definition 3. A complex Hilbert space is a complex vector space H equipped with one

additional structure: a Hermitian, positive-definite map ⟨·, ·⟩ : H ×H −→ C such that the

associated metric d : H ×H −→ R+ defined as d(ψ,φ) := ⟨φ −ψ,φ −ψ⟩ turns (H ,d)

into a complete metric space.

For a quantum system described by H , states are given by rays of the Hilbert space—

that is, by one-dimensional subspaces of H .

The group T Q of global state transformations is the group Aut(H ) =U(H ) of unitary

operators. It is the subgroup of linear operators U : H −→H such that U∗ =U−1. The Lie

algebra tQ of infinitesimal state transformations is the Lie algebra (BiR, [·, ·]) of bounded

anti-self-adjoint operators8.

Finally, a quantum observable is described by a bounded self-adjoint operator. The

algebra of observables BR(H ) has the structure of a non-associative Jordan-Lie algebra:

Definition 4. A non-associative Jordan-Lie algebra is a real vector space A Q (usually

infinite-dimensional) equipped with two additional structures: a Jordan product • and a Lie

product ⋆ such that

i) • is a bilinear symmetric product,

ii) ⋆ is a bilinear anti-symmetric product,

iii) ⋆ satisfies the Jacobi identity: F ⋆ (G⋆H)+G⋆ (H ⋆F)+H ⋆ (F ⋆G) = 0,

8For finite-dimensional Hilbert spaces, this is clear: any operator A ∈ BiR defines a one-parameter group

of unitary operators through exponentiation: etA ∈U(H ), t ∈ R. The situation is more delicate in the infinite-

dimensional case for two reasons. First, U(H ) is not a Lie group (it is infinite-dimensional) and thus the

notion of an associated Lie algebra is problematic. However, by Stone’s theorem we know there is a one-to-

one correspondence between anti-self-adjoint operators and continuous one-parameter unitary groups. In this

sense, one is still allowed to claim that anti-self-adjoint operators are the generators of unitary transformations.

The second problem is that, without further restrictions, anti-self-adjoint operators do not form a Lie algebra

(in fact, they do not even form a vector space). This is the reason why we restrict attention here to bounded

anti-self-adjoint operators. For a precise mathematical treatment of these issues, see [2].
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iv) ⋆ satisfies the Leibniz rule with respect to •:

F ⋆ (G•H) = (F ⋆G)•H +G• (F ⋆H),

v) • and ⋆ satisfy the associator rule: (F •G)•H −F • (G•H) = (F ⋆H)⋆G.

In this case, both the Jordan and Lie products are related to the composition of operators

◦, by means of the anti-commutator and (i-times) the commutator respectively:

F ⋆G := i
2 [F,G] = i

2(F ◦G−G◦F) (4)

F •G := 1
2 [F,G]+ = 1

2(F ◦G+G◦F)9. (5)

As it was the case in classical kinematics, also in quantum kinematics can the two

natural algebraic structures present on the set of quantum observables be seen as the mani-

festation of the two-fold role of observables. This time, however, the transformational role

of quantum observables is much easier to perceive. Indeed, the quantum analogue of the

classical map (2) is here simply defined as

V− : A Q −→ tQ (6)

F 7−→ iF.

In other words, given a quantum observable F , the associated generator of state transforma-

tions is just the anti-self-adjoint operator obtained through multiplication by i. The map V−

is obviously an isomorphism of Lie algebras:

(A Q,⋆)≃ tQ, (7)

which should be compared with its classical analogue (3). Again, this means that considering

quantum observables solely in their transformational role—that is, ignoring their numerical

role—corresponds exactly to focusing only on the Lie structure and forgetting the second

algebraic structure (here, the Jordan product).

9 It is important to stress that these are the two natural structures present on the set of self-adjoint operators.

For example, the composition of operators is not a well-defined operation on this set (the composition of self-

adjoint operators is not self-adjoint). One should also notice that the Lie product on bounded self-adjoint

operators is not the commutator: the multiplication by the complex number i in the definition is a necessary

one. This is because the commutator of two self-adjoint operators yields an anti-self-adjoint operator. On

the other hand, the two factors 1
2 are only a convenient normalization in order to obtain the associator rule as

written in axiom v) but other choices are possible. For instance, another normalization is F ⋆G := i
h̄ [F,G],

which forces κ = h̄2

4 (cf. 5), but allows to write the canonical commutation relations between position and

momentum operators as P⋆X = 1.
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Mathematically, the above statement is certainly trivial. But this triviality points to the

fact that, whereas in classical kinematics there was an emphasis on the numerical role of

observables, quantum kinematics, at least in the standard Hilbert space formulation, presents

the reverse situation: quantum observables are defined by their role as generators of state

transformations and the reading of their numerical role is more involved. From this perspec-

tive, it is not surprising that specific quantum observables are sometimes explicitly defined

through their transformational role [44].

On the other hand, the set of possible values of a quantum observable F is completely

determined by the Jordan structure. A simple way of seeing this is to recall that spec(F) can

be defined as the ‘Gelfand spectrum’ of the C∗-algebra (C∗(F),◦) generated by F10. When F

is self-adjoint, this is a commutative subalgebra of B(H )11, in which case the composition

◦ and the anti-commutator • are the same operation. Therefore, as it was the case for the

Classical, the Jordan structure encodes all the information of the numerical role of quantum

observables.

The striking similarity just brought to light between the classical and quantum algebras

of observables motivates the definition of a general (not necessarily non-associative) Jordan-

Lie algebra, which encapsulates both the classical and the quantum cases [34]:

Definition 5. A general Jordan-Lie algebra is a real vector space A equipped with two

additional structures: a Jordan product • and a Lie product ⋆ such that

i) • is a bilinear symmetric product,

ii) ⋆ is a bilinear anti-symmetric product,

iii) ⋆ satisfies the Jacobi identity: F ⋆ (G⋆H)+G⋆ (H ⋆F)+H ⋆ (F ⋆G) = 0,

iv) ⋆ satisfies the Leibniz rule with respect to •:

F ⋆ (G•H) = (F ⋆G)•H +G• (F ⋆H),

v) • and ⋆ satisfy the associator rule:

∃κ ∈ R,(F •G)•H −F • (G•H) = κ2(F ⋆H)⋆G.

Only the last axiom differentiates the classical and quantum algebras of observables.

10Given a unital commutative C∗-algebra U , its Gelfand spectrum specG(U ) is the set of all positive linear

functionals ρ : U −→ C such that ρ(I) = 1 [34]. The fact that specG(C∗(F)) is isomorphic to the spectrum of

F (in the usual sense) justifies the use of the word “spectrum” in Gelfand’s theory [11].

11Indeed, for F self-adjoint, it consists in all polynomials in F . In the case where F∗ ̸= F , then C∗(F) will

be non-commutative if [F,F∗] ̸= 0.
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When κ = 0, the Jordan product is associative and one gets the definition of a Poisson alge-

bra describing classical observables. When κ = 1, one gets the previous definition for the

algebra of quantum observables with a non-associative Jordan product. In fact, whenever

κ ̸= 0, one may always rescale the Lie product so as to yield κ = 1. Therefore, the world of

Jordan-Lie algebras is sharply divided into the sole cases of κ = 0 (corresponding to classical

mechanics) and κ = 1 (corresponding to quantum mechanics). In this precise sense, one can

say that the transition from classical observables to quantum observables is the transition

from associative Jordan-Lie algebras to non-associative Jordan-Lie algebras.

Thus, it is the opposition associativity/non-associativity, rather than the widespread op-

position commutativity/non-commutativity, that truly captures the algebraic difference be-

tween the Classical and the Quantum. As the last few paragraphs show, the common concep-

tion “classical = commutative; quantum = non-commutative” arises from a wrong analogy

between the two kinematics. Indeed, instead of comparing either the full algebras of observ-

ables (with both the Jordan and Lie structures), the two commutative algebras of observables-

as-quantities (with only the Jordan structure) or else the two non-commutative algebras of

observables-as-transformations (with only the Lie structure), the wrong characterization of

the Classical/Quantum transition compares the primary role of classical observables with the

primary role of quantum observables. It therefore compares the Jordan structure of classical

observables with the Lie structure of quantum observables12.

These remarks, however, do not help in understanding the meaning of the associator

rule, crucial in distinguishing both kinematics. When κ ̸= 0, as in the quantum case, a new

relation between the Jordan and Lie structures of the algebra of observables is introduced.

Therefore, one would expect that the precise way in which the two roles of observables are

intertwined differs in both theories. In this regard, it is interesting to note, as it has been

done in [13], that two of the most notable features of the Quantum—namely, the eigenstate-

eigenvalue link and the existence of a condition for observables to be compatible—may be

reformulated as conditions relating the numerical and transformational roles:

12This confusion was there since the very beginning of Quantum Mechanics. For example, in their second

paper of 1926, Born, Heisenberg and Jordan write:

We introduce the following basic quantum-mechanical relation: pq−qp = h
2πi1. [...] One can

see from [this equation] that in the limit h = 0 the new theory would converge to classical theory,

as is physically required. [9, 327]

It is clear that they were comparing the commutator in quantum mechanics with point-wise multiplication in

Classical Mechanics (despite the fact that, by the time of the second quoted paper, Dirac had already shown

in [17] that the quantum commutator should be compared to the classical Poisson bracket).
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1. Eigenstate-eigenvalue link. In the standard formulation of quantum kinematics, an

observable F has a definite value only when the state of the system is described by

an eigenstate of the operator F : F |ρ⟩ = F̃(ρ)|ρ⟩. If we denote by [ρ] the ray in

H describing the state of the system, this condition may be reformulated as: the

observable F has a definite value on the state [ρ] if and only if the state is left invariant

by the transformations associated to the observable: etVF [ρ] = [ρ].
2. Compatibility of observables. Two observables F and G are said to be compati-

ble if, for any ε ∈ R+, it is possible to prepare the system in a state ρ such that

∆ρ(F) +∆ρ(G) < ε , where ∆ρ(F) denotes the uncertainty of F13. Thus, the com-

patibility of two observables is a notion that applies to their numerical role. However,

as it is well-known, two observables are compatible if and only if their Lie product van-

ishes: F ⋆G = i
2 [F,G] = 0. This may be reformulated as: the values of two quantum

observables F and G are compatible if and only if F is invariant under the transfor-
mations generated by G (or viceversa).

The possibility of these reformulations hints to the idea that indeed the quantum is

characterized by a particular interplay between the two-fold role of observables. But to

confirm this, it is necessary to have a deeper understanding of the Jordan and Lie structures

governing the algebra of observables.

3 The geometric formulation of quantum kinematics

The comparison of the standard formulations of both kinematics brings out a striking struc-

tural similarity between the algebras of classical and quantum observables. They are both

equipped with two products—one commutative and one anti-commutative—whose existence

may be seen as a manifestation of the fundamental two-role of the observables of a physical

system. On the other hand, the classical and quantum descriptions of the space of states

seem at first sight not to have any points in common. One could then be inclined to think

that, although the non-associativity of the Jordan product has been spotted as the main al-

gebraic difference between classical and quantum observables, the really crucial departure

of the Quantum with respect to the Classical lies in the nature of the space of states. For in

13Because of Heisenberg’s famous uncertainty relations, the definition of compatible observables is perhaps

more often stated in terms of the product ∆ρ(F)∆ρ(G) rather than the sum. However, as Strocchi points out

in [43], this is wrong since for any two bounded operators, one has inf
ρ
(∆ρ(F)∆ρ(G)) = 0.



F. Zalamea - The two-fold role of observables 14

the dominant conception of quantum mechanics, the linearity of the space of states is con-

comitant of the superposition principle, which in turn is often regarded as one—or perhaps

the—fundamental feature of the theory, as Dirac asserts:

For this purpose [of building up quantum mechanics] a new set of accurate laws of

nature is required. One of the most fundamental and the most drastic of these is the

Principle of Superposition. [18]

From this perspective, the apparently radical difference between the geometric space

of classical states and the linear space of quantum states may be perceived as the natural—

and almost necessary—manifestation of this “drastic” new feature of the Quantum. But in

claiming so, one forgets a central point, which indicates this whole idea cannot be the end

of the story: the “true” quantum space, in which points do represent states, is the projective

Hilbert space PH , a genuine non-linear manifold.

The principle of superposition has certainly been a powerful idea, with a strong influ-

ence on the heuristics of the Quantum, and its link with the linearity of Hilbert spaces has

been in my opinion one of the main reasons for the widespread use of the standard formalism.

However, in the attempt to compare classical and quantum kinematics, due care should be

taken to express both kinematics in as similar terms as possible. It becomes therefore natural

to attempt a reformulation of the quantum situation in a language resembling the classical

one—that is, to forget Hilbert spaces and to develop the quantum theory directly in terms of

the intrinsic geometry of PH .

The task of this reformulation is sometimes referred to as the “geometric or delineariza-

tion program”. Its explicit goal is to reestablish the fruitful link, witnessed in the classical

case, between the geometry of the space of states and the algebraic structures of observables.

Some of the most important references are [6, 10, 15, 16, 27, 40]14.

The central result upon which the whole geometric program is based is the fact the

projective Hilbert space PH is a Kähler manifold.

14It is important to clearly distinguish the program of a geometric reformulation of quantum mechanics from

the program of ‘geometric quantization’ which we will not discuss here and is completely unrelated. The first

aims at a reformulation of quantum mechanics which avoids Hilbert spaces. The second is geared towards

an explicit construction of the quantum description of a system for which the classical description is given.

But the resulting quantum description is still based on Hilbert spaces. What is ‘geometric’ about geometric

quantization is the means by which the Hilbert space is constructed: roughly, one starts with the symplectic

manifold describing the classical system, considers a complex line bundle over it and defines the Hilbert space

as a particular class of sections of this bundle. The program of geometric quantization was started by Jean-

Marie Souriau and Bertram Kostant [31, 42]. A standard reference is [46].
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Definition 6. A Kähler manifold is a real manifold M (possibly infinite-dimensional, in

which case M should be taken to be a Banach manifold) equipped with two additional struc-

tures: a symplectic form ω and an integrable almost complex structure J which is compatible

with ω . This means:

i) J is a vector bundle isomorphism J : T M −→ T M such that J2 =−1,

ii) For any point p of M and any two vectors v,w of TpM,

ω(Jv,Jw) = ω(v,w). (8)

Given this, one can naturally define a Riemannian metric g ∈ ∨2Γ(T M) by:

g(v,w) := ω(v,Jw). (9)

In fact, a Kähler manifold can also be defined as a triple (M,g,J) where g is a Riemannian

metric and J is an invariant almost complex structure15. Equation (9) is then perceived as the

definition of the symplectic form.

The important fact for us is that the quantum space of states is both a symplectic man-

ifold and a Riemannian manifold. It has thus a very rich geometry which can be used to

provide an alternative description of the full Jordan-Lie algebra of quantum observables,

with no reference to operators on the Hilbert space. This is achieved in two steps, as we

explain in the subsequent subsections. Here, we follow closely [6].

3.1 The symplectic-Lie structure of the quantum

Let SH denote the collection of unit vectors of the Hilbert space H , and consider the pair

of arrows

H SH PH ,
i τ (10)

where the left arrow is simply the injection saying that SH is a submanifold of H , and

the right arrow is the projection describing the unit sphere as a U(1)-fibre bundle over the

projective Hilbert space (in other words, it describes PH as a quotient: PH ≃ SH /U(1)).

Consider now the map ̂ : BR(H )−→ C ∞(PH ,R) that, to a given self-adjoint oper-

ator F , associates the real-valued function defined by

F̂(p) := ⟨ϕ ,Fϕ⟩, where ϕ ∈ τ−1(p),

and let us denote by C ∞(PH ,R)K the image of this map.

15Associated to the Riemannian metric, there is a unique torsion-free metric compatible affine connection ∇
(the so-called Levi-Civita connection). An almost complex structure J is said to be invariant if ∇J = 0 [28].
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̂ is obviously an injection of real vector spaces. There is however no hope for this map

to be a bijection, as may readily be seen by considering finite-dimensional Hilbert spaces:

in this case, BR(H ) is finite-dimensional whereas C ∞(PH ,R) is infinite-dimensional.

Through the map ̂ , one can therefore think of self-adjoint operators as being some ‘very

particular’ functions on the projective Hilbert space. The difficult question is to specify what

‘very particular’ means—i.e. to characterize C ∞(PH ,R)κ inside C ∞(PH ,R).

A first step in this direction is to use the symplectic structure of the quantum space of

states. Let us quickly recall how it is defined. The easiest way is to start by noticing that the

Hilbert space H is itself a symplectic manifold. To see this, it is best to change perspectives

and consider H from the point of view of real numbers rather than complex numbers. First,

one views H as real vector space equipped with a complex structure J. This simply means

that the multiplication of a vector by a complex number is now considered as the result of

two operations—multiplication by real numbers and action of the linear operator J: for z ∈C
and ϕ ∈ H , we have zϕ = Re(z)ϕ + Im(z)Jϕ . Second, one also decomposes the Hermitian

product of two vectors into its real and imaginary parts, and uses the natural isomorphism

TH ≃ H ×H 16, to define the tensor Ω ∈ Γ(T ∗H ⊗T ∗H ) by

Ω(Vϕ ,Vψ) := 4Im(⟨ϕ ,ψ⟩). (11)

The skew-symmetry of the Hermitian product entails the anti-symmetry of Ω, which is hence

a 2-form. The fact that the Hermitian product is positive-definite and non-degenerate implies

Ω is both closed and non-degenerate. Therefore, Ω is a symplectic structure on H . Given

this, the symplectic form on the projective Hilbert space is the unique non-degenerate and

closed 2-form ω ∈ Ω2(PH ) such that τ∗ω = ι∗Ω (the pull-back of ω to the unit sphere

coincides with the restriction to SH of the symplectic form on H )17. The induced Poisson

bracket on C ∞(PH ,R) will be denoted by {·, ·}PH .

The question now is whether the symplectic structure plays in quantum kinematics ex-

actly the same role as it does in classical kinematics—namely, whether it allows to define

16Given (ϕ ,ψ) ∈ H ×H , define Vϕ ∈ TψH by

∀ f ∈ C ∞(H ,R),Vϕ [ f ](ψ) =
d
ds

f (ψ + sϕ)
∣∣∣
s=0

.

17Of course, one needs to be sure that such a 2-form does exist. A cleaner way of defining the symplectic

form is by means of the so-called Marsden-Weinstein symplectic reduction [36]. Therein, one considers the

natural action of U(1) on H . This is a strongly Hamiltonian action and the momentum map µ : H −→
u(1)∗ ≃ R is given by µ(ϕ) = ⟨ϕ ,ϕ⟩. Then, PH ≃ µ−1(1)/U(1) and the general theory insures this is a

symplectic manifold. For the details, I refer the reader to [34].
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both the Lie product on the algebra of quantum observables, and the generator of state trans-

formations associated to any given observable. As it turns out, the answer is positive. Indeed,

it can be shown [6,34] that the Hamiltonian vector field on PH associated to the self-adjoint

operator F (regarded through the map ̂ as a function on PH ) coincides with the projection

of the vector field VF (which is defined on H (cf. (6)) but is in fact tangent to SH since it

generates unitary transformations). In other words, we have

∀F ∈ BR(H ), vF̂ = τ∗VF ∈ Γ(TPH ). (12)

Moreover, we also have

{F̂ , K̂}PH =
i
2
[̂F,K] (13)

which means that the map ̂ is an injection of Lie algebras:

(BR(H ), i
2 [·, ·]) (C ∞(PH ,R),{·, ·}PH ).̂ (14)

Hence, the commutator of bounded self-adjoint operators may be seen as the restriction to

C ∞(PH ,R)K of the Poisson bracket induced by the symplectic structure on PH . Together,

equations (12) and (13) show that, as far as the Lie structure and the transformational role of

quantum observables is concerned, we might as well forget self-adjoint operators and reason

in terms of expectation-value functions and the intrinsic symplectic geometry of the quantum

space of states.

This should be felt as an impressive merger of the two kinematics. Any space of states,

be it classical or quantum, is a symplectic manifold and the symplectic structure plays ex-

actly the same role in both cases: it induces the Lie structure on the algebra of observables

and governs their transformational role. Or, to put it differently, if one decides to restrict

attention and focus only on the transformational role of observables, then there is no dif-

ference whatsoever between classical and quantum kinematics. In particular, any statement

of classical mechanics which only involves observables-as-transformations goes unchanged

when passing to quantum mechanics18.

3.2 The Riemannian-Jordan structure of the Quantum

Despite the injection (14), the full Jordan-Lie algebra (BR(H ), i
2 [·, ·],

1
2 [·, ·]+) cannot be

seen as a subalgebra of the Poisson algebra (C ∞(PH ,R),{·, ·}PH , ·). The obstruction, of

18Two examples of this are the canonical commutation relations {p,q}= 1 (which state that linear momen-

tum is the generator of space translations) and Hamilton’s equations of motion d
dt = {H, ·} (which state that the

Hamiltonian is the generator of time evolution).
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course, lies on the Jordan structure: although quantum observables may be represented as

functions on the space of states, the associative point-wise multiplication of functions cannot

yield the non-associative Jordan product of quantum observables.

Another simple way of understanding the obstruction is to reflect on the representation

of the square of an observable19. In general, given an observable f represented by the abstract

element f , its square f2 should be represented by the element f • f , where • is the Jordan

product. In classical kinematics, if f is represented by a certain real-valued function f , then

the observable k := f2 is represented simply by the square function f 2. But, as we know,

this is not the answer of quantum kinematics: the observable f is represented by the self-

adjoint operator F and the observable k by the self-adjoint operator F2. Thus, in terms of

the functions over the space of states, we have k = F̂2 ̸= (F̂)2 = f 2. This shows that indeed

point-wise multiplication is not the right structure for the quantum case. Instead, one should

try to define a Jordan product • satisfying F̂2 = F̂ • F̂ .

With little surprise, this is achieved by using the additional geometric structure present

on the quantum space of states that we have ignored so far: the Riemannian metric g. This

structure is defined in very similar fashion to the construction of the symplectic form. Now,

one considers the real part of the Hermitian product to define the tensor G ∈ Γ(T ∗H ⊗
T ∗H ) by:

G(Vϕ ,Vψ) := 4Re(⟨ϕ ,ψ⟩). (15)

This time, the skew-symmetry, positive-definitiveness and non-degeneracy of the Hermitian

product respectively imply the symmetry, positive-definitiveness and non-degeneracy of G,

which is hence a Riemannian metric on H .

At this point, we may use again diagram (10) to induce a Riemannian metric on the

space of states. In the symplectic case, we regarded the isomorphism SH /U(1) ≃ PH

as the second stage of the Marsden-Weinstein symplectic reduction and this sufficed to in-

sure PH was also symplectic. Instead, we now adopt towards this isomorphism a different

perspective, called by Ashtekar and Schilling the “Killing reduction” [6]. It is the follow-

ing: first, the restriction i∗G of the metric G to the unit sphere is again a metric and SH

becomes then a Riemannian manifold in its own right. Second, one regards the action of

U(1) on H as the one-parameter group of transformations generated by the vector field

VId ∈ Γ(TH ) associated to the identity self-adjoint operator. Since these transformations

preserve the Hermitian product, they also preserve the metric G. Thus VId is a Killing vector.

19The reader will recognise here the question raised by Heisenberg in his 1925 seminal paper that definitely

launched the development of quantum mechanics [24].
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Moreover, this vector field is tangent to SH and is hence also a Killing vector for i∗G. In

this way, the isomorphism SH /U(1) ≃ PH describes the projective Hilbert space as the

space of all trajectories of the Killing vector field VId . By a result of Geroch [20], we know

that the resulting manifold is also Riemannian. The Riemannian metric on PH is called the

Fubini-Study metric and will be denoted by g20.

Given this metric, and in very similar fashion to the definition of the Poisson bracket

in terms of the symplectic structure (cf. eq (1)), one can define the following product on

C ∞(PH ,R):
∀ f ,k ∈ C ∞(PH ,R), f • k := g(v f ,vk)+ f · k, (16)

where, to the point-wise multiplication of functions f · k, the metric adds a “Riemannian

bracket” ( f ,k) := g(v f ,vk). The result is a commutative and non-associative product. Thus,

the presence of the Riemannian structure allows to deform the usual commutative and asso-

ciative algebra of functions into a commutative but non-associative algebra. Yet, this does not

turn (C ∞(PH ,R),•,{·, ·}PH ) into a Jordan-Lie algebra, for • and {·, ·}PH do not satisfy

the associator rule in general.

Remarkably, however, one has the identity [6]:

∀F,K ∈ BR(H ), F̂ • K̂ =
1
2
̂[F,K]+. (17)

which has many important implications. First, it implies F̂ • F̂ = F̂2, as we wanted. Second,

it shows that (C ∞(PH ,R)K ,•) is a subalgebra of (C ∞(PH ,R),•) and, more importantly,

that when restricted to this subalgebra the new product • becomes a Jordan product. In other

words, we now have the isomorphism of non-associative Jordan-Lie algebras:

(
BR(H ),

1
2
[·, ·]+,

i
2
[·, ·]

)
≃
(
C ∞(PH ,R)K ,•,{·, ·}PH

)
. (18)

In addition to its role in the definition of the Jordan product for quantum observables,

the presence of a metric in the quantum space of states provides a very simple geometric

interpretation of two other crucial aspects of quantum kinematics: its transition probability

structure and the indeterminacy in the numerical value of observables. First, given a state p,

20As a side remark, notice that, in the same way that the Riemannian and symplectic structures of the quan-

tum space of states arise then from the real and imaginary parts of the Hermitian product of H respectively, at

the algebraic level the quantum Jordan and Lie products • : 1
2 [·, ·]+ and • : i

2 [·, ·] may also be seen as the real

and imaginary parts of the composition of operators:

for A,B ∈ BR(H ), A◦B = A•B− iA⋆B.
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the probability that a measurement of the observable F̂ will yield the result λ is given by

Pr(p, F̂ = λ ) = cos2 (dg(p,Σλ )
)

(19)

where Σλ is the subset of states having λ as definite value of the observable F̂ , and dg(p,Σλ )

is the minimal distance between the state p and the subset Σλ
21. In other words, the quantum

transition probabilities appear here to be simply a measure of the distance in the quantum

space of states. Second, from the combination of (16) and (17), we get

∆F = F̂ • F̂ − F̂ · F̂ = g(vF ,vF), (20)

which shows that the uncertainty of a quantum observable is nothing but the norm of the

Hamiltonian vector field associated to it.

From the conceptual perspective that is ours, this last result is particularly enlightening.

Indeed, in terms of the two-fold role of observables, this can also be expressed as: given a

state ρ and an observable F , the uncertainty ∆F(ρ) in the numerical value of the observable

F is precisely a measure of how much the state ρ is changed by the transformations gen-

erated by the observable. In particular, we recover as a special case the relation, noted at

the end of subsection 2.2 between definite-valuedness and invariance. Thus, it brings to the

fore the existence in quantum kinematics of an interdependence between the numerical and

transformational role of observables which is absent in classical kinematics.

3.3 The geometric characterization of quantum observables

Although we have now reached a completely geometric definition of both the Jordan and

Lie structures governing the algebra of quantum observables, the reference to operators on

Hilbert spaces has not yet been eliminated altogether: the elements of the algebra C ∞(PH ,R)K
are still defined as expectation-value functions associated to bounded self-adjoint operators.

Thus, the last stone in the full geometric description of quantum observables is to furnish a

criterion allowing to know when a function f ∈ C ∞(PH ,R) is of this form.

Many different characterizations exist [3, 32, 41], but the simplest one—and the most

relevant one from the point of view of the two-fold role of observables—was found first by

Schilling [40] (and shortly later rediscovered by Cirelli, Gatti and Mani [15]).

21Recall that the distance between two points p and p′ of a Riemannian manifold with metric g is given by:

dg(p, p′) := inf
{∫

Γ

√
g(vΓ(t),vΓ(t))dt

∣∣Γ ∈ Path(p, p′)
}
.
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Theorem 1. Let f be a smooth real-valued function over the projective Hilbert space PH .

The following two conditions are equivalent:

i) there exists a bounded self-adjoint operator F ∈ BR(H ) such that, for any ϕ ∈ SH ,

f ([ϕ ]) = ⟨ϕ ,Fϕ⟩,
ii) the Hamiltonian vector field associated to the function f is also a Killing vector field.

In one direction, the equivalence is obvious. In the other, the proof is essentially a

combination of Wigner’s theorem [7,45] (which forces the one-parameter group of transfor-

mations generated by the Killing field to be a group of unitary transformations) and Stone’s

theorem (which forces the unitary transformations to be generated by a self-adjoint operator).

The delicate part of the proof is to show that indeed it is a bounded self-adjoint-operator.

In this way, one reaches a definition of observables that applies equally well to classical

and quantum kinematics:

Observables: an observable of a physical system is a smooth real-valued function

on the space of states S to which an infinitesimal state transformation can be as-

sociated. That is, it is a function whose associated vector field preserves all the

geometric structures present in the space of states.

In the classical case, there is only the symplectic structure to preserve. Hence, any

function f does the job, since its Hamiltonian vector field v f automatically verifies Lv f ω =

0. But in the quantum case, there is also the metric to preserve. Accordingly, only those

functions for which the symplectic gradient is also a Killing vector field will qualify as

observables. Theorem 1 guarantees that these functions exactly coincide with the functions

F̂ that are real expectation-value maps of bounded self-adjoint operators F . Moreover, it

is important to notice that this last point only applies to the projective Hilbert space. Were

one to insist on working at the level of H , this geometric characterization of observables

would fail, for there are too many functions preserving both the symplectic and Riemannian

structures which do not arise as expectation-value maps of operators [6].

The conceptual relevance of this definition should not be missed, as it enlightens the

essential importance of the two-fold role of observables in kinematics. For it is precisely

this two-fold role, numerical and transformational, that serves as a definition of what an

observable is. The standard definition of classical observables only involved their numerical

role—they were defined as functions on the space of states—and did not apply to quantum

kinematics. Conversely, the standard definition of quantum observables only involved their

transformational role—they were defined as operators acting on states—and did not apply

to classical kinematics. A posteriori, it is therefore most natural that the general definition
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of an observable, classical or quantum, should explicitly mention both the functions and the

transformations.

3.4 Classical vs Quantum in the geometric formulation

Table 1 (page 23) summarizes the conceptual understanding of classical and quantum kine-

matics that emerges from the analysis of their geometric formulations.

The comparison is striking: in contrast to the staggering difference between the two

theories conveyed by the standard formalisms, the geometric point of view highlights the

deep common ground shared by the classical and the quantum. It allows, by the same token,

to pinpoint more precisely the place where they differ. Following Schilling, it is indeed

tempting to say that

the fundamental distinction between the classical and quantum formalisms is the

presence, in quantum mechanics, of a Riemannian metric. While the symplectic

structure serves exactly the same role as that of classical mechanics, the met-

ric describes those features of quantum mechanics which do not have classical

analogues. [40, p. 48]

Both the non-associativity of the Jordan product and the indeterminacy of the values for

quantum observables explicitly involve the metric. This view—that the quantum world has

one additional geometric structure, with no analogue in the classical, and that, in a loose

sense, to quantize is to add a Riemannian metric to the space of states—is found in the

vast majority of works which played an important role in developing the “geometrization or

delinearization program” of quantum mechanics.

Nonetheless, this is not the impression conveyed by the comparative table. By the end

of subsection 2.2, the standard description of quantum mechanics appeared to be clumsy

in comparison to the harmonious balance between the geometric structures, the algebraic

structures and the two-fold role of observables exhibited in the standard classical formula-

tion. But at present, the situation seems to be reversed: the quantum description shines, and

the praised beauty of the classical has somewhat faded away. For something seems to be

missing in the description of classical mechanics—more precisely, one geometric structure

on the space of states that would induce the associative Jordan product. In fact, one gets the

impression that this structure is the “Riemannian metric” g = 0. Indeed, setting g to vanish

in the quantum formulas yields the classical ones. Of course, g = 0 is not an actual metric,

but this does suggest there may be yet another manner of formulating the two kinematical

arenas, a manner in which they both exhibit the same two kinds of geometric structures, and
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Classical Kinematics Quantum Kinematics

States
points p of a symplectic manifold

(M,ω)
points p of a Kähler manifold

(M,ω,g,J)

Observables

C ∞(M,R)K
Smooth real-valued functions whose

transformations preserve the
geometric structures

C ∞(M,R)K
Smooth real-valued functions whose

transformations preserve the
geometric structures

Geometric
structures of

states

♠ a symplectic 2-form ω ♠ a symplectic 2-form ω

♣ a Riemannian metric g

Algebraic
structures of
observables

♠ Anti-commutative Lie product
{ f ,k}= ω(Vf ,Vk)

(induced by symplectic)

♣ Jordan product
Commutative and associative

f • k = f · k

♠ Anti-commutative Lie product
{ f ,k}= ω(Vf ,Vk)

(induced by symplectic)

♣ Jordan product
Commutative but non-associative

f • k = f · k+g(Vf ,Vk)

(induced by Riemannian)

Two-fold
role of

observables

♠ Transformational role captured by
Lie product

♣ Quantitative role captured by
Jordan product

♠ Transformational role captured by
Lie product

♣ Quantitative role captured by
Jordan product

Link between
the two roles

numbers independent of
transformations

∆ f = 0

numbers dependent of
transformations
∆ f = g(v f ,v f )

Table 1 – Comparison of the main mathematical structures present in classical and quantum kinemat-
ics (geometric formulation).

it just so happens that one of these structures is trivial—and hence unnoticed—in classical

kinematics.
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4 Landsman’s axiomatization of quantum mechanics

In the geometric approach to mechanics, the goal of a unifying programme is to find a notion

of space which meets the following three requirements:

1) Unification of states: both the classical and quantum space of states fall under the same

notion of space.

2) Unification of observables: there is a unique definition of the algebra of observables,

which, when restricted to the classical case, yields a Poisson algebra, and when re-

stricted to the quantum case yields a non-associative Jordan-Lie algebra.

3) Characterization of the quantum: there is a physically meaningful characterization of

when a space of this sort is a quantum space of states.

As we have just seen, the formulation of quantum mechanics in terms of Kähler manifolds

achieves the second requirement but it fails to meet the first one (and thus the last one).

At the end of the last century, Nicolaas P. Landsman developed an alternative approach

which succeeds in meeting the three demands. One can consider that the starting point of his

approach is to extend the geometric formulation of mechanics to the case where there exist

superselection rules. In this situation, the quantum space of states is no longer described

by a single projective Hilbert space PH but, instead, by a disjoint union of many: PQ =

⊔αPHα . The classical analogue of this is to consider general Poisson manifolds instead of

focusing only on symplectic manifolds22.

However, by performing such an extension, the Riemannian metric does no longer

suffice to define all the transition probabilities on the quantum space of states. The prob-

lem arises when considering two inequivalent states p and p′ (that is, two states belong-

ing to different superselection sectors PHα and PHα ′): the geometric formula Pr(p, p′) =

cos2(dg(p, p′)) cannot be applied since there is no notion of distance between points of dif-

ferent sectors. In the light of this, the natural strategy is to reverse the priority between the

metric and the transition probabilities: instead of considering the metric g as a primitive no-

tion and the transition probabilities as a derived notion, take the transition probabilities as a

fundamental structure of the quantum space of states.

22A Poisson manifold is a manifold P for which the algebra of smooth functions C ∞(P,R) is a Poisson

algebra. An important theorem in Poisson geometry states that any such manifold can always be written as a

disjoint union of symplectic manifolds—the so-called symplectic leaves of the Poisson manifold [34, Theorem

I.2.4.7, p. 71].
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4.1 Uniform Poisson spaces with transition probability

The relevant notion of space coined by Landsman is that of a uniform Poisson space with

a transition probability. In preparation of the definition of this notion, we first need to

introduce some terminology:

Definition 7. A Poisson space is a Hausdorff topological space P together with a collection

Sα of symplectic manifolds, as well as continuous injections ια : Sα ↪→ P , such that

P =
⊔
α

ια(Sα).

The subsets ια(Sα)⊂ P are called the symplectic leaves of P23.

Definition 8. A symmetric transition probability space is a set P equipped with a function

Pr : P ×P −→ [0,1] such that for all ρ,σ ∈ P

i) Pr(ρ,σ) = 1 ⇐⇒ ρ = σ ,

ii) Pr(ρ,σ) = Pr(σ ,ρ) (i.e. Pr is symmetric).

The function Pr is called a transition probability24.

Now, recall the geometric characterization of quantum observables achieved in Theo-

rem 1: the quantum space of states was seen to be endowed with two geometric structures—a

symplectic form ω and a Riemannian metric g. Associated to the symplectic structure ω was

the set of functions C ∞(PH ,R)ω preserving it. Similarly, to the Riemannian metric g one

associated the set C ∞(PH ,R)g. Then, the algebra of observables was simply found to be

the intersection:

C ∞(PH ,R)K := C ∞(PH ,R)ω ∩C ∞(PH ,R)g.

This idea may be immediately transposed for those spaces P which are equipped with the

23This notion was introduced for the first time by Landsman in [33, p. 38]. His definition differs slightly

from the one given here, for it also includes a linear subspace UR(P)⊂C ∞
L (P,R) which separates points and

is closed under the Poisson bracket: { f ,g}P(ια(q)) := {ι∗α f , ι∗α g}Sα
(q), where q ∈ Sα . I nonetheless find the

inclusion of this subspace somewhat unnatural at this point. This subspace UR(P) will only become important

when defining the key notion of a Poisson space with transition probability.

24This concept was introduced for the first time in 1937 by von Neumann in a series of lectures delivered at

the Pennsylvania State College. The manuscript was only published posthumously in 1981 [38].
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two structures just defined: one considers the function space CProb(P,R) intrinsically re-

lated to a transition probability space and the function space C ∞
Pois(P,R) intrinsically asso-

ciated to a Poisson space25 in order to define

C (P,R)K := C ∞
Pois(P,R)∩CProb(P,R). (21)

We are now ready to introduce the central definition:

Definition 9. A uniform Poisson space with a transition probability is a set that is both a

transition probability space and a Poisson space and for which C (P,R)K , as defined in

(21), satisfies:

i) completeness: C (P,R)K separates points,

ii) closedness: C (P,R)K is closed under the Poisson bracket,

iii) unitarity: the Hamiltonian flow defined by each element of C (P,R)K preserves the

transition probabilities.

From section 3, it is clear that a projective Hilbert space, equipped with its natural sym-

plectic form and the transition probability function Pr(p, p′) = cos2(dg(p, p′)) induced by

the Fubini-Study metric g, satisfies all three axioms and qualifies hence as a uniform Poisson

space with transition probability. On the other hand, one can always consider any Poisson

manifold—and in particular any symplectic manifold S— as a uniform Poisson space with

transition probability, where the transition probability function is trivial: Pr(p, p′) = δp,p′ . In

this case, we have CProb(S,R) = C (S,R), C (S,R)K = C ∞(S,R) and the three axioms are

trivially met.

As it has been the case for all other structures that we have met in the description

of kinematics, the fundamental notion introduced by Landsman to achieve the geometric

unification of classical and quantum kinematics is a space endowed with two structures. To

show that these are the geometric counterparts of the two algebraic structures present on the

algebra of observables, what remains to be seen is how to construct a Jordan product on

C (P,R)K starting from a transition probability function Pr.

This is achieved by noticing that, for transition probability spaces, one can develop a

spectral theory, much in the like of the spectral decomposition of self-adjoint operators on

25These function spaces are defined as follows. First, C ∞
Pois(P,R) is the set of all f ∈ C (P,R) such that

their restrictions to any Sα is smooth: ι∗α f ∈ C ∞(Sα ,R). On the other hand, the definition of CProb(P,R)
is more involved. One considers first the functions Prρ : P → R such that Prρ(σ) := Pr(ρ,σ), and defines

C 00
Prob(P) as the real vector space generated by these functions. Then CProb(P, ,R) := C 00

Prob(P)
∗∗

. See [34,

pp. 76–84] for more details.
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a Hilbert space. Given a transition probability space P , define a basis B as an orthogonal

family of points in P such that

∑
ρ∈B

pρ = 1,

where pρ is the function on P defined by pρ(σ) := Pr(ρ,σ)26. It can be shown [34, Propo-

sition I.2.7.4] that all the bases of P have the same cardinality and hence allow to define a

notion of ‘dimension’ for a transition probability space. Now, given an orthoclosed subset

S ⊂ P27 and a basis B thereof, define the function pS := ∑ρ∈B pρ . This function turns

out to be independent of the choice of the basis B28. With this in hand, we can now define

the spectral theory:

Definition 10. Consider a well-behaved transition probability space (P,Pr) and a function

A ∈ ℓ∞(P,R). Then a spectral resolution of A is an expansion

A = ∑
j

λ j pS j

where {S j} is an orthogonal family of orthoclosed subsets of P such that ∑ pS j = 1.

The crucial point which confers to the spectral resolution its power is the fact that, for

both Poisson manifolds (equipped with the trivial transition probabilities) and spaces of the

form P =
∪
PHα , the spectral resolution in unique and can thus be used to define the square

of an observable by

A2 := ∑
j
(λ j)

2 pS j .

Finally, this allows to define the Jordan product by

A•B :=
1
4
(
(A+B)2 − (A−B)2).

In sum, the notion of a uniform Poisson space with transition probability succeeds in

providing a common geometric language in which to describe both classical and quantum

26Given a transition probability space (P,Pr), two subsets S1 and S2 are said to be orthogonal if, for any

p ∈ S1 and any p′ ∈ S2, Pr(p, p′) = 0. A subset S ⊂ P is said to be a component if S and P \S are

orthogonal. Finally, a sector is a component which does not have any non-trivial components.

27Given a subset S ⊂ P , the orthoplement S ⊥ is defined by

S ⊥ :=
{

p ∈ P
∣∣∀s ∈ S , Pr(p,s) = 0

}
.

In turn, a subset is called orthoclosed whenever S ⊥⊥ = S .

28 To be more precise, this holds only for well-behaved transition probability spaces. A transition proba-

bility space is said to be well-behaved if every orthoclosed subset S ⊂ P has the property that any maximal

orthogonal subset of S is a basis of it. See [34, Definition I.2.7.5 and Proposition I.2.7.6]
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state spaces (requirement of unification of states), and from which one can construct, through

a unified procedure, the algebra of classical or quantum observables (requirement of unifica-

tion of observables). We now turn to the last and most important point: the characterization

of the class of uniform Poisson spaces with transition probability which describe quantum

systems.

4.2 Characterization of quantum kinematics

As it has been hinted at several times, from the point of view of the two-fold role of observ-

ables, a fundamental difference between classical and quantum kinematics seems to lie in

the articulation between the two roles: while in classical kinematics the two roles seem to

be essentially independent from each other, in quantum kinematics the quantitative aspect of

observables encodes information about the transformational one. Therefore, it is interesting

to compare the behaviour of the Poisson structure and the transition probability structure.

In order to do so, consider the following two equivalence relations defined on any uniform

Poisson space with transition probability:

Definition 11. Let P be a uniform Poisson space with transition probability. Then, two

points p, p′ ∈ P are said to be:

1. transformationally equivalent, denoted by p ∼
T

p′, if they belong to the same symplec-

tic leave,

2. numerically equivalent, denoted by p ∼
N

p′, if they belong to the same probability

sector.

These two different equivalence relations may be seen as the two different notions of

connectedness of the space of states arising from the two fundamental geometric structures.

‘Transformational equivalence’ is connectedness from the point of view of the transforma-

tional role of observables: two states p and p are transformationally equivalent if and only if

there exists a curve γ on P generated by an element F ∈ C (P,R)K such that p, p′ ∈ γ . In

similar fashion, ‘numerical equivalence’ is connectedness from the point of view of transition

probabilities: two states are numerically equivalent if and only if there exists a collection of

intermediate states χ1, . . . ,χn such that the chain of transitions p→ χ1 → . . .→ χn → p′ has a

non-vanishing probability—i.e., such that Pr(ρ,χ1)Pr(χ1,χ2) . . .Pr(χn−1,χn)Pr(χn,σ) ̸= 0.

Now, in classical kinematics, where one considers as space of states Pcl a symplectic

manifold with transition probabilities Pr(p, p′) = δp,p′ , the two notions of connectedness

are at odds from each other: from the point of view of the Poisson structure, the space of

states is completely connected (any two states are transformationally equivalent), whereas
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from the point of view of the transition probability structure the space of states is completely

disconnected (no two different states are numerically equivalent). In other words, we have

∗= (Pcl/∼
T
) ̸= (Pcl/∼

N
) = Pcl.

On the other hand, in quantum kinematics the compatibility between the two roles of observ-

ables is captured in the fact that these two a priori different equivalence relations coincide.

Indeed, we have

(Pqu/∼
T
) = (Pqu/∼

N
).

One of the great achievements of Landsman’s approach in terms of uniform Poisson

spaces with transition probabilities is to show with unmatched clarity that this compatibility

between the two roles of observables is in fact the essential difference between classical and

quantum kinematics. Indeed, given a uniform Poisson space with a transition probability,

he has provided the following axiomatic characterization of when such a space is a quantum

space of states:

Theorem 2. A uniform Poisson space with a transition probability P is the pure state space

of a finite-dimensional C∗-algebra if and only if:

QM 1) Principle of superposition:

for any p, p′ ∈ P such that p ∼
N

p′ and p ̸= p′, we have {p, p′}⊥⊥ ≃ S2.

QM 2) Compatibility of the two roles of observables:

the probability sectors and the symplectic leaves of P coincide.29

These are hence the two essential features that differentiate quantum kinematics from

classical kinematics. As the name suggests, the first axiom—also called the “two-sphere

property”—is nothing but the geometric reformulation of the superposition principle30. This

has been invariably stressed, from the beginning of quantum mechanics, as one of the funda-

mental features of the theory. The second point, however, seems to have been the blind spot

in the conceptual analysis of quantum kinematics.

29See [34, Theorem I.3.9.2. and Corollary I.3.9.2. pp 105–106]. In the case of infinite-dimensional C∗-

algebras, two more technical axioms are necessary.

30Indeed, in its core, the quantum superposition principle is a claim about the ability to generate new possible

states from the knowledge of just a few: given the knowledge of states p1 and p2, one can deduce the existence

of an infinite set Sp1,p2 of other states which are equally accessible to the system. In the standard Hilbert space

formalism, the superposition principle is described by the canonical association of a two-dimensional complex

vector space to any pair of states: for two different states ψ1,ψ2 ∈H , any superposition of them can be written

as ϕ = aψ1 +bψ2, with a,b ∈ C. In other words, it is captured by the existence of a map

V : H ×H −→ Hom(C2,H )
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5 Conclusion

In both classical and quantum kinematics, observables play two different conceptual roles:

on the one hand, observables are quantities which may take definite numerical values on

certain states; on the other hand, observables are intimately related to the generation of

transformations on the space of states. The main goal of this work was to show that this two-

fold role of observables is an essential feature which ought to be studied more extensively,

for it furnishes a very fruitful point of view from which to compare the conceptual structure

of classical and quantum kinematics.

To conclude, let us then summarize the global picture which has emerged from our

analysis of three different formulations of quantum kinematics: the standard one in terms of

Hilbert spaces, the geometric one in terms of Kähler manifolds and Landsman’s in terms of

uniform Poisson spaces with a transition probability (see also Figure 3).

Common to both kinematics is the fact that the full description of observables is the

conjunction of their numerical and transformational roles. That this two-fold role is a defin-

ing feature of physical observables is best seen in their geometric definition: an observable

is a function on the space of states to which an infinitesimal state transformation can be as-

sociated (cf. page 21). Algebraically, this two-fold role gets translated into the existence of

two structures on the set of observables: a Jordan product which governs the numerical role,

and a Lie product which governs the transformational role. Accordingly, the language of real

Jordan-Lie algebras is the common algebraic language which covers both classical and quan-

tum kinematics. The geometric level of states mirrors the algebraic level in every respect:

herein, the two-fold role manifests itself by the presence of two geometric structures—a tran-

sition probability structure and a Poisson structure (which respectively stem from the Jordan

and Lie product, and from which the Jordan and Lie product can be defined)—and the com-

mon geometric language is that of uniform Poisson spaces with a transition probability. One

often restricts attention to the simpler case where the Poisson space has only one symplectic

leaf. Then, the Poisson structure is equivalent to a symplectic 2-form and the non-trivial tran-

sition probability structure of the Quantum may be perceived as arising from a Riemannian

where the linear map Vψ1,ψ2 : C2 → H is an injection iff ψ1 and ψ2 are linearly independent vectors. The geo-

metric reformulation is then found simply by taking the projective analogue of this. Therein, the superposition

principle is now seen as the existence of a map

S : PH ×PH −→ Hom(PC2 ≃ S2,PH )

where, for p1 ̸= p2, the map Sp1,p2 is an injection. Axiom QM 1) is the generalization of this for any uniform

Poisson space with transition probability.



F. Zalamea - The two-fold role of observables 31

metric (the transition probability being, roughly, the distance between two points). In this

way, one recovers the geometric formulation of classical and quantum kinematics in terms

of symplectic manifolds and Kähler manifolds respectively.

With the use of either Jordan-Lie algebras or Poisson spaces with a transition probabil-

ity, one may sharply characterize the mathematical difference between the two kinematics.

At the algebraic level, the difference lies in the associativity/non-associativity of the Jordan

product, whereas at the geometric level it lies in the triviality/non-triviality of the transition

probability structure. In particular, this implies that, from the restricted point of view of

the symplectic/Lie structure, the Classical and the Quantum are indistinguishable. In other

words, both theories are identical if one focuses only on the transformational role of observ-

ables.

The conceptual difference between the Classical and the Quantum can only be grasped

when studying the relation between the two roles of observables (Figure 3). In both kine-

matics, the transformations preserve the numerical role of the observables. At the geometric

level, this fact is captured by unitarity: the Hamiltonian flow of any physical property pre-

serves the transition probabilities. At the algebraic level, this is encoded in the Leibniz rule.

However, on top of this, quantum kinematics exhibits a second compatibility condition be-

tween the two roles which distinguishes it from classical kinematics: the numerical role of

observables encodes information on their transformational role. Geometrically, this is seen in

the coincidence between the two natural foliations on the space of states induced by the two

geometric structures. Algebraically, it is encoded in the associator rule, which ties together

the Jordan and Lie structures.

In the light of Landsman’s axiomatization of quantum mechanics, we see that this last

point may be turned around: given the two-fold role of observables in kinematics, the demand

that the two roles be consistent with each other may be seen as the defining trait of the Quan-

tum. This Quantum compatibility condition forces the Jordan product to be non-associative

and the transition probability to be non-trivial.
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conceptual role
of observables

TRANSFORMATIONAL

role
NUMERICAL

role

algebra of
observables

Lie
structure

Jordan
structure

space of
states

Poisson
structure

transition probability
structure

conservation

compatibility

Leibniz rule

associator rule

unitarity

sectors = leaves

Fig. 3 – Conceptual structure of kinematics. In both the Classical and the Quantum, observables
play a two-fold role vis-à-vis of states which gets translated mathematically into the presence of two
algebraic structures on the set of observables and two geometric structures on the space of states. The
dashed arrows represent a first compatibility condition, common to both kinematics. In contrast, the
thick arrows represent the distinguishing feature of quantum kinematics: a compatibility condition
which ties together the behaviour of the quantities (numerical role) and the transformations they
generate.
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