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Abstract

In Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the

prior on some evidence using Bayes’ rule. We define a hierarchy of modal logics that capture

the logical features of Bayesian belief revision. Elements in the hierarchy are distinguished by

the cardinality of the set of elementary propositions on which the agent’s prior is defined. The

containment relations among the modal logics in the hierarchy are determined. By linking

the modal logics in the hierarchy to Medvedev’s logic of finite problems and to Skvortsov’s

logic of infinite problems it is shown that the modal logic of Belief revision determined by

probabilities on a finite set of elementary propositions is not finitely axiomatizable.

Keywords: Modal logic, Bayesian inference, Bayes learning, Bayes logic, Medvedev frames.

1 Introduction and overview

Let (X,B, p) be a classical probability measure space with B a Boolean algebra of subsets of set

X and p a probability measure on B. In Bayesian belief revision elements in B stand for the

propositions that an agent regards as possible statements about the world, and the probability

measure p represents an agent’s prior degree of belief in the truth of these propositions. Learning

proposition A in B to be true, the agent revises his prior p on the basis of this evidence and

replaces p with q(·) = p(· | A), where p(· | A) is the conditional probability given by Bayes’ rule:

p(B | A)
.
=
p(B ∩A)

p(A)
∀B ∈ B (1)

This new probability measure q can be regarded as the probability measure that the agent infers

from p on the basis of the information (evidence) that A is true. The aim of this paper is to study

the logical aspects of this type of inference from the perspective of modal logic.

Why modal logic? We will see in section 2 that it is very natural to regard the move from

p to q in terms of modal logic: The core idea is to view A in the Bayes’ rule (1) as a variable

and say that a probability measure q can be inferred from p if there exits an A in B such that
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q(·) = p(· | A). Equivalently, we will say in this situation that “q can be (Bayes) learned from

p”. That “it is possible to obtain/learn q from p” is clearly a modal talk and calls for a logical

modeling in terms of concepts of modal logic.

Bayesian belief revision is just a particular type of belief revision: Various rules replacing the

Bayes’s rule have been considered in the context of belief change (e.g. Jeffrey conditionalization,

maxent principle; see [20] and [6]), and there is a huge literature on other types of belief revision as

well. Without completeness we mention: the AGM postulates in the seminal work of Alchurrón–

Gärdenfors–Makinson [1]; the dynamic epistemic logic [19]; van Benthem’s dynamic logic for

belief revision [18]; probabilistic logics, e.g. Nilsson [14]; and probabilistic belief logics [2]. For an

extensive overview we refer to Gärdenfors [7]. Typically, in this literature beliefs are modeled by

sets of formulas defined by the syntax of a given logic and axioms about modalities are intended

to prescribe how a belief represented by a formula should be modified when new information and

evidence are provided.

Viewed from the perspective of such theories of belief revision our intention in this paper is very

different: Rather than trying to give a plausible set of axioms intended to capture desired features

of statistical inference we take the standard Bayes model and we aim at an in-depth study of this

model from a purely logical perspective. Our investigation is motivated by two observations. First,

the logical properties of this type of belief change do not seem to have been studied in terms of the

modal logic that we see emerging naturally in connection with Bayesian belief revision. Second,

Bayesian probabilistic inference is relevant not only for belief change: Bayesian conditionalization

is the typical and widely applied inference rule also in situations where probability is interpreted

not as subjective degree of belief but as representing objective matters of fact. Finding out the

logical properties of this type of probabilistic inference has thus a wide interest going way beyond

the confines of belief revision.

The structure of the paper is the following. After some motivation, in section 2 the modal

logic of Bayesian probabilistic inference (we call it “Bayes logic”) is defined in terms of possible

world semantics. The set of possible worlds will be the set of all probability measures on a

measurable space (X,B). The accessibility relation among probability measures will be the “Bayes

accessibility” relation, which expresses that the probability measure q is accessible from p if q(·) =

p(· | A) for some A (Definition 2.1). We will see that probability measures on (X,B) with X having

different cardinalities determine different Bayes logics. The containment relation of these Bayes

logics is clarified by Theorem 4.1 in section 4: the different Bayes logics are all comparable, and the

larger the cardinality of X, the smaller the logic. The standard modal logical features of the Bayes

logics are determined in section 3 (see Proposition 3.1). In section 5 we establish a connection

between Bayes logics and Medvedev’s logic of finite problems [13]. We will prove (Theorem 5.2)

that the Bayes logic determined by the set of probability measures over (X,B) with a finite or

countable X coincides with Medvedev’s logic. This entails that the Bayes logic determined by a

probability space on a finite X (hence with finite Boolean algebra B) is not finitely axiomatizable

(Proposition 5.9). This result is clearly significant because it indicates that axiomatic approaches

to belief revision might be severely limited. It remains an open question whether general Bayes

logics are finitely axiomatizable (Problem 5.10). Section 6 indicates future directions of research.
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2 Motivation and basic definitions

Let 〈X,B〉 be a measurable space and consider statements such as

φ
.
= “the probability of A is at least 1/4 and at most 1/2” (2)

ψ
.
= “the probability of B is 1/7” (3)

where A and B are in B. Truth-values of propositions φ and ψ can be meaningfully defined with

respect to a probability measure p on B:

p  φ if and only if 1/4 ≤ p(A) ≤ 1/2 (4)

p  ψ if and only if p(B) = 1/7 (5)

Consider now a statement χ such as

χ
.
= “it can be learned that the probability of A is at least 1/4 and at most 1/2” (6)

= “it can be learned that φ” (7)

In view of the interpretation of Bayes’ rule formulated in the Introduction, it is very natural to

define χ to be true at probability p if there is a B in B such that the conditional probability

q(·) .
= p(· | B) makes true the proposition

φ = “the probability of A is at least 1/4 and at most 1/2” (8)

where true is understood in the sense of (4); i.e. if for some B ∈ B we have

1/4 ≤ q(A) = p(A | B) ≤ 1/2 (9)

Propositions such as χ in (6)-(7) are obviously of modal character and it is thus very natural to

express this modality formally using the modal operator ♦ by writing the sentence χ as ♦φ. In

view of (7) the reading of ♦φ is “φ can be learned in a Bayesian manner”.

Thus we model Bayesian learning by specifying a standard unimodal language given by the

grammar

a | ⊥ | ¬ϕ | ϕ ∧ ψ | ♦ϕ (10)

defining formulas ϕ, where a belongs to a nonempty countable set Φ of propositional letters. As

usual � abbreviates ¬♦¬. (We refer to the books [3, 5] concerning basic notions in modal logic).

Models of such a language are tuples M = 〈W,R, [| · |]〉 based on frames F = 〈W,R〉, where W

is a non-empty set, R a binary relation on W and [| · |] : Φ→ ℘(W ) is an evaluation of propositional

letters. Truth of a formula ϕ at world w is defined in the usual way

• M, w  a ⇐⇒ w ∈ [| a |] for propositional letters a ∈ Φ.

• M, w  ϕ ∧ ψ ⇐⇒ M, w  ϕ AND M, w  ψ.

• M, w  ¬ϕ ⇐⇒ M, w 6 ϕ.

• M, w  ♦ϕ ⇐⇒ there is v such that wRv and M, v  ϕ.
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By definition a formula is valid over a frame if and only if it is true at every point in every model

based on the frame. For a class C of frames the modal logic of C is the set of all modal formulas

that are valid on every frame in C:

Λ(C) =
{
φ : (∀F ∈ C) F  φ

}
(11)

We denote by M(X,B) the set of all probability measures over 〈X,B〉. Note that M(X,B) is

non-empty as the Dirac measures δx for x ∈ X always belong to M(X,B).

For a fixed 〈X,B〉 the set of possible worlds W is defined to be the set of probability measures

M(X,B). Consider again the sentences

φ
.
= “the probability of A is at least 1/4 and at most 1/2” (12)

ψ
.
= “the probability of B is 1/7” (13)

The core idea of the semantic of the introduced modal language describing Bayesian statistical

inference is the following:

• The intended interpretation of φ and ψ are the sets

[| φ |] =
{
p ∈M(X,B) : 1/4 ≤ p(A) ≤ 1/2

}
(14)

[| ψ |] =
{
p ∈M(X,B) : p(B) = 1/7} (15)

• The intended interpretation of ♦φ is that “φ can be learned in a Bayesian manner”:

[| ♦φ |] =
{
p ∈M(X,B) : there is A ∈ B such that p(· | A)  φ

}
(16)

This intended interpretation suggests the following definition of the accessibility relation R on

W = M(X,B):

Definition 2.1. For v, w ∈M(X,B) we say that w is Bayes accessible from v if there is an A ∈ B
such that w(·) = v( · | A). We denote the Bayes accessibility relation on W = M(X,B) by

R(X,B).

We are now in the position to give the definition of one of the central concepts of this paper.

Definition 2.2 (Bayes frames). A Bayes frame is a frame 〈W,R〉 that is isomorphic, as a directed

graph, to F(X,B) = 〈M(X,B), R(X,B)〉 for a measurable space 〈X,B〉. �

A Bayes model is a model M = 〈M(X,B), R(X,B), [| · |]〉 based on a Bayes frame F(X,B).

The modal logic Λ(F(X,B)) corresponds then to the set of laws of Bayesian learning based on the

frame F(X,B). The general laws of Bayesian learning independent of the particular representation

〈X,B〉 of the events is then the modal logic

BL = {φ : (∀ Bayes frames F) F  φ} (17)

From the point of view of applications the most important classes of Bayes frames F(X,B) are

Bayes frames determined by measurable spaces 〈X,B〉 having a finite or a countable X. We will

see that finiteness of X serves as a dividing line when defining the logic of Bayes frames.
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We make use of the following notation

Fn = 〈M(X,℘(X)), R(X,℘(X))〉, where X = {1, . . . , n} (18)

Fω = 〈M(X,℘(X)), R(X,℘(X))〉, where X = N (19)

Note that if the measurable space 〈X,B〉 is finite or countable, then B is the powerset algebra

℘(X) (because we rely on the convention that elementary events {x} for x ∈ X always belong to

the algebra B).

We denote by BF the class of all Bayes frames. BFn denotes the class of Bayes frames isomorphic

to Fn, while BF<ω contains those Bayes frames that are isomorphic to Fk for some natural number

k > 0. Elements of BFω are isomorphic to Fω.

Definition 2.3 (Bayes logics). We define a family of normal modal logics based on finite or

countable or countably infinite or all Bayes frames as follows.

BLn = {φ : Fn  φ} = Λ(BFn) (20)

BL<ω = {φ : (∀n ∈ N)Fn  φ} = Λ(BF<ω) =
⋂
n

Λ(BFn) (21)

BLω = {φ : Fω  φ} = Λ(BFω) (22)

BL≤ω = Λ(BF<ω ∪ BFω) = BL<ω ∩BLω (23)

BL = {φ : (∀ Bayes frames F) F  φ} = Λ(BF) (24)

We call BL<ω (resp. BL≤ω) the logic of finite (resp. countable) Bayes frames; however, observe

that the set of possible worlds M(X,B) of a Bayes frame F(X,B) is finite if and only if X is a

one-element set, otherwise it is at least of cardinality continuum. �

One can easily check the containments

BL ⊆ BL≤ω ⊆ BLω and BL ⊆ BL<ω ⊆ BLn (25)

using the very definition of Bayes logics.

3 Modal principles of Bayes learning

In this section we discuss the connections of Bayes logic to a list of modal axioms that are usually

considered in the literature. Let us recall some of the standard frame properties (cf. [3] and [5]).

Basic frame properties

Name Formula Corresponding frame property

T �φ→ φ accessibility relation R is reflexive

4 �φ→ ��φ accessibility relation R is transitive

M �♦φ→ ♦�φ 2nd order property not to be covered here

Grz �(�(φ→ �φ)→ φ)→ φ T4 + ¬∃P (∀w ∈ P )(∃v wRv)(v 6= w ∧ P (v))

S4 T + 4 preorder

S4.1 T + 4 + M preorder having endpoints
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As Bayes logics were defined to be the modal logics of certain frames, these logics are normal

modal logics. The next proposition establishes the connection between the Bayes logics and the

usual frame properties.

Proposition 3.1. The following statements hold:

• BL ` S4 but BL 6`M

• BL≤ω ` S4.1

• BL<ω ` Grz while BLω 6` Grz

Proof. Let F = 〈M(X,B), R(X,B)〉 be an arbitrary Bayes frame. To see that F validates S4 we

need to verify that R = R(X,B) is a preorder (reflexive and transitive).

• Reflexivity: for all measures w ∈M(X,B) we have w(·) = w( · | X).

• Transitivity: suppose u, v, w ∈ M(X,B) with uRv and vRw, i.e. there are A,B ∈ B with

u(A) 6= 0, v(B) 6= 0 and we have v(·) = u( · | A) and w(·) = v( · | B). As v(B) = u(B |
A) 6= 0 we also get u(B) 6= 0 and thus u(A ∩ B) 6= 0. Therefore w(·) = u( · | A ∩ B) which

means uRw.

The accessibility relation is also antisymmetric:

• Antisymmetry: If v(·) = w( · | A) and w(·) = v( · | B), then v(·) = v( · | A ∩ B). This

ensures v(A ∩B) = 1, whence v(B) = 1 and thus v = w.

In order to show BL≤ω ` S4.1 it is enough to verify that for a countable measurable space 〈X,B〉,
the frame F(X,B) has end-points in the following sense.

• Endpoints: That R has endpoints means ∀w∃u(wRu ∧ ∀v(uRv → u = v)). Pick an

arbitrary w and let x ∈ X be such that w({x}) 6= 0. Such an x must exist because X is

countable. We claim that u = w( · | {x}) will be suitable. For H ∈ ℘(X) we have

w(H | {x}) =

{
1 if x ∈ H
0 otherwise

Thus w( · | {x}) is the Dirac measure δx. If a measure is Bayes accessible from δx, then

it must be absolutely continuous with respect to δx and it is clear that δx is the only such

probability measure.

To see that BL 6`M it is enough to give an example for a Bayes frame in which there are paths

without endpoints. Consider the frame F = 〈M([0, 1],B), R([0, 1],B)〉 where [0, 1] is the unit

interval and B is the Borel σ-algebra. Let w be the Lebesgue measure. We claim that

F 6|= ∃u(wRu ∧ ∀v(uRv → u = v)) (26)

For, suppose for some probability u we have wRu. Then u(·) = w( · | A) for some Borel set A

with w(A) 6= 0. Each Borel set A with non-zero Lebesgue measure contains a Borel subset B ⊂ A
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with a strictly smaller but non-zero Lebesgue measure: 0 < w(B) < w(A). From u = w( · | A) we

can Bayes access w( · | B) and since w(B) < w(A) we also have w( · | A) 6= w( · | B).

Next, let us verify BL<ω ` Grz. To this end it is enough to show that no Bayes frame F(X,B)

with a finite X can contain an infinite R(X,B)-path. But this follows from the fact that finiteness

of X implies finiteness of B = ℘(X), whence there are only finitely many elements in B that can

serve as possible evidence for conditionalizing a probability.

Finally, we prove Fω 6 Grz (thus BLω 6` Grz). Let w ∈M(N, ℘(N)) be a measure such that

for all x ∈ N we have w({x}) 6= 0. Fix a sequence Ai = N− {0, . . . , i} for i ∈ N. Then

w(·) R w(· | A0) R w(· | A1) R w(· | A2) · · · (27)

shows the failure of the Grzegorczyk axiom Grz in Fω.

4 Containments between Bayes logics

Recall the containments that follow directly from the definition of Bayes logics:

BL ⊆ BL≤ω ⊆ BLω and BL ⊆ BL<ω ⊆ BLn (28)

In this section we prove the following theorem:

Theorem 4.1. BL ( BLω = BL≤ω ( BL<ω ( BLn+k ( BLn

Some of the containments in the above theorem follow from Proposition 3.1. For instance BL (
BL≤ω is witnessed by S4.1 ∈ BL≤ω rBL. To prove the other containments, we establish several

lemmas first.

For two frames F = 〈W,R〉 and G = 〈W ′, R′〉 we write F E G if F is (isomorphic as a frame

to) a generated subframe of G. We recall that if F E G, then G  φ implies F  φ, whence

Λ(G) ⊆ Λ(F) (see Theorem 3.14 in [3]).

Lemma 4.2. Fn E Fn+k E Fω, consequently BLω ⊆ BLn+k ⊆ BLn.

Proof. Let Xn = {1, . . . , n} and Fn = 〈M(Xn), R(Xn)〉. To each w ∈ M(Xn, ℘(Xn)) assign

α(w) ∈M(Xn+k, ℘(Xn+k)) defined by

α(w)(x) =

{
w(x) if x = 1, . . . , n

0 if x = n+ 1, . . . , n+ k

It can be checked that α establishes Fn E Fn+k. The case Fn E Fω is similar.

To see why the non-equality BLn+k ( BLn holds we need some preparation. In a frame

F = 〈W,R〉 let us call a sequence x0, x1, . . ., xk a path if xiRxi+1 for i < k and xi 6= xj for i 6= j.

The length of a path is the number of the xi’s in the sequence. Define by recursion the following
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formulas

π1 = p1 (29)

π2 = (p2 ∧ ¬p1) ∧ ♦π1 (30)

πn+1 = (pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1) ∧ ♦πn (31)

The proof of the next lemma is easy and is left to the Reader.

Lemma 4.3. Let F = 〈W,R〉 be a frame, M = 〈F , [| · |]〉 be a model, and x ∈W .

• M, x  πn if and only if there is in F a path of length n starting from x.

• If there is in F a path of length n starting from x, then there is an evaluation [| · |], such that

in the corresponding model M we have M, x  πn.

• If F  ¬πn, then there is no path of length n in F .

We have seen in the proof of Proposition 3.1 that if F(X,℘(X)) is a Bayes frame with a

finite X, then there are only finitely many elements in B that can serve as a possible evidence for

conditionalizing a probability. From this it follows, that in these finite cases the maximal length of

a path in F(X,℘(X)) is smaller then the cardinality of the power set ℘(X). Therefore, for every

n < m there exists k such that

BLn ` ¬πk while BLm 6` ¬πk (32)

This proves BLm 6= BLn.

Lemma 4.4. BL≤ω = BLω ( BL<ω

Proof. By Lemma 4.2 for each n we have BLω ⊆ BLn; so we also obtain BLω ⊆
⋂
n BLn =

BL<ω. By Proposition 3.1 we have Grz ∈ BL<ω while /∈ BLω; thus BLω ( BL<ω. Since

BL≤ω = BLω ∩BL<ω and BLω ⊆ BL<ω, we obtain BL≤ω = BLω.

5 Connection to Medvedev’s logic of finite problems

Let us recall briefly Medvedev’s logic of finite problems and its origins in intuitionistic logic. We

rely on and refer to the book [5] and to Shehtman [16]. (Medvedev’s logic of finite problems and

it’s extension to infinite problems by Skvortsov are covered in the papers [13, 17, 15, 16, 12, 9]).

Roughly speaking, the main principle of intuitionism is that the truth of a mathematical statement

can be established only by producing a constructive proof of the statement. If the notion of proof

and construction are taken to be primary, then, one can establish a proof of φ→ ψ if and only if

there is a construction which, given a proof of φ, yields a proof of ψ. Medvedev’s formalization of

the proof as interpreted in intuitionistic logic relies on the idea to treat intuitionistic formulas as

finite problems. A finite problem, according to Medvedev’s definition, is a tuple 〈X,Y 〉 of finite
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sets such that Y ⊆ X and X 6= ∅. Elements of X are regarded as “possible solutions” while

elements of Y are “solutions”. Medvedev then defines logical operations on finite problems as

follows:

〈X1, Y1〉 ∧ 〈X2, Y2〉 = 〈X1 ×X2, Y1 × Y2〉 (33)

〈X1, Y1〉 ∨ 〈X2, Y2〉 = 〈X1 tX2, Y1 t Y2〉 (34)

〈X1, Y1〉 → 〈X2, Y2〉 =
〈
XX1

2 , {f ∈ XX1
2 : f(Y1) ⊆ Y2}

〉
(35)

⊥ = 〈X, ∅〉 (36)

Here t is the disjoint union of sets. Given a propositional formula φ, after replacing its variables

with finite problems and performing the operations, one can check whether the result, a finite

problem, has a non-empty set of solutions. In this case φ is called “finitely valid”. Finitely valid

formulas are closed under modus ponens and substitutions.

Using the Gödel–McKinsey–Tarski translation of intuitionistic language into the unimodal

language, Medvedev’s logic of finite problems is recursively embedded into the unimodal logic of

Medvedev frames, definition of which we recall below.

Definition 5.1 (Medvedev frame). A Medvedev frame is a frame that is isomorphic (as a directed

graph) to 〈℘(X) r {∅},⊇〉 for a non-empty finite set X. �

Medvedev’s logic ML<ω is the modal logic that corresponds to the Medvedev frames:

MLn =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| = n

}
(37)

ML<ω =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| non-empty, finite

}
(38)

A Skvortsov frame is defined in the same way except with X is a non-empty set of any cardinality.

We denote the corresponding Skvortsov logics by MLα for sets X of cardinality α. It has been

proved (see Theorem 2.2 in [17]) that

ML
def
=
⋂
α

MLα = MLω (39)

The main result of this section is the following theorem:

Theorem 5.2. Countable Bayes and Medvedev’s logics coincide.

ML = MLω = ML≤ω ( ML<ω ( MLn

∪ q q q q
BL ( BLω = BL≤ω ( BL<ω ( BLn

(40)

We prove Theorem 5.2 through a series of lemmas. To simplify writing we introduce the follow-

ing notations: For a finite or countably infinite set X denote by P0(X) the Medvedev (Skvortsov)

frame 〈℘(X) r {∅},⊇〉, and we use F(X) to denote the Bayes frame 〈M(X,℘(X)), R(X,℘(X)〉.
Recall that if X is finite or countable then the support of v ∈M(X,℘(X)) is defined to be the set

supp(v) = {x ∈ X : v({x}) 6= 0}.

Lemma 5.3. P0(X)E F(X) for all finite or countably infinite set X.
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Proof. Take any w ∈ M(X,℘(X)) with full support supp(w) = X, and consider the subframe

Fw = 〈W,R〉 of F(X) generated by w. As F(X) is transitive, elements of W are of the form

w( · | H) for some non-empty H ⊆ supp(w). Now, if H,H ′ ⊆ supp(w) are different subsets,

then 1 = w(H | H) 6= w(H ′ | H) < 1. Therefore each element v ∈ W can be identified with a

non-empty subset H ⊆ supp(w). It follows that Fw is isomorphic, as a directed graph, to P0(X),

which completes the proof.

Lemma 5.3 implies BLω ⊆MLω (with X countably infinite) and BLn ⊆MLn for all n > 0 (with

|X| = n) and therefore BL<ω ⊆ML<ω. Next, we want to establish the converse containments.

Let F � G denote a surjective, bounded morphism between frames F and G. Recall that if

F � G, then F  φ implies G  φ, whence Λ(F) ⊆ Λ(G) (see Theorem 3.14 in [3]). We also

recall that (∀i) Fi  φ implies
⊎
Fi  φ (for the definition of the disjoint union

⊎
of frames see

Definition 3.13 in [3]). In the special case when Fi = F it follows that Λ(F) ⊆ Λ(
⊎
F) (Theorem

3.14 in [3]).

Note that neither F(X) E P0(X) nor P0(X) � F(X) can hold if X is finite because the

underlying set M(X,B) of F(X) has the cardinality of continuum (for n > 1) while ℘(X) is finite.

Lemma 5.4. MLω ⊆ BLω and MLn ⊆ BLn for all n > 0.

Proof. Let X be a finite or countably infinite set. We prove⊎
v∈F
P0(X)� F(X) (41)

for a suitable set F . This is enough since
⊎
v P0(X)� F(X) implies

Λ
(
P0(X)

)
⊆ Λ

(⊎
P0(X)

)
⊆ Λ

(
F(X)

)
(42)

For |X| = n this means MLn ⊆ BLn and for X countably infinite it is MLω ⊆ BLω.

Consider the Bayes frame F(X) = 〈M(X,℘(X)), R(X,℘(X)〉. A measure v ∈ M(X,℘(X)) is

faithful if v(H) = 0 if and only if H = ∅, equivalently v(H) = 1 if and only if H = X. Each

faithful measure v has full support supp(v) = X.

Claim A. Faithful measures cannot be Bayes accessed. More precisely, if v is faithful, then

∀u(uRv → u = v). Indeed, suppose v(·) = u( · | A) for some A ⊆ X, u(A) 6= 0. Then

v(A) = u(A | A) = 1 thus faithfulness of v ensures A = X. But then v = u.

Claim B. If u is not faithful, then there is a faithful v such that vRu. Suppose u is not faithful.

Take any faithful measure over X r supp(u) and pick a real number 0 < c < 1. Write

v(H) = c · u(H ∩A) + (1− c) · r(H ∩ (X r supp(u))) (43)

Then v is a faithful measure over X and v(H | supp(u)) = u(H).

Let F ⊆ M(X,℘(X)) be the set of faithful measures. We claim that F(X) is a surjective,

bounded morphic image of
⊎
v∈F P0(X). Let us denote the copy of P0(X) corresponding to v ∈ F

in the disjoint union by P0
v = 〈Pv,⊇〉, where Pv = ℘(X) r {∅}. Define the mapping f as follows

f :
⊎
v∈F
P0
v → F(X), Pv ⊇ A 7→ v( · | A) (44)
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Let us verify that f is a surjective, bounded morphism
⊎
v∈F P0(X)� F(X).

Surjectivity. Pick a probability u ∈ M(X,℘(X)). By Claim B there is a faithful v from which

u is accessible by an A ⊆ X. Then A ⊆ Pv and f(A) = v( · | A) = u(·).
Homomorphism. We have to show that Pv ⊇ A ⊇ B implies f(B) is Bayes accessible from

f(A). Indeed, f(A) = v( · | A) and f(B) = v( · | B) and v( · | A ∩B) = v( · | B).

Zig–zag property. We have to verify that if f(A)Rw, then there is a C such that w = f(C)

and A ⊇ C. Denote f(A) by u. Let v be the faithful measure such that A ⊆ Pv. Then

u = v( · | A), and by the assumption uRw there is B ⊆ X such that w(·) = u( · | B). Then

w(·) = v( · | A ∩B) = f(A ∩B), therefore setting C = A ∩B completes the proof.

So far we have proved BLω = MLω, BL<ω = ML<ω and BLn = MLn for all n > 0. To

complete the proof of Theorem 5.2 it remains to show BL ( ML.

Lemma 5.5. BL ( ML

Proof. That BL 6= ML follows from

S4.1 ⊂ML while S4.1 6⊂ BL (45)

By Proposition 3.1 we have S4.1 6⊂ BL. On the other hand, every Medvedev frame P0 has

endpoints in the sense

P0 |= ∀w∃u(wRu ∧ ∀v(uRv → u = v)) (46)

For, if 〈℘(X) r {∅},⊇〉 is a Medvedev frame, then {x} is an endpoint, for all x ∈ X.

So it remains to show BL ⊆ML. But this follows from our previously proven containments:

ML = MLω = BLω ⊇ BL.

Putting together all the previous lemmas we arrive at Theorem 5.2:

ML = MLω = ML≤ω ( ML<ω ( MLn

∪ q q q q
BL ( BLω = BL≤ω ( BL<ω ( BLn

(47)

Though we established BL 6= ML, the two logics are “close” to each other in the sense of the

following proposition.

Proposition 5.6. The logic of each Bayes frame can be dominated by the logic of a Medvedev

frame, and vice versa.

Proof.

#1: Proving that for all F(X,B) there exists P0(Y ) such that Λ(F) ⊆ Λ(P0):

Take any F(X,B) and let Y ⊆ X be a finite, non-empty subset. Let v ∈ M(X,B) be a

probability measure such that supp(v) = Y . Then the subframe Fv generated by v is isomorphic

(as a directed graph) to P0(Y ) (cf. the proof of Lemma 5.3), whence P0(Y ) E F(X,B). This

implies Λ(F(X,B)) ⊆ Λ(P0(Y )), as desired.
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#2: Proving that for all P0(Y ) there exists F(X,B) such that Λ(P0) ⊆ Λ(F):

The proof is similar to that of Lemma 5.4. Take any P0(Y ) and let X ⊆ Y be a finite,

non-empty subset. We need the following Lemma:

Lemma 5.7. If X ⊇ Y , then P0(X)� P0(Y ).

Proof.[of Lemma 5.7] Any surjection f : X → Y can be lifted up to a surjection f+ : ℘(X)→ ℘(Y )

via f+(H) = {f(h) : h ∈ H}. It can be checked that f+ is a bounded morphism P0(X)� P0(Y ).

Lemma 5.7 applies and we get P0(Y ) � P0(X). With F(X) = 〈M(X,℘(X)), R(X,℘(X))〉, X
being finite, following the proof of Lemma 5.4 one obtains

⊎
P0(X)� F(X). Consequently⊎

P0(Y ) �
⊎
P0(X) � F(X) (48)

which implies

Λ(P0(Y )) ⊆ Λ(
⊎
P0(Y )) ⊆ Λ(F(X)) (49)

Recall that if 〈X,B〉 is a finite probability space (with |X| > 1), then the set of probability

measures M(X,B) has cardinality continuum. Therefore Bayes frames F(X,B) over finite prob-

ability spaces are uncountable. Thus it is surprising that despite uncountability of Bayes frames

the corresponding logic has the finite frame property:

Proposition 5.8. The modal logic BL<ω of Bayes frames over a finite probability space has the

finite frame property.

Proof. ML<ω is complete with respect to the set of (finite) Medvedev frames by definition, and

BL<ω = ML<ω.

An immediate consequence is that BL<ω is complete with respect to a recursive set of finite

frames. Therefore, non-validities can be witnessed by finite counterexamples.

The most remarkable consequence of the identification of Bayes logic with Medvedev’s logic

concerns the (non-)axiomatizability properties of Bayes logics:

Proposition 5.9. The modal logic BL<ω of Bayes frames over finite probability spaces is not

finitely axiomatizable.

Proof. As BL<ω = ML<ω, this is essentially Shehtman’s result [16] for the logic of Medvedev’s

frames.
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The previous proposition is philosophically significant: it tells us that there is no finite set

of formulas from which all general laws of Bayesian belief revision and Bayesian learning based

on probability spaces with a finite set of propositions can be deduced. Bayesian learning and

belief revision based on such simple probability spaces are among the most important instances

of probabilistic updatings because they are widely used in applications. Proposition 5.9 says

that the logic of such very basic belief revisions cannot be captured by a finite set of axioms. If

the axiomatic approach to belief revision is not capable to characterize the logic of the simplest,

paradigm form of belief revision, then this casts doubt on the general enterprize that aims at

axiomatizations of belief revision systems.

It is a longstanding open question whether ML<ω (and thus BL<ω) is recursively axiomatizable

(see [5], Chapter 2). Since the class of Medvedev frames is a recursive class of finite frames, BL<ω

is co-recursively enumerable. It follows that if ML<ω is recursively axiomatizable, then BL<ω is

decidable.

Countable Bayes logics can be characterized not only by Medvedev’s logic but also by the logic

of Kubiński frames:  Lazarz [12] proved that Medvedev’s and Kubiński’s logic coincide (even in the

infinite case). Taking into account Theorem 5.2,  Lazarz’s result gives a lattice characterization of

countable Bayes logics. For the necessary definitions we refer to [12].

It is also known that MLω = ML (= BLω) is not finitely axiomatizable [16, 15]. As BL ( ML

the question arises whether BL is finitely axiomatizable. This we leave an open problem:

Problem 5.10. Is BL finitely axiomatizable?

A central problem when considering logics based on frames is whether the class of frames

in question can be defined by formulas. Holliday [9] proved that the class of Medvedev frames

is definable by a formula in an extended language, the language of tense logic extended with a

converse modality and with any of nominals, difference modality or complement modality.

Recall that for classes C and D of frames, formula φ defines C relative to D if each frame in D

belongs to C if and only if the frame validates φ.

Proposition 5.11. BF<ω and BFω are definable over BF; and BF<ω is definable over BF≤ω.

Proof. Straightforward from Proposition 3.1.

We have no results concerning absolute definability of Bayes frames.

Problem 5.12. Are any of the classes of frames BF, BF≤ω, BFω or BF<ω definable in a “reason-

able” extended modal language?

6 Closing words and open problems

Apart from the standard Bayes conditionalization there are other Bayesian methods, extensions

of the standard one, of updating a probability measure: The Jeffrey’s conditionalization and

conditionalization based on the concept of conditional expectations (cf. [10, 6, 8]).
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Let us first recall Jeffrey’s conditionalization. Suppose p ∈ M(X,B) is a prior probability,

{Ei}i<n is a finite partition of X with p(Ei) 6= 0 and we are given a probability measure r : A →
[0, 1], called the uncertain evidence, on the subalgebra A of B generated by this partition. The

Bayesian Agent updates his prior probability p using the evidence r to get the posterior probability

defined by the “Jeffrey rule”:

q(H) =
∑
i<n

p(H | Ei)r(Ei) (50)

Given two measures p, q ∈ M(X,B) one can define Jeffrey accessibility in a manner similar to

Bayes accessibility: q is Jeffrey accessible from p if there is a partition {Ei}i<n and uncertain

evidence r such that eq. (50) holds.

Jeffrey’s conditionalization is just a special case of the general conditionalization based on

the concept of conditional expectation introduced by Kolmogorov [11] already (see [8] as well):

Let S be the Borel σ-algebra of R. Recall that for p ∈ M(X,B) and A ≤ B the conditional

expectation Ep(· | A) : X → R is any (A,S)-measurable function that satisfies eq. (51) below for

all (B,S)-measurable f : X → R∫
Z

Ep(f | A) dp =

∫
Z

f dp for each Z ∈ A (51)

Such a function exists and is unique p-almost everywhere. let dq
dp : X → R denote the Radon–

Nikodym derivative of q wit respect to p. We say that q can be inferred from p using general

conditionalization if q is absolutely continuous with respect to p and there is a σ-subalgebra A of

B such that

q(H) =

∫
H

Ep

(
dq

dp

∣∣∣∣A) dp (52)

for all H ∈ B. If q can be inferred from p in this way, we say that q is generally Bayes accessible

from p.

One can now define the modal logics based on Bayes frames F(X,B), where the accessibility

relation is replaced with either the Jeffrey accessibility or with the more general accessibility using

conditional expectations. Basic logical properties of the Jeffrey accessibility has been studied

in the manuscript [4] and frame properties of accessibility using conditional expectations has

been investigated in [8]. It has been proven in [4] that Jeffrey accessibility is also not finitely

axiomatizable in the finite case; however, we do not yet have results about the infinite case or

about decidability questions.
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