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Basic notions and notation

This is an overview of notions and notations that will be used throughout
the thesis. It serves as a reference: all notions will be properly introduced and
explained in the main text.

Binary sequences. In this thesis I only consider sequences that are built
from an alphabet of just two symbols, ‘0’ and ‘1.’ I use the variables ‘x,’ ‘y’,
‘z’ to refer to individual symbols; the variables ‘xxx,’ ‘yyy,’ ‘zzz’ denote sequences
of symbols. The empty sequence is ∅∅∅. For two sequences xxx and yyy, their
concatenation is simply written ‘xxxyyy.’ I write ‘xxx 4 yyy’ if xxx is an initial segment
or prefix of yyy (so there is an zzz such that xxxzzz = yyy; if zzz 6= ∅∅∅ then I write ‘xxx ≺ yyy’). I
often write ‘xxxt’ to indicate that the sequence has length t; sometimes it conveys
the more specific fact that xxxt is the prefix of length t of the (longer) sequence xxx,
also written ‘xxx �t.’ Occasionally I refer to the length of xxx by ‘|xxx|.’ The sequence
xxx− is the initial segment of xxx of length |xxx| − 1. An infinite sequence is denoted
by adding the superscript ‘ω’ to a variable name, like so: ‘xxxω,’ ‘yyyω,’ ‘zzzω.’ The
i-th symbol of xxx is xxx(i). Sequences xxx and yyy are comparable, written ‘xxx ∼ yyy,’
if xxx 4 yyy or yyy ≺ xxx; if xxx and yyy are not comparable this is written ‘xxx | yyy.’ The
lexicographical ordering arranges all finite sequences in the natural increasing-
length ordering ∅∅∅, 0, 1, 00, 01, 10, 11, 000, . . . ; I write ‘xxx <L yyy’ if xxx precedes yyy in
this ordering. The number of occurrences of symbol x in sequence xxx is denoted
‘#xxxx’.

Let B := {0, 1} denote the set of symbols. Then Bt is the set of all symbol
sequences of length t (and likewise we have B≤t and B<t). B∗ = ∪t∈NBt is the
set of all finite sequences; Bω the class of all infinite sequences. A subset A ⊆ B∗
of finite sequences is prefix-free if xxx | yyy for every two different xxx,yyy ∈ A. For set
A of finite sequences, its bottom bAc := {xxx ∈ A : ∀yyy ∈ A. yyy 4 xxx ⇒ yyy = xxx} is
the prefix-free subset of minimal sequences in A that have no strict prefixes in
A.

For given finite sequence xxx, the class JxxxK := {xxxω ∈ Bω : xxxω < xxx} is the
class of infinite extensions of xxx. Likewise, for set A ⊆ B∗ of finite sequences,
let JAK := {xxxω ∈ Bω : xxx ∈ A & xxxω < xxx}.

Prediction methods. A prediction method (alternatively, prediction strat-
egy/rule/system, or simply predictor) is a function

p : B∗ → P

v
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from the finite data sequences to predictions, distributions over B. I often
specify a prediction p ∈ P by p = (a0, a1), meaning p(0) = a0 and p(1) = a1. I
also use the shorthand

p(x,xxx) := p(xxx)(x).

Probability measures. Strictly formally, I consider measures µ on Bω,
also known as the Cantor space. However, to keep things simple where I can,
I usually treat a measure as a function µ : B∗ → [0, 1] that assigns probability
values to the finite sequences, and that satisfies

µ(∅∅∅) = 1;

µ(xxx0) + µ(xxx1) = µ(xxx) for all xxx ∈ B∗.

(Such a function is called a “probabilistic source” in Grünwald, 2007, 53.
Strictly formally, again, it is the pre-measure m that generates a measure;
this is described in 2.1.1.)

I sometimes denote by ‘µxxx’ the measure µ conditional on xxx, i.e., the measure
µ(· | xxx). See 2.1.1.3 for details on the definition of conditional measures in
sequential prediction: notably, there is the convention of writing ‘µ(yyy | xxx)’ for
µ(xxxyyy | xxx). I denote by ‘µt’ the distribution over Bt that is given by µt(xxxt) =
µ(xxxt), and likewise I denote by µ1(· | xxx) the one-step conditional measure that
is a distribution over B.

Order notation. I regularly use the standard ‘big-O’ notation for func-
tions f, g : N→ R, where f(t) = O(g(t)), ‘f is big O of g,’ means that there is
a constant c > 0 such that |f(n)| ≤ c |g(n)| for all n ∈ N. In particular, I often
use f(n) = O(1) to signify that there is single constant c such that f(n) < c
for all n.

Somewhat less standard is the notation ‘f ≤+ g’ to express that f additively
minorizes g, meaning that f(n) = g(n) + O(1), i.e., there is a constant c
such that for all n, f(n) ≤ g(n) + c. (Equivalently, g additively majorizes or
dominates f .) Likewise, ‘f ≤× g’ expresses that f multiplicatively minorizes g:
there is a constant c such that f(n) ≤ c ·g(n). Moreover, ‘f =+ g’ and ‘f =× g’
express that f and g additively and multiplicatively minorize (equivalently,
majorize) each other, respectively.

Computability. I sketch the model of a Turing machine in I.4; for a more
detailed specification see for instance Soare (2016, 7ff).

Computable functions. A Turing machine specifies a (possibly partial) func-
tion T : B∗ → B∗. In fact, since we can effectively map B∗ onto any desired
class of finite objects (e.g., the bits B, the natural numbers N, the rational
numbers Q, the finite sets of finite sequences Pfin(B∗), . . . ), we can say more
generally that for any given classes A,A′ of finite objects, a Turing machine
defines a (possibly partial) function T : A → A′. (As we can have A be the
Cartesian product of a finite number n of finite sets of objects, we can also have
a Turing machine define an n-place function.) Now a function ϕ : A → A′ is
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computable if there is a Turing machine that specifies it. The Turing machines
thus specify the partial computable (p.c.) functions, that I denote by the letters
‘ϕ’, ‘ψ,’ . . . . If ϕ is not defined on input a (the Turing machine that specifies
it does not halt on input a), we say that ϕ diverges on a and write ‘ϕ(a) ↑.’
Likewise, if ϕ converges on a with output a′ we can write ‘ϕ(a) =↓ a′.’ I write
‘ϕ(a) ' ψ(a)’ to mean that ϕ = ψ, i.e., for all a ∈ A, either ϕ(n) ↓= ψ(a)
or ϕ(a) ↑ and ψ(a) ↑. The total computable (t.c.) functions, denoted by the
letters ‘f ,’ ‘g,’ . . . , are computable functions that are everywhere defined.

Acceptable enumerations. One can indeed define an effective list all Turing
machines {Te}e∈N by coding them onto the integers: this induces an acceptable
enumeration {ϕe}e∈N of all p.c. functions. We can now also define a universal
Turing machine that takes (the code for) an index of a machine and another
input, and then reconstructs and runs this machine on this input. Thus the
p.c. functions are uniformly computable: there is a single p.c. function ϕ̊ (a
universal p.c. function, specified by a universal Turing machine) such that
ϕ̊(e, n) ' ϕe(n).

Sets and sequences. A set A ⊆ A of finite objects is computable if there
exists a computable characteristic function χA : A→ B such that χA(a) = 1 iff
a ∈ A. Similarly, an infinite sequence xxxω ∈ Bω is computable if there exists a
computable characteristic function χxxxω : N→ B that returns the correct symbol
for each given position, χxxxω (n) = xxxω(n). Set A ⊆ A is computably enumerable
(c.e.) if there exists a computable procedure to enumerate its elements, or
equivalently: if it is the domain of a p.c. function.

Real-valued functions. A real number r is computable if we can computably
approximate it to any desired accuracy: there is a computable function f : N→
Q such that |r − f(s)| < 2−s. Equivalently, the set {q : q < r} of left-cuts is
computable. A function f : A→ R on the reals is computable if its values are
uniformly computable: there is a two-place computable function g : N×N→ Q
such that |f(a)− g(a, s)| < 2−s. Equivalently, the set {(q, a) : q < f(a)} is
computable. (See Downey and Hirschfeldt, 2010, 197ff.)

Predictors and measures. The notion of a computable prediction method
is now defined: it is a prediction method p such that the set {(q, x,xxx) : q <
p(x,xxx)} is computable. The notion of a computable pre-measure is likewise
defined. A computable measure is a measure µm that is induced from a com-
putable pre-measure m.

*





Introduction

Mathematical philosophy. Philosophy can deal with contentious topics.
To some, the discipline of philosophy itself is a contentious topic. So it can
happen that the author of a textbook on the otherwise rather dry subject of
measure theoretic probability spices up his work with stabs at practitioners of
philosophy of probability, including the lament that

Since philosophers are pompous where we are precise, they are
thought to think deeply . . . (Williams, 1991, 25)

Whatever its further merits, this declaration did inspire me towards an informal
characterization of the field this thesis is in. This is the field of mathematical
philosophy : the treatment of philosophical—pompous?—questions with pre-
cise, mathematical, means.

The question. Here is a pompous question: can there be such a thing as
a universal prediction method?

* * *

Universal prediction. This thesis is concerned with the possibility of
universal methods of prediction. From the outset I restrict attention to the
simple abstract setting of sequential prediction with a binary alphabet. In this
setting one makes predictions on a stream of data consisting of instances of
just two possible symbols, say 0 and 1. More precisely, in each successive trial
one of two possible symbols is revealed; and a prediction method must give
at each trial—and only based on the sequence of symbols revealed so far—a
(probabilistic) prediction which symbol will appear next.

A universal prediction method is, to a first approximation, a method that
performs well in all cases. This can be construed as the requirement: whatever
the actual or true data-generating mechanism, the method performs not much
worse than one could if one knew the mechanism at work. I call this universal
reliability. Alternatively, this can be construed as universal optimality : what-
ever the data stream, the method performs not much worse than any other
possible prediction method. This is all still quite informal: a perfectly precise
characterization of the notion of universality of a prediction method, including
what it should mean for a predictor to perform well, is one of the things that
I will develop later in this thesis.

1
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The focus in this thesis lies on a proposed definition of a universal predic-
tion method that goes back to Solomonoff (1964). One component that stands
out in Solomonoff’s proposal is the relation that is forged between universality
and effective computability. Another main component is the relation that is
suggested with a preference for simplicity. While, however, the philosophical
import of Solomonoff’s proposal has repeatedly been emphasized by authors
in theoretical computer science, attention in the philosophical literature has so
far been largely restricted to the occasional mention in overview works. The
main aim of this thesis is to position Solomonoff’s proposal in a broader philo-
sophical context, and thereby to address the main question on the possibility
of a universal prediction method.

The starting point in this thesis is the connection of Solomonoff’s proposal
to Carnap’s program of inductive logic. More specifically, the thesis sets off
from an influential argument of Putnam against Carnap’s program, a mathe-
matical proof that is generally understood to demonstrate the impossibility of
a universal prediction method.

I will say some more about this starting point below, after which I outline
the main themes, the contributions, and the structure of this thesis. But first,
to start off on a truly general footing, I give a little sketch of the history of
universal prediction.

* * *

Some broad strokes of history. Leibniz famously imagined how all sci-
entific disputes would be solved in a purely mechanical way. If only we had a
universal calculus, conjoined with a “universal characteristic” to represent any
scientific proposition, then we could establish the truth of any such proposition
by simply saying: calculemus! Leibniz’s proposal of this universal symbolic
language and idealized calculus ratiocinator—as well as more down-to-earth
calculating devices, including his actual construction of a ‘stepped reckoner’—
are an early articulation of ideas that were finally gaining momentum in the
19th century, and that evolved into modern symbolic logic and computer science
in the 20th. Babbage gave a design for a general-purpose computer in 1837;
Boole (1847, 1854) and others developed a purely syntactic or symbolic logic
in the image of algebra. Frege (1879) significantly extended the latter work
to what is in effect the language of first-order logic, and initiated the logicist
ideal of reducing all of mathematics to pure logic. Others set out to formalize
branches of mathematics in axiomatic theories, some motivated by logicism
and some by Hilbert’s finitist ideal to ground all of mathematics on a small
number of axioms and proving its consistency by constructive means. A central
challenge was what Hilbert (1928) would call the Entscheidungsproblem: can
there exist a mechanical procedure, an algorithm, that decides the truth of any
given mathematical statement, any given expression in first-order logic? This
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required a precise definition of the notion of algorithm or effective computabil-
ity, which was provided in a convincing way by Turing (1936). His universal
Turing machine gave a mathematical model of a device that can implement any
conceivable mechanical calculation. It is a mathematical model that came to
be instantiated in the digital computer, that now manages all our calculations
and has indeed started to turn mechanized mathematical reasoning—automated
theorem proving—into reality.

Thus runs (in very broad strokes) the story of formalizing and mecha-
nizing deductive or mathematical reasoning. But this story misses something
important about Leibniz’s original ideal (Hacking, 2006, 135):

Most readers of Leibniz have taken this to be the cry of some
alien rationalism which assumes that every issue can be settled by
deductive proof. Quite the contrary. Leibniz was not in general
speaking of proving propositions but only of finding out which
are most probable ex datis.

On Hacking’s reading, Leibniz envisioned a logic of induction, specifically, a
universal calculus for probabilistic reasoning. This is a logic of partial entail-
ment where we can derive that one statement entails or confirms another to a
certain numerical extent, viz., a probability. (From this perspective deductive
logic is the special case that only figures probabilities 1.) In fact, Boole in The
Laws of Thought likewise extended his symbolic logic to a calculus of probabilis-
tic reasoning. He was one of the early proponents of the logical interpretation
of probability, where the probability of a proposition stands for the degree of
belief that a rational agent, on purely logical grounds, should attach to it. The
subsequent development of mathematical logic completely disregarded proba-
bility and inductive reasoning, but its great success in formalizing deductive
reasoning still inspired a number of philosophers to try and place probability
on the same firmly logical footing: notably Keynes (1921) and Johnson (1932),
Wittgenstein and Waismann (1930), and Carnap and co-workers (1945; 1950;
1952; . . . ). Keynes’s 1921 book attempts an axiomatization of logical prob-
ability in the spirit of Russell and Whiteheads Principia, and was in general
very influential; but by far the most formidable pursuit of the logical approach
to probability was the work done within Carnap’s program of inductive logic,
that lasted several decades and that still has outgrowths today.

Carnap (with Hempel, Reichenbach, Feigl, and others) belonged to the
logical empiricists, a group of philosophers that for some time in the mid-20th
century represented the “received view” in the philosophy of science (Suppe,
1977). They were broadly concerned with exposing ‘the logic of scientific in-
ference,’ employing the apparatus of formal logic as well as—and increasingly
so—mathematical probability and statistics. They were thus concerned with
formalizing scientific method, or at least that part that belonged to the objec-
tive “context of justification” rather than the messy psychological “context of
discovery” (Reichenbach, 1938). Perhaps the most important object of their
study was the notion of confirmation of a scientific assertion by a body of data.



4 INTRODUCTION

Carnap with his inductive logic indeed sought to give a quantitative explication
of degree of confirmation: this was his logical probability. If successful, this
would actually yield a formalization of the most bare form—to Carnap, the
most fundamental form—of scientific inference: the extrapolation from current
data to a more general conclusion; in particular, to a probabilistic prediction
about yet unknown data, the predictive inference. It gives a rational and ob-
jective induction rule for directly going from data to predictions. In the words
of van Fraassen (1989, 132),

Here is the ideal of induction: of a rule of calculation, that ex-
trapolates from particular data to general (or at least ampliative)
conclusions. Parts of the ideal are (a) that it is a rule, (b) that it
is rationally compelling, and (c) that it is objective in the sense
of being independent of the historical or psychological context in
which the data appear, and finally (d) that it is ampliative. If
this ideal is correct, then support of general conclusions by the
data is able to guide our opinion, without recourse to anything
outside the data—such as laws, necessities, universals, or what
have you.

Van Fraassen continues: “Critique of this ideal is made no easier by the fact
that this rule of induction does not exist . . . Sketches of rules of this sort
have been presented, with a good deal of hand-waving, but none has ever
been seriously advocated for long.” Carnap was ultimately unsuccessful in this
regard, too, but his and his coworkers’ continued struggle with induction and
their engagement with work from mathematical probability and statistics did
have an enduring impact on the philosophical debate. According to Zabell
(2011, 305, emphasis mine), “Carnap’s most lasting influence was more subtle
but also more important: he largely shaped the way current philosophy views
the nature and the role of probability, in particular its widespread acceptance
of the Bayesian paradigm.” The Bayesian framework is nowadays the most
popular unified account of all aspects of scientific reasoning.

The modeling of scientific reasoning in a Bayesian manner evokes the pic-
ture of scientists following “Bayesian algorithms” (though the—subjective—
input to these algorithms would still be part of something like the context of
discovery, cf. Salmon, 1990 in response to Kuhn, 1977). In general, with the
rise of the digital computer, any project of formalizing scientific reasoning soon
evokes the Leibnizian ideal of mechanizing or automating scientific reasoning.
The image one finds in the early literature is that of the ‘learning machine’ or
‘inductive robot’—often rather in an attempt to bring out the absurdity of the
idea of mechanizing all of science. Carnap granted the absurdity of automating
the process of coming up with a scientific theory, but stuck to his belief that
inductive reasoning can be formalized and indeed be automated into a rule of
calculation (1966, 33f):

One cannot simply follow a mechanical procedure based on fixed
rules to devise a new system of theoretical concepts, and with
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its help a theory. Creative ingenuity is required. This point is
sometimes expressed by saying that there cannot be an induc-
tive machine—a computer into which we can put all the relevant
observational sentences and get, as an output, a neat system of
laws that will explain the observed phenomenon.

I agree that there cannot be an inductive machine if the pur-
pose of the machine is to invent new theories. I believe however,
that there can be an inductive machine with a much more mod-
est aim. Given certain observations e and a hypothesis h (in
the form, say, of a prediction . . . ), then I believe it is in many
cases possible to determine, by mechanical procedures, the log-
ical probability, or degree of confirmation, of h on the basis of
e.

Meanwhile, the first humble practical steps towards the ideal of mechanical
learning were taken in the nascent field of artificial intelligence. Oddly, though,
work in artificial intelligence went back to observing a strict separation between
a logical and a probabilistic approach, where the rule- and knowledge-based ap-
proach dominated up to the point that by the 1980’s the probabilistic approach
had been all but purged from the field. However, the latter approach reorga-
nized and reemerged under the header of machine learning, and its tremendous
advance in recent years has resurrected and indeed brought to popular aware-
ness the ideal of automated learning, or automated inductive reasoning.

Without the digital computer that came to instantiate Turing’s mathe-
matical model modern science would be unimaginable; the next step, some
now speculate, is that the computer can do it all. Big data promises a purely
data-driven science; and even if we need theory, the context of discovery might
yield to automation as well (Gillies, 2001a; Schmidt and Lipson, 2009). But
if it is true that the whole of science can be automated, it must in the end
take the form of a particular algorithm that extrapolates data to predictions,
a modern formulation of the age-old ideal of the induction rule. The “master
algorithm,” to take a term from a recent popular book on machine learning
(Domingos, 2015, 25):

All knowledge—past, present, and future—can be derived from
data by a single, universal learning algorithm.

* * *

Carnap, Putnam, and Solomonoff. Putnam in (1963a; 1963b) con-
strued the aim of Carnap’s program of inductive logic as the specification of
a universal inductive method, and presented a formal proof against the very
possibility of such a notion.

Specifically, Putnam (1963a) formulated two conditions of adequacy on any
reconstruction of “the judgements an ideal inductive judge would make” (ibid.,
778), and proceeded to give a diagonal proof to the effect that no Carnapian
definition can satisfy both. In (1963b), Putnam explicitly assumed the view
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that “the task of inductive logic is the construction of a ‘universal learning
machine’” (ibid., 303), and accordingly presented his proof as showing the
impossibility of this notion. What he had shown, in these terms, is that there
can be no learning machine that is also universal : no inductive method that is
effectively computable, that is also able to eventually detect any pattern that
is effectively computable.

In 1956, around the same time that Putnam first wrote down his argu-
ment, McCarthy organized the Dartmouth workshop that marks the birth of
the field of artificial intelligence. The select list of participants included such
influential figures as Minsky, Shannon, Newell, Simon—and Solomonoff. Solo-
monoff, taking inspiration from interactions at this workshop, as well as earlier
interactions with Carnap (who was in Chicago when Solomonoff was a student
there), spent a number of years thinking about mechanized inductive reasoning
and published his findings in (1964). The ideas in this paper, that later found a
more secure mathematical footing in the work by Kolmogorov’s student Levin
(1970), are important for a number of reasons.

First, they include the earliest formulation of the founding notion of the
field of algorithmic information theory (also: Kolmogorov complexity) in the-
oretical computer science. Second, they include ideas on universal prediction
that have a direct line to developments in modern theoretical machine learn-
ing. Third, and this is the focal point of this thesis, they lead to a formal
foundation of precisely those aspects of Carnap’s program that Putnam took
issue with, and in particular, resurrect the notion of a universal mechanic rule
for induction. The resulting Solomonoff-Levin predictor qualifies, perhaps, as
the definition of a universal inductive machine.

* * *

The Solomonoff-Levin definition. There are two main distinct yet
equivalent modern formulations of the Solomonoff-Levin definition. I desig-
nate the mathematical result establishing their equivalence, theorem 2.16, as a
representation theorem, and make much use of it in this thesis.

I give here a rough description of both formulations. In chapter 2 I explain
both definitions in detail.

The Solomonoff-Levin definition (1). First, the Solomonoff-Levin def-
inition is a Bayesian mixture—a weighted mean—over a very general class of
probability measures over data sequences. Namely, it is a mixture, with a
semi-computable prior or weight function, over the class of all semi-computable
measures over (finite and infinite) data sequences. Here semi-computability is a
weakening of full-blown computability that can be understood as ‘computable
approximability from below.’

The Solomonoff-Levin definition (2). Second, the Solomonoff-Levin
definition is a transformation of the uniform measure by a universal monotone
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Turing machine. More concretely, it assigns to each sequence the probabil-
ity that it is generated by a universal monotone Turing machine, when this
machine is given uniformly random input. Phrased somewhat differently, the
probability it assigns to each sequence is given by the input sequences to a uni-
versal machine that lead the machine to generate the sequence (the sequence’s
descriptions), where shorter descriptions contribute more probability.

* * *

This thesis (1). In this thesis I investigate whether and how the Solomo-
noff-Levin proposal can avoid Putnam’s diagonal argument to yield a definition
of an “optimum,” “cleverest possible,” or universal inductive machine. More
broadly, this is a philosophical and historical investigation into the possibil-
ity of a perfectly general and purely mechanic rule for extrapolating data: a
universal prediction method.

This thesis (2). Furthermore, I investigate the common association of the
Solomonoff-Levin proposal, and algorithmic information theory in general, with
a notion of simplicity in terms of datacompression. I investigate a suggested
justification of the principle of Occam’s razor, as well as the more recent notion
of the predictive complexity of data sequences.

* * *

Contributions of this thesis. The main contribution of the current work
is a clarification of the philosophical and formal aspects of the Solomonoff-Levin
proposal for universal sequential prediction. This includes an explication of the
following aspects.

◦ The historical and conceptual connection of the Solomonoff-Levin pro-
posal to Carnap’s program of inductive logic and Putnam’s recon-
struction and critique of the latter.

◦ The different possible interpretations of prediction methods and the
Solomonoff-Levin method in particular, most importantly as a Bay-
esian mixture predictor operating under a particular inductive as-
sumption and as an aggregating predictor over a pool of competing
prediction methods.

◦ The notion of universality in sequential prediction, and the distinction
between universal reliability and optimality. The interpretation of
effective computability as leading to a universal inductive assumption
or as leading to a universal pool of prediction methods.

◦ The weaker notion of semi-computability that is central to the Solo-
monoff-Levin proposal, and that appears to provide an opening to
evade Putnam’s diagonal argument.
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◦ The role of simplicity in the Solomonoff-Levin proposal, and the rela-
tion to universality. The interpretation of data-compression and the
role of the logarithmic loss function in sequential prediction.
◦ The place of Solomonoff’s theory on prediction in the wider area of

algorithmic information theory.

This thesis also presents a number of new mathematical results about the
Solomonoff-Levin definition, that function to support the philosophical obser-
vations. The most important result is theorem 2.13, that gives a generalized
characterization of the Solomonoff-Levin measure as a universal transforma-
tion.

It sometimes seems like progress in philosophy is mainly of a negative
nature: option X cannot work, and option Y is problematic, too. I do not
think this is necessarily the case: I think the above main contribution is a
positive one and represents genuine progress. Nonetheless, the main conlusions
of this thesis are negative:

◦ The Solomonoff-Levin proposal ultimately fails to escape Putnam’s
argument, and this failure generalizes: there cannot be a universal
prediction method.
◦ The suggested justification of Occam’s razor via the Solomonoff-Levin

definition does not succeed. The supposed formalization of Occam’s
razor in the Solomonoff-Levin definition does not actually go beyond
the property of universality.
◦ The formal notion of predictive complexity falls short of its aim.

* * *

Organization of this thesis. I have divided the thesis into four parts.
The two core parts are devoted to the two main themes of universal prediction
and of simplicity, respectively. These core parts are preceded by a more informal
prelude part, and succeeded by a more formal appendix part that contains
auxiliary material and proofs.

Throughout the thesis I have prefixed some section headers with a ‘*’:
this is to indicate sections that disrupt the flow of the main text by making a
peripheral or technical point, and that can be safely skipped by the reader.

Part I. Prelude. Aims to explain and motivate in an easy-going fashion
the central concepts of this thesis, thus setting the stage for the further parts.

This part consists of the following seven sections: on the game of sequen-
tial prediction (I.1), the assumption of a deterministic hypothesis (I.2), the
assumption of a probabilistic hypothesis (I.3), the constraint of computability
(I.4), universal optimality (I.5), the Solomonoff-Levin proposal for universal
prediction (I.6), and the Solomonoff-Levin proposal and simplicity (I.7).
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Part II. Universality. On the theme of the Solomonoff-Levin definition
as a proposed universal prediction method, vis-à-vis Putnam’s diagonal argu-
ment against the possibility of such a definition.

This part consists of the following four chapters.

Chapter 1. Introduces Putnam’s diagonal argument (1.1), explains Car-
nap’s program of inductive logic (1.2), and introduces and positions Solomo-
noff’s approach (1.3).

Chapter 2. A technical chapter. Sets out the definition of the Solomo-
noff-Levin measure (2.1), and discusses the equivalent mixture definition and
presents new results that generalize both (2.2).

Chapter 3. The most important chapter. Charts different interpretations
of prediction methods: as stemming from a priori measures (3.1), as mixtures
over hypotheses (3.2), and as mixtures over predictors (3.3).

Chapter 4. Wraps up the Carnap-Putnam-Solomonoff storyline. Revis-
its and critically discusses Putnam’s argument (4.1), dismisses the universal
reliability of the Solomonoff-Levin predictor (4.2), and discusses and finally
dismisses the universal optimality of the Solomonoff-Levin predictor (4.3).

Part III. Complexity. On the theme of the Solomonoff-Levin definition
as providing a formalization of simplicity and a justification of Occam’s razor.

This part consists of the following two chapters.

Chapter 5. On the association of the Solomonoff-Levin definition with Oc-
cam’s razor. Reconstructs and refutes the suggested justification of Occam’s
razor (5.1), and challenges the simplicity interpretation itself (5.2).

Chapter 6. On more recent work related to the Solomonoff-Levin defini-
tion, in particular the notion of predictive complexity. Discusses the theory of
prediction with expert advice (6.1) that generalizes universal prediction to dif-
ferent loss functions, introduces and criticizes the resulting notion of predictive
complexity (6.2), and points out some further directions of research that arise
from the work in this thesis (6.3).

Part IV. Appendices. Consisting of the following.

Appendix A. Contains brief expositions of concepts and results in the pe-
riphery of the Solomonoff-Levin theory that come up at various places in the
thesis: relating to the Σ1 semi-distributions (A.1), description systems (A.2),
Kolmogorov complexity (A.3), and Martin-Löf randomness (A.4).

Appendix B. Contains all proofs of the results in this thesis, divided into
those on the framework of Σ1 measures and semi-distributions (B.1) and those
on sequential prediction (B.2).

*





Part I

Prelude
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This part builds up and motivates the main concepts and themes of this
thesis. As such, it precedes—forms a prelude to—the more detailed work done
in the subsequent parts.

In I.1, I introduce the setting of sequential prediction and point out the
basic problems with induction. In I.2, I further illustrate these problems by
means of a diagonal argument, and introduce the idea of constraining the prob-
lem by assuming a class of possible deterministic hypotheses. In I.3, I consider
the more general case of probabilistic hypotheses, and introduce the Bayesian
approach to sequential prediction.

In I.4, I introduce effective computability as an inductive assumption about
Nature. In I.5, I explain that effective computability is more convincing as a
constraint on prediction methods, which leads to the new goal of universal op-
timality. Unfortunately, the most straightforward way of defining a universally
optimal prediction method is blocked by Putnam’s diagonal argument.

In I.6, I introduce the Solomonoff-Levin proposal as an attempt to avoid di-
agonalization and thereby obtain a definition of a universal prediction method.
This provides the basis for part II of the thesis. In I.7, I introduce the associ-
ation of the Solomonoff-Levin proposal with Occam’s razor. This provides the
basis for part III of the thesis.

I.1. Sequential prediction

A game of prediction. Imagine prediction as a game we play against
Nature. The latter repeatedly issues a symbol, either 0 or 1: it is helpful to
visualize this as the tracing of an upward path through a binary tree, figure
1. Our task, at each such successive trial, is to predict the symbol Nature will
play. To spell this out (for an overview of notation, see page v): at each trial
t+ 1,

◦ we issue a prediction p, based on the sequence xxxt of symbols that
Nature has generated so far;

◦ Nature reveals the next outcome xt+1;
◦ we suffer a loss `(p, xt+1) that quantifies how much our prediction

was off.

Our predictions are probabilistic: p is a probability distribution over B = {0, 1},
the possible outcomes. A prediction strategy specifies a prediction for each
possible state we might find ourselves in: for each node in the binary tree it
assigns a probability to both outgoing branches. Thus a prediction strategy p
is a function from B∗, the finite sequences, to P, the distributions over B.

The simplest of examples of a prediction rule is the indifferent rule, that
always says fifty-fifty: p(xxx) = ( 1

2 ,
1
2 ) for each xxx ∈ B∗. A slightly more sophisti-

cated example is a rule of succession, a prediction rule that takes into account
the relative fequency of symbols in the data so far. For instance, Laplace’s rule



14

∅∅∅

1

11

111

...

3
4

110

...

1
4

2
3

10

101

...

1
2

100

...

1
2

1
3

1
2

0

01

011

...

1
2

010

...

1
2

1
3

00

001

...

1
4

000

...

3
4

2
3

1
2

Figure 1. The binary tree of the prediction game. Nature sets
out on a path from the root upwards; we try to predict every next
symbol using a prediction strategy that assigns probabilities to each
node’s two upward branches. The values depicted here are those
given by Laplace’s rule of succession.

of succession is defined by

p(xxxt) =

(
#0xxx

t + 1

t+ 2
,

#1xxx
t + 1

t+ 2

)
.

Figure 1 shows the values it gives for sequences up to length 2.
A standard loss function is the logarithmic loss function, defined by

`(p, xt+1) := − log p(xt+1).

So if we assigned probability 1 to what was to become the actual outcome
xt+1, we incur loss 0; as we were more careful and assigned less probability to
xt+1, our loss increases; and if we made an extreme prediction the other way
and assigned probability 0 to xt+1, we incur loss infinity. I will for now, by
way of illustration, assume the logarithmic loss function; but later in the thesis
(specifically, chapter 6) I will also discuss other loss functions.

This is the basic framework of the prediction game that I assume through-
out this thesis.

The generality of this setting. The starting assumption of this thesis
is that a maximally general and abstract setting is useful for the study of
foundational questions—ultimately, in our case, the fundamental question of
epistemology: what can we know? Being granted this, however, we face the
problem of producing a framework that attains that generality. Does the above
framework of sequential prediction suit our goal, if this goal is to examine the
limits of scientific or statistical inference?
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One can, to begin with, object that scientific inquiry consists not so much
in producing forecasts as in inferring general conclusions: not so much in pre-
diction as in the identification and the confirmation of hypotheses and theories.
(That is studied within a similar abstract framework in formal learning the-
ory, see Kelly, 1996.) One can thus object to the generality of the problem
setting of prediction; one can further object to the way predictive inference is
rendered in our framework. As Dawid (1985b, 279) writes, when he introduces
this framework under the label of “prequential forecasting,”

This formalism may appear to be an uncomfortable straightjacket
into which to squeeze statistical theory. The data may arrive en
bloc, rather than in a natural order; if they come from a time-
series, it may be impossible, or not obviously desirable, to analyse
them at every point of time, or to formulate one-step ahead fore-
casts; and the restriction whereby all uncertainty about the next
observation is to be encoded in a probability distribution, while
acceptable to Bayesians, may not appeal to others.

In addition, we stipulate a binary alphabet to express the data, rather than
allowing for any countable or even continuous alphabet (though this is not an
essential limitation, cf. Hutter, 2003b), or indeed an unknown alphabet (the
sampling of species problem, see Zabell, 1992). Finally, this setting of passive
prediction leaves out the component of active data-gathering, which is taken
into account in reinforcement learning (see Sutton and Barto, 1998).

While there certainly is a case to be made that prediction is at most a
subsidiary part of science, there is also, as I highlighted in my historical sketch
in the introduction (page 2), an important opposed tradition, fashionable in
parts of machine learning today, that takes it that scientific inference ultimately
comes down to inductive inference from particulars to particulars, or predic-
tive inference. (In machine learning, the term transduction is sometimes used
to distinguish the inference to particulars from induction, which then takes
the specific meaning of inference to general conclusions, see Vapnik, 1998.)
This is an important motivation for investigating the limits of inference within
the general setting of prediction—for investigating the possibility of universal
prediction. Moreover, while our framework of sequential prediction certainly
cannot accommodate everything there is to say about prediction, I think, and
I assume in this thesis, that it possesses a level of generality that lends signifi-
cance to the conclusions we draw from it. For the rest, I will side with Dawid,
who concludes his above enumeration of concerns (ibid.):

All these are valid prima facie objections; but I would respond
by suggesting that, if you will tentatively join me in following
through the implications of the prequential approach, you may
find that it offers new insights enough to offset such disquiet.

The goal: a universal prediction strategy. So if prediction is a game,
how do we win? In other words, what is our goal in the prediction game?
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Informally, our goal is to predict well; and this means, in the current frame-
work, to keep our losses to a minimum. But how and to what extent can we
achieve that?

Let us set off from a basic intuition about what is required for good predic-
tion. What makes the indifferent rule a silly prediction method? It is the fact
that in a clear sense, it never learns anything. No matter the moves Nature
makes, no matter the regularity the resulting data sequence exhibits, the indif-
ferent method remains unmoved and sticks to the exact same forecasts—and
every single trial it incurs the same positive amount of loss. A rule of succes-
sion is more sophisticated because it does allow itself to be informed by the
sequence: it adjusts its predictions to the observed relative frequencies. It ex-
trapolates a regularity from the past in its predictions about the future. In that
sense, it can learn from the data. However, in the same sense, it is extremely
limited in the things it can learn. Its predictive probabilities are still completely
uninformed by any order effects in the data. Even in the favourable case that
the sequence that Nature constructs exhibits a stable relative frequency, and
the method’s predictions eventually converge on this frequency, there is (unless
the relative frequency is an extreme value 0 or 1) at least a specific positive
amount of loss it keeps on incurring every single trial.

The next step would be a method that can learn enough from the data
about the sequence that is being constructed to actually make its losses even-
tually go down. That is, a method that makes the loss it incurs every trial
converge to 0.

Let us tentatively formulate this as our goal in the game (the ‘winning
condition’): to make the losses go to 0. Then a universal prediction strategy
would be a prediction strategy that always manages to attain this goal, that
is, that manages to make the losses go to 0, no matter what Nature does.
Intuitively, such a universal method should always be able to learn from the
data; it should always be able to eventually discover the regularity in the past
and predict well by extrapolating it.

But if we think about this just a little more, we soon realize how wildly
overambitious this goal is.

The problems with induction. The problem with the simple prescrip-
tion to extrapolate the pattern of the past is that at any given time, there is
any number of regularities we can recognize in the data so far (Goodman, 1954,
82):

To say that valid predictions are those based on past regularities,
without being able to say which regularities, is thus quite pointless.
Regularities are where you can find them, and you can find them
anywhere.

The sequence xxx9 = 010011000 follows the pattern ‘repeat for n = 0, 1, 2, . . . :
n− 1 times 0 and n− 1 times 1’ (so the next symbol would be 1); but it also
follows the pattern ‘repeat for n = 0, 1, 2, . . . : 2n times 0 and 2n times 1’ (so
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the next symbol would be 0). The simple fact that any finite evidence can be
generalized in an infinite number of ways has been the subject of discussion
by earlier authors, for instance Jeffreys (1939, 3) and Poincaré (1902, 173);
but Goodman (1946) first explicitly formulated it as a problem for Carnap’s
confirmation theory, and related it to the problem of induction (1954, 59ff).
Goodman’s new riddle of induction (ibid.) then reads: granted that it is a good
idea to predict by extrapolating from the past, then we still do not know which
of these many patterns to extrapolate. The original problem of induction, going
back to Hume, is that what is granted in this statement of the new riddle: do
we actually have any good reason—any justification—for trying to extrapolate
patterns of the past?

Hume’s skeptical argument starts from the observation that inductive rea-
soning must “proceed upon the supposition, that the future will be conformable
to the past” (1748, 62). But what rational reason can we give for adopting this
‘principle of the uniformity of Nature’s strategy’? We cannot justify it on the
grounds that it has held in the past, because this “must be evidently going
in a circle, and taking that for granted, which is the very point in question”
(ibid., 63). Or, if this is not directly circular, we need a principle of uniformity
on a higher level (‘if extrapolating patterns of the past has been successful,
then it will remain so’), which for its justification requires yet a higher prin-
ciple: and we are led into an infinite regress. Nor, of course, can we justify
induction deductively: “it implies no contradiction, that the course of nature
may change” (ibid., 61). To be sure, if the only constraint on Nature is the
bare framework of the prediction game, then Nature can basically do what-
ever, whenever. Nature can indeed be adversarial : it can explictly sabotage
our predictions. Namely, to take the most extreme case, it can play symbol x
whenever we give it predictive probability no more than 0.5; thus making sure
that every trial we incur at least a same high amount of loss. In other words,
it is possible that our basic starting point is false: there is just nothing that
can be learned from the data.

The problem of induction. Hume’s problem of induction as I sketched
it within our framework of sequential prediction might very well leave the im-
pression of a purely logical observation: induction cannot be justified because
as a matter of logic anything can happen. Note again, though, that this is only
the second part of the argument, saying that we cannot give deductive reasons
for induction; the other part is that we cannot give inductive reasons for in-
duction. This is what makes it an extremely powerful argument; an argument
that so far has withstood any attempt at a solution. Nevertheless, it is hard to
shake off a first impression of the problem of induction as something of a friv-
olous puzzle, and I should say some more on why it is a genuine philosophical
problem, indeed the central problem in the philosophy of science.
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It is a genuine problem because inductive reasoning, the procedure of ex-
trapolating observational data to more general conclusions, is to many philoso-
phers (although not to all: Popper, for one, famously disagreed) the very hall-
mark of science. On this view, scientific reasoning is inductive reasoning. But
then it is a profound problem that science, supposedly the most rational of
human enterprises, is at heart a procedure that cannot be rationally justified,
cannot be supported by good reasons. It suggests that science is ultimately
also only a leap of faith, no better than reading tea leaves or any other irra-
tional practice. This is clearly unsatisfactory: and some answer to the problem
of induction would therefore “not only be of fundamental epistemological im-
portance; it would also be of fundamental cultural importance as part of the
enterprise of enhancing scientific rationality” (Schurz, 2008, 280); see especially
the lucid explanation of Salmon (1967, 54ff) of the significance of the problem
of induction.

This signifance stands in contrast, again, to the deceptively simple form
of Hume’s argument, and the fact that no scientist will (or should) feel com-
pelled to suspend his activities for it. Recognizing this, Howson (2000, 10) sets
apart the original problem of induction from what he calls Hume’s problem,
“the problem of reconciling the continuing failure to rebut Hume’s argument
with the undoubted fact that induction not only seemed to work but to work
surpassingly well.”

Thus, to the extent that our framework of sequential prediction captures
the essence of inductive inference, it is important to try and direct our search
for a universal prediction method to a possible justification of induction (see
I.5 below; and 4.2-4.3); and if this fails, to try and understand why it fails.
That is a main aim of this thesis.

* * *

I.2. Deterministic hypotheses

We return to the problems with induction in our framework of sequential
prediction. It seems that these problems leave us no option but to impose
constraints on the prediction game—and worry about the justification for those
later.

A first encounter with diagonalization. As a start, to counter the
above-mentioned possibility of Nature explicitly sabotaging us, how about we
deny Nature access to our predictions? This is not enough, it turns out: Nature
does not even have to be reactive to our particular prediction strategy to be
adversarial.

We will now assume that there are only countably many possible prediction
strategies, an assumption that will later be motivated in some detail. Under
that assumption, Nature can generate data sequences that will make us fail
to converge no matter what prediction method we choose to follow. This can
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be shown by a diagonal argument, the type of argument (as mentioned in the
introduction, page 5) that Putnam used against Carnap.

Since we assumed there exists a countable number of possible predictors,
we can assume Nature keeps a list {pi}i∈N of all of them. Now the most
straightforward diagonal history has predictor pi fail at trial i + 1, which is
to say that Nature selects the next outcome xi+1 such that pi(xi+1,xxx

i) ≤ 0.5.
This guarantees that every predictor fails at some point—though it still leaves
open the possibility that predictors will converge to correct predictions after
this single failure. A more refined diagonalization, depicted in figure 2, makes
sure that every predictor keeps on failing, and so never makes its loss go to 0
(also see Sudbury, 1973). Rather than continuing to p2 after making p1 fail
for the first time, Nature backtracks and first makes p0 and p1 fail a second
time. Then, after making p2 fail for the first time, before turning to p3, Nature
backtracks again and makes the first three predictors fail another time. So it
continues, each time extending to one more predictor before backtracking and
making each of the previous predictors fail one more time. The result is that
each predictor will fail infinitely often, and no predictor makes its loss go to 0.

I used here a dynamical language that still paints Nature as pursuing a
strategy that reacts to predictions, in this case the predictions of all strategies.
But the argument establishes an existence claim that is independent of what
we, the player making the forecasts, do. The earlier adversariality, with Nature
reacting to our particular predictions, gives the statement: for every prediction
strategy, there exists a history that makes it fail infinitely often. (And this
history depends on the prediction strategy.) The argument of this section gives
the statement: there exists a history that makes every prediction method fail
infinitely often.

The procedure can be extended by having Nature intersperse the diago-
nalization moves with playing the successive symbols of some given infinite
sequence xxxω (Schervish, 1985b). So every odd trial it makes the next move in
the original diagonalization; every even trial it plays the next symbol of xxxω.
Since there are uncountably many infinite sequences xxxω, there are uncountably
many ways of generating such a history, each of which makes each predictor
fail infinitely often. So here we have another expression of the impossibility of
universal prediction in the naive sense: there are uncountably many histories
that make each prediction method fail infinitely often, that are unlearnable.

Making assumptions: deterministic hypotheses. If enforcing con-
straints on Nature is the way we choose to go, these constraints need to go
beyond just denying Nature access to our predictions. We would actually have
to stipulate that Nature can only choose from a limited number of ways of
generating the data.

To use a better term, that stays clear of suggesting that we can actively
enforce metaphysical constraints on Nature: we would have to assume that
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Figure 2. The construction of a diagonal history. The horizontal
axis marks the trials; the vertical axis an enumeration of all predic-
tion methods. A cross at (pi, t + 1) signifies that Nature makes pi
fail at trial t+ 1, by issuing symbol xt+1 when pi(xt+1,xxx

t) ≤ 0.5.

Nature chooses from a limited number of ways of generating the data. These
possible data-generating strategies we call our hypotheses.

For instance, we can assume that Nature chooses only one of countably
many infinite sequences: these are our deterministic hypotheses. This does the
trick—the following prediction strategy will, under that assumption, be sure to
make our losses converge to 0. Keep an ordered list of all the hypotheses, i.e.,
infinite sequences; at each trial throw out the sequences that are refuted by the
previous symbol, and assign a predictive probability 1−2−i to the next symbol
of the sequence ranking first in the updated list, where i is the number of trials
the sequence has been at the top of the list already. Then at some point all
the incorrect sequences that we originally listed ahead of the sequence Nature
chose are refuted, and we will give increasing probability—indeed, converging
to 1—to the symbols Nature actually selects. Hence the loss we incur at each
trial converges to 0. (Why not simply assign probability 1 to the symbol given
by the first sequence in the list? Because we need to guard against incurring
logarithmic loss infinity if this sequence is refuted. Of course, this is not an
issue if we instead use a bounded loss function.)

Who gets to go first? Thus assuming that Nature is limited to countably
many (deterministic) strategies is enough to enable us to specify a prediction
strategy that, under that assumption, will always succeed. Note that this
mirrors the earlier diagonalization result: that limiting us to countably many
prediction strategies is enough to enable Nature to specify a history that will
always make us fail. These two results pull in different directions, potentially
leading to funny consequences if we are not careful about what gets constrained
first and why.

For instance, what if we include among our hypotheses one of the unlearn-
able diagonal sequences of the previous section? Then the simple method we
just saw will make our losses converge to 0 if Nature plays this sequence—it
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Figure 3. The Lebesgue or uniform measure on the binary tree.
The nodes that as before represent the possible finite sequences
are now labeled with their probabilities according to the uniform
measure.

will learn the unlearnable sequence! What has happened here is that this new
prediction method must fall outside of the earlier fixed class of all methods.
But why cannot this procedure count as a proper prediction method? Clearly,
we need to be more precise about what we admit as proper prediction methods,
and this will in fact be a crucial step further below.

But first we need to consider the case of probabilistic hypotheses, which
will bring us to the Bayesian approach to sequential prediction.

* * *

I.3. Probabilistic hypotheses

Rather than revealing the successive symbols of a fixed sequence, Nature
might itself proceed probabilistically, at some steps (or each of them) tossing
the proverbial coin to decide on the next symbol.

Making assumptions: probabilistic hypotheses. In full generality,
such a probabilistic data-generating strategy is given by a probability measure,
an assignment of probabilility to each node in the binary tree, where the to-
tal probability at each level is normalized to 1 (the probabilities assigned to
all same-level nodes sum to 1). (Figure 3 depicts as an example the ‘fully
random’—uniform—measure where each same-length sequence has the exact
same probability.) Formally, this is a function µ : B∗ → [0, 1] such that

µ(∅∅∅) = 1;

µ(xxx0) + µ(xxx1) = µ(xxx) for all xxx ∈ B∗.



22

(Really formally, it corresponds to a probability measure on the Cantor space,
the class of infinite sequences. See 2.1.1.)

A deterministic strategy—an infinite sequence—is a special case of a prob-
abilistic strategy, where the infinite sequence’s initial segments are all assigned
probability 1.

Hypotheses and strategies. I defined a probabilistic hypothesis here
as a measure on the full binary tree, but we can also see it as a function
that to each node assigns the distribution governing which symbol is generated
next. That is, formally, a probabilistic hypothesis or data-generating strategy
is equivalent to a prediction strategy, that is also a function from the finite
sequences to distributions on B. I return to this formal equivalence between
hypotheses and prediction strategies in I.5 below.

Losses and regrets. In the face of probabilistic data-generating strate-
gies, the goal of reducing the losses to 0 becomes utterly unfeasible. Consider
the fully random data-generating strategy (figure 3). Even if we knew that
Nature plays this strategy, and we always issue the correct predictive proba-
bilities, those that coincide with the actual probabilities (in this example, this
is actually our naive indifferent strategy, p(xxx) =

(
1
2 ,

1
2

)
), we would still incur

the same positive loss each single trial. One could say: Nature itself would be
unable to make its losses go to 0.

(Of course, for each finite sequence that is randomly generated, we could
have kept our loss arbitrarily low by somehow having assigned arbitrarily high
predictive probabilities to the actual symbols of this sequence. From this ex
post facto perspective, the strategy that issues the actual probabilities was
not the best possible strategy. But there is a clear intuition that the actual
probabilities, those aligned with the actual data-generating strategy, are the
best possible predictions: and they are in a precise way, namely in expecta-
tion. Consequently, we normally assume a loss function to be such that in
expectation, the loss is minimized by issuing the actual probabilities. Such loss
functions—among them the logarithmic loss function—are called proper. See
6.1.2.)

A more reasonable measure is therefore the surplus loss relative to the best
possible strategy, the strategy pµ such that pµ(xxx) = µ(· | xxx) for all xxx ∈ B∗.
This surplus loss `p − `pµ we call the regret (relative to µ) of p. (Note that a

deterministic hypothesis µ is the special case where p’s regret is its loss.)
A universal prediction method we then take to be a method that always—

no matter the µ that Nature plays—makes its regrets relative to µ go to 0.

Bayesian prediction. An important instance of the general approach of
making assumption about Nature, with the added benefit of naturally accom-
modating probabilistic data-generating strategies, is the Bayesian approach to
sequential prediction (see Dawid, 1984, 280).
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We start out again with a limited number of hypotheses, that are now
probability measures. For ease of presentation and with an eye to what follows
below, I will again take this to be a countable number; so we have some indexed
hypothesis class H = {µi}i∈I for countable index set I. We then put a prior
probability distribution over this class: a function w over the indices in I that
is everywhere positive and that sums to 1.

As we observe the sequence Nature presents, we update the prior distri-
bution to a posterior distribution over the hypotheses. We follow Bayes’s rule
in equating this posterior with the conditional prior w(· | ·), which by Bayes’s
theorem is given by

w(i | xxx) =
µi(xxx)w(i)∑
i µi(xxx)w(i)

.

The Bayesian mixture predictor issues at each trial the posterior-weighted av-
erage of the probabilities given by the hypotheses,

pbayes(xxx) =
∑
i

w(i | xxx)µi(· | xxx).(1)

Now, importantly, one can prove (again, for the countable case) that if
Nature chooses a strategy that is a hypothesis µ in H, then the Bayesian
mixture method indeed makes its regrets relative to µ converge to 0.

(All of this is treated in more detail in 3.2.2.)

Bayesianisms. The term ‘Bayesian’ is slightly treacherous, because it can
refer to any of at least 46,656 different things. Not even the update rule that
bears Bayes’s name is undisputed among all self-professed Bayesians. But if
there is a common core to all varieties of Bayesianism in philosophy, it is the
allowance for a particular interpretation of probability: the epistemic interpre-
tation as an agent’s degrees of belief.

This can be seen to subsume the logical interpretation pursued by Car-
nap, that I mentioned in the historical sketch in the introduction, page 2. On
the logical interpretation—in its strongest form—probabilities are the logical-
objective degrees of belief of the uniquely rational agent. Various Bayesian
interpretations can indeed be seen as taking various positions on a scale of
objective-subjective, where at the objective end lies the logical interpretation
and at the purely subjectivist end the only rationality constraints left are those
of coherence, or adherence to the Kolmogorov axioms of probability. As a mat-
ter of historical fact, Carnap would drop more and more rationality constraints
and so moved in the direction of—and helped popularize—the subjective Bay-
esian philosophy (see Zabell, 2011 and also 3.2.5).

Our postulation of a class of probabilistic hypotheses about the actual ob-
jective state or strategy of Nature—what Diaconis and Freedman (1986, 11)
call the classical Bayesian interpretation, because the assignment of a prior
probability assignment to the unknown parameters of a statistical model goes
back to Bayes and Laplace—is actually anathema to truly subjective Bayesians
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like de Finetti, who believe that the very concept of an unknown objective prob-
ability is meaningless. On the other hand, modern-day Bayesian approaches in
statistics take a much more pragmatic perspective, where not even the inter-
pretation of degrees of belief is necessarily retained (e.g., Gelman and Shalizi,
2013).

This interpretation of probability as degree of belief is something I also do
not necessarily want to assume when referring to the prediction method given
by (1). It may be a natural interpretation of a prior over a hypothesis class
(these are the things we—to various degrees—believe Nature might do), but it
does not seem necessary (perhaps there are things we believe possible but we
prefer not to think about?). On a minimal interpretation, these hypotheses are
simply the possibilities that we take into consideration, with different weights.
For that reason, I will mostly prefer to refer to predictor (1) by the more
neutral denotation ‘mixture predictor pmix,’ and to refer to the prior as the
‘weight function.’ Chapter 3 gives a much more detailed account of possible
interpretations of (mixture) prediction methods.

Hume, Bayes, and Goodman. The new riddle of induction asks what
patterns we should extrapolate when we do induction. With a (Bayesian)
mixture prediction method we answer Goodman’s riddle by stipulation: those
(probabilistic) patterns that are given by the hypotheses in our class, i.e., those
that we assign positive prior probability or weight. (Somewhat more precisely:
at each trial, those patterns that are given by the hypotheses that have retained
positive posterior probability, and weighted by how much posterior probability.)

In the terminology of Howson (2000), the choice of prior distribution con-
stitutes our inevitable “Humean inductive assumptions.” (Also see Romeijn,
2004, 357ff.) Howson (ibid., 88):

According to Hume’s circularity thesis, every inductive argument
has a concealed or explicit circularity. In the case of probabilis-
tic arguments . . . this would manifest itself on analysis in some
sort of prior loading in favour of the sorts of ‘resemblance’ be-
tween past and future we thought desirable. Well, of course, we
have seen exactly that: the prior loading is supplied by the prior
probabilities.

Thus the great merit of the Bayesian formal approach is that it locates our
inductive assumptions very precisely: in the prior. (See 3.2.2.)

* * *

I.4. Computability

Hacking (2001, 184f) writes,

Here is an odd fact, a coincidental (?) relation between the early
days of the Bayesian philosophy and the early days of computer
science.
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During the Second World War, Savage was the chief ‘statis-
tical’ assistant to John von Neumann, the great mathematician
who built the first electronic computer, and introduced the mod-
ern age of computers and information.

There was one other great advocate of Bayesian ideas di-
rectly after World War II, the English probability theorist I.J.
Good. I.J. Good was an assistant to A.M. Turing. Turing de-
fined the idea of the ideal computer and proved the fundamental
theorem about ideal computation. That is why today we speak
about Turing machines.

It is as if the modern Bayesian idea is a byproduct of the age
of computers.

Here I will consider the following inductive assumption, to be formalized in
a Bayesian mixture strategy: Nature’s possible data-generating strategies are
effectively computable.

Since computability plays a central role in this thesis, I start with a discus-
sion of the fundamentals: the notion of Turing machine and the Church-Turing
thesis.

Turing-computability. The formal notion of computability is studied in
mathematical logic under the header of recursion theory or (more recently, see
Soare, 1996, 1999) computability theory (classic textbooks are Rogers, 1967;
Soare, 1987; Odifreddi, 1989; a new textbook is Soare, 2016). The founding
notion is Turing’s (1936) model of a computing machine.

A Turing machine models an idealized ‘computor’ (that is: a person) who,
only aided by pen and paper, numbly and tirelessly follows a set of basic in-
structions. Specifically (see ibid., 249ff), the computor works on a potentially
infinite paper tape divided into squares, and what she does at each step is de-
termined by the symbol she reads at the current square and her current “state
of mind” (there are finitely many possible symbols and states). More specific
still, at each step she consults a finite list of instructions that are of the form:
if in this state and reading this symbol, then do this (either: move to left or
right, or write new symbol; and/or change state). (If there is no matching
instruction, the computor gets stuck. It can also happen that the computor
goes into an infinite loop, which occurs if she ends up in a configuration—a
combination of state and all symbols on the tape—she was in before.) The
machine is thus specified by the instructions; the input to the computation
is given by the symbols on the tape at the start, and the output is given by
the symbols on the tape when (if at all!) the computor arrives in the unique
halting state. In the standard modern presentation of the Turing machine, the
human computor is replaced by an abstract movable read/write head with a
set of internal states (see Odifreddi, 1989, 46ff, Soare, 2016, 7ff).

Of particular significance is Turing’s specification of a universal computing
machine (1936, 241), a universal Turing machine that can emulate every other
Turing machine.
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Turing’s theoretical model predates the spectacular rise of the digital com-
puter, but the obvious analogy to our modern computing devices is striking. A
Turing machine corresponds to a single algorithm, or computer program, and a
universal Turing machine to a familiar all-purpose computer, that can execute
any algorithm given the right program.

Let us call a function (relation, set, problem, . . . ) Turing-computable if it
is computable by some Turing machine, or equivalently, by any universal Tur-
ing machine. Turing showed that some well-defined problems are not Turing-
computable: in particular, the Halting problem—given a (code for a) Turing
machine and an input, does this machine eventually halt on this input?— is
not solvable by any Turing machine (1936, 247f). But Turing’s main target
was the Entscheidungsproblem (see page 2). He showed (ibid., 259ff) that if
the Entscheidungsproblem—given a (code for a) formula in first-order logic,
is this formula provable?—were solvable by a Turing machine, then so would
the Halting problem: hence the Entscheidungsproblem is not solvable by any
Turing machine.

The Church-Turing thesis. But does that mean that the Entscheidungs-
problem is not effectively solvable, full stop? What I am asking here is: can we
equate the formal notion Turing-computability with the informal notion of ef-
fective (mechanical, algorithmic, . . . ) calculability? The Church-Turing thesis
is the statement that we can.

There are a number of reasons in support of the identification of effec-
tive computability with Turing-computability (Turing’s thesis in Kleene, 1952,
376, and first dubbed the Church-Turing thesis in Kleene, 1967, 232). One
reason is the remarkable confluence of several different proposed models (in-
cluding Church’s λ-definability, Gödel’s general recursiveness, and Turing-com-
putability) that all turned out to be extensionally equivalent (Gandy, 1988).
(Although one could also say that the very fact that they are mathematically
equivalent shows that they were not so different to begin with, see Sieg, 2008,
563.) Another is the fact that we have to date not discovered any algorithm
that would not be implementable on a Turing-machine. (Although why would
this give reason to think that we will never find such an algorithm: the prob-
lem of induction, ibid.) A reason that is also sometimes mentioned (Piccinini,
2011, 738), is the fact that the class of Turing-computable functions cannot
be diagonalized—a fact that we will return to below. But perhaps the most
compelling reason and certainly the distinctive appeal of Turing’s model was
suggested by Turing himself (1936, 249ff; also see Church, 1937, 43): it just
seems evident that we could reproduce or program every step of any effective
procedure directly into an instruction for a Turing machine.

Though here it must be stressed again that Turing analyzed what a hu-
man computor could possibly calculate; this is maybe not the same as what
discrete mechanical devices or machines could possibly calculate. Copeland
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(2000; 2006) argues that Turing was strictly concerned with the first identifi-
cation; Hodges (2006) objects that it is not clear at all that Turing and others
at the time were attached to this distinction. Turing’s student Gandy (1980)
did draw the distinction between a Thesis T on human computability and
a thesis M on machine-computability, yet he also abated the distinction by
formulating a number of requirements on discrete machines and showing that
Turing-computability in fact follows from those (these conditions of locality
and boundedness as axioms for computability are further streamlined by Sieg
2002a; 2002b; 2008, 586ff). Both theses are, in any case, concerned with purely
mechanical computability, which sets them apart from the much stronger thesis
about physical computability, that would be refuted by the existence of (ana-
logue) devices that can harness incomputable (results of) physical processes.
The Entscheidungsproblem motivated an epistemological thesis about what a
mathematician can possibly prove, and the Church-Turing thesis as the union
of Theses T and M is still an epistemological thesis about what can be possibly
calculated (by man or machine) in a purely mechanical manner.

It is safe to say that the Church-Turing thesis in this form is generally
accepted, and I will assume it here, too. Apart from the unavoidable use of
the nontrival direction of the Church-Turing thesis (where we infer Turing-
computability from computability, or, as in the the case of the Entscheidungs-
problem, incomputability from Turing-incomputability), there is also the com-
mon lazy use in proofs where we infer the existence of a particular Turing
machine from a description or merely a sketch of an algorithm (terminology
by Boolos et al., 2007, 83). I will henceforth mostly leave the use of the
Church-Turing thesis implicit and treat ‘effective computability’ and ‘Turing-
computability’ as synonymous.

Computable hypotheses. A computable deterministic hypothesis is a
computable infinite sequence. A computable probabilistic hypothesis is such
that its probability values are given by a computable function. (See page vii
and also 2.1.1.)

The class of computable hypotheses is nice because it is at the same time
very small and very large. It is very small because it is countable (there are
only countably many Turing machines), a speck in the uncountable vastness of
all logically possible measures. Yet it is very large because it contains every
hypothesis that we could ever specify in sufficient detail to actually calculate
its values.

If we thus put the constraint—the inductive assumption—of computability
on Nature, we can specify a universal prediction strategy. In particular, the
Bayesian prediction method with the class of all computable hypotheses will
make its regrets relative to the actual measure go to 0—under the inductive
assumption of computability.

‘Relative universality.’ The Bayesian prediction method over the class
of computable hypotheses is thus a universal prediction method—for the class
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of computable hypotheses. In general, what we have uncovered so far is the
possibility of universal prediction methods for a given limited (countable) class
of hypotheses. This is, sure enough, straining the word ‘universality’ (also see
Grünwald, 2007, 175)—as conveyed by the oxymoron ‘relative universality,’
relative to a given hypothesis class. ‘True universality’ is only universality
relative to the universal class of all hypotheses.

The problem of induction indicates that it is impossible to specify a mixture
over the class of all hypotheses: any inductive assumption must be restrictive,
universality must be relative. An a priori restriction or assumption on Nature is
inevitable—but any such restriction must lack justification (see Howson, 2000
and 4.2).

The inductive assumption of computability. What about the restric-
tion of computability? Rathmanner and Hutter (2011, 1118) write:

It should be appreciated that according to the Church-Turing the-
sis, the class of all computable measures includes essentially any
conceivable natural environment.

Howson (2000, 77), when discussing the claim that only the computable hy-
potheses represent “genuine discussable hypotheses,” demurs:

it is just not true that we can consider only denumerably many
hypotheses. We have seen that in the language of ordinary analysis
hypothesis spaces of uncountably many elements are dealt with as
a matter of course. The fact is that these are all possibilities and
they cannot be ignored at the behest of an arbitrary restriction on
language.

Certainly a statistician will feel uncomfortable with being restricted to only
countably many hypotheses: already the lowly model of Bernoulli distributions
with parameters in the interval [0, 1]—uncountably many real values, hence
most of them incomputable!—would be prohibited. But the relevant issue here
is not so much whether or not we can conceive of these possibilities or genuinely
discuss them (though this will be important in I.5 below!): the point is rather
that these are all possibilities. There are uncountably many possible things
Nature can do, and our restriction to the computable possibilities is just that:
a restriction of possibilities.

This restriction is definitely not equivalent to the Church-Turing thesis.
We would need some kind of physical variant of the Church-Turing thesis, and
a “bold” one at that, that not only says that what Nature can compute must
be Turing-computable but indeed that what Nature can do must be Turing-
computable (Piccinini, 2011). This is a fertile topic for speculation, but at
the end of the day there simply seems little justification for promoting the
eminently epistemological notion of computability to a metaphysical constraint
on the world.

* * *
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I.5. Optimality

We have so far aimed for universal reliability : to predict successfully no
matter what Nature does. But truly universal reliability is impossible because
Nature might proceed in such a way that there is simply nothing to be learned
from the data. This is a possibility, there is no way around it—yet it is a
possibility that in a way is not so interesting. If there is nothing we can do,
there is nothing we can do. The interesting case is when Nature is such that
it is possible to learn. Accordingly, we can aim for a universal method to
be successful in the more interesting case: whenever it is possible at all to
be successful, whenever some method is successful. Rather than aiming for a
universally reliable method, we aim for a universally optimal method.

Reichenbach’s vindication of induction. This is the basic idea behind
Reichenbach’s attempted pragmatic justification or vindication of induction:
whenever it is possible at all to be successful, the inductive method will be
successful (Reichenbach, 1933, 421f; 1935, 410ff 1938, 348ff; Feigl, 1950; see
Salmon, 1967, 52ff, 85ff; Salmon, 1974; 1991). “Die Induktionsregel ist die
günstigste Setzung, weil sie die einzige Setzung ist, von der wir wissen: wenn
es überhaupt möglich ist, Zukunftsaussagen zu machen, so werden wir sie durch
diese Setzung finden” (1935, 418). In more poetic language (ibid., 420):

Ein Blinder, der sich im Gebirge verirrt hat, tastet mit seinem
Stock einen Pfad. Er weiß nicht, wohin ihn der Pfad führt, auch
nicht, ob der Pfad ihn nicht so nah an den Abgrund führt, daß er
hinunterstürzen wird. Und doch wird er, indem er sich mit seinem
Stock von Schritt zu Schritt weitertastet, dem Pfade folgen und
weitergehen. Denn wenn es für ihn überhaupt eine Möglichkeit
gibt, aus der Felswildnis heraus zu kommen, dann ist es das Tas-
ten entlang diesem Pfad. Als Blinde stehen wir vor der Zukunft;
aber wir tasten einen Pfad, und wir wissen: wenn wir überhaupt
einen Weg durch die Zukunft finden können, dann geschieht es
durch Tasten entlang diesem Pfad.

Vindication by optimality. Reichenbach’s idea is evocative, but as it
stands also “impossibly vague” (Salmon, 1967, 53). To start with, what is “the
inductive method” supposed to be? Reichenbach did advance a particular rule
of induction, that was motivated by his thoroughly probabilistic epistemology
and his frequentist interpretation of probability, identifying probabilities with
limiting relative frequencies. This prediction rule infers actual probabilities
through induction by enumeration: it estimates the limiting relative frequencies
by the current relative frequencies. This gives the most straightforward of rules
of succession—indeed called the straight rule by Carnap—that issues predictive
probabilities that are the observed relative frequencies,

p(xxxt) =

(
#0xxx

t

t
,

#1xxx
t

t

)
.(2)
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Now Reichenbach’s argument is as follows. Either Nature’s strategy is
uniform—a limiting relative frequency exists—or it is not. If it is, then the
inductive method (the straight rule) will be successful: it will converge on the
correct limiting frequency. If it is not, if no limiting relative frequency exists,
then obviously no rule will be successful in this sense. Hence the inductive rule
is successful if any rule is.

Clearly, there are many weak spots in this argument. There is the sweeping
reduction of scientific inference to estimating limiting relative frequencies (Sel-
lars, 1964, 212ff; Skyrms, 1965, 254ff); there is the fact that there are infinitely
many other rules that are likewise guaranteed to be successful in converging
to an existing limiting relative frequency (Reichenbach, 1938, 113ff). There is
the fact, too, that it is just not true that no method can be successful if there
is no limiting relative frequency (Herz, 1936): sequences that never converge
on a particular relative frequency of symbols might still be successfully—even
perfectly—predicted by one or another method. To this last objection Re-
ichenbach (1938, 358f) replied that a successful such alternative method p has
a high relative frequency of successful predictions, which implies that his in-
ductive method posits that p’s predictions will continue to be accurate (by
enumerative induction the limiting relative frequency of p’s predictions being
successful is inferred to be high). Reichenbach did not proceed to make this
idea more precise, though: and indeed it does not seem feasible to reconcile
the different levels at which his straight rule is now working—both the object-
level of the data and the meta-level of other methods—in such a way that his
method can be vindicated as desired (Skyrms, 1965, 260f; Skyrms, 2000, 44ff;
Schurz, 2008, 281). Nevertheless, the idea of following those methods that have
been successful so far is a very powerful idea, and as we will see this is how a
method that is optimal relative to a pool of other methods operates. It is how a
universally optimal method—that is vindicated as guaranteed to be successful
whenever any method is—must operate.

Universal optimality. We define a method that is universally optimal
as a method that will come to predict at least as successfully as any other
prediction method, no matter what Nature does. More precisely, a universally
optimal method is such that, for any other prediction method, the regrets rel-
ative to this method converge to 0 or—the universal method could do strictly
better than this method!—less, always.

Consider again the mixture predictor over all computable hypotheses, in-
troduced in I.4 above. We will now attempt to reinterpret this prediction
method as a universally optimal method. This takes a couple of steps, that
follow next: but the basic idea is that we reinterpret the class of computable
hypotheses as the pool of computable prediction methods.

Reinterpretation: hypotheses and prediction methods. As I men-
tioned before in I.3 above, there is a formal correspondence between hypotheses
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(i.e., measures over the sequences) and prediction methods. (Roughly, the con-
ditional probabilities of a measure define a prediction method and vice versa.
See 3.1.) That means we can reinterpret an hypothesis as a prediction method,
and a pool of hypotheses as a pool of competing prediction methods. Conse-
quently, a constraint on Nature (an inductive assumption) can be reinterpreted
as a constraint on possible prediction methods.

Reinterpretation: mixtures over prediction methods. In particu-
lar, we can reinterpet a mixture predictor over a pool of hypotheses as a mixture
predictor that aggregates over a pool of predictors. On this reinterpretation,
a prior or weight function gives weights to competing predictors rather than
possible courses of Nature. (See 3.3.)

Relative optimality. Analogous to the case of universal reliability, we
can show that this mixture predictor is optimal: for any predictor in the pool,
its regrets relative to this predictor will converge to 0 or less, always. So,
analogous to the case of reliability, we have uncovered the possibility of methods
that exhibit ‘relative universality’ in the sense of optimality. (See again 3.3.)

In the case of optimality, however, we appear within reach of true univer-
sality.

Computable prediction methods. Namely, while the conclusion of I.4
above was that the epistemic constraint of computability is an unwarranted
metaphysical constraint on what Nature can do, it does appear a plausible con-
straint on our possible prediction methods. “It is reasonable to claim that any
possible statistical analysis, formal or informal, must be computable” (Dawid,
1985b, 340; 1985a, 1260). Surely any prediction strategy we can ever devise
must be implementable on a computer, hence captured by some algorithm,
hence (Church-Turing thesis!) computable.

(What about the earlier point that in statistics uncountable hypothesis
classes are the rule rather than the exception? That is true: but actual meth-
ods for manipulating these classes and generating samples or predictions from
them will still be computable. The uniform mixture over the class of Bernoulli
distributions, to give a simple example, is a computable object. Also see Freer
and Roy, 2012.)

If we thus stipulate that all prediction methods must be computable, then
the countable pool of computable prediction methods is the pool of all predic-
tion methods.

Paul Oktopus. In this thesis I will take for granted that effective com-
putability is a plausible constraint on possible prediction methods. It must
be noted, though, that this claim still does not reduce to the original Church-
Turing thesis—not without (at least) the further stipulation that a prediction
method must be expressible as an explicit set of instructions to calculate its
predictions, or not be a method at all. On the one hand, this seems plausi-
ble enough (again: surely any prediction strategy must be implementable on a
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PR

p̊

(a) Universal elements
are included in the pool.

PR

p̊

(b) Universal elements lie outside
of the pool.

Figure 4. The pool PR of all prediction methods: two possibilities.

computer), on the other, it excludes the possibility of prediction methods that
employ or are given by processes in the world. If the claim is to extend to such
methods, it must again involve some variant of the physical Church-Turing
thesis.

During the 2010 World Cup, many were following the predictions of a
common octopus, Paul, who would identify the winning team of an upcoming
soccer match by moving to one of two marked food containers in its tank. Is
Paul a computable prediction method?

A universal element in the pool of all predictors. If we thus identify
the pool of computable prediction methods with the pool of all predictors, then
a universally optimal method relative to this pool (for instance, the mixture
predictor over this pool) is a truly universally optimal method—at least, if it is
still an actual method itself! Specifically, if we identify the pool of all predictors
with the computable ones, we need the optimal method to be computable,
too. Thus we need the pool of all predictors to actually contain its universal
elements, as depicted in figure 4a.

Unfortunately, Putnam’s diagonal argument shows that the situation is
rather like figure 4b: any element that is universal for the pool of computable
predictors, can no longer be a computable element itself.

Putnam’s diagonal argument. Putnam’s diagonal argument (1963a)—
actually already a much simplified version of this argument (see Kelly, 2004
and 1.1) —shows the incompatability of two conditions on a prediction method:

(1) it is universal for all computable prediction methods;
(2) it is computable.

Suppose, for a contradiction, that we do have a computable prediction
method, pU, that is universal for all computable prediction methods. That
means, in particular, that for every computable sequence that Nature plays
(which corresponds to a computable predictor that predicts with certainty the
symbols of this sequence), universal pU’s losses (regret relative to this perfect
predictor) should converge to 0. It now suffices to show that Nature can be
adversarial against pU in the extreme sense of making it fail at each trial, and
that it can do this is in a computable way. But this is easy if pU is computable:
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at each trial t+ 1 simply compute and reveal the xt+1 with pU(xt+1,xxx
t) ≤ 0.5.

This generates a computable sequence that pU will never converge on.

There exists no universal algorithm. In his discussion of Reichen-
bach’s attempted vindication of induction, van Fraassen (2000) points out a
natural way of going beyond the simplistic straight rule that bears a resem-
blance to our story so far. His suggestion is that pursuing Reichenbach’s idea
must lead us to hope for a “‘universal’ forecast system” (ibid., 260) that is
computably calibrated whenever any computable prediction method is. While
this is a different notion from what we have discussed so far, the general idea
and the demonstration of its impossibility follow the same lines, and I will now
rehearse these as a summary of the foregoing. (Let me, nevertheless, briefly
sketch this new notion. Calibration of method p on an infinite data sequence
xxxω means, roughly, that for each possible prediction p, the relative frequency
of symbols in the infinite subsequence of xxxω formed by taking those trials for
which p issued a prediction close to p, is indeed close to the distribution p.
Computable calibration, very roughly, demands a match, for all infinite subse-
quences yyyω of xxxω that are extracted by a computable selection rule, between
the mean predictive probabilities given by p the relative frequency of symbols.)

The theory of (computable) calibration is discussed in detail by Dawid
(1982; 1985a). He concludes the first paper with the conjecture—“doubtful,
although not impossible”—of a single prediction method that is always cali-
brated; Oakes (1985) shows that this is impossible, using a simple adversarial
sequence of the kind we saw earlier. Dawid, in a comment aptly titled “The Im-
possiblity of Inductive Inference” (1985b), notes the resemblance to Putnam’s
argument, and then remarks in quick succession that

◦ “there will always be data sequences that we are simply unable to
track” (the impossibility of universal reliability); that

◦ “if we believe only that some computable distribution has given rise
to the data, we cannot guarantee to obtain valid probability forecasts
from any computable analysis” (the impossibility of a computable
method that is universal relative to the computable hypotheses); and
finally that

◦ there can be no computable method that is computably calibrated
for any sequence some method is computably calibrated for (in effect,
the impossibility of a computable method that is universally optimal
relative to the computable methods).

Van Fraassen (2000, 260):

The hope was formulated as a certainty by Reichenbach: with nu-
merical induction properly tuned we have a method that will lead
us to the truth if any rule will . . . Is this true as we have come to
construe it? No, it is not.

Dawid again (1985b, 341):
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It would essentially solve the problem of (probabilistic) induction
if we could construct a computable “universal algorithm” that, op-
erating sequentially on any sequence of data for which such ob-
jective forecasts exist, would always output, asymptotically, these
objectively valid forecasts. Unfortunately, the preceding arguments
demonstrate that this ideal is unattainable: There exists no univer-
sal algorithm.

* * *

I.6. A Formal Theory of Inductive Inference

This is the title of Solomonoff’s pioneering 1964 paper, that reports ideas
he developed over the course of several years. (And that he already distributed
occasionally in the form of technical reports; see, for instance, the discussion
by Minsky, 1961, 27f.) In his paper Solomonoff proposes a number of different
“models of induction,” prediction methods that are intended to be “optimum
with respect to all other conceivable models” (1964, 17) and that are con-
strained by computability.

Here I will present the most important of his proposed models as exploiting
a basic strategy to avoid diagonalization. To that end, I will first turn to the
diagonal argument due to Turing.

Turing’s diagonal argument . . . The simplified version of Putnam’s
argument above really exposes a basic computability-theoretic fact, that goes
back all the way to the founding paper of Turing (1936). This is the impossi-
bility of a computable enumeration of the class of all computable functions. In
our case, it is the impossibility of a computable enumeration of all computable
measures (prediction methods). In other words, the pool of all computable
hypotheses (prediction methods) is itself incomputable, which in particular
implies that the mixture over this pool is incomputable.

Turing’s original argument, in terms of computable real numbers (infinite
sequences), is as follows (ibid., 246). If it were possible to computably enu-
merate all computable infinite sequences, then there would be a computable
function g̊ such that g̊(i, n) = xxxωi (n) for all i, n ∈ N, with {xxxωi }i∈N containing
all and only computable sequences. But then we could define a computable
infinite sequence yyyω by

yyyω(n) :=

{
1 if g̊(n, n) = 0;

0 otherwise ,
(3)

a computable diagonal sequence that differs from each computable sequence in
the assumed exhaustive list because for each i ∈ N,

xxxωi (i) = g̊(i, i) 6= yyyω(i).
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It is a computable version of Cantor’s ur-diagonal argument (1891), that showed
that there must be more than enumerably many real numbers. But the similar
conclusion—that there must be uncountably many computable numbers—is
not an option for us here, because we know there are only countably many
Turing machines: hence we must reject the assumption that the computable
sequences can be enumerated computably.

. . . and the way out. Computable infinite sequences correspond to com-
putable functions f : N→ B that are total, or defined on the whole domain N.
Turing’s argument thus shows that there can be no computable enumeration
of total computable (t.c.) functions: the existence of a universal t.c. function
g̊ : i, n 7→ gi(n) that can emulate any other t.c. function gi would allow us to
define a t.c. diagonal function as in (3).

However, “[w ]e can avoid the diagonalization difficulty by allowing sets
of instructions for nontotal partial functions as well as for total functions”
(Rogers, 1967, 11; also see Soare, 2016, 4f; Odifreddi, 1989, 145ff). Indeed, the
functions given by Turing machines need not be total. A Turing machine might
on some input values get stuck in an infinite loop and never halt, meaning that
the corresponding function is only partially defined. “It is more natural to
consider partial computable functions anyway, because . . . certain algorithms
may be naturally defined only on some but not all arguments” (Soare, 2016,
4). (The partial computable functions correspond to a genuinely richer class
of algorithms: they do not all equal some t.c. function with restricted domain,
Kleene, 1938, 151.) And the partial computable (p.c.) functions can be effec-
tively enumerated: the class of p.c. functions is immune to diagonalization.

To see why this is so, let us try to diagonalize an effective enumeration
{ϕi}i∈N of the p.c. functions. We define again the diagonal function

ϕ̂(n) :=

{
1 if ϕn(n) ↓= 0;

0 if ϕn(n) ↓= 1,

where the notation ‘ϕn(n) ↓= 0’ means ‘ϕn(n) converges with output 0.’ For
those n on which ϕn(n) is undefined, our function ϕ̂ is thus undefined, too: it is
itself a p.c. function. But this property blocks the crucial step from any given
index i to the observation that ϕ̂ cannot equal φi because they differ on input
i: they might actually both diverge on input i! (Nor can we avoid this by first
checking whether ϕn(n) is in fact defined: the Halting problem is undecidable.)
“Thus the notion of partial recursive function seems to have a built-in defense
against diagonalization” (Odifreddi, 1989, 152).

There exists a universal algorithm. What happened is that we escaped
diagonalization by going to a larger class that is not diagonalizable. The class
of t.c. functions is diagonalizable, so it cannot contain universal elements; the
larger class of p.c. functions is not diagonalizable and it does contain universal
elements (figure 5a). Such a universal element, a p.c. function ϕ̊ : i, n 7→ φi(n)
that emulates every other p.c. function, is the function that corresponds to a
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TC

PC

ϕ̊

(a) From the class of t.c. functions
to the class of p.c. functions.

P∆1

PΣ1

p̊

(b) From the class of computable measures
to the pool of semi-computable measures.

Figure 5. From a diagonalizable class of total computable
objects to a nondiagonalizable class of partially computable
objects.

universal Turing machine. Turing’s fundamental observation is that there do
exist universal algorithms: those given by universal Turing machines, comput-
ing universal p.c. functions.

What about algorithms for prediction?

Enter algorithmic information theory. A function p : B∗ → [0, 1]
that is only partially defined, though, does not seem a very viable prediction
method. How do we make sense of a method that at some nodes might not
return predictions at all? (Also see Kelly et al., 1994, 104.)

However, when we pursue the analogous extension of the computable mea-
sures (figure 5b; throughout the thesis I also refer to these as the ‘∆1 measures,’
see 2.1.1), the objects we obtain are measures (‘Σ1 measures,’ see 2.1.2) that
are actually still defined on every node of the tree. These measures then give
(via the equivalence between measures and prediction methods mentioned in
I.5 above) prediction methods that are defined on every node. What we lose
is the guarantee that we can compute these measures’ values to any accuracy:
we are only able to compute increasingly accurate lower bounds. This ‘lower
semi-computability’ superficially looks less detrimental to the notion of a pre-
diction method than sheer undefinedness. And, crucially, the mixtures over all
elements in this class are still within the class: universal elements that we then
interpret as giving universal prediction methods.

This is, anyway, how we must interpret the universal prediction methods
that arise from the work of Solomonoff (1964), that initiated the field of algo-
rithmic information theory (the standard textbook is Li and Vitányi, 2008).

Solomonoff. As mentioned above, Solomonoff (1964) described a number
of different “models” for prediction. One of those models actually comes down
again to the mixture over computable measures (“probability evaluation meth-
ods,” ibid., 19ff), which of course “is not ‘effectively computable’ (in the sense
of Turing (193[6)]) and so it does not include itself in the summation” (ibid.,
21).
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The familiar general idea here—defining universal methods for sequential
prediction by a mixture over hypotheses or prediction methods—is an idea that
extends to modern work in machine learning, where Solomonoff still receives
credit for it (e.g., Vovk, 1998, 167; Ryabko, 2010, 583). Still, it is an idea that
from various angles one arrives at relatively easily, and that perhaps would not
be associated with Solomonoff were it not for the impact of his other proposed
models. (As a matter of historical interest, I note here the paper by Howard
(1975), that independently develops what amounts to the idea of Bayesian
prediction with computable measures, but that stops at the observation of the
impossibility of a universal computable mixture.)

Solomonoff’s other proposed models are given by measures that are directly
defined in terms of universal Turing machines. (This corresponds to the second
definition I described in the introduction, page 6.) Specifically (ibid., 3),

A priori probabilities are assigned to strings of symbols by exam-
ining the manner in which these strings might be produced by a
universal Turing machine. Strings with short and/or numerous
“descriptions” (a “description” of a string being an input to the
machine that yields that string as output) are assigned high a
priori probabilities. Strings with long, and/or few descriptions
are assigned small a priori probabilities.

The intuition here—an intuition inspired by Shannon’s information theory—
is that sequences that are easier to describe (easier to code) should be more
likely. Solomonoff’s fundamental step is the idea to identify the descriptional
complexity of a sequence with the minimal required length of input to a univer-
sal Turing machine to produce the sequence, plus the realization (ibid., 11ff)
that this notion is to a certain extent independent of the particular choice of
universal Turing machine. This is the founding idea of the field of algorithmic
information theory (see Li and Vitányi, 2008, 95ff, 192).

However, Solomonoff’s presentation suffers from a certain lack of rigor (also
see Bienvenu et al., 2009, 17), which left the task to others to make the latter
idea—and its interplay with the idea of universal mixtures—perfectly precise.

Kolmogorov. The founding idea of algorithmic information theory—in
fact, the field itself—is best known under the header of Kolmogorov complexity,
because it was independently arrived at by Kolmogorov (1965). His motivation
was an entirely different one: the formalization of randomness.

The problem of randomness goes back to von Mises’s attempt to base
probability theory on a frequentist interpretation. He defined the probability
of an outcome as the limiting relative frequency of the same type of outcome
in an unending series of trials. This he modeled by a Kollektiv, an infinite
random sequence (say an element xxxω ∈ Bω, in case of two types of possible
outcomes), that satisfies two properties corresponding to the empirical laws
of chance processes: (1) it has a limiting relative frequency of 0’s and 1’s
and (2) the Prinzip vom ausgeschlossenen Spielsystem: there is no betting
strategy on the successive outcomes that is guaranteed to make unbounded
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gains. The latter was formalized in the requirement that no admissable selection
rule (corresponding to a betting strategy that picks out certain trials to put
money on) would give an infinite subsequence with a different limiting relative
frequency. But when is a selection rule ‘admissable’?—von Mises was happy
to leave this an ‘intensional’ notion to be further specified in the particular
empirical situation at hand (see Van Lambalgen, 1987a, 29ff), but many others
saw here a serious problem. Church (1940) proposed to identify admissable with
computable; but by that time Ville (1936; 1939) had already shown that the
definition of selection rule is too weak to capture all feasible betting strategies,
and von Mises’s program had largely been deserted, anyway, with Kolmogorov’s
(1933) introduction of the measure-theoretic axiomatization of probability (see
Van Lambalgen, 1987a,b; Bienvenu et al., 2009). Slightly ironically so, because
Kolmogorov himself adhered to a frequency interpretation (1963, 369):

I have already expressed the view . . . that the basis for the appli-
cability of the results of the mathematical theory of probability
to real ‘random phenomena’ must depend on some form of the
frequency concept of probability, the unavoidable nature of which
has been established by von Mises in a spirited manner.

He long believed, however, that the frequency interpretation cannot escape the
dilemma that a concept based on limiting relative frequency “does not con-
tribute anything to substantiate the applicability of the results of probability
theory to real practical problems where we have always to deal with a finite
number of trials,” whereas a finite frequentism “does not admit a rigorous
formal exposition within the framework of pure mathematics” (ibid.). In the
1960’s he changed his mind on the latter point: “I have come to realize that
the concept of random distribution of a property in a large finite population
can have a strict formal mathematical exposition.” Roughly, a random finite
sequence is random if suffciently simple selection rules or algorithms (of which
as a combinatorial fact there cannot be many) leave the relative frequencies
almost intact. “Such a conception in its full development requires the intro-
duction of a measure of the complexity of the algorithm” (ibid.). In (1965, 7),
Kolmogorov proposes to identify this with the complexity notion he introduced
there: the minimal required length of input to a universal p.c. function, the
same idea as Solomonoff’s.

What proved to be the most influential strand of work building on Kol-
mogorov’s idea is (again somewhat ironically) the theory of random infinite
sequences. Martin-Löf (1966) gave a first characterization of infinite random
sequences in terms of effective statistical tests. Schnorr (1971a; 1971b) gave
alternative characterizations in terms of effective betting strategies or Ville’s
notion of martingales. Schnorr (1973), and independently Kolmogorov’s stu-
dent Levin (1973), also first provided the appropriate complexity concept to
characterize random infinite sequences. The computability-theoretic proper-
ties and interactions of different formal notions of randomness—notions that
can often be equivalently defined via any of these three ‘paradigms’—are the
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subject of the modern theory of algorithmic randomness (see the textbooks
Nies, 2009; Downey and Hirschfeldt, 2010).

Levin. Kolmogorov’s idea also spawned a tradition of work by Russian
mathematicians on descriptional complexity. (A new textbook on algorithmic
information theory from authors in that tradition is forthcoming in translation,
Shen et al., 20xx.) An important overview of early results of the Russian school
is the joint paper by Zvonkin and Levin (1970), that is based for a significant
part on results from Levin’s thesis (translated as Levin, 2010).

Among these is the introduction of the notion of Σ1 measure, which makes
precise Solomonoff’s above idea of associating probabilities with the lengths
of a machine’s inputs. Thus Levin makes precise the class depicted in figure
5b, including the universal elements that he constructs as mixtures over all
elements in the class. (This corresponds to the first definition I described in the
introduction, page 6.) I will therefore call these universal elements (following
Li and Vitányi, 1989, 172; 1992b, 356) the Solomonoff-Levin measures.

This thesis (1). The first main strand in this thesis, the topic of part II,
is the interpretation of Solomonoff’s proposal as a theory of universal predic-
tion: in particular, the Reichenbachian interpretation of the Solomonoff-Levin
predictors as optimal among all possible predictors.

I presented the Solomonoff-Levin measures as arising from an explicit at-
tempt to identify a class of effective elements that is immune to diagonalization,
the procedure of Putnam’s simplified argument. The question is whether this
nondiagonalizable class and its universal elements, depicted in figure 5b, is
indeed susceptible to the desired interpretation.

The conclusion is negative: this interpretation does not work, and the main
reason is a mismatch between the level of effectiveness of the Solomonoff-Levin
measures and the Solomonoff-Levin predictors. The latter are not susceptible
to the desired interpretation, a fact that turns out to be exposed by Putnam’s
original and more complex diagonal argument.

* * *

I.7. The Use of Simplicity in Induction

This is the title of the famous paper by Kemeny (1953), in which he dis-
cusses the preference in inductive reasoning for simple hypotheses. In particu-
lar, in the problem setting of identifying within a class of hypotheses the correct
one, he formulates “what any scientist would do” (ibid., 396) as the rule:

Select a hypothesis which is as well in agreement with the ob-
served values as possible; if there is any choice left, choose the
simplest possible hypothesis.

Choosing the simplest of options is certainly the standard way of breaking the
stalemate of Goodman’s riddle that there are always infinitely many ways of
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generalizing from finite observation data: both Poincaré (1902) and Jeffreys
(1939), for example, took this route (also see Watkins, 1984, 105ff). But Ke-
meny mentions two immediate problems for this idea, problems that are still
very much unresolved today: how exactly must we define the notion of sim-
plicity, and how can we actually justify the use of simplicity in induction?

Part III of this thesis is concerned with the relevance of the Solomonoff-
Levin proposal to these problems. In this section I provide some more context
to the problems of giving a formalization and a justification for the principle
of preferring simplicity, the principle of Occam’s razor, and then outline how
Solomonoff’s ideas have been cast as providing these.

‘Occam’s razor.’ The principle of scientific method to prefer simplicity
is commonly referred to as Occam’s razor. The connection to the scholastic
philosopher is supposed to be that Ockham (latinized ‘Occam’) first used a
principle of parsimony—“don’t multiply entities beyond necessity”—to defend
a nominalist position in the medieval debate about universalia, stating that
universals (general properties, like being human, red, . . . ) are just names that
do not have a real existence. The actual context is, unsurprisingly, more subtle
(see, e.g., Spade, 1999); for one thing, Occam and his contemporaries under-
stood the principle of parsimony he invoked to be well-established and going
back at least to Aristotle. But more importantly, observe that already in this
basic guise of advocating a minimal ontology, it is not so clear what the ra-
zor principle actually achieves. No one would insist on positing unneccesary
entities—that is what makes them unnecessary (equally sensible is an anti-razor
that tells us not to posit less entities than necessary). The pertinent issue is, of
course, what is unnecessary. Left open, moreover, is how to proceed with those
unneccesary entities: does the principle tell us to simply refrain from claim-
ing they exist (the “agnostic” interpretation), or should we assert that they
do not exist (the “atheistic” interpretation, terminology Sober, 1981)? The
first instruction is again quite trivial; the second almost sounds like Leibniz’s
principle of sufficient reason (‘nothing can exist without a reason’)—a rather
heavy metaphysical commitment.

As a modern principle of scientific methodology, Occam’s razor has ac-
quired a broader meaning than purely relating to the parsimony of entities
(objects, quantities, parameters, . . . ) in our theories. It is taken to express
a general preference for simplicity of theory and explanation, what is often
labeled as a preference for elegance. This includes, for instance, the intuition
advocated by Einstein that the physicist should strive for the simplest possible
mathematical description of the world. But in this guise, too, the problem
with Occam’s razor is that as soon as we try to make it more precise, it starts
looking either quite trivial, or way too strong.

Occam’s razor as a philosophical problem. As a pragmatic principle,
presenting simplicity as “only a matter of convenience, a laborsaving device”
(Kemeny, 1953, 391), Occam’s razor does not say much: of course we would
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prefer to work with simpler theories, other things being equal. A stronger
expression of this pragmatic view is that the scientific enterprise is per definition
the search for maximally economical descriptions of nature. Still, while this
conception of science (that one can also find expressed by Poincaré, 1902, 156)
could certainly be explained from our “biological craving for simple answers”
(Hoffmann et al., 1996, 123), it is still lacking in epistemic justification. The
interesting problem is to find justication for Occam’s razor as an epistemic
principle, where it comes with the promise of a relation between a simplicity
preference and attaining the truth. The threat here is that, in this guise, the
principle soon commits us to an unwarranted assumption that the world must
in some sense be simple. (Einstein indeed took the position that “nature is the
realisation of the simplest conceivable mathematical ideas,” see Norton, 2000.)
The challenge, then, is to provide a justification for the strong, epistemic version
of Occam’s razor: to show that we have epistemic grounds for a simplicity
preference, while avoiding any simplicity assumption on the world.

But before that we would still have to address the problem of what sim-
plicity actually is. Can we measure simplicity? Is it possible at all to compare
theories on their simplicity in an objective fashion? Or is simplicity in the end
an inherently vague or even subjective notion?

Occam’s razor in statistics. Many philosophers have looked for a re-
sponse to these challenges in probability theory and statistics (see Sober, 2015;
Gauch, 2003). A central theme in statistics as well as machine learning is the
trade-off between simplicity and goodness-of-fit of an hypothesis or a model (a
class of hypotheses), and discussions of Occam’s razor have centered on the
lessons that may be drawn from various modern approaches in model selec-
tion. Different such approaches give different formalizations of the trade-off,
and in particular of a model’s simplicity; but they tend to share two features.
First, there is some plausible notion of a model’s simplicity as its size or rather
its richness (two main examples of such complexity measures are the Vapnik-
Chervonenkis or VC dimension in statistical learning theory, 1971, also see
Vapnik, 1998; Harman and Kulkarni, 2007; and the stochastic complexity in
minimum description length inference, Rissanen, 1986, 1987, also see Grünwald,
2007). Second, there is the support from formal and empirical results that are to
show their good performance. The combination of these two ingredients yields
the prospect of an honest justification of a simplicity preference: a demonstra-
tion that preferring simplicity leads to good results, without an assumption
that the world must be simple.

I will not discuss here whether instantiations of this strategy are indeed
successful; my purpose here is to set this strategy apart from the approach
to Occam’s razor in algorithmic information theory. While a justification of
Occam’s razor must have the same general form, there is an important respect
in which the approach in algorithmic information theory is fundamentally dif-
ferent from the above.
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Occam’s razor in algorithmic information theory. Namely, rather
than models, classes of objects, we are promised a general and objective quan-
tification of simplicity of individual objects. The idea is that a data object, like
the specification of a hypothesis, is simpler as it is more compressible, meaning
that we can capture it in a shorter description. This idea is made formally pre-
cise in the definition of a data object’s Kolmogorov complexity as the length
of its shortest description (Li and Vitányi, 2008, 260):

This gives an objective and absolute definition of ‘simplicity’ as
‘low Kolmogorov complexity.’ Consequently, one obtains an ob-
jective and absolute version of the classic maxim of William of
Ockham.

As I noted earlier, the first published variant of Kolmogorov complexity to ap-
pear in the literature is Solomonoff’s (1964) description of the Solomonoff-Levin
measure. From the start this measure and the associated universal prediction
method has been associated with a simplicity preference (ibid., 3):

That [this definition] might be valid is suggested by “Occam’s
razor,” one interpretation of which is that the more “simple” or
“economical” of several hypotheses is the more likely. Turing
machines are then used to explicate the concepts of “simplicity”
or “economy”—the most “simple” hypothesis being that with the
shortest “description.”

Thus we appear to have a precise definition of simplicity, as well as a prediction
method that implements a simplicity bias—implements Occam’s razor—using
this definition. What is more, the provable universality of the Solomonoff-
Levin prediction method translates into a strong property of reliability or truth-
convergence. Together, this seems to lead to a precise link between a preference
for simplicity and finding the truth. It seems to meet the above goal of providing
epistemic grounds for a simplicity preference without metaphysical simplicity
assumptions (also see Grünwald and Vitányi, 2008, 314). In other words, it
suggests a justification for the epistemic version of Occam’s razor (Vitányi and
Li, 2002, 154):

This validates by mathematical proof a rigorous formal version
of Occam’s razor – the ancient simplicity-based method to infer
the true cause of the data.

Predictive complexity. Solomonoff’s ideas also have a direct link to
the modern branch of theoretical machine learning that goes by the name of
prediction with expert advice (founding papers are Littlestone and Warmuth,
1994; Cesa-Bianchi et al., 1997; Vovk, 1990, 1998; the standard textbook on
the subject is Cesa-Bianchi and Lugosi, 2006). The object of study here is
the design of prediction strategies that are optimal relative to a given pool of
prediction methods, for a given loss function.
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Of major importance is Vovk’s specification of the aggregating algorithm,
that generalizes the Bayesian mixture strategy and its optimality to loss func-
tions other than the logarithmic loss. The aggregating algorithm for the log-loss
function applied to the pool of Σ1 measures in fact corresponds again to the
Solomonoff-Levin predictor.

A further idea due to Vovk (1998; 2001b) is the following. Another and
more direct way of associating a notion of simplicity with a Solomonoff-Levin
predictor is to interpret the logarithmic loss it suffers on a given sequence xxx
as a measure of the intrinsic difficulty of predicting xxx. This measure is Vovk’s
predictive complexity in the particular case of the log-loss function; and this
notion again generalizes via the aggregating algorithm to other loss functions.
Vovk presents this as a measure of the intrinsic complexity of sequences (relative
to a given loss function).

This thesis (2). The second main strand in this thesis, the topic of part
III, is the association of the Solomonoff-Levin proposal with the elusive concept
of simplicity: in particular, the idea that the Solomonoff-Levin predictors do
not only consitute a formalization of a simplicity preference, the principle of
Occam’s razor, but also provide a justification for it.

I already briefly indicated the relevant notion of simplicity as compressibil-
ity, and the shape of the suggested epistemic justification of a simplicity prefer-
ence that must avoid simplicity assumptions on the world. I will spell this out
in much more detail, and then address the question whether this justification
and indeed this formalization is convincing. Subsequently, I will investigate
Vovk’s notion of predictive complexity as an intrinsic notion of complexity of
sequences.

My conclusions are again negative. The suggested justification does not
work, precisely because the relevant simplicity preference constitutes a partic-
ular inductive assumption. In addition, I argue that the relevant definition of
simplicity as compressibility does not convincingly lead to an objective formal-
ization of a simplicity preference in prediction. While, moreover, the notion of
predictive complexity has a more direct and therefore ostensibly less problem-
atic interpretation, in the end it does not deliver on its promise.

*





Part II

Universality





CHAPTER 1

Confirmation and computation

This chapter stages Solomonoff’s theory of universal prediction as an off-
spring of Carnap’s program of inductive logic. Solomonoff’s outlook bears a
strong resemblance, especially, to the way Carnap’s inductive logic was pre-
sented by Putnam, in order to subject it to his diagonal argument. The discus-
sion in this chapter thus raises the question that drives the subsequent chapters:
can Solomonoff’s proposed universal prediction method avoid Putnam’s argu-
ment, and how could it?

In 1.1, I introduce Putnam’s diagonal argument and its motivation. In 1.2,
I discuss in some detail Carnap’s program of inductive logic. In 1.3, I introduce
Solomonoff’s ideas and relate these to the points of contention between Putnam
and Carnap.

Innovations. While Putnam’s argument has found a place in philoso-
phers’ collective memory, there actually seem to exist few in-depth evaluations
of the reasons why Putnam believed his proof should spell the end of Carnap’s
program and why Carnap disagreed. Section 1.1 is mainly a summary of Put-
nam’s original papers, but sections 1.2 and 1.3 include a more critical exposition
of what I think are the main aspects of Carnap’s program that conflict with
the way Putnam sought to present it. The technical account in 1.2.2 and 1.2.3
of the Johnson-Carnap functions in the setting of binary sequential prediction
draws directly from Carnap’s original writings and secondary sources (partic-
ularly, Zabell, 2011 and Suppes, 2002). A main contribution of this thesis is
a detailed positioning of Solomonoff’s proposal relative to Carnap’s program
and Putnam’s view, as initiated in section 1.3. (This chapter is based on part
of Sterkenburg, 201x.)

1.1. Putnam’s diagonal argument

Putnam, in his contribution to the volume of The Library of Living Philoso-
phers devoted to Carnap (Schilpp, 1963), declares that Carnap had better give
up his program of inductive logic (1963a, 761, 778). Putnam’s reasoning goes
beyond “intuitive considerations and plausible argument” (ibid., 761): he offers
a mathematical proof that Carnap’s objective is a formal impossibility.

Consider a simple first-order language with a single monadic predicate G
and an ordered infinity of individuals xi, i ∈ N. Let a computable hypothesis
h be a computable set of sentences h(xi) for each individual xi, where h(xi)

47
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equals one of Gxi and ¬Gxi. A Carnapian confirmation function c gives the
degree of confirmation—the logical probability—that one statement confers
upon another. In particular,

c(h(xt+1), h(x0) & . . . & h(xt))

is the degree to which the statement that the next individual xt+1 satisfies h is
confirmed by the fact that all of x0 up to xt do so already. (Carnap also calls
this the instance confirmation of h.) Now, if a given Carnapian confirmation
function is supposed to be a rational reconstruction of our inductive practice,
then, since our actual inductive methods would be sure to discern any com-
putable pattern eventually, so should this given confirmation function. Hence
a condition of adequacy on such a confirmation function c is that

(I) For any computable hypothesis h, the value for the instance confirmation
c(h(xt+1), h(x0) & . . . & h(xt)) should converge to 1 as we observe a
longer and longer succession of confirming individuals x0, . . . , xt.

But for any confirmation function c that itself satisfies a weak condition of
effective computability (to not be “of no use to anybody,” ibid., 768):

(II) For every t, it must be possible to compute an s such that if G holds
for the next s individuals xt+1, . . . , xt+s, then the instance confirmation
c (Gxt+s+1, Gxt+1 & . . . & G(xt+s)) exceeds 0.5,

one can prove by diagonalization c’s violation of (I). This is Putnam’s diagonal
argument: if the ideal inductive policy is to fulfill (I) and (II), then it is provably
impossible to reconstruct it as a Carnapian confirmation function.

Let me simplify things a little. (I return to the details of the original
argument in chapter 4.) We can treat condition (I) as an instance of the
condition on an ‘inductive method’ M, a condition left somewhat informal in
its generality, that

(I*) M converges to any true computable hypothesis.

Moreover, in later expositions of the argument (e.g., Earman, 1992, 207ff; Kelly,
2004, 701f), the slightly cumbersome condition (II) is often replaced by the
(stronger) condition that c is simply a computable function. The general con-
dition on an inductive method M is that

(II*) M is computable.

The diagonal proof of the incompatiblity of (I*) and (II*) for confirmation
functions is straightforward (also see I.5 above). Given candidate computable
confirmation function c, we construct a computable hypothesis h such that c
fails to converge on h, as follows. Starting with the first individual x0, compute
c(Gx0) and let h(x0) be ¬Gx0 precisely if c(Gx0) > 0.5. For each new indi-
vidual xt+1, proceed in the same fashion: compute c(Gxt+1 | h(x0), . . . , h(xt))
and let h(xt+1) be ¬Gxt+1 precisely if this probability is greater than 0.5. The
hypothesis h is clearly computable, but by construction the instance confirma-
tion given by c does not converge to 1: indeed, it never even goes above 0.5.
Thus, again, if the ideal inductive policy is to be able to converge to any true
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computable hypothesis, and is to be computable itself, then it is impossible to
reconstruct it as a confirmation function.

But maybe such a policy is so idealized as to escape any formalization? To
seal the fate of Carnap’s program, Putnam proceeds to give an example of an
inductive method that is not based on a confirmation function and that does
satisfy the two requirements. This method HD is the hypothetico-deductive
method : supposing some enumeration of hypotheses that are proposed over
time, at each point in time select and use for prediction (accept) the hypothesis
first in line among those that have been consistent with past data. Then it
satisfies (I*), or more precisely:

(I†) For any true computable hypothesis h, if h is ever proposed, then HD
will eventually come to (and forever remain to) accept it.

The distinctive feature of HD is that it relies on the hypotheses that are
actually proposed. To Putnam, this is as it should be. Not only does it conform
to scientific practice: more fundamentally, it does justice to the “indispensabil-
ity of theories as instruments of prediction” (ibid., 778). This appears to be
the overarching reason why Putnam takes issue with Carnap’s program (ibid.,
780):

Certainly it appears implausible to say that there is a rule whereby
one can go from the observational facts (if one only had them all
written out) to the observational prediction without any “detour”
into the realm of theory. But this is a consequence of the suppo-
sition that degree of confirmation can be “adequately defined”;
i.e. defined in such a way as to agree with the actual inductive
judgements of good and careful scientists.

Incredulously (ibid., 781):

we get the further consequence that it is possible in principle
to build an electronic computer such that, if it could somehow
be given all the observational facts, it would always make the
best prediction—i.e. the prediction that would be made by the
best possible scientist if he had the best possible theories. Science
could in principle be done by a moron (or an electronic computer).

Here Putnam is still careful not to attribute to Carnap too strong a view:
“Of course, I am not accusing Carnap of believing or stating that such a rule
exists; the existence of such a rule is a disguised consequence of the assumption
that [degree of confirmation] can be ‘adequately defined’” (ibid., 780). Car-
nap indeed showed some reluctance in committing himself to the idea of an
“inductive machine” (1950, 192ff), though his reservations mainly concern the
possibility of mechanized formulation of hypotheses based on observation data
(ibid., 193):

I am completely in agreement that an inductive machine of this
kind is not possible. However, I think we must be careful not to
draw too far-reaching negative consequences from this fact. I do
not believe that this fact excludes the possibility of a system of
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inductive logic with exact rules or the possibility of an inductive
machine with a different, more limited, aim.

Such a more limited aim is what Putnam is after: that the values given by a
confirmation function can be computed. But this Carnap actually also rejects:
“c is, in general, not a computable function” (ibid., 196), basically because
inductive logic contains deductive logic and the latter is already undecidable
for a sufficiently rich language. He then does, however, express confidence that
c is computable for “restricted classes of cases” (ibid.); a sentiment that returns
in the passage from (1966) that I cited in the introduction, page 4: “I believe
it is in many cases possible to determine, by mechanical procedures, the logical
probability, or degree of confirmation, of h on the basis of e.”

Carnap’s reservations notwithstanding, Putnam, in his Radio Free Europe
address (1963b, 297), declares that

we may think of a system of inductive logic as a design for a
‘learning machine’: that is to say, a design for a computing ma-
chine that can extrapolate certain kinds of empirical regularities
from the data with which it is supplied.

Moreover (ibid., 298),

If there is such a thing as a correct ‘degree of confirmation’ which
can be fixed once and for all, then a machine which predicted in
accordance with the degree of confirmation would be an optimal,
that is to say, a cleverest possible learning machine.

Again, the diagonal proof would show that there can be no such thing: it is
“an argument against the existence – that is, against the possible existence –
of a ‘cleverest possible’ learning machine” (ibid., 299).

* * *

1.2. Carnap’s inductive logic

This section discusses Carnap’s program of inductive logic. The focus is
on the formal framework of Carnap’s early inductive logic, as it stood around
the time of publication of Putnam’s argument and Solomonoff’s paper. This is
in essence the framework Carnap described in the volume Logical Foundations
of Probability (1950) and the booklet The Continuum of Inductive Methods
(1952); and which he updated in the 1950’s (see the 1955 lecture notes published
as Carnap, 1973) to the system that is reported in the volume Induktive Logik
und Wahrscheinlichkeit (Carnap and Stegmüller, 1959) and summarized in the
Schilpp volume that contains Putnam’s argument (Carnap, 1963a, 966ff).

(Putnam’s paper, while only published in 1963, was actually already writ-

ten sometime in the mid-1950’s (see Carnap, 19585; 1963a, 988); and apparently
with knowledge of the updated system (see ibid., 974). Solomonoff in (1964)
only cites the Logical Foundations.)
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In 1.2.1, I introduce Carnap’s program and its philosophical motivation.
In 1.2.2, I describe the formal framework of his early inductive logic, and make
the translation to our setting of binary sequential prediction. In 1.2.3, I specify
the Johnson-Carnap confirmation functions for sequential prediction.

1.2.1. The program of inductive logic.
1.2.1.1. The logical interpretation of probability. The evidence e that all

ravens we have seen so far have two wings certainly does not logically entail
the hypothesis h that the next raven we will spot has two wings, too. Still—
or so starts the logical approach to probability—e does support or confirm the
hypothesis h to some extent: the evidence partially entails the hypothesis. This
is logical probability: degree of partial entailment. In this sense, probability
theory is an extension of logic. Probabilities pertain to nonempirical, a priori
relations between statements; and because they pertain to relations—the extent
to which h is confirmed by e—all probabilities are conditional (though see
1.2.2.3 below).

1.2.1.2. Rational degrees of belief. Carnap, like Keynes before him, further
identifies logical probability with rational degree of belief. Probabilities are an
agent’s degrees of belief, but in a strictly normative sense: the objective degrees
of belief an ideal agent ought to have, to count as perfectly rational. In the
words of Keynes (1921, 4, quoted with assent by Carnap in 1950, 43),

. . . in the sense important to logic, probability is not subjective.
It is not, that is to say, subject to human caprice. A proposi-
tion is not probable because we think so. When once the facts
are given that determine our knowledge, what is probable or im-
probable in the circumstances has been fixed objectively, and is
independent of our opinion. The Theory of Probability is logical,
therefore, because it is concerned with the degree of belief which
it is rational to entertain in given conditions and not merely with
the actual beliefs of particular individuals, which may or may not
be rational.

(The identification of logical probability and rational degree of belief is not
indisputable: one can argue, for instance, that no finite evidence (‘all ravens so
far . . . ’) even partially entails an infinite hypothesis (‘all ravens . . . ’), whereas
it is perfectly rational to believe certain infinite hypotheses to some extent; also
see Gillies, 2000, 30f.) Carnap later (1962b; 1963d, 67f; 1963a, 967ff) explicitly
endorsed the explication of logical probability as degree of belief, including the
operationalization in terms of fair betting quotients. This had the additional
advantage of making clear why logical probability should be probability (the
Dutch book argument that incoherent degrees of belief, i.e., that are in violation
of the probability axioms, are sufficient for irrationally accepting bets that are
guaranteed to lose you money); and of naturally tying in with a decision theory
(see Carnap, 1971a), in accordance with the view that “probability is a guide
in life” (1947a). But how do we determine the exact values of these logical
probabilities?
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1.2.1.3. The principle of indifference. The logical approach to probabil-
ity is in some important respects a successor of the classical interpretation
of probability, that is mainly associated with Laplace and that is roughly gi-
ven by the following two tenets. First, in the light of Laplace’s doctrine of
universal determinism, probability can only be an epistemic notion. Second,
the way probabilities are calculated—indeed, probability is defined—is by the
principle of non-sufficient reason: absent reason to think different outcomes
are not equally possible, they have equal probability. This general definition
is problematic for multiple reasons. If it is not circular (what does equally
possible mean?) then it still magically infers knowledge from ignorance; it is
inapplicable if we do have reason to think one outcome is more likely than
the next; and it is inconsistent in the case of infinitely many outcomes, as re-
vealed by a whole family of paradoxes (see Salmon, 1967, 66ff; Suppes, 2002,
163ff). Keynes, in fact, gave an authorative overview of these paradoxes (1921,
42ff); yet he still adopted much the same principle for his logical approach.
He recast equipossibility from ignorance as the informed decision to treat cases
as symmetrical, and rebranded it the principle of indifference (see Galavotti,
2005, 148f). Carnap, as we will see in detail in 1.2.3 below, likewise employed
the principle of indifference to infer equal probabilities, again not from igno-
rance, but from the logical symmetry of cases (Carnap, 1953, 193f). Thus the
principle of indifference is a cornerstone of the logical interpretation of prob-
ability, but because of its controversial status at once a main liability (see for
instance van Fraassen, 1989, 293: “the story [of the principle of indifference
and its problems] is especially important for philosophy, because it shows the
impossibility of the ideal of logical probability.”).

1.2.1.4. Intuitions and axioms. For Keynes, logical probabilities have an
objective existence, in a Platonic sense: they exist even if we cannot know them
(see Gillies, 2000, 31ff). Insofar as we can come to know these logical relations
at all, we do so by “immediate logical intuition.” However, some relations are
more immediately perceivable than others, which would allow us to enshrine a
number of such obvious relations as axioms from which the less obvious ones
can be derived. This is to parallel the procedure in mathematical logic; but in
that case already mathematicians’ intuitions differ, and in the case of logical
probability our intuitions—how exactly do we apply indifference, and indeed:
why?—are much less clear still. Ramsey (1931, 65f) put it devastatingly simple
when he criticized Keynes’s reliance on this immediate intuitive grasp by noting
that “there really do not seem to be any such things as the probability relations
he describes”:

He supposes that, at any rate in certain cases, they can be per-
ceived; but speaking for myself I feel confident this is not true.
I do not perceive them, and if I am to be persuaded that they
exist it must be by argument; morever, I shrewdly suspect that
others do not perceive them either, because they are able to come
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to so little agreement as to which of them relates any two given
propositions.

1.2.1.5. Carnap’s program. For Carnap, establishing the logical probablity
relations, in particular, establishing the axioms from which they follow, is part
of an ongoing research program. Starting from the simplest of cases, expressed
in the simplest of formal languages, we put down axioms and investigate their
consequences, always checking whether they are sufficiently in line with—but at
the same time having them inform and sharpen!—our inductive intuitions and
statistical practice (cf. Jeffrey, 1973). This is Carnap’s program of inductive
logic.

1.2.1.6. The formal language. I have said little about the ‘language’ of
binary symbols in sequential prediction. Methods for prediction as defined in
this thesis operate on sequences of symbols in a purely syntactical way, in the
sense that predictions do not depend on what the symbols actually refer to. But
of course this ignores the fact that, unless the data in a particular situation
already come to us in well-differentiated discrete chunks, there is the choice
of how we put the sensations coming to us into such form (how we ‘carve
up the Humean mosaic’): and our predictions inevitably depend on how we
did that. Carnap’s inductive logic also very much appears purely syntactical
in the sense that the confirmation values given by the axioms depend only
on the formal properties of the given language (and since the Continuum, an
additional choice of parameters). But things are much more subtle here, due
to the fact that for Carnap, the formulation of the proper language in each
situation is a crucial consideration. His reply to Goodman’s new riddle (1946),
for instance, is essentially that the choice of the right “qualitative” primitive
predicates will determine (indeed, will reveal) what properties are projectible
(1947b, 146ff; 1948). In later works one can even find suggestions that the
adoption of certain axioms must depend on the meaning of the predicates
(see Jeffrey, 1966, who also sets aside Hempel’s “purely syntactical theory” of
(qualitative) confirmation (1943) from Carnap’s “more semantical one,” 282).
This is something to keep in mind when I discuss the formal framework and
the syntactical axioms that define the Johnson-Carnap methods for sequential
prediction in 1.2.2 and 1.2.3 below.

1.2.1.7. The provisionary nature of the program. Of relevance here, too, is
Carnap’s repeated insistence on the provisionary nature of the results in his
program: the system as its stands is always only preliminary and bound to
be superseded by more refined axioms for more complex languages. As Jeffrey
(1972, 633) puts it:

Carnap’s goal was the definition of an adequate c-function for a
very rich language in which one can discuss matters so diverse
as theoretical physics and tomorrow’s dinner. He seems to have
believed that until the system either nears such maturity or enters
rigor mortis, arguments pro and con are likely to be pointless.
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1.2.1.8. The indispensability of theory. Carnap’s answer to Putnam’s cen-
tral point of the indispensability of theory is characteristic of both the role of
the language and the provisionary nature of the program (1963a, 987f):

On this point I entirely agree with him; his belief that my concep-
tion here is “diametrically opposed” to his . . . is not correct. In
my publications I have discussed the problem of inductive logic
not for a quantitative theoretical language, but only for simple
language forms which may be regarded as constituting part of
the qualitative observation language.

. . . it does not follow at all, as Putnam believes, that an ade-
quate method of [degree of confirmation] is impossible, but rather
that . . . we must construct a new inductive logic which refers to
the theoretical language instead of the observation language.

Thus it is not an entirely fair representation of Carnap’s views to interpret his
inductive logic as aiming for a purely syntactic ‘universal prediction method’—
though one can be forgiven for adopting this interpretation, based on much of
what Carnap says in other places. Putnam certainly used this interpretation;
when I introduce Solomonoff’s views in 1.3 below, I relate these rather to
Putnam’s interpretation of Carnap’s inductive logic.

1.2.1.9. *The subsequent development of Carnap’s program. My restriction
in this thesis to Carnap’s ‘early’ inductive logic leaves out some important later
developments. In particular, the early phase precedes Carnap’s transition from
a formal logical language to the measure-theoretic framework of mathematical
probability (see Jeffrey, 1971), which he employed in the formulation of his final
“Basic System” (Carnap, 1971b, 1980; see Hilpinen, 1973). In the meantime
Carnap’s program had been subjected to some scathing criticism: I focus on
Putnam (1963a, 761: “this particular project should be abandoned”), but other
examples are Nagel (1963, 825: “he has not resolved the outstanding issues in
the philosophy of induction, and his approach to the problems is not a promis-
ing one”), Lakatos (1968, 373: “the historian of thought may have to record
a ‘degenerating problem shift’”), and Hacking (1975, 142: “no foundation at
all”). Despite such opposition, the program of inductive logic kept driving in-
vestigation and further refinement by an “invisible college” of followers (Zabell,
2011, 305). Even recent years have seen advances (e.g., Huttegger, 201x), ac-
companied, on the one side, by philosophical reappraisals of Carnap’s inductive
logic (e.g., Groves, 2015; Sznajder, 2016), on the other, by the mostly technical
development of Carnapian inductive logic as a proper branch of mathematical
logic (Paris and Vencovská, 2015).

1.2.2. Confirmation and prediction. Here I go through some details
of Carnap’s formal framework, as given in the Logical Foundations and the
Continuum and for the relevant part preserved in the 1950’s. I zoom in on
the “singular predictive inference,” and make the translation to our setting of
sequential prediction. (Years cited without author refer to Carnap’s works.)
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1.2.2.1. The formal language. A language system Ltk consists of a finite
number k of one-place atomic predicates P1, P2, . . . , Pk and a finite number t of
individual constants a1, a2, . . . , at. A particular combination Piaj of a predicate
Pi and an individual aj is called an atomic sentence; all other sentences are
generated from the atomic sentences under the customary logical connectives.
Then a state-description Z, which gives a complete description of a particular
state of affairs, is a conjunction of atomic sentences for each individual.

1.2.2.2. Regular measure functions. A regular measure function m assigns
to every state-description a positive real number, in such a way that the sum∑

Z m(Z) over all state-descriptions equals 1. An assignment of m-values to
the state-descriptions induces an assignment of m-values to all sentences (1950,
294ff; Kemeny, 1963, 721).

1.2.2.3. Regular confirmation functions. A regular confirmation function c
is defined from a regular measure function m by

(4) c(h, e) :=
m(e & h)

m(e)
,

for all sentences e and h with m(e) 6= 0 (1950, 295; 1963a, 975). So even
though it is a central component of the logical interpretation that probabilities
are always conditional (1.2.1.1 above), Carnap still employs an unconditional
measure function in their definition—which he interprets as the null confirma-
tion c0 (1950, 289, 307ff) or the confirmation with respect to the tautological
evidence (also see 3.1.2 below).

1.2.2.4. An infinite list of individuals. In order to obtain a regular confir-
mation function ∞c for a language system L∞k with an unbounded number of
individuals, we define in language systems L1

k,L
2
k, . . . with Ltk containing indi-

viduals a1, . . . , at a fitting sequence 1c, 2c, . . . of regular confirmation functions
such that every two functions agree on all sentences they both contain. Then

∞c(e, h) is simply defined as the limit limt→∞ tc(h, e). (See Carnap, 1950, 302ff,
Carnap, 1963a, 975.) Note that a state-description in this language system is
an infinite conjunction; it will be convenient to talk rather about the t-state-
descriptions that are state-descriptions within LtK , i.e., complete descriptions
of the first t individuals.

1.2.2.5. The predictive inference. We will now assume that the predicates
are mutually exclusive and exhaustive (they form a division, 1950, 107f, or a
family, 1963a, 973), meaning that each individual satisfies one and only one
predicate. Let et denote a conjunction of atomic sentences for each of t individ-
ual constants b1, . . . , bt; and let hs denote a conjunction of atomic sentences for
another s individuals c1, . . . , cs that are different from the previous ones (see
Carnap, 1952, 12). The determination of the value of c(hs, et) is the predictive
inference, “the most important and fundamental kind of inductive inference”
(1950, 207; 568).

1.2.2.6. The singular predictive inference. Let etj be formed from et by
replacing every atomic predicate Pi with i 6= j by the negation of Pj ; and
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let hj denote either the atomic sentence Pjc or its negation for an individual
constant c different from the b1, . . . , bt (see 1952, 12f; 1963a, 975). That is,
etj expresses for each of b1, . . . , bt whether or not it satisfies Pj ; and hj either

states or denies that c satifies Pj . Then determining the value of c(hj , e
t
j) is the

singular predictive inference, “the most important special case of the predictive
inference” (1950, 568).

1.2.2.7. Sequential prediction. We now assume we have a family of just two
predicates P1 and P2. Let us also assume that et1 as above concerns the first t
individuals a1, . . . , at of our language system L∞2 . Note that this means that
the sentences et1 are precisely the t-state-descriptions. We can now encode et1
as a sequence xxxt ∈ Bt, as follows. For each individual ai, i ≤ t, let xxxt(i−1) = 1
if P1ai is in et1, and xxxt(i− 1) = 0 otherwise (i.e., if P2ai). Likewise, we assume
that h1 concerns the individual at+1, and we encode h1 as ‘1’ if it is P1at+1

and as ‘0’ otherwise. In this reformulation the sequences xxxt ∈ Bt are precisely
the t-state-descriptions, and the singular predictive inference is the problem of
determining the value c(x,xxxt) for given x ∈ B,xxxt ∈ B∗, that is, the problem of
sequential prediction.

1.2.3. The Johnson-Carnap predictors. Here I go through Carnap’s
actual explications of logical probability for the singular predictive inference:
or the specification of methods for sequential prediction.

Much of the same route that Carnap took was actually traced earlier, and
unbeknownst to Carnap, by Johnson (1924; 1932; see Zabell, 2005, 2011.) For
that reason I will refer to these prediction methods as the Johnson-Carnap
predictors.

1.2.3.1. State-symmetry. Carnap’s first main stipulation on regular confir-
mation functions is that “an adequate concept of degree of confirmation should
treat all individuals on a par” (Carnap, 1950, 483). That is to say, all iso-
morphic state-descriptions, that only differ from each other by an exchange of
individual constants, should have the same m-value. Carnap calls these regular
measure functions symmetrical ; a more precise term used by Suppes (2002,
192) is state-symmetry. (Johnson 1924, 183 called this stipulation the permu-
tation postulate.) In our setting, a state-symmetric measure function m has the
property that a sequence’s m-value only depends on the number of 0’s and 1’s
it consists of, not on their order. To be precise,

(5) m(xxxt) = m(yyyt) for every xxxt, yyyt with #0xxx
t = #0yyy

t.

For the induced confirmation function c we then also have

(6) c(xxxt) = c(yyyt) for xxxt, yyyt with #0xxx
t = #0yyy

t.

Carnap’s state-symmetry is nowadays better known as the condition of ex-
changeability . In modern statistical parlance, if we predict in accordance with
(6), we would say that the frequency counts of 0’s and 1’s are a sufficient
statistic.
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1.2.3.2. Structure-symmetry: the function c∗. A structure-description is a
maximal set of isomorphic state-descriptions; in our setting it is a set of all
sequences with the same number of 0’s and 1’s. Note that the property of
state-symmetry says that all sentences in each structure-description have equal
probability. In (1950, 562ff), Carnap proposes the unique state-symmetric reg-
ular measure function m∗ that is also structure-symmetric: it assigns equal
probability to each of the structure-descriptions. (Johnson called it the com-
bination postulate.) In our setting, the induced confirmation function has the
form

(7) c∗(xxxt) :=

(
#0xxx

t + 1

t+ 2
,

#1xxx
t + 1

t+ 2

)
.

This is Laplace’s rule of succession, that I introduced in I.1 above. It is a prime
instance of an important appeal of Carnap’s logical approach: that simply by
capitalizing on neutral symmetries in the language, we end up with the positive
result of a natural measure of confirmation, with a prediction method that can
learn.

1.2.3.3. *The function c†. However, we actually lose the latter with the
more stringent symmetry stipulation of assigning, for each t, equal probability
to all t-state-descriptions. The resulting measure function m† is indeed dis-
cussed by Carnap (1950, 298f, 564f): in our setting, it reduces to the regular
measure function

(8) m†(xxxt) := 2−t for all xxxt ∈ B∗,

that is, the uniform measure λ. But c†(x | xxx) = λ(x | xxx) = 1/2 for every
x ∈ B,xxx ∈ B∗, so c† can never learn from experience, which “would obviously
be in striking contradiction to the basic principle of all inductive reasoning”
(ibid., 565). Also see 3.1.2.1 below.

1.2.3.4. Towards the continuum. In fact, Carnap did not express himself
confident that even structure-symmetry was very compelling (1950, 564):

No doubt, to the way of thinking which was customary in the
classical period of the theory of probability, [structure-symmetry]
would appear as validated as [state-symmetry], by the princi-
ple of indifference. However, to modern, more critical thought,
this mode of reasoning appears as invalid because the structure-
descriptions (in contradistinction to the individual constants) are
by no means alike in their logical features but show very conspic-
uous differences . . . It seems to me that the function c∗ cannot be
justified by any features of the definition which are immediately
recognizable, but only by studying the consequences to which the
definition leads.

This he promised to do in a second volume; instead, in the 1952 monograph, c∗

took its place as just one particular choice within a continuum of confirmation
functions.
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1.2.3.5. The λ-continuum. The “valid part of the principle of indifference”
(1963a, 975) now includes state-symmetry and attribute-symmetry : c-values
are invariant under permutations of predicates (1952, 14). In our setting this
comes down to stipulating that c(x | xxxt) = c(y | yyyt) for all x 6= y and xxxt, yyyt such
that xxxt(i) 6= yyyt(i) for all i < t. Moreover, Carnap, like Johnson, adopts the
sufficientness postulate (terminology due to Good, 1965) that states that the
values c(hM , e

t
M ) for fixed t are given by a characteristic function GM,t that

only depends on the number of individuals satisfying M in etM (1952, 15ff).
Actually, in our case of only two predicates, this postulate vacuously holds
true (Good, 1965, 26); but in the general case one can prove that G must be
linear in the number of individuals satisfying M (1959), and in the case of two
predicates we can make this stipulation instead (1963a, 976; see Zabell, 1982).
That is, we stipulate that

c(x | xxxt) = GM,t(#xxxx
t) = a+ b ·#xxxx

t

for some a, b ≥ 0. It turns out (1952, 27ff; 1963a, 976; Kemeny, 1963, 724ff)
that each such confirmation function is of the form

(9) cλ(x | xxxt) :=
#xxxx

t + λ/2

t+ λ

for some λ ∈ [0,∞]. This is the Johnson-Carnap continuum of inductive meth-
ods. Note that for λ = 2 we retrieve c∗, and for λ→∞ we retrieve c†.

1.2.3.6. The straight rule. The value λ = 0 gives Reichenbach’s straight
rule, (2) in I.5 above. This rule “leads to quite implausible results” (1950,
568), having to do with the fact that it gives extreme predictive probabilities
0 and 1 if we have observed a sequence of only 0’s or only 1’s. More details on
the technical difficulties this raises are given in 3.1.2.2.

1.2.3.7. The λ-γ-continuum. Carnap finally also dropped the requirement
of attribute-symmetry (Carnap, 1980). Retaining only state-symmetry and the
linearity of the characteristic function, we obtain confirmation functions of the
form

c(x | xxxt) = GM,t(#xxxx
t) = ax + b ·#xxxx

t,

with ax that depends on x. This introduces x-dependent terms γx (with γ0 +
γ1 = 1) in the continuum of methods

(10) cλ,γ(x | xxxt) :=
#xxxx

t + γxλ

t+ λ
.

1.2.3.8. Interpretation: the prior and empirical factor. The γx terms have
an obvious interpretation as the initial weights we assign to both symbols: if
t = 0 then cλ,γ(x | ∅∅∅) = γx. In fact, a function cλ,γ in the λ-γ continuum—
and this already holds for a function cλ in the λ-continuum—can be explicitly
decomposed in an empirical and a prior element (“the empirical and the logical
factor,” 1952, 22):

(11) cλ,γ(x | xxxt) =
t

t+ λ
· #xxxx

t

t
+

λ

t+ λ
· γx.
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The term #xxxx
t

t is the empirical frequency of x’s and γx the initial or prior

probability we assign to x. The terms t
t+λ and λ

t+λ , that sum to 1, weigh the
empirical and the prior element, respectively: the greater λ, the greater the
weight to the prior element. (See Zabell, 2011, 276f.)

1.2.3.9. The class of i.i.d. measures. The previous interpretation shows
how the Johnson-Carnap predictors are directed at the relative frequency of
the data, and thereby already suggests a presupposition that the data show
no interesting structure beyond a limiting relative frequency. This is more
clear still in another pleasing pleasing interpretation of the Johnson-Carnap
predictors, namely as maximum likelihood estimators for the class of i.i.d.
measures (see 2.1.1.4), with various amounts of “virtual” or “a priori” symbols
preceding the actual data: see Grünwald (2007, 258f). A further interpretation
of the Johnson-Carnap predictors that I will discuss in chapter 3 is in fact as
mixtures over the class of i.i.d. measures, with the explicit interpretation of
incorporating an inductive assumption of an i.i.d. data-generating source.

* * *

1.3. Solomonoff’s new start

Solomonoff’s objective is clear (1964, 2):

The problem dealt with will be the extrapolation of a long se-
quence of symbols—these symbols being drawn from some finite
alphabet. More specifically, given a long sequence, represented
by T , what is the probability that it will be followed by the sub-
sequence represented by a? In the language of Carnap (1950), we
want c(a, T ), the degree of confirmation of the hypothesis that
a will follow, given the evidence that T has just occurred. This
corresponds to Carnap’s [logical probability].

The underlying motivation is also very much in accord with things Carnap
writes in his 1950 book. Solomonoff’s suggestion that “all problems in induc-
tive inference . . . can be expressed in the form of the extrapolation of a long
sequence of symbols” (ibid.) parallels Carnap’s insistence on the primacy of
the predictive inference (1.2.2.5, 1.2.2.6 above). Carnap’s requirement of total
evidence (see 1950, 211ff; 1963a, 972) returns in Solomonoff’s remark that “the
corpus that we will extrapolate . . . must contain all of the information that we
want to use in the induction” (ibid., 8). And Carnap’s discussion under the
header “Are Laws Needed for Making Predictions?” (ibid., 574f)—conclusion:
“the use of laws is not indispensable”—is easily read as informing Solomonoff’s
statement that his proposed methods are “meant to bypass the explicit formu-
lation of scientific laws, and use the data of the past directly to make inductive
inferences about specific future events” (1964, 16).

The later Carnap would probably not have put this last point quite so
boldly, though; and in general Solomonoff’s is a purely syntactical perspective
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that is somewhat at odds with Carnap’s views on the role of the language
(1.2.1.6 above). This also comes to the fore in the following passage by Solo-
monoff, where he, looking back, confidently assesses Carnap’s work and the
relation to his own (1997, 76):

Carnap’s model of probability started with a long sequence of
symbols that was a description of the entire universe. Through
his own formal linguistic analysis, he was able to assign a priori
probabilities to any possible string of symbols that might rep-
resent the universe. He derived his [confirmation function] from
this a priori distribution using Bayes’ theorem.

I liked his function that went directly from data to proba-
bility distribution without explicitly considering various theories
or “explanations” of the data. . . . I also liked his idea of [degree
of confirmation] and the idea of representing the universe by a
digital string, but his method of computing the a priori proba-
bility distribution seemed unreasonable to me. The distribution
depended very much on just what language was used to describe
the universe. Furthermore, as one made the describing language
larger and more complete, predictions were less and less contin-
gent on the data. Carnap admitted these difficulties, but he felt
that his theory nonetheless had redeeming qualities and that we
would eventually find a way out of these difficulties.

Algorithmic probability is close to Carnap’s model, and it
does overcome the difficulties described.

Solomonoff’s suggestion that his explication of logical probability—what he
here calls “algorithmic probability”—is not dependent on a choice of language
is overly optimistic: again, this presupposes data are already presented in well-
differentiated discrete form (1.2.1.6 above). But what is relevant to us is that
the picture of Carnap’s inductive logic that Solomonoff paints here, if not doing
full justice to Carnap, closely resembles the picture that Putnam painted of
Carnap’s inductive logic, in order to challenge it.

(Did Carnap ever read Solomonoff’s work? I have found no evidence for
that: the only reference of Carnap to Solomonoff I know of are four pages of
technical notes dating back already to March 1951, when Solomonoff “stud-
ied the logical basis of probability with Carnap” while majoring in physics in
Chicago (Solomonoff, 1997, 74). These notes, entitled “R.J. Solomonoff” and
now in the Carnap archive in Pittsburgh (Carnap, 1951), mention the “th. of
information” and further consist of calculations on a measure function defined
in terms of Shannon entropy.6)

Solomonoff and Putnam both infer from Carnap the picture of purely syn-
tactical universal prediction: Solomonoff as starting point for his theory, Put-
nam as starting point for his impossibility argument. Indeed, as we saw in
1.2.2.7 above, Solomonoff’s problem setting of sequence extrapolation is readily
translatable from the formal set-up that Putnam presupposes in his paper. (In
particular, we identify individuals with positions in the sequence, as Putnam
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does, 1963a, 766, thus introducing an ordering on individuals.) This means
that Solomonoff’s setting is fully within the scope of Putnam’s argument.

Carnap could still resort to the defense that he does not assume an ordered
domain, and so “the difficulties which Putnam discusses do not apply to the
inductive methods which I have presented in my publications” (1963a, 986).
This is, however, a somewhat weak defense: Carnap does acknowledge at var-
ious places the need for taking into consideration the order of individuals in
explicating logical probability (e.g., 1950, 62ff; 1963c, 225f); and he envisioned
for this future project the same kind of “coordinate language” that Putnam
assumes (also see Skyrms, 1991). For such a language, Carnap should have
agreed with Putnam’s charge that an inductive system that is “not ‘clever’
enough to learn that position in the sequence is relevant” (1963b, 297) is too
weak to be adequate. Note that the adequacy of a confirmation function or a
prediction method is now assessed by the regularities in the data that it is able
to learn: the regularities that it is able to extrapolate in predictive probabil-
ities. From this perspective, the difference in opinion ultimately comes down
to what regularities in the observed individuals should be extrapolated (i.e.,
what hypotheses or patterns should gain higher instance confirmation from
supporting observations).

Carnap states in (1963a, 987; 1963c, 226) that he would only consider
“laws of finite span.” In terms of symbol sequence extrapolation, these are
the hypotheses that make the probability of a certain symbol’s occurrence at
a certain position only depend on the immediately preceding subsequence of
a fixed finite length (i.e., a Markov chain of certain order). In particular, hy-
potheses must not refer to absolute coordinates, which immediately rules out
Putnam’s example of the hypothesis that “the prime numbers are occupied by
red” (1963a, 765). In Carnap’s view, “no physicist would seriously consider a
law like Putnam’s prime number law” (1963a, 987), hence “it is hardly worth-
while to take account of such laws in adequacy conditions for [confirmation
functions]” (1963c, 226). According to Putnam, however, “existing inductive
methods are capable of establishing the correctness of such a hypothesis . . .
and so must any adequate ‘reconstruction’ of these methods” (1963a, 765). In-
deed, the same goes for any effectively computable pattern: this is his adequacy
condition (I).

Others have charged Carnap’s confirmation functions with an inability to
meet various adequacy conditions on recognizing regularities (notably Achin-
stein, 1963; in fact the critique of Goodman, 1946, 1947 can be seen as an
early instance of this line of attack). What is distinctive about Putnam’s ad-
equacy conditions is the emphasis on effective computability. This notion of
effective computability is, of course, also the fundamental ingredient in Solo-
monoff’s proposal. It is this aspect that genuinely sets Solomonoff’s approach
apart from Carnap’s. The confirmation functions that Solomonoff proposed
in (1964), and that evolved in the modern definition of the Solomonoff-Levin
measure that we will investigate in the next chapter, were explicitly defined in
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terms of the inputs to a universal Turing machine. Moreover, one can show
that the instance confirmation via the Solomonoff-Levin predictor of any true
computable hypothesis will converge to 1, thus fulfilling (I).

But does that mean Solomonoff has somehow evaded Putnam’s argument?
This will be the topic of the next chapters, beginning with the precise definition
of the Solomonoff-Levin measure.

*



CHAPTER 2

The Solomonoff-Levin measure

This chapter discusses the definition of the Solomonoff-Levin measure. The
crucial move is the expansion of the class of computable or ∆1 measures to the
class of Σ1 measures. This class, as opposed to the ∆1 measures, cannot be
diagonalized, which is to say that it has universal elements. The Solomonoff-
Levin measure is such a universal element, and this accounts for its convergence
to any true ∆1 measure.

This is a mainly technical chapter that the reader who is more interested
in the conceptual story may prefer to pass over. Many observations in the
following chapters rely on the groundwork done here; but in those instances I
will explictly refer back to the relevant places in this chapter and the reader can
choose to only first familiarize herself with the technicalities, if she so desires,
at those points.

In 2.1, I work towards the definition of the Solomonoff-Levin measure: in
2.1.1, I introduce the ∆1 measures; in 2.1.2, I introduce the superclass of Σ1

measures; in 2.1.3, I introduce the universal Σ1 measures; in 2.1.4, I finally
introduce the Solomonoff-Levin measure. In 2.2, I give alternative charac-
terizations of the Solomonoff-Levin measure that will be put to work in the
following chapters.

Innovations. Section 2.1, while containing no new mathematical results,
synthesizes different and superficially disparate presentations of the Solomo-
noff-Levin measure in the literature. (This section is based on part of Sterken-
burg, 201x.) Section 2.2 presents a number of new results, of which theorem
2.13 is the most important and which largely come together in the generalized
representation theorem 2.19 that concludes the section. (This section is based

on Sterkenburg, 2017.7)

2.1. The definition

2.1.1. The ∆1 measures.
2.1.1.1. Measures on Cantor space. We consider measures on the class Bω

of infinite sequences, also known as the Cantor space. More accurately, a
measure on Cantor space is defined on a tuple (Bω,F), with F a σ-algebra on
Bω. Then a probability measure on (Bω,F) is a countably additive function
µ : F→ [0, 1] with µ(Bω) = µ(J∅∅∅K) = 1. It is convenient to view a measure (as
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well as the associated σ-algebra F) as being generated from an assignment of
probability values to just the basic cylinders or cones JxxxK = {xxxω : xxx ≺ xxxω} for
all xxx ∈ B∗. That is, we view a measure as being generated from a pre-measure,
a function m : B∗ → [0, 1] on the finite sequences that satisfies m(∅∅∅) = 1
and m(xxx0) + m(xxx1) = m(xxx) for all xxx ∈ B∗. The extension theorem due to
Carathéodory (see Tao, 2011, 148ff) then gives a σ-algebra F over Bω (which
includes all Borel classes) and unique measure µm on F with µm(JxxxK) = m(xxx).
(For more details see Reimann, 2009, 249ff; Nies, 2009, 68ff; Li and Vitányi,
2008, 262ff; Calude, 1994, 6ff.) For the purposes of this thesis it is mostly
unnecessary to be very strict about the difference between a measure and its
pre-measure, and I will often simply write ‘µ(xxx)’ for µ(JxxxK).

2.1.1.2. The uniform measure. The most basic measure on Cantor space
is the uniform or Lebesgue measure λ. It is given by λ(xxxt) = 2−t for all xxxt (or
more proper, it is generated from the pre-measure with m(xxxt) = 2−t for all xxxt).

2.1.1.3. Conditional measures. In sequential prediction the only conditional
measures we ever encounter are those conditional on single finite sequences xxx
(or more proper, cones JxxxK). A measure µ conditional on xxx is defined by

(12) µ(· | JxxxK) :=
µ(·)
µ(JxxxK)

,

provided µ(JxxxK) 6= 0. In fact, I will adopt the convention, very natural in our
setting, of simply writing ‘µ(yyy | xxx)’ for what is actually µ(xxxyyy | xxx), or more
proper still, µ(JxxxyyyK | JxxxK). The one-step conditional measure µ1(· | xxx) is the
distribution (µ(0 | xxx), µ(1 | xxx)).

2.1.1.4. I.i.d. measures. An independent and identically distributed (i.i.d.)
probabilistic process is modeled by an i.i.d. (or Bernoulli) measure: a µ such
that there is a distribution p on B with µ1(· | xxx) = p(·) for every xxx ∈ B∗.
I denote the i.i.d. measure with p = (θ, 1 − θ) by ‘µθ.’ Thus the Lebesgue
measure λ is the i.i.d. measure µ1/2.

2.1.1.5. Strictly positive measures. A measure is strictly positive if it as-
signs positive probability to every finite sequence (more proper, to every cone;
it is generated from a pre-measure that assigns a positive value to every element
in its range).

2.1.1.6. Deterministic measures. In contrast, a deterministic measure gives
probability 1 to all the initial segments of a single infinite sequence xxxω, so
µ(xxxt) = 1 for all t ∈ N. Or more proper: it assigns probabilility 1 to this
infinite sequence, and it is generated from a pre-measure that assigns the value
1 to all its initial segments.

2.1.1.7. Continuous measures. An atomic measure gives positive probabil-
ity to one (or more than one) particular infinite sequence, an atom. (So a
deterministic measure is a special case of an atomic measure where the one
atom receives probability 1.) A non-atomic or continuous measure has no
atoms: no infinite sequence is assigned positive probability. (See Downey and
Hirschfeldt, 2010, 265. In the algorithmic information theory literature, Li and
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Vitányi, 2008, 265ff, 294ff, often the term continuous measure is used to refer
to measures on the “continuous” Cantor space; this in contradistinction to the
discrete measures by which are then meant the distributions on all finite se-
quences, see A.1.2. Due to the obvious risk of confusion I will avoid this usage
here.)

2.1.1.8. Computable measures. A measure is computable if it is generated
from a computable pre-measure. A pre-measure is computable if its values
can be uniformly computed up to any given precision. That is, there is a
computable f : B∗ × N → Q such that |f(xxx, s) − m(xxx)| < 2−s for all xxx ∈
B∗, s ∈ N (see Downey and Hirschfeldt, 2010, 202f). For example, the Lebesgue
measure is obviously computable; and a computable deterministic measure
assigns probability 1 to a computable infinite sequence.

2.1.1.9. ∆1 measures. I will employ the nomenclature of the arithmetical
hierarchy of levels of effective computability (Kleene, 1943; Mostovski, 1947;
see Soare, 2016, 79ff) and henceforth refer to the computable measures as the
∆1 (‘delta-one’) measures. Thus we have

Definition 2.1. A ∆1 measure µ on Bω is defined by µ(JxxxK) = m(xxx) for a
computable m : B∗ → [0, 1] that satisfies m(∅∅∅) = 1 and m(xxx0)+m(xxx1) = m(xxx)
for all xxx ∈ B∗.

2.1.1.10. The Solomonoff-Levin measure. We will see below that the Solo-
monoff-Levin measure QU has the property that for any true ∆1 measure µ,
with probability 1 (‘µ-almost surely’), the values QU (xt+1 | xxxt) for xt+1 ∈
B,xxxt ∈ Bt converge to the values µ(xt+1 | xxxt) as t goes to infinity. That is, QU
satisfies the following condition on an inductive method M:

(I: ∆1) M converges µ-almost surely to any true ∆1 measure µ.

This is an instance of condition (I*) on a measure, that at the same time gener-
alizes from deterministic computable hypotheses or single infinite computable
sequences to probability measures on infinite sequences.

Moreover, we can rephrase condition (II*) on a measure as

(II: ∆1) M is ∆1.

This condition is not satisfied by QU . It is effectively computable in a weaker
sense, that I turn to now.

2.1.2. The Σ1 measures. I proceed with the notion of a semi-computable
or Σ1 (‘sigma-one’) measure on the extended space Bω ∪ B∗ of infinite and
finite sequences. This notion will strike those who see it for the first time
as rather involved, if not downright awkward: I will try to explain in what
sense it is both natural and important. First, in the current subsection, I
will briefly describe how this class of measures comes about as precisely the
effective transformations of the uniform measure on the Cantor space. Then,
in 2.1.3 below, I will discuss the crucial property of this class that it cannot
be diagonalized, meaning that it contains universal elements. The Solomonoff-
Levin measure is such a universal element.
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2.1.2.1. Transformations. Let a transformation λF of the uniform measure
by Borel function F : Bω → Bω be defined by λF (A) = λ(F−1(A)). Every Borel
measure µ on Cantor space can be obtained as a transformation of λ by some
Borel function. (See Reimann, 2009, 252f.)

2.1.2.2. Monotone mappings. We will now consider transformations by func-
tions that are effectively computable. In order to impose the restriction of
computability, we need to downscale the transformations to functions on finite
sequences. To that end we introduce (partial) mappings ψ : B∗ → B∗, that
have to satisfy a condition of monotonicity :

(13) if xxx 4 yyy and ψ(yyy) ↓ then also ψ(xxx) ↓4 ψ(yyy).

That means that by taking the ψ-image of increasingly large initial segments
of some infinite sequence xxxω, we construct a new (possibly but not necessarily
infinite) sequence. Formally, ψ induces the function Φψ : xxxω 7→ sup4{ψ(xxx) :
xxx ≺ xxxω}. If sup4{ψ(xxx) : xxx ≺ xxxω} is indeed an infinite sequence for all infinite
xxxω, then Φψ gives a total function F : Bω → Bω. If not, then we have to
restrict the domain and Φψ is a partial function on Bω. Alternatively, we can
treat Φψ as a total function Bω ∪ B∗ → Bω ∪ B∗ on the collection of infinite
and finite sequences. (Cf. Reimann, 2009, 253; Shen et al., 20xx.)

2.1.2.3. Computable monotone mappings: monotone machines. One can
visualize a computable monotone mapping as a particular type of Turing ma-
chine, one that operates on a steady stream of input symbols, producing an
(in)finite output sequence in the process (see Li and Vitányi, 2008, 298f; Shen
et al., 20xx). Originally dubbed an algorithmic process (Zvonkin and Levin,
1970, 99), this type of machine is now better known as a monotone machine.

2.1.2.4. Monotone machines: the definition. It is mathematically conve-
nient to represent a monotone mapping ψ by the set Mψ of pairs of sequences
(xxx,yyy) such that ψ(xxx) < yyy. The latter says that ψ when given xxx produces at least
yyy: therefore the interpretation of (xxx,yyy) ∈Mψ is that xxx is a ψ-description for yyy.
A monotone machine is then given by a c.e. such set of pairs. (Cf. Reimann,
2009, 253f; Shen et al., 20xx.) Actually, following Levin (1973, 1413), I will
employ the following definition, somewhat more abstract still, that leaves the
associated mapping ψ fully implicit. (The economy of this definition will be
useful in some of the proofs to follow.)

Definition 2.2 (Levin). A monotone machine is a c.e. set M ⊆ B∗ × B∗
that satisfies

(14) if (xxx1, yyy1), (xxx2, yyy2) ∈M and xxx1 4 xxx2 then yyy1 ∼ yyy2.

The associated function ΦM : Bω ∪ B∗ → Bω ∪ B∗ is induced by

(15) ΦM (xxx) = sup
4
{yyy ∈ B∗ : ∃xxx′ 4 xxx ((xxx′, yyy) ∈M)}

(also see Gács 2016, 2f). We again call sequence xxx an M -description of sequence
yyy if ΦM on xxx produces at least yyy, that is, if (xxx′, yyy′) ∈ M for some xxx′ 4 xxx and
yyy′ < yyy.
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2.1.2.5. *Monotone machines: different models. I will not go into the exact
Turing machine model (i.e., specification of the input and output tapes and
allowed operations on them) that corresponds to the above definition. For
further details, as well as discussion of similar models and definitions in the
literature (including those of Solomonoff, 1964, Zvonkin and Levin, 1970, and
Schnorr, 1973, 1977), see Downey and Hirschfeldt (2010, 145ff); Day (2009,
215f); Li and Vitányi (2008, 335ff).

2.1.2.6. Effective transformations. Now consider the transformation of the
uniform measure λ by a computable monotone mapping ψ. This transforma-
tion is given by the pre-measure m : yyy 7→ λ(J{xxx : ψ(xxx) < yyy}K), mapping to each
sequence yyy the uniform measure of the input sequences xxx that lead ψ to pro-
duce it (Zvonkin and Levin, 1970, 100). Putting things in terms of monotone
machines, we let the transformation of λ by M be given by the pre-measure
that maps each yyy to the uniform measure of its M -descriptions. I will also call
λM the uniform transformation by M . The value λM (yyy) can be interpreted as
the probability that sequence yyy is produced by monotone Turing machine M
when given uniformly random input.

Definition 2.3. The uniform transformation λM by M is given by

λM (yyy) : = λ({xxx : ΦM (xxx) < yyy})
= λ({xxx : ∃xxx′ 4 xxx.∃yyy′ < yyy. (xxx′, yyy′) ∈M})
= λ({xxx : ∃yyy′ < yyy. (xxx,yyy′) ∈M}).

The first equality in the definition follows from writing out ΦM (xxx) per
(15); the second equality follows because we only need to take into account
the measure of the minimal M -descriptions of yyy, those xxx that have no prefixes
xxx′ ≺ xxx that are already M -descriptions of yyy. Indeed, we can rewrite

λM (yyy) =
∑

xxx∈DM (yyy)

λ(xxx),(16)

with DM (yyy) = b{xxx : ΦM (xxx) < yyy}c the set of minimal M -descriptions of yyy, i.e.,
the bottom of the set of M -descriptions of yyy (see page v).

2.1.2.7. *Probabilistic machines. A slightly different alternative interpre-
tation views a monotone machine on random input as a probabilistic machine
that has an internal random-bit generator to aid its computations. In par-
ticular, a monotone machine as defined above is a probabilistic machine that
computes without any input, but with the possibility of using self-generated
random bits. The value λM (yyy) is then interpretated as the probability that M
in the course of its computation generates yyy. (See Shen et al., 20xx.)

2.1.2.8. Effective transformations and the ∆1 measures. If monotone ma-
chine M produces an infinite sequence with uniform probability 1 (i.e., the class
of xxxω with infinite ΦM (xxxω) has uniform measure 1), then the uniform trans-
formation λM is a pre-measure that again generates a ∆1 measure on Bω. We
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then indeed have an effective analogue to the statement of 2.1.2.1 above: every
∆1 measure can be obtained as a transformation λM of the uniform measure
by some monotone machine M (Zvonkin and Levin, 1970, 100f).

2.1.2.9. Measures on Bω ∪ B∗. The monotone machines leading to the ∆1

measures thus have the special property that they are ‘almost total,’ meaning
that they produce an unending sequence on λ-almost all infinite input streams.
In general a monotone machine M can fail to do so. This is the case when there
is some finite yyy such that with positive uniform probability machine M stops
producing more symbols after yyy (that is, the class of xxxω with finite ΦM (xxxω)
has positive uniform probability), and this implies that λM (yyy) is strictly greater
than λM (yyy0) + λM (yyy1). In that case we can say that λM assigns positive
probability to the finite sequence yyy. A function λM can thus be interpreted as
(a pre-measure to) a measure on the collection Bω ∪ B∗ of infinite and finite
sequences.

2.1.2.10. Semi-measures. Alternatively, one can interpret such a function
as a “semi-measure” on Bω (Levin and V’yugin, 1977, 360), a “defective” prob-
ability measure. See Li and Vitányi (2008, 264, 331f).

2.1.2.11. The Σ1 measures. Levin calls the class of (measures generated
from the) transformations λM by all monotone machines M the class of semi-
computable measures on Bω ∪ B∗. This is because these transformations are
precisely the functions m : B∗ → [0, 1] with m(∅∅∅) ≤ 1 and m(xxx0) + m(xxx1) ≤
m(xxx) for all xxx that satisfy a weaker requirement of computability, that we
may paraphrase as computable approximability from below (Zvonkin and Levin,
1970, 102f). In exact terms (also see Downey and Hirschfeldt, 2010, 202f), we
call m (lower) semi-computable if there is a computable g : B∗ × N → Q
such that for all xxx ∈ B∗ we have g(xxx, s) ≤ g(xxx, s + 1) for all s ∈ N and
lims→∞ g(xxx, s) = m(xxx). Equivalently, the left-cut {(q,xxx) ∈ Q×B∗ : q < m(xxx)}
is c.e. I will refer to a semi-computable measure as a Σ1 measure.

Definition 2.4. A Σ1 measure ν on Bω ∪ B∗ is defined by ν(JxxxK) = m(xxx)
for a lower semi-computable m : B∗ → [0, 1] that satisfies m(∅∅∅) ≤ 1 and
m(xxx0) +m(xxx1) ≤ m(xxx) for all xxx ∈ B∗.

Let us denote the class of all Σ1 measures by M. Every uniform transfor-
mation λM is a Σ1 measure; and conversely, every Σ1 measure is given by some
uniform transformation.

Proposition 2.5 (Levin). M = {λM}M , where the M range over all
monotone machines.

Proof. See the proof of the more general proposition 2.10 in B.1.1.

2.1.3. Universal measures. Let me reiterate the parallel between, on
the one hand, the expansion from the ∆1 to the Σ1 measures, and, on the other,
the expansion from the total computable (t.c.) to the partial computable (p.c.)
functions. (Cf. I.6 above.) It is well-known since Turing (1936) that the class of
t.c. functions is diagonalizable, and that this is overcome by enlarging the class
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to the p.c. functions. More precisely: under the assumption that there exists

a universal t.c. function f̊ that can emulate every other t.c. function (meaning

that f̊(i, x) = fi(x) for a listing {fi}i∈N of all t.c. functions), we can directly

infer a diagonal function g (say g(x) := f̊(x, x) + 1) that is t.c. yet distinct
from every single fi (because g(i) = fi(i) + 1 6= fi(i) for all i), which is a con-
tradiction. To say that the class of t.c. functions is diagonalizable is therefore

to say that there can be no such universal f̊ , hence no listing of all elements
that is itself computable: the class is not effectively enumerable. The intro-
duction of partiality, however, defeats the construction of a diagonal function
(consider: what if fi(i) is undefined?); and indeed the class of p.c. functions is
effectively enumerable, does contain universal elements. Likewise, the class of
∆1 measures is not effectively enumerable, does not contain universal elements;
the larger class of Σ1 measures is and does. “This fact is one of the reasons
for introducing the concept of semi-computable measure” (Zvonkin and Levin,
1970)—we may take it as the main reason.

(The analogy between the Σ1 measures and the p.c. functions is indeed
an equivalence in the sense that an effective enumeration of all Σ1 measures is
obtained from an effective enumeration of all p.c. functions: see Li and Vitányi,
2008, 261, 267f.)

2.1.3.1. Dominance and universality. Informally, a universal Σ1 measure
“is ‘larger’ than any other measure, and is concentrated on the widest subset of
Bω ∪B∗” (Zvonkin and Levin, 1970, 104, notation mine). Formally, a universal
Σ1 measure majorizes or dominates every other Σ1 measure (ibid., 103f):

Definition 2.6 (Levin). A universal Σ1 measure ν̊ is a Σ1 measure such
that for every ν ∈ Σ1 we have

ν̊ ≥× ν,
meaning that there is a constant cν ∈ N, that depends on ν̊ and ν, such that
for all xxx ∈ B∗ it holds that

ν̊(xxx) ≥ c−1
ν ν(xxx).

2.1.3.2. Mutual dominance. Note that any two universal Σ1 measures ν̊1

and ν̊2 by definition dominate each other : ν̊1 ≥× ν̊2 and ν̊2 ≥× ν̊1, that is,

ν̊1 =× ν̊2.

Thus every two universal Σ1 measures are equivalent up to a multiplicative
constant.

2.1.3.3. *Diagonalizing the ∆1 measures (1). So why, exactly, cannot there
already exist a universal ∆1 measure: a µ̊ ∈ ∆1 such that for every µ ∈ ∆1 there
is a c with µ̊(xxx) ≥ c−1µ(xxx)? First of all, it is easy to see that there cannot
be a computable enumeration {µi}i∈N of all ∆1 measures. Namely, if there
were, we could construct a diagonal deterministic ∆1 measure µ—that is, an
infinite sequence xxxω—as follows: for each i, let xxxω(i) := 0 (so µ(0 | xxxi−1) := 1)
if µi(0 | xxxi−1) < 0.5, and xxxω(i) := 1 otherwise.
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2.1.3.4. *Diagonalizing the ∆1 measures (2). This, however, does not yet
immediately entail that there cannot be a universal ∆1 measure. To decid-
edly prove so, suppose for a contradiction that there is such a ∆1 measure
µ̊. Now consider some infinite computable prefix-free list {xxxi}i∈N of finite se-
quences. Since the set is prefix-free, the probabilities assigned by µ̊ to these
finite sequences must sum to 1 (by Kraft’s inequality, A.2.2.1). But then the
probability that µ̊ assigns to xxxi goes to 0 as i goes to infinity; and we can
compute an infinite sublist {xxxj}j of finite sequences with µ̊(xxxj) < 2−j/j. Now
define, computably, a µ with µ(xxxj) = 2−j (and µ(xxxi) = 0 for those xxxi not in
the sublist of xxxj ’s). Then for every c, there is an xxxj with µ̊(xxxj) < c−1µ(xxxj),
so µ̊ does not dominate µ, contrary to assumption. (Also see Li and Vitányi,
2008, 270, 298.)

2.1.3.5. *Diagonalizing the ∆1 measures (3). Another way of seeing this
is via Putnam’s argument. This showed that no ∆1 measure can converge on
any true ∆1 measure: no measure satisfying (II: ∆1) can satisfy (I: ∆1). But
we will see below that it is enough for satisfying (I: ∆1) to dominate all ∆1

measures, hence to be a universal ∆1 measure. A universal ∆1 measure would
satisfy both conditions: therefore it cannot exist.

2.1.3.6. Incomputability of universal Σ1 measures. A universal Σ1 measure
ν̊ clearly cannot be computable or ∆1: otherwise it would already be a universal
∆1 measure.

2.1.3.7. Universal monotone machines. A universal Σ1 measure can be ob-
tained as a transformation of a universal monotone machine. Since the mono-
tone machines can be effectively enumerated (simply enumerate the c.e. sets on
B∗ × B∗ with the appropriate restriction (14) in definition 2.2), we can define,
for some prefix-free computable list {zzzi}i∈N of sequences, a c.e. set U that con-
tains the pair (zzzixxx,yyy) if the i-th monotone machine in this enumeration contains
the pair (xxx,yyy). The interpretation is that this universal monotone machine U
can emulate any other monotone machine on receiving the corresponding code
sequence.

Definition 2.7. A universal monotone machine U is defined by

(17) (zzzexxx,yyy) ∈ U :⇔ (xxx,yyy) ∈Me

for some computable prefix-free encoding {zzze}e∈N of all monotone machines
Me.

2.1.3.8. *Weakly universal machines. The above property (17) is some-
times referred to as universality by adjunction, to distinguish it from a strictly
more general universality property (see Downey and Hirschfeldt, 2010, 111;
Barmpalias and Dowe, 2012, 3492f). Namely, a monotone machine U is weakly
universal if for all M there is a cM such that

(18) if (xxx,yyy) ∈M then ∃xxx′ (|xxx′| < |xxx|+ cM & (xxx′, yyy) ∈ U) .

2.1.3.9. Universal transformations. We will call a transformation λU of λ
by a universal monotone machine U a universal (uniform) transformation. A
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universal transformation of λ is a universal Σ1 measure: for every ν ∈ Σ1 there
is a constant c such that λU (yyy) ≥ c−1ν(yyy) for all yyy ∈ B∗. This follows from the
fact that we can write out (see the proof of theorem 2.16 below in B.1.4) that

λU (·) =
∑
e

λ(zzze)λMe(·).

Now by proposition 2.5, we know that for any given ν ∈ Σ1 there is some
Me with λMe

= ν. This means that for c−1 = λ(zzze), for all yyy ∈ B∗ we have
λU (yyy) ≥ c−1ν(yyy).

2.1.3.10. *From computability to universality. The expansion to semi-com-
putable objects in order to obtain universal elements is a move that returns
in many related contexts. Martin-Löf (1966), in defining his influential notion
of algorithmic randomness, employs the class of all Σ1 randomness tests: a
sequence xxxω is random if it passes a universal such test (see A.4). We will see
in chapter 6 that Vovk (1998; 2001b), in defining his notion of predictive com-
plexity and indeed inspired by Levin, employs the class of Π1 loss processes:
the predictive complexity of xxxω is the loss incurred by a universal such process.

2.1.4. The Solomonoff-Levin measure. We have finally arrived at the
definition of the Solomonoff-Levin measure. The measure QU is precisely the
universal uniform transformation by universal monotone machine U .

Definition 2.8 (Solomonoff, Levin). QU := λU .

So there are in fact infinitely many such measures QU , one for each choice
of universal monotone machine U . Let us denote the class of Solomonoff-Levin
measures by

SL := {QU}U = {λU}U ,
where the U range over all universal monotone machines. Since, as universal
transformations, they are all universal Σ1 elements, any two Solomonoff-Levin
measures are equivalent up to a multiplicative constant.

Solomonoff would later (e.g., 1986; 1997; 2009) also employ the term “al-
gorithmic probability” for the values given by the Solomonoff-Levin measure.
(Terminology in the field is not very stable; Li and Vitányi, 2008, 272f, for in-
stance, reserve this label for the related but still importantly different function
in A.3.1.7.) The usual interpretation is that QU (yyy) gives the probability that
yyy is produced by universal monotone machine U when given uniformly random
input. We can again write this in the form (16), as

QU (yyy) =
∑

xxx∈DU (yyy)

λ(xxx),(19)

with DU (yyy) = b{xxx : ΦU (xxx) < yyy}c the set of minimal U -descriptions of yyy. The
definition is commonly associated with data compression and a preference for
simplicity, as I will discuss in various places (particularly, chapter 5) below.
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But the crucial property of the Solomonoff-Levin measures is their univer-
sality: in particular, their dominance over the ∆1 measures. It is this property
that is exploited in the adequacy result.

Theorem 2.9 (Solomonoff). QU fulfills (I: ∆1).

Proof. The fact that QU dominates given ∆1 measure µ entails that µ
is absolutely continuous with respect to QU , meaning that µ(A) > 0 implies
QU (A) > 0 for all A in the σ-algebra B. This entails by the classical result of
Blackwell and Dubins (1962) that µ-a.s. the variational distance

sup
A∈B
|µ(A | xxxt)−QU (A | xxxt)|

goes to 0 as t goes to infinity (see, e.g., Huttegger, 2015, 617f). In particular,
µ-a.s.,

QU (x | xxxt) t→∞−−−→ µ(x | xxxt).
(For more discussion and Solomonoff’s original 1978 proof, see B.2.1.) �

* * *

2.2. Alternative definitions

This section provides alternative definitions of the Solomonoff-Levin mea-
sure. I employ these alternative definitions to support interpretative observa-
tions throughout this thesis.

In 2.2.1, I give a generalized characterization of the Solomonoff-Levin mea-
sures as universal transformations. In 2.2.2, I consider the characterization of
the Solomonoff-Levin measures as mixtures over all Σ1 measures, and again
give a generalization.

2.2.1. Generalized transformations.
2.2.1.1. Transformations of ∆1 measures. Recall definition 2.3 of an effec-

tive transformation of the uniform measure λ. This uniform transformation is
an instance of the general definition of a transformation of a ∆1 measure µ,
viz.

(20) µM (yyy) := µ(J{xxx : ∃yyy′ < yyy. (xxx,yyy′) ∈M}K).

This value is the probability of obtaining a M -description for yyy when sampling
random bits from µ. It is the sum of the µ-probabilities of the minimal M -
descriptions for yyy:

µM (yyy) =
∑

xxx∈DM (yyy)

µ(xxx),

with DM (yyy) = b{xxx : ΦU (xxx) < yyy}c the set of minimal U -descriptions of yyy.
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M∆1

SL ={µU}U={ξ{νi}iw }w

U

M ={µM}M

Figure 1. The classM of Σ1 measures (2.1.2.11), that coin-
cides with the class {λM}M of uniform transformations via all
monotone machines (proposition 2.5), indeed, coincides with
the class {µM}M of all transformations of µ for any continu-
ous ∆1 measure µ (proposition 2.10). Contained in it the sub-
class U of universal Σ1 measures (2.1.3.1), that is disjoint from
the class M∆1

of ∆1 measures (2.1.3.6), and strictly contains
(2.2.1.3) the class of Solomonoff-Levin measures SL (2.1.4),
that coincides with all classes of universal transformations of
a continuous ∆1 measure µ (theorem 2.13) and with the class
of universal Σ1 mixtures (theorems 2.16 and 2.19).

2.2.1.2. Generalized characterization of M. The class of Σ1 measures can
be characterized as the class of all effective transformations of—in place of λ—
any chosen ∆1 measure µ that is continuous (2.1.1.7 above). Thus proposition
2.5 is an instance of

Proposition 2.10 (Levin). For every continuous ∆1 measure µ,

{µM}M =M.

Proof. See B.1.1.

2.2.1.3. Universal elements and Solomonoff-Levin measures. We have seen
that a universal uniform transformation λU , i.e., a Solomonoff-Levin measure
QU , is a universal Σ1 element (2.1.3.9 above). The converse is not true: not ev-
ery universal element is also a Solomonoff-Levin measure. For instance, whereas
one can easily define a universal Σ1 measure ν̊ such that

∑
xxxt∈Bt ν̊(xxxt) = 1 for

all t up to a particular s, it must be the case that for any length t the sum of
λU (xxxt) for all sequences xxxt of this length must fall short of 1. (The latter is
easiest to see from the mixture representation of the Solomonoff-Levin measure,
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2.2.2 below, and the fact that for some Σ1 measures this will be the case. Also
see Wood et al., 2013, 423f for a different proof.)

2.2.1.4. Universal transformations of continuous ∆1 measures. A natural
question is whether a universal transformation µU of a given continuous ∆1

measure µ is also a universal element. This is not obvious: but the answer
turns out to be positive (subject to a minimal compatibility condition on the
universal machine U , as explained in B.1.5.2). In fact, any such universal
transformation µU is of the form λU ′ for some universal machine U ′, i.e., is a
Solomonoff-Levin measure.

Proposition 2.11. For every continuous ∆1 measure µ, and universal
monotone machine U compatible with µ,

µU ∈ SL.

Proof. See B.1.5.

2.2.1.5. *A diagonal argument that fails. The crucial step in the proof of
proposition 2.11 is an application of Kleene’s (second) recursion theorem (or
fixed point theorem; 1938), that (applied to monotone machines) states that
for given acceptable enumeration {Me}e of all monotone machines, for every
computable function f there is a fixed point ê with Mf(ê) = Mê. Kleene
actually arrived at this result in an attempt to diagonalize the class of p.c.
functions (see Soare, 2016, 29), and the most instructive proof presents it as a
“diagonal argument that fails” (Owings, 1973; Soare, 2016, 29f).

2.2.1.6. *Universal elements via non-universal transformations. Universal
transformations yield universal elements, but universal elements can also be
obtained via transformations that are not universal. Indeed, every Σ1 measure
can be obtained as a transformation by a machine that is not even weakly
universal.

Proposition 2.12. For every continuous ∆1 measure µ, there is for every
Σ1 measure ν a non-(weakly) universal M such that ν = µM .

Proof. See B.1.3.

2.2.1.7. Generalized characterization of SL. As the converse to proposition
2.11 we have the result that, for every continuous ∆1 measure µ, any given
Solomonoff-Levin measure can also be obtained as a universal transformation of
this measure. Taken together we have the following generalized characterization
of the class of Solomonoff-Levin measures.

Theorem 2.13. For every continuous ∆1 measure µ,

{µU}U = SL.

Proof. See B.1.6.

Thus, for any given continuous ∆1 measure, a Solomonoff-Levin measure
can also be interpreted as giving the probabilities for finite sequences being
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generated by some universal machine that is presented with a stream of bits

sampled from this measure.8

2.2.2. The Σ1 mixtures.
2.2.2.1. Mixtures. Let H be a countable class of probability measures over

Cantor space. A mixture over H is simply a measure that is a weighted average
over all measures inH. To make this more precise, let a weight function w : I →
[0, 1] be a distribution over an index set I, so

∑
i w(i) = 1, that is everywhere

positive, so w(i) > 0 for all i ∈ I. Then the mixture via weight function w
over a particular enumeration {µi}i∈I = H is the w-weighted average over this
enumeration of H.

Definition 2.14. The mixture ξ
{µi}i
w with weight function w over enumer-

ation {µi}i∈I of measures is given by

ξ{µi}iw (xxx) =
∑
i∈I

w(i)µi(xxx).

It is often convenient to leave the particular enumeration implicit and sim-

ply write ‘ξHw ’ for ξ
{µi}i
w .

2.2.2.2. Universality. A mixture over H clearly dominates every element
of H (2.1.3.1 above): for every µi ∈ H it holds that for every xxx

(21) ξ{µi}iw (xxx) ≥ w(i)µi(xxx).

Thus, whenever a mixture over H is itself still an element of H, it is a universal
element of H.

2.2.2.3. Σ1 mixtures. Perhaps the most straightforward example of a uni-
versal Σ1 measure is an effective mixture over M (see Li and Vitányi, 2008,
294ff). Such a mixture is defined by an effective enumeration {νi}i∈N ofM and
a weight function over index set I = N that is also Σ1 or semi-computable—so
this mixture is itself Σ1 and therefore a universal Σ1 element. It is actually
customary (see Hutter, 2007, 35) to allow the weight function here to be de-
fective: it is an everywhere positive semi-distribution v that merely satisfies∑
i∈N v(i) ≤ 1 (also see 2.2.2.6 below). I will simply call such an effective

mixture over all of M a Σ1 mixture.

Definition 2.15. The Σ1 mixture ξ
{νi}i
v with (defective) Σ1 weight func-

tion v over enumeration {νi}i∈N of M is given by

ξ{νi}iv (xxx) =
∑
i∈N

v(i)νi(xxx).

2.2.2.4. The representation theorem. The Solomonoff-Levin measures and
the Σ1 mixtures are all universal elements, hence every Solomonoff-Levin mea-
sure is equivalent to every Σ1 mixture up to a multiplicative constant (2.1.3.2
above). Wood et al. (2013) have shown that the Solomonoff-Levin measures
are in fact precisely the Σ1 mixtures. I call this result a representation theorem,
for reasons laid out more carefully in 3.2.4 below.
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Theorem 2.16 (Representation theorem, Wood et al.). SL = {ξMv }v.

Proof. See B.1.4.

2.2.2.5. Some refinements. The statement of theorem 2.16 leaves room for
improvement in two respects. First, it is not made explicit what effective
enumerations ofM are assumed to be included. It turns out that we can state
the same result for every single fixed enumeration of M that is acceptable (a
notion analogous to acceptable numberings of the p.c. functions, Rogers, 1967,
41, see B.1.8). Second, there is the funny notion of defective weight function
in the definition of Σ1 mixtures. This we can do away with: we can state the
same result with mixtures using non-defective ∆1 weight functions only. In
short, the strengthened statement follows from

Proposition 2.17. For every acceptable enumeration {νi}i of M, every

QU ∈ SL equals ξ
{νi}i
w for some ∆1 weight function w.

Proof. See B.1.8.

2.2.2.6. *Universal weight functions. The admission of defective weight
functions, i.e., Σ1 semi-distributions, opens the way for elements v̊ that are
universal : for every (defective) Σ1 weight function v it holds that ∃c∀i. v̊(i) ≥
c−1v(i). Perhaps surprisingly, the following result shows that every Σ1 mixture
can be represented so as to have a universal weight function.

Proposition 2.18. For every acceptable enumeration {νi}i of M, every

QU ∈ SL is equal to ξ
{νi}i
v̊ for some universal Σ1 weight function v̊.

Proof. See B.1.9.

2.2.2.7. The generalized representation theorem. Taking the main results
of 2.2.1 and 2.2.2 together, we obtain the following general characterization of
the Solomonoff-Levin measures:

Theorem 2.19. For every continuous ∆1 measure µ and every acceptable
enumeration {νi}i of M,

SL = {µU}U = {ξ{νi}iw }w,
with the U ranging over those universal machines compatible with µ and the w
ranging over the ∆1 weight functions.

*



CHAPTER 3

Perspectives on prediction methods

This chapter lays out different formal perspectives on prediction methods.
These formal perspectives are associated with different conceptual interpre-
tations of prediction methods. The systematic arrangement of these different
perspectives serves to clarify different approaches and goals in sequential predic-
tion. Specifically, it facilitates the appraisal of Solomonoff’s theory of universal
prediction in this and the next chapters.

In 3.1, I discuss the formal equivalence between the perspectives of predic-
tion methods and a priori measures. This shows that prediction methods are
associated with a Bayesian a priori assessment of all possible data sequences. In
3.2, I discuss the perspective of mixtures over measures. This is associated with
the classical Bayesian interpretation of an epistemic prior over a model of the
possible data-generating mechanisms. In 3.3, I discuss the perspective of mix-
tures over prediction methods. This is associated with the view of prediction
methods as aggregating strategies over a pool of competing predictors.

Innovations. None of the discussed perspectives on methods for sequen-
tial prediction is new, and I rely on various sources in my presentation of them,
but I believe this chapter for the first time brings all of these together. In par-
ticular, a main contribution of this thesis is a detailed analysis of the different
possible interpretations of the Solomonoff-Levin predictor. This allows for a
novel appraisal of several aspects of the Solomonoff-Levin predictor, including
its universality and its objectivity. An important strand here is again the par-
allels drawn between the Solomonoff-Levin proposal and Carnap’s inductive
logic, which among other things prompts the interpretation of theorem 2.16
as a representation theorem. This in turn points at the interpretation of the
Solomonoff-Levin predictor as operating under a particular inductive assump-
tion, and the observation that the choice of universal machine in the definition
is precisely the choice of effective Bayesian prior. The chapter contains one
mathematical result, theorem 3.2 on the non-convergence of different Solomo-
noff-Levin predictors, that—although derivable from a minor modification of
an existent construction—appears to be novel. (Parts of this chapter are based
on parts of Sterkenburg, 2016.)

77
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3.1. Prediction methods and a priori measures

This section is on the formal equivalence between methods for sequential
prediction and measures on Cantor space.

In 3.1.1, I discuss the equivalence between prediction methods and prob-
ability measures, and the Bayesian interpretation of the latter. In 3.1.2, I
illustrate this correspondence by the Johnson-Carnap predictors. In 3.1.3, I
distinguish the Solomonoff-Levin measures and predictors. In 3.1.4, I discuss
the correspondence between effective prediction methods and probability mea-
sures. In 3.1.5, I assess the Solomonoff-Levin measures as a priori measures.

3.1.1. Conditional and joint distributions. There is a straightforward
formal equivalence between prediction rules and full measures on all possible
data sequences. In essence, this is the equivalence between conditional and
joint distributions. (Also see Dawid, 1984, 279; Merhav and Feder, 1998, 2127;
Cesa-Bianchi and Lugosi, 2006, 247f.)

3.1.1.1. From prediction rules to measures. Recall that a prediction method
is a function p : B∗ → P from past data sequences to predictions, distributions
over B. (I also use the shorthand p(x,xxx) := p(xxx)(x), and p = (a0, a1) for
p(0) = a0 and p(1) = a1.) A prediction rule p directly defines a one-step
conditional measure µ1

p(· | ·) by

(22) µ1
p(· | xxx) := p(xxx),

i.e., µ1
p(x | xxx) = p(x,xxx) for x ∈ B. (Also see 2.1.1.3 above on notation of (one-

step) conditional measures in sequential prediction.) The one-step conditional
measure µ1

p(· | ·) defines the measure µp on finite sequences by the product rule
for conditional probabilities,

(23) µp(xxxt) :=

t−1∏
s=0

µ1
p(xs+1 | xxxs).

Thus a prediction rule determines a probability assignment to all finite data
sequences (cf. Zabell, 2011, 276). (More properly speaking, the one-step con-
ditional measure defines via (23) a pre-measure mp on the basic cylinders
JxxxK = {xxxω : xxx ≺ xxxω} for all xxx ∈ B, that extends to an actual measure µp

on the Cantor space Bω with µp(JxxxK) = mp(xxx) as in 2.1.1.1 above.)
3.1.1.2. From measures to prediction rules. A measure µ defines a one-step

conditional measure by

(24) µ1(x | xxx) :=
µ(xxxx)

µ(xxx)
,

hence a predictor pµ by

(25) pµ(xxx) := µ1(· | xxx).

Note, however, that (24) and hence (25) is undefined where µ(xxx) = 0. (Partially
defined predictor pµ “goes into a coma” when such xxx obtains, Kelly, 1996,
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305.) That means that, strictly speaking, the formal equivalence only holds for
measures µ that assign positive probability to all cones: the strictly positive
measures (2.1.1.5 above; also see 3.1.2.2 below).

3.1.1.3. Semi-measures. The formal correspondence easily generalizes for
semi-measures, or measures on the extended space Bω ∪ B∗ (2.1.2.9, 2.1.2.10
above). Such a measure corresponds to a prediction method that maps finite
sequences to semi-distributions, i.e., q with

∑
x∈B q(x) ≤ 1.

3.1.1.4. Two perspectives. The formal correspondence shows that every
prediction strategy comes with an a priori measure that models all possible
outcomes (Dawid and Vovk, 1999, 128), or, in explicitly Bayesian terms, gives
a full specification of our beliefs over all possibilities. In yet different terms, an
a priori distribution represents our inductive assumption, that is implemented
by the corresponding prediction method (Howson, 2000; 3.2.1.2 below). We
thus have a correspondence between, on the one hand, the “operational” per-
spective of direct prediction rules, on the other, the “metaphysical” perspective
of a priori measures over all data sequences (Skyrms, 1996, 323).

3.1.1.5. Bayes’s rule. As a Bayesian, you start out with an a priori measure
µ that expresses your beliefs over all possibilities (which I could elicit, for
instance, by testing what bets on the outcomes you are willing to take). How
do you make sense of the induced prediction rule pµ? It is the strategy you
would follow if you were to adhere to Bayes’s rule for adjusting beliefs in the
light of evidence. (And, of course, if your predictions are in fact honest reports
of your beliefs.) Namely, if we denote by µt the measure that expresses your
beliefs at the start of trial t+1, after having observed xxxt (in particular, µ0 = µ),
and xt+1 is revealed at t+ 1, then Bayes’s rule says that

(26) µt+1 := µt(· | xt+1).

Equivalently,

(27) µt+1 := µ0(· | xxxt+1).

In words, Bayes’s rule says that your beliefs after seeing a particular data
sequence should be equal to your original beliefs conditional on this data se-
quence. This is in accordance with pµ because by definition pµ(x,xxxt) = µ0(x |
xxxt).

3.1.2. The Johnson-Carnap predictors. In Carnap’s terminology, the
formal correspondence between prediction methods p and a priori measures µ
is the formal correspondence between confirmation functions c and measure
functions m.

In the Logical Foundations (1950), Carnap presents confirmation functions
as induced from measure functions. The value m(h) equals the null confirma-
tion c0(h) of h, “the degree of confirmation of h before any factual information
is available” (ibid., 308), which he allows might be called the “initial probabil-
ity” or “the probability a priori” of the sentence. The full confirmation function
c follows from conditionalizing m as in 3.1.1.2 above. In the Continuum (1952)
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and later (see 1963a; 1971b), Carnap defines the confirmation functions cα di-
rectly, only noting that “the c-values for any sentences are reducible . . . to
c-values with respect to the tautological evidence ‘t’ (‘probability a priori’ in
the classical terminology). For the latter values we introduce the notation ‘m’”
(1952, 16).

We find Carnap’s last and most detailed account of the interpretation of m
and c in (1971a). Briefly: the “purely logical” functions m and c correspond to
the “quasi-psychological” concepts of a rational initial credence function Cr0

and a rational credibility function Cred, respectively; these “are assigned to an
imaginary subject X supposed to be equipped with perfect rationality and an
unfailing memory” (ibid., 25)—or indeed “a robot” (ibid., 17). The credence
function Crt gives X’s beliefs at time t, and “evolved from Cr0 by the effect of
the data” (or Cr0 is “the credence function we originally build in” our robot and
that “he transforms step by step . . . into the later credence function,” ibid.,
18). The credence is indeed the conditional initial credence Cr0(· | ·)—here
we have Bayes’s rule (27). Alternatively (ibid.), we can put things in terms
of the credibility function Cred(·, ·) that equals the conditional initial credence
Cr0(· | ·). (“While Crt characterizes the momentary state of X at time t with
respect to his beliefs, his function Cred is a trait of his underlying permanent
intellectual character, namely his permant disposition for forming beliefs on
the basis of his observations,” ibid., 19, slight change of notation.) Finally, on
the formal correspondence: “Since each of the two functions Cr0 and Cred is
definable on the basis of the other, there are two alternative procedures for
specifying a basic belief-forming disposition, namely, either by Cr0 or by Cred”
(ibid., 21).

That concludes Carnap’s own view. In the rest of this section, I revisit the
Johnson-Carnap functions for the purpose of giving some further illustration
of the formal correspondence between the two perspectives of prediction rules
and a priori measures. I also switch from Carnap’s notation to the standard
notation in this thesis.

3.1.2.1. The indifferent predictor. The most straightforward example of
the correspondence is the indifferent predictor defined by p(xxx) = ( 1

2 ,
1
2 ) for

every xxx (Carnap’s function c†, 1.2.3.3 above) and the uniform measure λ. On
a more conceptual level, the prediction rule that always expresses indifference
between the next two possible symbols indeed corresponds to the a priori mea-
sure that expresses indifference between all same-length sequences. Recall that
Carnap objects to this rule for the reason that it never learns from data: this
is a defect that is shared by all of the prediction rules that correspond to an
i.i.d. measure µθ.

3.1.2.2. The straight rule. To see the breakdown of the correspondence
when probabilities 0 are involved, consider again the straight rule (1.2.3.6
above),

p(xxx) =

(
#0xxx

t

t
,

#1xxx
t

t

)
.
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This rule is actually only partially defined from the start, because p(x,∅∅∅) in-
volves division over t = 0; but we can just stipulate p(∅∅∅) = ( 1

2 ,
1
2 ), say. More-

over, on the first outcome it immediately gives extreme predictions, namely

p(0) = (1, 0); p(1) = (0, 1),

which means that the corresponding conditional measure induces via (23) the
measure µ with

(28) µ(xxxt) =

{
1
2 if xxxt = 0t or xxxt = 1t;

0 otherwise.

But if we translate this measure back into a conditional measure and hence a
predictor, it will be undefined on every input that is not a sequence of identical
symbols. Carnap (1952, 42) diagnoses the “inadequacy” of the straight rule as
its failure to be a regular confirmation function: a confirmation function that
(is derived from a measure function that) gives positive probability to every log-
ical possibility (Carnap, 1950, 294f; Carnap, 1963a, 974f; 1.2.2.2 above). In our
setting, the requirement that every possibility should have positive probability
(Cromwell’s rule, see Lindley, 2006, 91) is satisfied by (a predictor correspond-
ing to) a strictly positive measure (see 2.1.1.5 above).

3.1.2.3. Exchangeability. As we saw in 1.2.3.1 above, exchangeability is a
property of measures that straightforwardly translates into a similar property
of prediction rules. A measure µ is exchangeable if the probability values are
invariant under finite permutations of outcomes, i.e., µ(xxxt) = µ(yyyt) if #0xxx

t =
#0yyy

t. Equivalently, the predictive probability pµ(x,xxx) only depends on #xxxx.
Thus the assessment that the predictive probability of x only depends on the
number of earlier occurrences of x is equivalent to the assessment that all data
sequences with the same number of 0’s and 1’s are equally probable. (Also see
Skyrms, 1996, 324.)

3.1.2.4. Exchangeability and structure-symmetry. Carnap’s stipulation of
structure-symmetry (1.2.3.2 above) says that for each t, each number of 1’s—a
total of t+ 1 possibilities—is equally likely. The number of sequences xxxt with
t1 1’s is

(t, t1) =
t!

t1!(t− t1)!
=

t

t0!t1!
,

which under the stipulation of exchangeability are also all equally likely. Thus
the probability of a particular sequence xxxt under both exchangeability and
structure-symmetry (the probability according to Carnap’s m∗) is

µ(xxxt) =
1

(t+ 1)

1
t!

(#0xxxt)!(#1xxxt)!

=
(#0xxx

t)!(#1xxx
t)!

(t+ 1)!
.

(29)
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(Also see Zabell, 2011, 273f.) We saw earlier that Carnap’s c∗ is the prediction
method

p(xxxt) =

(
#0xxx

t + 1

t+ 2
,

#1xxx
t + 1

t+ 2

)
.(30)

The measure (29) and predictor (30), while equivalent in the sense I have been
discussing, take forms that, on a first glance, are quite different; this is the case
for the λ-γ continuum in general.

3.1.2.5. The λ-γ predictors and measures. As we saw in 1.2.3.7 above, ex-
changeability with the further assessment that the predictive probability of x
is linear in the number of earlier occurrences of x, so that p(x,xxx) = ax + b#xxxx
for some ax, b, gives the rules of succession of the pleasing form

pλ,γ(xxx) =

(
#0xxx

t + γ0λ

t+ λ
,

#1xxx
t + γ1λ

t+ λ

)
.(31)

Using the product rule for conditional probabilities (23), we can calculate that
these predictors correspond to measures of the form (cf. Zabell, 1982, 1095)

µλ,γ(xxxt) =

∏t−1
s=0(#xs+1

xxxs + γxs+1
λ)∏t−1

s=0(s+ λ)

=

∏#0xxx
t−1

j=0 (j + γ0λ)
∏#1xxx

t−1
j=0 (j + γ1λ)∏t−1

s=0(s+ λ)

=
Γ(λ)

Γ(t+ λ)

Γ(#0xxx
t + γ0λ)

Γ(γ0λ)

Γ(#1xxx
t + γ1λ)

Γ(γ1λ)

=
Γ(λ)

Γ(γ0λ)Γ(γ1λ)

Γ(#0xxx
t + γ0λ)Γ(#1xxx

t + γ1λ)

Γ(t+ λ)
.(32)

(Here the gamma function Γ is the generalization of the factorial function to
real numbers, in the sense that Γ(n) = (n − 1)! for n ∈ N.) This is a rather
more complicated expression than the direct expression (31) as a prediction
rule. However, the measure does admit of a different natural expression (traces
of which we can already recognize here), namely as a mixture over the class of
i.i.d. measures (where the first fraction in (32) returns in the Beta prior (38)
that weighs the mixture): see 3.2.3 below.

3.1.3. The Solomonoff-Levin predictors.
3.1.3.1. Solomonoff. He writes (1964, 7):

It is possible to devise a complete theory of inductive inference
using Bayes’s Theorem, if we are able to assign an a priori prob-
ability to every conceivable sequence of symbols. In accord with
this approach, it is felt that sequences should be given high a
priori probabilities if they have short descriptions and/or many
different descriptions.
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The use of Bayes’s theorem that Solomonoff mentions is that

(33) QU (x | xxx) = QU (JxxxxK | JxxxK) =
QU (JxxxK | JxxxxK) ·QU (JxxxxK)

QU (JxxxK)
=
QU (xxxx)

QU (xxx)

—or so goes the reconstruction of Li and Vitányi (2008, 349f). It comes down
to the use of conditionalization (25) to turn an a priori measure into a predictor:
the use of Bayes’s rule (27) in a Bayesian interpretation. I will call a one-step
conditional Solomonoff-Levin measure Q1

U (· | ·) defined as in (33) a Solomonoff-
Levin predictor pQU .

3.1.3.2. The Solomonoff-Levin measures and predictors. In modern presen-
tations of Solomonoff’s theory the same route is taken: first the introduction of
the “universal a priori measure” or the “universal a priori probability” (ibid.,
302; the Solomonoff-Levin measure of definition 2.8 in 2.1.4 above), and next
the observation that we can use this measure for prediction by conditionaliza-
tion (ibid., 349ff; the Solomonoff-Levin predictor (33)). (Strictly speaking, of
course, the correspondence is as in 3.1.1.3 above: QU is a Σ1 measure on Bω∪B∗
or semi-measure on Bω, hence pQU is a method that issues semi-distributions
for predictions.) The Solomonoff-Levin measure QU has a natural definition in
terms of the inputs to a universal Turing machine or a universal effective trans-
formation; the Solomonoff-Levin predictor pQU , in contrast, does not appear
to admit of a natural direct definition as a prediction rule, other than simply
as a fraction of a priori probabilities. (To qualify: there is an alternative repre-
sentation as a mixture predictor, 3.2.4.1 below, but this still consists in taking
a mixture of fractions of a priori probabilities.)

3.1.3.3. Levin. He was interested in formalizing complexity and random-
ness (I.6 above), and not so much in prediction (see Levin, 1984, 23; Solomonoff,
1997, 83, 2003, 598). The randomness branch—the main branch—of algorith-
mic information theory is based on versions of the Solomonoff-Levin measure
to quantify complexity or information content (more precise, the central notion
is the negative logarithm of versions of the Solomonoff-Levin measure, see A.3).
It has no need of (versions of) the conditional Solomonoff-Levin measure that
is central in Solomonoff’s predictive branch. As should become more clear later
in this thesis (see, in particular, 5.2.1.8 and 6.2.2.8 below), it has a certain ele-
gance that the predictive theory fails to retain. This has much to do with the
breakdown of the effective correspondence between measures and predictors,
3.1.4 below.

3.1.3.4. An a priori measure. When he does briefly indicate the relation to
inductive inference, Levin positions the Solomonoff-Levin measure as follows
(1970, 104, my notation):

In mathematical statistics the following problem arises: to clarify
with respect to what measure a given sequence can be obtained
“randomly”. If nothing is known in advance about the properties
of the sequence, then the only (weakest) assertion we can make
regarding it is that it can be obtained randomly with respect to
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QU . Thus, QU corresponds to what we intuitively understand by
the words “a priori probability”.

I explain this more fully in A.4.2.6 on randomness: basically, it is an appeal to
the universality of the Solomonoff-Levin measure. I come back to this shortly,
in 3.1.5 below.

3.1.4. Effective measures and predictors. The correspondence of 3.1.1
persists when effectivized to the ∆1 or computable elements: the ∆1 measures
correspond precisely to the ∆1 predictors. If a predictor p, hence the corre-
sponding one-step conditional measure (22), is ∆1, then so is the product (23),
that gives the measure µp. Conversely, if a measure µ is ∆1, then so is the
fraction (24) that gives the one-step conditional measure (25), hence so is the
corresponding predictor p.

Importantly, however, the correspondence of 3.1.1 does not persist when
restricted to the Σ1 elements: it is not the case that the Σ1 measures correspond
to the Σ1 predictors. All is well in one direction: if a predictor p is Σ1, then

so is the product and hence the measure µp. But a fraction m(·) = m1(·)
m2(·) of

two functions m1 and m2 that are both Σ1 need not itself be Σ1. The two
approximating functions g1 and g2 for m1 and m2, respectively, give rise to

an approximating function g(xxx, s) = g1(xxx,s)
g2(xxx,s) ; but this function, while it satisfies

lims→∞ g(xxx, s) = m(xxx), does not need to satisfy g(xxx, s) ≤ g(xxx, s+ 1) for all s ∈
N. For such a function we do not even know whether any given approximation
is a lower aproximation, and whether the approximation at s + 1 will be at
least as accurate as the one at s. In technical terms, the function m is only
limit-computable or ∆2 (see Soare, 2016, 63ff). Thus, a predictor corresponding
to (i.e., a fraction of terms of) a Σ1 measure is ∆2, but need no longer be Σ1.
In particular, the Solomonoff-Levin predictor is no longer Σ1. A proof of this
fact is deferred to the next chapter (specifically, 4.3.3), where I will discuss its
conceptual implications in detail.

3.1.5. The Solomonoff-Levin measures as a priori measures. The
Solomonoff-Levin measures, like Carnap’s admissable measure functions or ini-
tial confirmation functions, are proposed as measures that are ‘a priori’ in the
sense of a starting point that precedes any input from observation data. Carnap
talks about the distribution of an “idealized human baby” that is subsequently
updated through contingent life experience (1971a, 17; 3.1.2 above); a similar
view is expressed by Solomonoff (1997, 75). Not just any measure qualifies as
a proper such starting point: Carnap sought to isolate a logical hence rational
and objective a priori measure. Why does the Solomonoff-Levin measure make
for a proper starting point?

3.1.5.1. “The general intuitive basis.” Carnap proceeded by formulating
invariance axioms that served as constraints on rational measure functions,
where both the axioms themselves and the values given by the resulting con-
firmation functions are continuously tested against our inductive intuitions.
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Solomonoff likewise states that the “validity” of his proposed definition is both
tested by “the application of [the resulting method] to specific problems and
comparison of the results with intuitive evaluations,” and—although “of much
less importance”—supported by the “general intuitive basis” for the definition
itself (1964, 5). As for the latter, this starts with the intuition of assigning
a priori probabilities to finite sequences by “examin[ing] the manner in which
these strings might be produced by a universal Turing machine” (ibid., 3).

3.1.5.2. Objectivity through computation. At least part of the motivation
appears to be an intuition about objectivity deriving from computation, as
illustrated by Solomonoff’s recollection of a conversation he had with McCarthy
at the Dartmouth conference (Solomonoff, 1997, 76):

I asked him about the induction problem: “Suppose you are given
a long sequence of symbols describing events in the real world.
How can you extrapolate that sequence?”

The next day he said, “Suppose we were wandering about in
an old house, and we suddenly opened a door to a room and in
that room was a computer that was printing out your sequence.
Eventually it came to the end of the sequence and was about
to print the next symbol. Wouldn’t you bet that it would be
correct?”

This is a vague intuition, that does not begin to answer the basic problems of
prediction (e.g., “There may be a large number of inputs to the machine that
give the same initial output but extrapolate differently. Which should we use?,”
ibid.). But it is this intuition that is subsequently made more precise in the
idea of a distribution on output sequences based on the length of the required
input sequences. (It does not seem out of place here to note that a same
basic intuition of objectivity through computation—objective algorithms!—is
what drives popular conceptions about the reach of big data and purely data-
driven inference today: see Mayer-Schönberger and Cukier, 2012—“let the data
speak!”—for a representative account.)

3.1.5.3. “The general intuitive basis,” cont. The inputs to the data-gen-
erating machine are sometimes (and without much context) characterized as
the “explanations” or “causes” of the data (see Solomonoff, 1964, 19; Li and
Vitányi, 1992a, 5; 2008, 260), with the likelier causes those that are shortest
or simplest. The role of lengths of inputs in the definition is generally associ-
ated with data-compression and simplicity (Occam’s razor): this is the topic of
chapter 5. Moreover, a “suggested point of support” (Solomonoff, 1964, 4) is
a version of the principle that was central to Carnap’s approach, the principle
of indifference (1.2.1.3 above).

3.1.5.4. The principle of indifference. Solomonoff (ibid., 19) writes that

If we consider the input sequence to be the “cause” of the ob-
served output sequence, and we consider all input sequences of a
given length to be equiprobable (since we have no a priori reason
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to prefer one rather than any other) then we obtain the present
model of induction.

(Also see Fine, 1973, 146ff; Li and Vitányi, 1992a, 5; Rathmanner and Hutter,
2011, 1119, “Epicurus’s principle.”) But this fact that “all inputs to a Turing
machine that are of a given fixed length, are assigned ‘“indifferently equal a
priori’ likelihoods” (Solomonoff, 1964, 4) rests on the unique feature of the
uniform measure λ that equal-length sequences are assigned equal probability.
Theorem 2.13 shows that the choice of λ in defining the Solomonoff-Levin
measure is only circumstantial, undermining this association.

3.1.5.5. Universality. In another place in his paper, Solomonoff says that
“supposing that the string was created as the output of a universal machine on
random input” is the “optimum manner” to account for a sequence (1964, 14,
16; also see 1966, 1191f):

By “optimum manner” it is meant that the model we are dis-
cussing is at least as good as any other model of the universe in
accounting for the sequence in question.

Here we encounter the idea of universality. As I hope to make clear in this the-
sis, the best way of looking at the Solomonoff-Levin measure is not so much as
an objective starting point in the sense of a (or indeed the) rational Carnapian
measure function, where the “validity” of the definition rests on considerations
of symmetry or simplicity. Rather, the Solomonoff-Levin measure should be
seen as an attempt at a universal starting point, a “universal a priori proba-
bility” (Li and Vitányi, 2008, 302) that in some sense captures all possibilities
(Li and Vitányi, 1992a, 5):

we call [the Solomonoff-Levin measure] the a priori probability,
since it assigns maximal probability to all hypotheses in absence
of any knowledge about them.

* * *

3.2. Mixtures over measures

This section discusses measures and predictors as mixtures over a class of
measures. This perspective relates to the classical Bayesian interpretation of a
prior over a class of hypotheses.

In 3.2.1, I introduce mixture measures and the classical Bayesian interpre-
tation. In 3.2.2, I introduce mixture predictors. In 3.2.3, I discuss de Finetti’s
representation theorem that shows that the exchangeable predictors (in partic-
ular, the Johnson-Carnap predictors) are the mixture predictors over the i.i.d.
measures (with a particular form of prior). In 3.2.4, I discuss the representa-
tion theorem 2.16 that shows that the Solomonoff-Levin predictors are the Σ1

mixture predictors. In 3.2.5, I discuss the element of subjectivity in the choice
of universal machine or effective prior.
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3.2.1. Mixture measures. Recall from definition 2.14 in 2.2.2.1 above
that a mixture measure ξ

{µi}i
w is the w-weighted mean

(34) ξ{µi}iw (·) =
∑
i∈I

w(i)µi(·)

over a class H = {µi}i∈I of measures. Here the weight function w is an every-
where positive distribution over the indices I for the enumeration {µi}i∈I of
H.

It was necessary to be careful about the enumeration in the statement
of effective mixtures, but in general we can forget about these details and
talk about w as a function that gives weights directly to the measures in H
(even though strictly speaking w is only a function on indices that requires
the specification of an enumeration of H to define (34)). Accordingly I write
‘ξHw ’ for a w-weighted mixture measure over H. Moreover, in the following I
will often talk about the weight function w as actually determining the class
H: the idea is that a class H is induced by w as the class of those measures
that receive positive weight from w. Accordingly I write ‘ξw’ for a mixture
measure over some H that I understand to be implicity given by w. The
reason for approaching things in this way is that it is convenient to present
a mixture measure as fully determined by a weight function or prior in the
classical Bayesian interpretation below.

(Also for simplicity and with an eye to the class most relevant to us, the
class of Σ1 measures, I will stick in this exposition to countable classes H.)

3.2.1.1. The classical Bayesian perspective. In 3.1.1.4 above, I introduced
the Bayesian perspective of an epistemic a priori measure, as expressing the de-
gree of belief we attach to every possible outcome sequence. This corresponds
to what Diaconis and Freedman (1986, 11); Skyrms (1996, 323ff) call the subjec-
tive Bayesian perspective; though I hestitate to adopt that label here, because
in my presentation it includes Carnap’s interpretation of epistemic yet objective
a priori measures. However, I will follow these authors in distinguishing this
perspective from the classical Bayesian perspective, that posits a model or class
of hypotheses about the actual data-generating mechanism, and an epistemic
prior probability assignment to its members. This is the interpretation that
naturally applies to mixture measures: the class H is the class of hypotheses,
and the weight function w is a prior distribution over the hypotheses.

3.2.1.2. The inductive assumption. A mixture measure is an a priori mea-
sure that, under an Bayesian interpretation, expresses an inductive assumption
(3.1.1.4 above). In the case of a mixture measure, under the classical Bayes-
ian interpretation, there is additional structure in our inductive assumption:
we believe that one of a number of hypotheses must actually govern the data
(cf. Romeijn, 2004). We believe that one of the µ in H is the correct or true
data-generating measure, to various degrees that are given by the prior w. To
put it economically, in this interpretation, the prior distribution w encodes our
inductive assumption. We also say that a mixture measure with prior w over
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class H expresses the inductive assumption of H. The predictor correspond-
ing to a mixture measure—a mixture predictor—is a prediction strategy that
operates under the corresponding inductive assumption.

3.2.2. Mixture predictors. Given again a weight function w over a class
H = {µi}i of measures. The mixture strategy pmix(w) predicts at each trial by
an appropriately updated mean of conditional probabilities, as follows. At each
trial t + 1, having observed sequence xxxt, we replace w with (or update w to)
the weight function wt defined by

(35) wt+1(i) :=
w(i)µi(xxx

t)

Z
,

with normalizing term Z =
∑
i w(i)µi(xxx

t) = ξw(xxxt). An equivalent expression
of wt+1, as an update of the previous weight function wt, is

(36) wt+1(i) =
wt(i)µi(xt | xxxt−1)

Z
,

with normalizing term Z =
∑
i wt(i)µi(xt | xxxt−1), and w0 = w. The prediction

at trial t + 1, and so the definition of the mixture predictor pmix, is given by
the thus updated weighted mean of the conditional measures:

(37) pmix(xxxt) :=
∑
i

wt+1(i)µi(· | xxxt).

In the classical Bayesian interpretation, the mixture strategy predicts by a
posterior-weighted mixture over objective hypotheses conditional on the data.

3.2.2.1. The classical Bayesian model. A perfectly precise classical Bay-
esian account calls for the specification of a full probability model over the
hypotheses and the data sequences (cf. Grünwald, 2007, 74ff.). That is, we
define a joint probability measure µbayes over the space I × B∗, the Cartesian
product of the set I that parametrizes H and the set of finite outcome se-
quences. (Strictly speaking, the marginal measure on B∗ defined as such is
really a pre-measure on Cantor space.) We set the marginal probability of i to
that given by the prior:

µbayes(i) = µbayes(i,∅∅∅) := w(i),

and we set the conditional probability of xxx given i to the likelihood of µi:

µbayes(xxx | i) := µi(xxx).

This suffices to define the joint distribution, for µbayes(i,xxx) = µbayes(xxx | i) ·
µbayes(i). Now, by Bayes’s theorem, the conditional prior w(· | xxx) = µbayes(· | xxx)
is given by

w(i | xxx) = µbayes(i | xxx) =
µbayes(xxx | i)µbayes(i)

µbayes(xxx)

=
µi(xxx)w(i)∑
j µj(xxx)w(j)

.
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This is the belief we attach to µi conditional on xxx. Here we can again invoke
Bayes’s rule, that says that the conditional prior belief w(· | xxxt) should be our
posterior belief in i after having seen xxxt (cf. 3.1.1.5 above). We model this by
employing time-indexed measures µbayes,t to express our beliefs at trial t, with
µbayes,t+1(yyy | i) := µi(yyy | xxxt) and

wt+1(i) := w(i | xxxt).

This is the motivation for the update rule (35).
3.2.2.2. The mixture predictor and mixture measure. The update rule (35)

is such that the mixture predictor pmix(w) indeed corresponds to the mixture
measure ξw, in the sense of the correspondence between predictors and a priori
measures in 3.1.1 above. That is, pmix(w) coincides with pξw , the predictor

defined by the one-step conditional measure ξw(· | ·). Namely (see Grünwald,
2007, 77; Merhav and Feder, 1998, 2128f),

pmix(w)(xt+1,xxx
t) =

∑
i

w(i | xxxt)µi(xt+1 | xxxt)

=
∑
i

w(i)µi(xxx
t)∑

i′ w(i′)µi′(xxxt)
µi(xt+1 | xxxt)

=

∑
i w(i)µi(xxx

t+1)∑
i′ w(i′)µi′(xxxt)

=
ξw(xxxt+1)

ξw(xxxt)

= ξw(xt+1 | xxxt)
= pξw(xt+1,xxx

t).

3.2.2.3. The inductive assumption. Again, in the classical Bayesian inter-
pretation, we can say that the prior w encodes our inductive assumption. Con-
sequently, the mixture predictor pmix(w) is a predictor that operates under this
inductive assumption. In general, an a priori measure answers Goodman’s rid-
dle (what patterns should be extrapolated?) by stipulation: it induces a predic-
tion method that, to various numerical degrees, extrapolates certain patterns.
Thus an inductive assumption dictates what patterns are extrapolatable, or
projectible, and to what extent. In the classical Bayesian interpretation of the
mixture predictors, there is additional structure in the form of different possi-
ble hypotheses that regulate the data. Each of these hypotheses are themselves
a priori measures that stipulate what patterns are deemed projectible and to
what extent. The prior w thus encodes what patterns are extrapolatable ac-
cording to the associated hypotheses; and the mixture predictor with this prior
proceeds precisely by attempting to extrapolate the patterns encoded in the
prior. (Cf. Romeijn, 2004, 358.)

3.2.2.4. Consistency. It only sounds reasonable that if we operate under
a particular inductive assumption, and this assumption is in fact correct, then
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we should be able to predict well. More precisely: if we assign positive prior
probability to a particular hypothesis µ∗ that is actually true—the data is in
fact generated by µ∗—then we should converge to good or indeed the best
possible predictions. This expectation is warranted, to an important extent:
classical Bayesian inference (at least, with a countable hypothesis class) has the
important characteristic that it is consistent : if the data is in fact generated by
a measure µ∗ in the hypothesis class H, then, as t goes to infinity, the marginal
µBayes,t(·) will converge almost surely to the conditional µ∗(· | xxxt). I also
refer to the latter property of almost-sure convergence to the true conditional
probabilities as reliability : a mixture predictor’s property of consistency thus
means that it is reliable when the inductive assumption in fact holds true.

Theorem 3.1 (Consistency). For mixture predictor pmix(w) over H 3 µ∗,
with µ∗-probability 1,

pmix(w)(xxx
t)

t→∞−−−→ µ∗(· | xxxt).

Proof. This follows directly from the fact that the mixture ξw dominates
µ∗ ∈ H, and the Blackwell-Dubins theorem (1962). See Dawid (1984, 284) and
the proof of convergence theorem 2.9. Also see B.2.2 for more details. �

3.2.2.5. A mistaken inductive assumption. The other side of the coin is
that a predictor operating under a particular induction assumption can do very
bad (or much worse than other methods would do) if its inductive assumption
does not match the actual situation. An instance is the use of an exchangeable
predictor (the adoption of exchangeable degrees of belief), that, as discussed
next, corresponds to the inductive assumption of an i.i.d. source, in case there
are in fact significant order effects in the generation of the data (cf. Gillies,
2001b, 369ff). However, this does not have to be so: even if the inductive
assumption represented by a certain class of measures is off the mark, there
might still be measures in the class that give conditional probabilities that
are reasonably aligned with the sequence that is being generated. This is one
motivation for the later interpretation of an aggegating predictor over a pool
of predictors, see 3.3.1 below.

3.2.3. De Finetti’s representation theorem. De Finetti’s celebrated
theorem (1937) states that every exchangeable measure equals a mixture over
the hypothesis class H = {µθ}θ∈[0,1] of all i.i.d. measures. That is, every
exchangeable µ can be expressed as

µ(xxx) =

∫ 1

0

µθ(xxx)dW (θ),

for some prior probability measure W over the interval [0, 1].
In the special case of the exchangeable measures corresponding to the

Johnson-Carnap predictors pλ,γ (3.1.2.5 above), the prior measure w takes the
special form of a Beta(β0, β1) distribution with parameters β0 = γ0λ, β1 = γ1λ,
with density (relative to the uniform measure) given by
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wBeta(γ0λ,γ1λ)(θ) =
Γ(λ)

Γ(γ0λ)Γ(γ1λ)
(1− θ)γ0λ−1θγ1λ−1.(38)

3.2.3.1. Reading the representation theorem (⇐). For de Finetti, the sig-
nificance of his result was that “the nebulous and unsatisfactory definition of
‘independent events with fixed but unknown probability’” (1937, 142), i.e.,
the notion of an i.i.d. probabilistic source, could be abandoned for a “simple
condition of ‘symmetry’ in relation to our judgments of probability” (ibid.),
i.e., a subjective judgment of invariance expressed in our degrees of belief.
(See Galavotti, 2001, 163ff.) In the interpretation of Hintikka (1971; follow-
ing Braithwaite, 1957), talk of general hypotheses, problematic from a strictly
empiricist point of view, could be abandoned for constraints on methods of
prediction (also see Romeijn, 2004, 336f).

3.2.3.2. Reading the representation theorem (⇒). However, one could also
reason the other way around (cf. ibid.). On this reading, the representation
theorem shows that an exchangeable a priori measure actually comes down
to a particular inductive assumption: in this case the assumption of an i.i.d.
data-generating source. An exchangeable predictor (in particular, a Johnson-
Carnap predictor) actually operates under the inductive assumption of an i.i.d.
data-generating source (with a particular prior allocation over the possible
parameters). Likewise, looser symmetry constraints like Markov and partial
exchangeability (see, e.g., Diaconis and Freedman, 1980) correspond via rep-
resentation theorems to looser assumptions on the data. We can say that in
general, a representation theorem that relates a particular class of mixture
measures and a particular class of predictors shows that this particular class of
predictors operates under a particular inductive assumption.

3.2.3.3. Consistency. Though they fall outside the scope of consistency
theorem 3.1 (that is restricted to countable H), it is not hard to show that
the Johnson-Carnap predictors are, in fact, consistent. Namely, it is obvious
from the definition that a predictor pλ,γ satisfies the axiom of convergence
(or Reichenbach’s axiom, Carnap, 1963a, 976): it will always converge to the
data’s limiting relative frequency, and with true µθ∗ -probability 1 the generated
sequence will actually have limiting relative frequency θ∗. (See Skyrms, 1996,
324.)

3.2.4. The representation theorem 2.16. This, recall from 2.2.2.4, is
the statement that the Solomonoff-Levin measures QU are precisely the univer-
sal Σ1 mixtures ξw. I call it a representation theorem because, like de Finetti’s
theorem, it corresponds a particular type of a priori measure—the Solomonoff-
Levin measures QU that give an a priori probability assignment to all sequences
based, in the standard view, on their compressibility—to a particular type of
mixture—the Σ1 mixtures ξMw over all Σ1 hypotheses.
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3.2.4.1. The Σ1 mixture predictors. These are the methods pMmix(w) corre-

sponding to the Σ1 mixture measures, in the sense of 3.2.2.2 above. The rep-
resentation theorem 2.16 thus shows the equivalence of the Solomonoff-Levin
predictors pQU and the Σ1 mixture predictors pMmix(w).

3.2.4.2. Reading the representation theorem. If we interpret theorem 2.16
like we interpreted de Finetti’s theorem in 3.2.3.2 above, then it says that the
Solomonoff-Levin measures correspond to a particular inductive assumption:
the assumption that the data is generated from a Σ1 source. The Solomonoff-
Levin predictors thus operate under a particular inductive assumption: the
inductive assumption of Σ1 effectiveness.

3.2.4.3. The notion of Σ1 source. The notion of a data-generating measure
on Bω∪B∗ or semi-measure on Bω leaves, on a charitable reading, some options
for interpretation (what does it mean for there to be a positive probability of
no symbol?); on a less charitable reading, it is an odd notion. In particular,
it is not fully clear what it should mean to converge on such a measure (see
B.2.2.4). Barring the occasional evocation of the picture of (probabilistic)
machines actually generating the data under investigation (e.g., Solomonoff,
1964, 14; Li and Vitányi, 2008, 350; in which case we do have to do with
Σ1 measures, 2.1.2 above), it is more in line, anyway, with how Solomonoff’s
theory is usually presented to simply take the relevant part of the inductive
assumption of a Σ1 source to be the inductive assumption of a data-generating
source that is a computable or ∆1 measure. When, therefore, in the following
I talk about the inductive assumption of Σ1 effectiveness, this may be read as
‘the inductive assumption of ∆1 effectiveness.’

3.2.4.4. *Disanalogies. In my presentation here I seek an analogy between
de Finetti’s theorem and the representation theorem 2.16, but I should also

stress that this analogy only goes so far.9 There are several formal aspects of
de Finetti’s theorem and related representation theorems (that also account for
their usefulness in many domains; see, e.g., Paris and Vencovská, 2015) that
are not shared by theorem 2.16. An important reformulation of de Finetti’s
theorem is that the exchangeable measures form a convex class with the i.i.d.
measures as extremal points (see Hewitt and Savage, 1955); there does not seem
to be an interesting analogous statement of theorem 2.16. We do not have here
a statement that a given Solomonoff-Levin measure, a transformation via some
monotone machine, is uniquely expressible as a mixture of elements of some
strict subclass of transformations. There is really one class at play here, the
class M of Σ1 measures, and by the central property of universality the Solo-
monoff-Levin measures are contained in it. The statement here is rather that
there is an equivalence between transformations and Σ1 measures (this was
proposition 2.5), and that this equivalence holds in a specific form for a sub-
class of universal elements: the universal transformations are equivalent to the
universal mixtures over all Σ1 measures. The definition of a universal trans-
formation is in a sense already quite close to a mixture representation, which
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shows in the proof of theorem 2.16 (see B.1.4): one direction is a trivial rewrit-
ing, and the harder direction is not too hard, either. (Wood et al. themselves
present their theorem as only a minor improvement over the equivalence up
to a multiplicative constant that directly follows from both definitions’ univer-
sality.) Nevertheless, it remains an important conceptual observation about
the Solomonoff-Levin proposal that the definition as a universal transforma-
tion (with the association of simplicity qua data-compression interpretation) is
in fact equivalent to the definition as a universal mixture (with the interpre-
tation of a particular inductive assumption). Thus, even if the analogy to de
Finetti’s representation theorem only persists at this conceptual level, it is still
appropriate to refer to theorem 2.16, as a result establishing the equivalence of
two importantly different definitions, as a representation theorem (cf. Suppes,
2002).

3.2.4.5. Consistency. The convergence theorem 2.9 states that the Solomo-
noff-Levin predictors converge almost surely to any true ∆1 measure µ∗. The
observation that the Solomonoff-Levin measures are precisely the universal Σ1

mixtures reveals that the convergence theorem 2.9 is really an instance of the
general Bayesian consistency theorem 3.1, applied to the Σ1 mixture predictors
(restricted to ∆1 sources).

3.2.5. The element of subjectivity. In 3.1.5 above, we encountered the
view of the Solomonoff-Levin measure as an a priori measure that is in some
sense an objective starting point. Objectivity, one might feel, should come with
a certain uniqueness: the objective starting point. Certainly in the common
view of the Solomonoff-Levin measure as an objective a priori measure, it has
therefore often been seen as problematic that the Solomonoff-Levin measure is
not uniquely defined (e.g., Solomonoff, 1986, 477; Hutter, 2007, 44f). The fact
is that the definition of QU retains an element of arbitrariness or subjectivity
in the choice of universal machine U .

3.2.5.1. Carnap and objectivity. To Carnap, objectivity lies in the purely
logical character of probability (1950):

That [logical probability] is an objective concept means this: if
a certain [logical probability] value holds for a certain hypothesis
with respect to a certain evidence, then this value is entirely in-
dependent of what any person may happen to think about these
sentences, just as the relation of logical consequence is indepen-
dent in this respect.

This, to him, does not necessarily entail a unique rational measure function.

In a letter to de Finetti (1963b),10 Carnap summarizes his perspective:

It is true that in the time before 1950 I thought sometimes that in
the course of time an intuitive insight might yield (or at least ap-
proach as an ideal) requirements of rationality of such a strength
that they would lead to a unique function. But I don’t think that
I published this thought as an assertion. In the Appendix to my
probability book of 1950 (pp. 562f.) I said that the reasons for my



94 3. PERSPECTIVES ON PREDICTION METHODS

choice of the function c* at that time were mainly of a negative
nature and that “it is not claimed that c* is perfectly adequate,
let alone that it is the only adequate function”. Soon thereafter,
in “The Continuum of Inductive Methods” (1952) I replaced the
choice of one function c* by that of a system of an infinite number
of c-functions (which I called the lambda-system). In section 25
of “Replies and Systematic Expositions” [(1963a, 971)] . . . I said
. . . : “Let us now consider rational credibility functions. We shall
not assume that there can be only one such function, but rather
leave open the possibility that two reasonable persons, or one
reasonable person during different periods of his life may have
different credibility functions.”

He gives one more example, taken from (Carnap, 1962b). An updated version
of this work is (Carnap, 1971a), containing his—careful, yet still hopeful—last
words on the matter (ibid., 27):

Even on the basis of all axioms that I would accept at the present
time for a simple quantitative language . . . , the number of ad-
missable [measure functions] . . . is still infinite; but their class is
immensely smaller than that of all coherent [measure functions].
There will presumably be further axioms, justified in the same
way by considerations of rationality. We do now know today
whether in this future development the number of admissable
[measure functions] will always remain infinite or will become
finite and possibly even be reduced to one. Therefore, at the
present time I do not assert that there is only one rational [ini-
tial credence function].

3.2.5.2. Latitudinarianism. Thus Carnap allows for the possibility of mul-
tiple rational or objective measure functions, and he seems to take this to be
compatible with the subjective choice of a particular one among those. This
is, in any case, the interpretation of Jeffrey (1973), who talks about Carnap’s
“latitudinarianism.” Jeffrey states that one part of what it means for a confir-
mation function to be logical is that “[i]ts values will be in agreement with our
inductive intuitions as they will exist at the time when the program [of inductive
logic] has been carried out” (ibid., 301), and then writes that

Carnap was prepared to admit the possibility that different peo-
ple might have somewhat different inductive intuitions, e.g. when,
ca. 1951, he thought the right c-function might be found some-
where in the continuum of inductive methods, he thought that
different people might discover that they had somewhat different
values of λ and hence that their inductive intuitions were describ-
able by somewhat different functions cλ. He thought it possible
that these differences were irreducible, so that his program . . .
might fail in the mild sense that there might be no such thing as
the c-function which represents our inductive intuitions.

We have, in the choice of λ, still the choice how we weigh the logical and the
empirical factor (1.2.3.8 above).
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3.2.5.3. Asymptotic equivalence. Nevertheless, all functions pλ with finite
λ (indeed all Johnson-Carnap functions pλ,γ) adapt to the observed empirical
frequency. Thus, Jeffrey writes, this “failure would be mild – so mild as not
to deserve the name, failure – if the various inductive intuitions are sufficiently
similar so that their differences are swamped out by experience” (ibid.). Since
the λ-terms in the definition of the function cλ (indeed the λ and γ terms in
the function cλ,γ) will vanish as t grows, all such functions will converge to the
relative frequency in the data, and any two such functions will converge to the
same predictions. There is a strong invariance between different choices of λ
(and γ): all Johnson-Carnap predictors are asymptotically equivalent.

3.2.5.4. Invariance. In the case of the Solomonoff-Levin measures QU ,
there also exist a specific invariance between different choices of universal ma-
chine U . This stems from the fact that every universal machine U1 can emulate
every other universal machine U2: it follows from definition 2.7 of universal
monotone machines that there are zzz1, zzz2 such that for all xxx

U1(zzz2xxx) = U2(xxx) and U2(zzz1xxx) = U1(xxx).

This implies that the shortest descriptions via one universal machine do not
differ more than a constant length from those via the other, a fact known as
the invariance theorem (Li and Vitányi, 2008, 104ff, 200ff). This also means
that the probability assignments of two Solomonoff-Levin measures via differ-
ent machines U1 and U2 never differ more than a fixed factor, which is generally
taken to grant the definition of the Solomonoff-Levin measure a crucial robust-
ness. I discuss the significance of the invariance theorem in more detail in 5.2.2
below: but I will already note here the obvious main weakness of this notion of
invariance, which is that the constant factor that binds two different measures
can still be arbitrarily large.

3.2.5.5. The failure of asymptotic equivalence. The invariance in the case of
the Solomonoff-Levin definition is indeed strictly weaker than in the case of the
Johnson-Carnap definition. It is not the case that any two Solomonoff-Levin
predictors are asymptotically equivalent: their predictions will not converge on
every infinite sequence.

Theorem 3.2 (No asymptotic equivalence). For every universal machine
U1, there is a sequence xxxω and another universal machine U2 such that

QU1
(xt+1 | xxxt) 6t→∞−−−→ QU2

(xt+1 | xxxt).

Proof. It is not trivial to exhibit such a sequence,11 because invariance
still means that any two Solomonoff-Levin measures are very similar—as exhib-
ited most clearly by the constant bound on the difference in their cumulative
log-losses, proposition 3.4 below. The key is the construction by Hutter and
Muchnik (2007, also see Lattimore and Hutter, 2015) of a Martin-Löf random

sequence on which some Solomonoff-Levin measure does not converge.12 See
B.2.3. �
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3.2.5.6. *Erratum. In Sterkenburg (2016, 473), I wrote rather carelessly
that invariance implies that two different “QU and QU ′ are asymptotically
equivalent.” (In addition, in the type-setting process the word “machines”
was erroneously added to refer to these measures.) Now there is some jus-
tification for calling the complexity measures − logQU corresponding to the
Solomonoff-Levin measures (A.3.2.4) asymptotically equivalent, at least on av-
erage, because the constant difference will always wash out in the sense that

− logQU1
(xxxt)

t

t→∞−−−→ − logQU2
(xxxt)

t
.

Similarly, the original measures QU1
and QU2

are asymptotically equivalent on
average in the sense that

t
√
QU1

(xxxt)
t→∞−−−→ t

√
QU1

(xxxt).

That said, it is easy to refute asymptotical equivalence simpliciter by exhibiting
sequences xxxω with

QU1
(xxxt) 6t→∞−−−→ QU2

(xxxt).

For instance, consider two Solomonoff-Levin measures corresponding to uni-
versal Σ1 measures that each give a weight of 0.9 to a different deterministic
∆1 hypothesis or computable infinite sequence. Clearly, their respective prob-
ability assignments to the initial segments of either of these sequences cannot
converge. Thus it is not the case that any two Solomonoff-Levin measures are
asymptotically equivalent. Nor is it the case, by theorem 3.2, that any two
Solomonoff-Levin predictors are asymptotically equivalent.

3.2.5.7. Solomonoff and objectivity. Acceptance of an element of subjec-
tivity in the definition of the Solomonoff-Levin measure has been slow in the
field (Solomonoff, 2009, 9f):

For quite some time I felt that the dependence of [algorithmic
probability] on the reference machine was a serious flaw in the
concept, and I tried to find some “objective” universal device, free
from the arbitrariness of choosing a particular universal machine.

This goal has indeed been elusive: there does not seem to be a principled way to
single out a ‘most natural’ or objective universal machine with which to define
the Solomonoff-Levin measure. Müller (2010) presents an interesting attempt
to isolate a machine-invariant version of algorithmic probability: his idea is to
derive the stationary distribution of the Markov process of universal machines
emulating each other. But this distribution does not exist, and he concludes
that “there is no way to get completely rid of machine-dependence, neither in
the approach of this paper nor in any similar but different approach” (ibid.,
126).

3.2.5.8. Carnap’s shift to the subjective. Jeffrey (1973, 301) remarks, “Car-
nap’s latitudinarianism is suggestive: perhaps he is describable as a special sort
of subjectivist.” The different Johnson-Carnap predictors are importantly sim-
ilar, but among them, in the choice of λ (and γ), they still leave some room for
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“individual psychology” or subjectivity. Undeniably, “the selection of a partic-
ular value of λ to uniquely determine a measure seems in the grand tradition
of subjective theories of probability” (Suppes, 2002, 198). As discussed by
Zabell (2011, 302ff), the evolution in Carnap’s program has been widely per-
ceived as a “shift to the subjective,” which, Zabell points out, is corroborated
by Carnap himself when he says that the difference between “the objectivist
point of view and the subjectivist or personalist point of view” is merely one
of “attitude or emphasis between the subjectivist tendency to emphasize the
existing freedom of choice, and the objectivist tendency to stress the existence
of limitations” (1980, 119). Zabell, however, does not agree with Carnap’s way
of putting things: “the issue is not one of favoring ‘limitation’ versus ‘choice’;
it is one of whether or not you think the postulate accurately captures the epis-
temic situation at hand” (Zabell, 2011, 303). In accordance with 3.2.3.2 above,
the Johnson-Carnap predictors should not be seen as resulting from particular
rationality constraints: they are the predictors that operate under a particular
inductive assumption, in this case, of an i.i.d. data source. Still, there remains
a clear element of choice when we have formulated an inductive assumption like
the assumption that the data is i.i.d., namely the specific prior distribution we
put over the elements of the class of i.i.d. hypotheses.

3.2.5.9. Solomonoff’s shift to the subjective. In the end, Solomonoff, too,
turned away from the idea of a single most objective choice, and came to em-
brace the selection of a universal machine as an inevitable and essentially sub-
jective element of prior information in the definition of his prediction method
(2009, 9ff; also see 2003, 600). By the representation theorem 2.16, we know
that this choice of machine corresponds to a choice of effective weight function
over the Σ1 measures. Like the Johnson-Carnap predictors and the induc-
tive assumption of i.i.d. data, the Solomonoff-Levin predictors can be seen to
operate under the inductive assumption of Σ1 effectiveness; and this induc-
tive assumption still leaves an element of choice in the specific effective prior
over the hypothesis class, that is, the choice of universal machine. That there
is indeed a correspondence between the choice of universal machine and the
choice of a prior over effective hypotheses has been noted before, for instance
by Wallace (2005, 401ff). The representation theorem 2.16 tells us that the
analogy between the choice of universal machine and effective prior over the
Σ1 measures is in fact an exact correspondence.

* * *

3.3. Mixtures over prediction methods

This section discusses prediction methods that are mixtures over other
prediction methods. The mixture predictors are reinterpreted as aggregating
strategies over a pool of competing predictors.
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In 3.3.1, I present the mixture predictors as aggregating predictors over a
pool of prediction methods. In 3.3.2, I discuss the optimality of aggregating
predictors. In 3.3.3, I present the Solomonoff-Levin predictors as aggregating
predictors.

3.3.1. Aggregrating predictors. Let w be a weight function over a class
H = {µi}i∈I of measures. Recall the definition (37) of the mixture predictor

(39) pmix(w)(xxx
t) :=

∑
i

wt+1(i)µi(· | xxxt),

where the updated weight function at trial t is given by

wt+1(i) =
wt(i)µi(xt | xxxt−1)

Z
,

with Z =
∑
i wt(i)µi(xt | xxxt−1) and w0 = w. In the above classical Bayesian

interpretation, the weight function w is a prior distribution over the hypothesis
class H.

However, by the correspondence between measures and prediction methods
of 3.1 above, we can also interpret H as (corresponding to) a pool of prediction
methods {pi}i∈I , with pi := pµi the predictor corresponding to µi. Then the
predictor (39), given by

(40) pmix(w)(xxx
t) =

∑
i

wt+1(i)pi(xxx
t),

with

(41) wt+1(i) =
wt(i)pi(xt,xxx

t−1)

Z
,

where Z =
∑
i wt(i)pi(xt,xxx

t−1) and w0 = w, is a prediction method that
mixes the predictions given by the predictors in pool H. (Here and below
I use ‘predictors in pool H’ as shorthand for ‘predictors corresponding to the
measures in H.’) Predictor pmix(w) takes a weighted mean of all the predictions

issued by the elements in pool H, where the weights are updated by (41) to
correct for how well each predictor has done in the past. To use a different term,
pmix(w) aggregates the predictions of all pi into a single prediction. In order to
distinguish this interpretation from the classical Bayesian interpretation of a
predictor that mixes over measures, I will refer to a predictor given by (40) as
an aggregating predictor.

The important difference of this interpretation from the classical Bayesian
interpretation is that it frees us from the commitment to a belief that one of
the measures actually generates the data. This operationalist interpretation is
arguably more natural in our setting of sequential prediction, where we are not
so much interested in finding the true generating source as in simply predicting
well. It is the operationalist interpretation that very much goes together with
the information-theoretic tradition in prediction (see, e.g., Cesa-Bianchi et al.,
1997, 431, Barron, 1998, 29f; Grünwald, 2007, 26ff), that can indeed be seen to
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go back to Solomonoff (3.3.3 below). Here we are interested in predicting well
in every case, not just when an inductive assumption we make on the world
happens to be correct—although, lest we set ourselves an utterly impossible
goal, with an important qualification. Namely, we start out with some natural
pool of competing prediction strategies, which may or may not be interpreted
as giving predictions in accordance with beliefs about the true data-generating
mechanism, and our goal is to predict well, in every case, relative to this pool of
prediction methods. This problem setting of predicting well relative to a given
pool of experts has been studied in machine learning under various headers,
including universal prediction (Merhav and Feder, 1998, 2126ff), individual
sequence prediction (Grünwald, 2007, 575ff), and prediction with expert advice
(Cesa-Bianchi and Lugosi, 2006).

As an illustration, consider the pool of predictors that correspond to all
i.i.d. measures µθ for θ ∈ [0, 1]. In the previous interpretation a mixture over
this pool operates under the inductive assumption of an i.i.d. source, and con-
sistency guarantees we will do well if this assumption is in fact true. However,
we might be in a situation where the inductive assumption is flat wrong, while
some of the predictors in the pool still perform quite well: for instance, the
predictor that issues the stationary distribution of the Markov process that
actually governs the data. In that case it is of value that we can indeed design
strategies that will predict not much worse than any of the predictors in the
pool, without relying on any inductive assumptions.

I discuss the framework of prediction with expert advice more fully in
chapter 6; in the remainder of the current chapter I will focus on the aggregating
predictor and its optimality. To start with: why is the aggregating predictor
suited for the above problem—in particular, why do we retain the update rule
(41) in accordance with Bayes’s rule, rather than updating the weights in some
other way? (It is not clear that the motivation for Bayes’s rule in 3.1.1.5
above, explicitly stated as a condition on beliefs, still makes sense in this new
interpretation.) A justification is given by the fact that this method is indeed
guaranteed to be never much worse, in a specific sense, than the predictors it
aggregates over: it is provably optimal, in a sense I explain next.

3.3.2. Optimality. Here I point out in what sense an aggregating pre-
dictor over a pool of predictors is provably optimal relative to (the predictors
in) this pool.

In 3.2.2.4 above I discussed that the mixture predictors in the classical Bay-
esian interpretation are consistent, or reliable in the sense that they converge
with probability 1 to the true predictive probabilities—if these are given by a
measure µ∗ that is actually in the hypothesis class H. In contrast, optimality
of an aggregating predictor is to mean that it does well relative to any predic-
tion method in H, on every possible data stream. In particular, we make no
assumptions at all on the data-generating mechanism, which also means that
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we have no way of expressing a predictor’s performance in terms of conver-
gence to actual probabilities. For that reason we need to express a predictor’s
performance directly in terms of how far its predictions diverged from the data
obtained, and the way we do this is by means of a loss function.

3.3.2.1. *Convergence of predictions. What do we get, though, if we simply
reinterpret the original consistency theorem 3.1? If we reinterpret the true
measure µi as a prediction method, then the theorem would take the meaning
that every pi in the predictor pool initially anticipates with certainty, per the
corresponding a priori measure µi, that the mixture’s predictions converge
to its own. I briefly discuss this in B.2.2.3, but I will not have use for this
interpretation in the main text: a problem is again that for semi-measures the
notion of almost-surety is ambiguous.

3.3.2.2. Losses. A loss function ` : P × B → R≥0 measures how bad a
prediction p ∈ P was in light of the outcome x ∈ B. Thus the instantaneous
loss of prediction p on outcome x is given by `(p, x); I will also write ‘`p(x).’
The cumulative loss of a prediction method p on a sequence xxx is the sum of
instantaneous losses of p’s predictions in the course of the generation of xxx:

(42) Lp(xxxs) :=

s−1∑
t=0

`p(xxxt)(xt+1).

3.3.2.3. Loss bounds. Our goal in designing prediction methods is to incur
low and ideally quickly decreasing instantaneous losses: this prompts us to try
and establish bounds on a method’s cumulative loss. To gain some intuition,
let me relate bounds on the cumulative loss to losses per outcome. First of all,
a linear bound on the cumulative loss on a data stream xxxω, so L(xxxt) = O(t),
comes down to a same positive amount of loss on this stream every single round:
in this case our instantaneous losses do not decrease at all, which means we
are not really learning anything from the data. (We can always achieve this
with the indifferent predictor.) A bound of order O(

√
t) already translates

in instantaneous losses that decrease at a rate O(1/
√
t). (This follows from

the approximate equality
∑t
s=1 1/

√
s ≈

√
t, which can be seen from evalu-

ating
∫ t
s=1

s−1/2.) Better yet is a bound of order O(log t) that translates in
instantaneous losses that decrease at a rate O(1/t). (Which follows from the

approximate equality
∑t
s=1 1/s ≈ log t.) Still superior to this is a constant

bound, where L(xxxt) = O(1) or L(xxxt) ≤ c for some constant c, all t: in this case
the instantaneous loss we incur each round on this data stream must decrease
at a rate faster than O(1/t). (The series

∑∞
s=1 1/sa is convergent as soon as

a > 1.)
3.3.2.4. Regrets. Given the previously mentioned goal of predicting well

relative to a pool of competing methods, we are rather interested in how much
more loss we incur then these other methods: we are interested in our surplus
loss or regret relative to these methods (and on all data streams). Formally, the
cumulative regret Rp1,p2

(xxx) ∈ R of one prediction method p1 relative to another
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method p2 on sequence xxx is the surplus loss that p1 incurred in comparison to
p2,

(43) Rp1,p2
(xxx) := Lp1

(xxx)− Lp2
(xxx).

As in the case of losses, we can establish bounds on the cumulative regret a
method incurs relative to another on a given data stream, where a linear bound
still allows for the first method to keep incurring at least a same amount of loss
more than the other, while a constant bound translates in the first method, if
not actually incurring less loss than the other, at least reducing the gap at a
rate of 1/t.

3.3.2.5. Logarithmic losses and regrets. In 6.1 below I will discuss require-
ments on loss functions and several standard such functions: here I will assume
one important loss function, the logarithmic loss function. The logarithmic loss
or simply log-loss of prediction p on outcome x is (Good, 1952)

`(p, x) := − log p(x).(44)

Thus the instantaneous log-loss of a predictor p on outcome xt+1 after xxxt is
given by

`p(xxxt)(xt+1) = − log p(xt+1,xxx
t)

= − logµp(xt+1 | xxxt),

where µp is the measure corresponding to p. The latter representation has the
advantage that the chain rule for conditional probabilities transfers to a chain
rule for sums of losses, allowing us to write the cumulative log-loss as

(45)

Lp(xxxs) =

s−1∑
t=0

− logµp(xt+1 | xxxt)

= − log

s−1∏
t=0

µp(xt+1 | xxxt)

= − logµp(xxxs).

This very useful effect is also known as telescoping. The log-regret can now also
be simply written as

(46)

Rp1,p2
(xxx) = − logµp1

(xxx)−
(
− logµp2

(xxx)
)

= − log
µp1

(xxx)

µp2
(xxx)

.

For simplicity I also write ‘Lµ’ for ‘Lpµ ’ and ‘Li’ for ‘Lpi ,’ and likewise for the
regret.
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3.3.2.6. Optimality. It is essentially the above telescoping property that
allows us to translate the fact that a mixture measure majorizes every µi ∈ H
into the fact that the cumulative log-loss of an aggregating predictor minorizes
the cumulative log-loss of each pi in the pool H,

Lmix(w) ≤+ Li.

In other words, we can actually derive a constant bound on the cumulative
regret Rmix(w),i of the aggregating predictor relative to every method pi in
H, on every data stream xxxω. This I call the optimality of the aggregating
predictor. The relevant constant is actually a direct expression of the weight
attributed to pi, so a higher weight results in a stronger bound:

Theorem 3.3 (Optimality). For aggregating predictor pmix(w) over H, ev-
ery pi in the pool H, and every finite sequence xxx,

Rmix(w),i(xxx) ≤ − logw(i).

Proof. For the mixture measure ξw corresponding to pmix(w) we have, for
any µi ∈ H,

ξw(xxx) =
∑
j

w(j)µj(xxx) ≥ w(i)µi(xxx),

hence for every single xxx ∈ B∗

Rmix(w),i(xxx) = − log
ξw(xxx)

µi(xxx)

≤ − log
w(i)µi(xxx)

µ(xxx)

= − logw(i). �

3.3.2.7. Semi-measures. Note that theorem 3.3 is equally valid for mixtures
over a pool H that contains measures over Bω ∪ B∗ or semi-measures: all that
is needed in the proof is the dominance of the mixture.

3.3.2.8. The update rule. The optimality result could be seen as a justi-
fication for the update rule (41)—at least in the case of the logarithmic loss
function. As it turns out, for different loss functions optimality, if attainable
at all, requires a modified aggregating predictor with a different update rule
that in a precise sense generalizes (41). I explain this in 6.1 below.

3.3.3. The Solomonoff-Levin predictors. Solomonoff in (1964) pro-
posed a number of different definitions for prediction methods, of which the
first few can be seen as predecessors of the modern Solomonoff-Levin defini-
tion 2.8. The last proposal is different: it is a method “that makes probability
evaluations by using a weighted mean of the evaluations given by all possible
probability evaluation methods,” i.e., all possible prediction methods (ibid.,
19). It is an aggregating predictor—though Solomonoff here still identifies “all
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possible probability evaluation methods” with the pool of computable or ∆1

methods.
Solomonoff writes that “[t]here are some arguments that make it plausible”

that the last definition is equivalent to one or more of his other proposals (ibid.,
21), but at least some of these are too imprecisely stated to prove him right
or wrong (also see Solomonoff, 1997, 85f). For the modern definition, the
representation theorem 2.16 shows that the Solomonoff-Levin predictors pQU
are precisely the aggregating predictors pMmix(w) over the pool of all predictors

corresponding to the Σ1 measures.
Solomonoff further speculates that (1964, 21, notation mine)

It would seem, then, that if xxx is a very long string, [the aggre-
gating predictor] will make an evaluation based largely on the
[prediction method] of greatest weight . . . This suggests that for
very long xxx, [the aggregating predictor] gives almost all of the
weight to the single “best” [prediction method] . . .

This suggests that for very long xxx’s, [the aggregating predic-
tor] gives at least about as good predictions as any other [predic-
tion method], and is much better than most of them.

While theorem 3.2 above shows that two different Solomonoff-Levin predictors
do not always converge to the same predictions (which at least shows that the
situation is not always as simple as Solomonoff sketched here), there is a precise
sense in which one can say that a Solomonoff-Levin predictor must always
give at least as good predictions as any other prediction method. Namely, as
an aggregating predictor over the pool of predictors corresponding to the Σ1

measures, a Solomonoff-Levin predictor’s cumulative log-loss will never exceed
that of any such predictor by more than a fixed constant: for every Σ1 measure
νi,

LQU ≤+ Li.

More precisely,

Proposition 3.4 (Optimality). For Σ1 mixture predictor pMmix(w), every

pi corresponding to a µ ∈ Σ1, and every finite sequence xxx,

Rmix(w),i(xxx) ≤ w(i).

Proof. This is an instance of theorem 3.3. Also see B.2.1.1–B.2.1.1. �

Thus the Solomonoff-Levin predictors are optimal for the pool of prediction
methods corresponding to the Σ1 measures. The question whether we can call
this truly universal optimality I take up in the next chapter.

*





CHAPTER 4

A universal prediction method

This chapter concludes the evaluation of the Solomonoff-Levin predictor as
a universal prediction method. A promising interpretation of the Solomonoff-
Levin predictor is the Reichenbachian interpretation as a universally optimal
prediction method. The negative conclusion of this chapter, however, is that
this interpretation ultimately cannot be maintained, and the reason for this
already lies in Putnam’s original diagonal argument.

In 4.1, I discuss and dimiss the second part of Putnam’s charge against
Carnap, regarding the special status of the hypothetico-deductive method; this
clears the way for a final appraisal of the Solomonoff-Levin predictor as a
universal prediction method. In 4.2, I discuss and dismiss the interpretation of
the Solomonoff-Levin predictor as a universally reliable prediction method. In
4.3, I discuss and dismiss the interpretation of the Solomonoff-Levin predictor
as a universally optimal prediction method. I conclude this chapter and part
II of the thesis in 4.4.

Innovations. Section 4.1 significantly expands on a critique due to Kelly
et al. (1994), and relates Putnam’s argument to the problem of theory change
and the fixity of methods. A main contribution of this thesis is the assessment,
in sections 4.2 and 4.3, of the relevance of the Solomonoff-Levin proposal to the
problem of induction, including the suggestion of a Reichenbachian vindication.
This also includes the discussion of the problems with the notion of prediction
method stemming from a Σ1 measure (in particular, proposition 4.1), which
ultimately leads to the negative main conclusion that the Solomonoff-Levin
predictor cannot be construed as a universal prediction method. While propo-
sition 4.1 was proven before by Leike and Hutter (2015), the proof given here
exhibits it as a direct consequence of Putnam’s original diagonal argument and
has the additional advantage of being much simpler. (This chapter is based on

parts of Sterkenburg, 201x.13)

4.1. Back to Putnam

Can the Solomonoff-Levin definition escape Putnam’s diagonal argument?
As we saw in 2.1 above, the very motivation for the expansion to the class
of Σ1 measures is to evade diagonalization—to obtain universal elements. The
Solomonoff-Levin measure is a universal Σ1 element; as such, it tracks every ∆1
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measure in the sense of convergence condition (I: ∆1). The downside is that,
as a universal Σ1 element, the Solomonoff-Levin measure is itself no longer ∆1

(or the class of ∆1 measures would already have universal elements).
The force of Putnam’s diagonal proof is that no prediction method can sat-

isfy both condition (I*) and condition (II*), and the Solomonoff-Levin proposal
is no exception. The Solomonoff-Levin definition is powerful enough to avoid
diagonalization and fulfill convergence condition (I: ∆1), but the price to pay
is that it might be said to be too powerful. It is no longer effective in the sense
of condition (II: ∆1). Does this invalidate the Solomonoff-Levin predictor as a
prediction method—let alone a universal one?

One reply is that we cannot hold this against the Solomonoff-Levin defini-
tion, since, after all, Putnam has shown that incomputability is really a neces-
sary condition for a policy to be optimal in the sense of convergence condition
(I*): “an optimal strategy, if such a strategy should exist, cannot be computable
. . . any optimal inductive strategy must exhibit recursive undecidability” (Hin-
tikka, 1965, 283; also see Solomonoff, 1986, 474; 2009, 8). However, this reply
seems to miss the second component of Putnam’s charge. This is the claim
that, while no Carnapian confirmation function can fulfill both adequacy con-
ditions, other methods could—in particular, the hypothetico-deductive method
HD.

In the current section I consider this claim. As discussed already in some
detail by Kelly et al. (1994, 99ff), it actually turns out to be the weak spot in
Putnam’s argument. With this claim out of the way, we can, in the next section,
follow up on the above reply and consider the question of the Solomonoff-Levin
definition’s adequacy afresh.

4.1.1. The HD and Bayes architectures. Recall that I formulated (I*)
and (II*) as conditions on inductive methods in general, not just confirmation
functions. Again, Putnam (1963a, 770ff) takes it to be important for his case
against Carnap that these conditions are not supposed to be mutually exclusive
a priori ; or it might be seen as a rather moot charge that indeed no Carnapian
confirmation function can satisfy them in tandem. No confirmation function
can satisfy both—conditions (I: ∆1) and (II: ∆1) are mutually exclusive—but
other methods can: and the method HD that Putnam describes is to be the
case in point.

Crucially, however, Putnam’s method HD depends on the hypotheses that
are actually proposed in the course of time. The method HD fulfills conver-
gence condition (I†), which is so phrased as to accommodate this dependency:
the method will come to accept (and forever stick to) any true computable
hypothesis, if this hypothesis is ever proposed. Thus the method HD relies
on some “hypothesis stream” (Kelly et al., 1994, 107) that is external to the
method itself; and the method will come to embrace a true hypothesis whenever
this hypothesis is part of the hypothesis stream.
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In computability-theoretic terminology, the method uses the hypothesis
stream as an oracle. The method HD is a simple set of rules, so obviously
computable—given the oracle. But the oracle itself might be incomputable.
Indeed, since the computable hypotheses are not effectively enumerable, any
hypothesis stream that contains all computable hypotheses is incomputable.
This is why Putnam must view the oracle as external to the HD method. The
alternative is to view the generation of a particular hypotheses stream S as part
of the method itself ; but if any such method HD-with-particular-hypothesis-
stream-S—or simply ‘HDS ’—is powerful enough to satisfy (I*), then the hy-
pothesis stream and hence the method HDS as a whole must be incomputable.
Putnam is well aware of this: “it is easily seen that any method that shares
with Carnap the feature: what one will predict ‘next’ depends only on what
has so far been observed, will also share the defect: either what one should
predict will not in practice be computable, or some law will elude the method
altogether” (Putnam, 1963a, 773). The diagonal proof described in 1.1 readily
applies to any method M: simply construct a computable sequence that goes
against M’s computable predictions at each point in time (also see Kelly et al.,
1994, 102f).

In short, the HDS methods are in exactly the same predicament as Car-
nap’s confirmation functions. Conditions (I*) and (II*) are mutually exclusive—
unless we allow the method to be such that “the acceptance of a hypothesis
also depends on which hypotheses are actually proposed” (Putnam, 1963a,
773), i.e., allow the method access to an external hypothesis stream.

But Putnam’s assumption of an (incomputable) external oracle does, of
course, raise questions of its own. The idea would be that we identify the
oracle with the elusive process of the invention of hypotheses, the unanalyz-
able “context of discovery”; ultimately rooted, maybe, in “creative intuition”
(Kelly et al., 1994, 108) or something of the sort. Is this process somehow in-
computable? How would we know? More importantly, “if Putnam’s favourite
method is provided access to a powerful oracle, then why are Carnap’s methods
denied the same privilege?” (ibid., 107).

Kelly et al. offer Putnam the interpretation that the method HD provides
an “architecture,” a recipe for building particular methods (in our above ter-
minology, methods HDS), that is “universal” in the sense that for every com-
putable hypothesis, there is a particular computable instantiation of the archi-
tecture (a particular computable method HDS) that will come to accept (and
forever stick to) the hypothesis if it is true. “A scientist wedded to a universal
architecture is shielded from Putnam’s charges of inadequacy, since . . . there
is nothing one could have done by violating the strictures of the architecture
that one could not have done by honoring them” (ibid., 110). Kelly et al. are
not convinced, though, that their suggestion saves Putnam’s argument, for the
reason that it makes little sense for Putnam to endorse a universal architecture
while calling every particular instance inadequate and therefore “ridiculous”
(ibid., 110f; here they quote Putnam, 1974, 238). There is, however, a more
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fundamental objection. Again, Putnam’s argument against Carnap would only
be completed if the above way out for the method HD were not open to con-
firmation functions. That is, it would only succeed if confirmation functions
could not be likewise seen as instantiations of some universal architecture. But
as a matter of fact, they can. They can be seen as instantiations of the classical
Bayesian architecture.

By this I mean the architecture that goes together with the classical Bay-
esian interpretation of the mixture predictor (3.2 above). This architecture
Bayes is the general form of the mixture predictor pmix, that is instanti-
ated by a particular prior w over a hypothesis class H. The corresponding
Bayes-with-particular-hypothesis-class-H method—the method ‘BayesH’—is
the prediction method pHmix(w).

The Bayes architecture is a universal architecture in the sense of Kelly et
al. because for every (computable) deterministic hypothesis, there is a particu-
lar (computable) instantiation of the architecture (a method BayesH where H
contains the hypothesis) that will converge on it when it is true. Just like the
HD architecture is guaranteed to converge on (i.e, accept and stick to) every
true deterministic hypothesis, whenever it is included in the hypothesis stream
S, so the Bayes architecture is guaranteed to converge on every true determin-
istic hypothesis, whenever it is included in the hypothesis class H. The latter is
guaranteed by Bayesian consistency, theorem 3.1 in 3.2.2.4 above. And this, of
course, extends to probabilistic hypotheses. Putnam (1963a, 774) also sketches
how to adapt the method HD to deal with “statistical hypotheses” (in this case
an hypothesis is rejected as being inconsistent with the data if its likelihood is
sufficiently low; a further important difference is that an hypothesis may later
“rule itself back in”). Now it is impossible to guarantee convergence to a true
hypothesis, but “the probability that one will stick to the true hypothesis, once
it has been accepted, converges to 1” (ibid.). Likewise, Bayesian consistency
says that a method BayesH will converge with probability 1 to a true µ∗ in
H.

In conclusion of this discussion, there is a strong analogy between the situa-
tion for the HD method and for the Bayes method. No particular confirmation
function—BayesH method—can satisfy both (I*) and (II*). But, similarly, no
particular HDS method can satisfy both (I*) and (II*). Nevertheless, the HD
architecture is universal. But, similarly, the Bayes architecture is universal.

4.1.2. The fixity of methods. Still, there remains a conspicious dis-
analogy between the HD and the Bayes approach. This difference is not the
use of theory per se, even though Putnam took that to be the salient charac-
teristic of the method HD. After all, the Bayes approach uses theory, in the
form of the hypothesis class H.

Rather, this difference seems to lie in the use of new theory. What is
somewhat shrouded in the above analogy between the ‘oracles’ S and H is
that the method HD is conceived to operate dynamically, with hypotheses
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that come to it on the fly (and that are presumably informed by the data),
whereas a Bayes method must do with a class of hypotheses that is fixed
from the start. The latter is the well-known Bayesian problem of new theory
(see Earman, 1992, 195ff) or the “fixity of the theoretical framework” (Gillies,
2001b): the Bayesian procedure, in its standard form, can only be run after we
have fixed the model, and no matter how seriously at odds with the data this
model will come to be, the procedure does not allow us to take a step back and
adjust it.

But for our purposes this is really just an instance of the general fact of the
fixity of a prediction method. A prediction method is a fixed method, a function
p that for every possible finite data sequence has fixed a prediction. And
as highlighted before, any such fixed method falls prey to Putnam’s diagonal
argument.

This issue is actually quite independent even of the role of new theory. We
could modify the method BayesH to evaluate its own performance at certain
points, and, if called for, derive from the data new hypotheses and insert those
in H—but in the end this more complicated procedure again specifies a single
fixed prediction method (also see Dawid, 1985a, 1255). Likewise, an algorithm
that implements the method HD, plus an automated search for and discovery
of new hypotheses, in the end again fully specifies a particular algorithm for
extrapolating data (cf. Gillies, 2001a). These are all fixed methods (that, recall
from 3.1, also correspond to particular a priori measures on all possible data
sequences), and the relevant difference from Putnam’s HD architecture is that
the latter is an architecture, a method that is not fully specified. (Incidentally,
the modified method BayesH could also be seen as instantiating a modified
Bayes architecture that is capable of incorporating new theory—like the model
proposed by Wenmackers and Romeijn, 2016.)

In conclusion, Putnam’s argument, purporting to show that confirmation
functions have fundamental shortcomings that other methods do not, fails. If
there is a shortcoming, it is being a fixed prediction method at all. If Putnam
wants to maintain that it is possible for some procedure to satisfy both of his
conditions, then this cannot be a fixed procedure. It needs to leave things
unspecified, as the HD architecture does, and as the (modified) Bayes archi-
tecture does, too. And, again, that what is left unspecified needs to be filled
in by something incomputable. Putnam would need to say that the scientific
process of coming up with hypotheses is an incomputable process.

What Putnam has shown, at the end of the day, is that we are stuck with
a dilemma between two possibilities that both sound dubious: either science is
fundamentally unable to discover some computable patterns, or science is itself
fundamentally incomputable.

4.1.3. *Simplicity orderings. The classical Bayesian architecture natu-
rally accommodates a simplicity ordering of hypotheses that Putnam (inspired
by Kemeny, 1953) envisages a refined HD method to employ (1963a, 775ff),
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and that in (1963b, 301f) he proposes as a line of further investigation for
inductive logic (ibid., 302):

given a simplicity ordering of some hypotheses, to construct a
c-function which will be in agreement with that simplicity or-
dering, that is, which will permit one to extrapolate any one of
those hypotheses, and which will give the preference always to
the earliest hypothesis in the ordering which is compatible with
the data.

The solution to this problem is the method BayesH with a prior w that ex-
presses the desired simplicity ordering on the hypotheses in H, assigning lower
probability to hypotheses further away in the ordering.

Note, however, that a prior distribution (that, I silently assumed, must
satisify countable additivity) imposes some constraints on the type of ordering.
It is impossible, for instance, to have infinitely many hypotheses that are equally
simple (it is impossible to assign the same positive amount of prior probability
to infinitely many hypotheses). More generally, it is impossible to have an
hypothesis such that infinitely many other hypotheses are at least as simple (it
is impossible, for any given hypothesis with positive prior probability, to assign
at least as much prior probability to infinitely many other hypotheses).

Interestingly, it is exactly this kind of ordering that Carnap (1963a, 983ff)
describes as a counterexample against the plausibility of Putnam’s convergence
condition (I†) for the HD procedure—and consequently also against conver-
gence condition (I). Thus Carnap dismisses Putnam’s argument on the grounds
that (ibid., 986)

his result shows only that the two requirements, in spite of their
prima facie appearance of plausibility, are logically incompatible
and that therefore at least one of them must be abandoned. I find
[effectiveness condition (II)] fairly plausible, but not [convergence
condition (I)].

Instead of loosening the effectiveness condition (II), the route taken in the
Solomonoff-Levin proposal, for Carnap it is convergence condition (I) that has
to go!

So why does Carnap find convergence condition (I†) implausible? Car-
nap (ibid., 984) first insists that Putnam’s “rule of tenacity” (stating that an
hypothesis, once accepted by method HD, is not later abandoned unless it
becomes inconsistent with the data) should be replaced by a rule that takes
simplicity into account (an hypothesis, once accepted, is not abandoned unless
it becomes inconsistent with the data or an equally consistent but simpler hy-
pothesis is proposed). Here Carnap is right that this is more in line with what
Putnam writes about a simplicity ordering in a refined HD procedure. Next,
Carnap describes a situation where there is a true hypothesis h that at each
point in time t must give way to another hypothesis that is equally compatible
with the data but simpler than h: hence h is never accepted. “Since [the refined
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rule of tenacity] seems to me more plausible than [the original rule of tenacity],
the requirement [convergence condition (I†)] appears implausible” (ibid.).

This point of contention between Putnam and Carnap thus also depends
on the required structure of a simplicity ordering, or in general on what a
“satisfactory criterion of simplicity” (ibid., 985) might turn out to look like. In
the next chapter I investigate what the Solomonoff-Levin theory has to say on
the issue of simplicity.

* * *

4.2. Universal reliability

We have observed that conditions (I*) and (II*) are mutually exclusive:
no fixed prediction method can satisfy both. Let us then follow up on the
earlier suggestion to not dismiss the Solomonoff-Levin function QU out of hand
because it does not satisfy the special cases (I: ∆1) and (II: ∆1)—that it cannot
do the impossible. Instead, let us conclude with a fresh look at the question:
could the Solomonoff-Levin definition be an adequate characterization of a
universal prediction method?

We can still, with Putnam, divide this question into two parts. First, in the
spirit of convergence condition (I*), will a Solomonoff-Levin predictor be able
to convergence on every reasonable hypothesis, if it is true—is it universal in
this sense? Second, in the spirit of effectiveness condition (II*), is a Solomonoff-
Levin predictor itself still a reasonably effective method—a proper prediction
method?

To start with the first. We know that the Solomonoff-Levin predictor is able
to track every computable or ∆1 measure µ∗: this is the convergence theorem
2.9. The Solomonoff-Levin predictor is reliable under the assumption of a ∆1

data-generating measure. But does this suffice to call the Solomonoff-Levin
predictor a universally reliable prediction method?

This is the place to finally squarely confront the problem that lurked in
the background to everything that I have said so far: the problem of induction.
And for that, let me start, one last time, with the view of Carnap. This is
the view that inductive reasoning can attain justification from some objective
or rational starting point. It is in this spirit that Carnap (1962b, 317; 1971a,
30) writes that against agent X’s credences that are derived from a rational
initial credence function, “Hume’s objection does not hold, because X can
give rational reasons for it”: the rationality requirements that are codified as
axioms constraining the a priori measure. It also seems in this spirit that Li
and Vitányi (2008), presenting the Solomonoff-Levin measure as a “universal
prior distribution,” make reference to Hume and claim that the “perfect theory
of induction” invented by Solomonoff “may give a rigorous and satisfactory
solution to this old problem in philosophy” (ibid., 347).
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The difference from Carnap’s view, as pointed out in 3.1.5 above, is that the
Solomonoff-Levin proposal is best seen as aiming at a universal starting point.
This is made precise in the representation of the Solomonoff-Levin measures
as the Σ1 mixture measures, with the classical Bayesian interpretation that
these measures express a particular inductive assumption, the assumption of a
Σ1 source (which, of course, covers the case of a ∆1 source). The Solomonoff-
Levin measures express a universal starting point, a truly universal inductive
assumption, insofar the class M of Σ1 hypotheses (or already the class M∆1

of ∆1 hypotheses) is an all-inclusive or truly universal class of hypotheses.
Howson concludes his book on the problem of induction declaring: “Hume

was right” (2000, 240). The way the Bayesian framework answers Hume’s
problem is (ibid., 239)

about the only way it could be solved: by divorcing the justi-
fication of inductive reasoning from a justification of its conse-
quences. Inductive reasoning is justified to the extent that it is
sound, given appropriate premises. These consist of initial assign-
ments of positive probability that cannot themselves be justified
in any absolute sense.

A prediction method’s forecasts are sound because they are consistent with
the “Humean inductive assumptions” originally encoded in the corresponding
a priori measure; but Hume’s argument stands because the question of the jus-
tification for the premises, the inductive assumption, falls entirely outside the
framework. This “logical solution to the problem of induction,” similarly de-
fended by Romeijn (2004), is in sharp contrast with Carnap’s logical approach,
that sought to pin down and justify the starting point itself (see Howson, 2001,
2011). It is likewise important for the compatibility of the logical solution with
Hume’s argument that there is no universal starting point. Inductive assump-
tions must be restrictive: it is impossible to have a prior over everything that
could be true (Howson, 2000, 61ff, Romeijn, 2004, 357ff). From the classi-
cal Bayesian perspective, it must be the case that no hypothesis class H can
contain every possible hypothesis, that no H is truly universal.

Could M, then, escape Hume’s argument—is M truly universal? Natu-
rally, it is not. (Recall I.4 above.) As a restriction on what hypotheses could
ever be true, a genuinely metaphysical assumption on the world, not only would
the restriction to any specific level of effective computability (∆1, Σ1, . . . ) look
arbitrary: the assumption of effective computability itself is a stipulation that
wants motivation.

* * *

4.3. Universal optimality

Schervish (1985a, 1274) puts it more tersely:
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Nature is not (to my knowledge) hampered by the same com-
putability restrictions as statisticians are.

This passing remark draws our attention to something important: Nature might
not be constrained by computability, but it sounds plausible that we necessarily
do “view the world through the rose-colored glasses of computable forecasting
systems” (ibid.). Plausibly, we are constrained by computability in our meth-
ods of prediction.

Consequently, if we interpret, per 3.1 above, the elements of M as corre-
sponding to prediction methods rather than as hypotheses (a priori measures),
then M might be interpreted as containing all possible prediction methods.
Wherefore the Solomonoff-Levin predictor, interpreted, per 3.3, as an aggregat-
ing predictor, is an aggregating predictor over the pool of all possible prediction
methods.

4.3.1. Towards a universally optimal prediction method. On this
interpretation, proposition 3.4 states that a Solomonoff-Levin predictor’s cu-
mulative regret with respect to any other given prediction method p is always
bounded by a constant that only depends on this predictor p. We can say,
on this interpretation, that a Solomonoff-Levin predictor is a universally opti-
mal prediction method: it is a prediction method that compared to any other
prediction method will always come to perform at least as well.

A Solomonoff-Levin predictor might not do well if Nature generates—
incomputably—adversarial data, but as suggested in I.5 above, there is a sense
in which this is not so interesting. No prediction method would do well in that
case. More interesting is the case when at least some prediction method would
do well. And in a precise sense, on the proposed interpretation, a Solomonoff-
Levin predictor will do well in such a case: it will do well if any predictor does.
As such, a Solomonoff-Levin predictor is vindicated in the sense of Reichenbach.

This interpretation is actually in line—more so than the above reliability
interpretation—with Putnam’s demand that the cleverest possible inductive
rule should be able to eventually pick up any pattern that our actual inductive
methods would. It is also in line with Solomonoff’s stated aim that given “a
very large body of data, the model is at least as good as any other that may be
proposed” (1964, 5, emphasis mine).

If we accept this interpretation, then the Solomonoff-Levin definition does
give a universal prediction method—defying the lesson taken from Putnam
that there can be no such thing (Dawid, 1985b; recall again I.5). As we have
seen, the crucial move to unlock this possibility after all, hence the crucial
precondition to this optimality interpretation, is the expansion to the nondi-
agonalizable class of Σ1 elements. The special property of this class is that it
is undiagonalizable, that it contains universal elements—thus defying Dawid’s
observation that “in great generality” an aggregating element is “more com-
plicated” than the elements in the pool (ibid., 340). We must now answer the
question whether the expansion to this pool is reasonable at all. Analogous to
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convergence condition (I*) about the identification of all reasonable hypothe-
ses with the ∆1 measures: is it reasonable to identify all possible prediction
methods with those corresponding to the Σ1 measures?

4.3.2. Towards a universal pool of predictors. Most importantly, is
the class of Σ1 measures not too wide—does a Σ1 measure that fails to be ∆1

still induce a proper prediction method? In particular, we have returned to
the second question that started 4.2 above: in the spirit of effectiveness con-
dition (II*), does the Solomonoff-Levin predictor itself constitute a reasonable
(reasonably effective) method?

With the Solomonoff-Levin definition, we do embark, in Putnam’s words,
on the “doubtful project of investigating measure functions which are not effec-
tively computable” (Putnam, 1963a, 778; also see Putnam, 1985, 146). Now an
incomputable measure is certainly “impractical” (Cover et al., 1989, 863), or
indeed “of no use to anybody” (Putnam, 1963a, 768) in any practical sense—
but that already goes for any measure that is computable but not in some way
efficiently so. The minimal requirement that Putnam was after is computabil-
ity in principle, i.e., given an unlimited amount of space and time. Indeed,
under the Church-Turing thesis, computability is just what it means to be im-
plementable, in principle, as an explicit method—computability is the minimal
requirement to be a method at all (see I.4, I.5 above). A ∆1 measure is a
measure that corresponds to a method that (given unlimited resources) for any
finite sequence returns the probability that the measure assigns to it. But,
likewise, a Σ1 measure still corresponds to a method that (given unlimited re-
sources) for any finite sequence returns increasingly accurate approximations of
its probability. So, albeit in a weaker sense, a Σ1 measure is still connected to
some explicit method. (Cf. Martin-Löf, 1969, 268 on his choice of Σ1 random-
ness tests: “on the basis of Church’s thesis it seems safe to say that this is the
most general definition we can imagine as long as we confine ourselves to tests
which can actually be carried out and are not pure set theoretic abstractions.”)

But even if this is so, the property of mere semi-computability is still not
easy to make sense of in an actual prediction game. To illustrate: are we really
much better of with semi-computable functions than with partial computable
(p.c.) functions, as suggested in I.6 above? A p.c. function (say for categorical
prediction: either 0 or 1) does not seem very suited for prediction, for the
following reason (cf. Kelly et al., 1994, 104). At each trial the function might
not be defined, and we either have to be prepared to wait forever (in which case,
if the function is indeed not defined at that trial, the prediction game is put on
hold indefinitely), or we wait until at some point we decide to break the spell
and just issue a default prediction (in which case we actually use a method
that reduces to a total computable method, or, if this decision is somehow
incomputable, a method that is not computable at all). In all cases, we end up
with a function that is either not universal or not computable. Now a semi-
computable function is at least defined on all trials, which makes it look less
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problematic: but the situation is still fundamentally the same. At each trial we
can only compute lower approximations of unknown accuracy, and we either
have to be prepared to wait forever to reach the actual value (and unless the
probability values sum to 1, in which case we will reach surety about the value
up to any accuracy, the game indeed freezes forever), or we (incomputably?)
decide at some point to just go with the current approximation. In all cases
the actual prediction function is either not universal or not computable.

This is already a serious problem—but there is actually another problem
that precedes it, a crucial detail that decisely invalidates the universal optimal-
ity interpretation.

4.3.3. Diagonalization strikes again. This crucial detail is the fact
that for the purpose of prediction, we are, of course, not so much interested
in the probabilities issued by the measure functions, but by the conditional
probabilities that give the corresponding predictors’ outputs. We are not so
much interested in the a priori measures as in the induced prediction methods.
But this has repercussions for the level of effectiveness.

This aspect is easy to oversee, because for the ∆1 measures it makes no
difference. As noted in 3.1.4 above, if a measure is ∆1, then (and only then) the
corresponding prediction method is ∆1 as well. However, as noted in 3.1.4, too,
for the Σ1 measures this does make a difference. In particular, the Solomonoff-
Levin predictor pQU is no longer Σ1.

As a matter of fact, this follows from Putnam’s original diagonalization
argument, that shows the incompatibility of the conditions (I) and (II) that I
introduced back in 1.1. In particular, recall the statement of Putnam’s original
effectiveness condition, that in our setting of sequential prediction reads

(II) For every xxxt, it must be possible to compute an s such that p(1,xxxt1s) >
0.5.

If pQU , i.e., the one-step conditional measureQ1
U (· | ·), were Σ1, then pQU would

also satisfy effectiveness condition (II): for any given xxxt, by computing lower

approximations of QU (xt′+1 | xxxt1t
′
) for increasing t′ > t we will effectively dis-

cover an s with QU (1 | xxxt1s) > 0.5 (note that here we also used the convergence
condition in relying on the existence of an s where QU gives sufficiently high
instance confirmation—Putnam’s original (II) is thus not completely indepen-
dent of his (I)!). This would mean that pQU satisfies both (I) and (II), which
is shown impossible by the diagonal argument. For completeness, the following
proof recounts the details of this diagonalization. (See Putnam, 1963a, 768f,
Putnam, 1963b, 299 for the original. A different proof has been given by Leike

and Hutter, 2015, 370f.14)

Proposition 4.1. pQU /∈ Σ1.

Proof. Suppose towards a contradiction that pQU = Q1
U (· | ·) is Σ1.

We can now construct a computable infinite sequence xxxω as follows. Start
calculating QU (1 | 1t) from below in dovetailing fashion for increasing t ∈
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N, until an t0 such that QU (1 | 1t0) > 0.5 is found (since 1ω is obviously
computable, and QU satisfies convergence condition (I), such t0 must exist).
Next, calculate QU (1 | 1t001t) for increasing t until an t1 with QU (0 | 1t001t1) >
0.5 is found (again, t1 must exist because 1t001ω is computable). Continuing
like this, we obtain a list t0, t1, t2, ... of positions; let xxxω := 1t001t101t21 . . . .
Sequence xxxω is computable, but by construction the instance confirmation of
xxxω will never remain above 0.5, contradicting convergence condition (I). �

Now one could try to argue that pQU is still ∆2 or limit computable, mean-
ing that it still corresponds to a method that converges to any given finite
sequence’s probability in the limit (see Leike and Hutter, 2015, 365). But the
problem runs deeper. The problem is that we cannot recover the optimality
interpretation for conditional measures, or prediction methods.

Namely, if we would accept that a ∆2 prediction method (i.e., a ∆2 con-
ditional measure) still counts as a possible prediction method, then we should
identify the possible prediction methods with the class of ∆2 prediction meth-
ods (rather than the original class of prediction methods with underlying Σ1

measures). That means that the sought-for optimality would have to be rel-
ative to this class. But the Solomonoff-Levin predictor is not optimal among
the ∆2 prediction methods—no ∆2 prediction method is. This is because the
class of ∆2 measures, that precisely induces the class of ∆2 prediction methods,
is diagonalizable: just like in the ∆1 case, one can, for any given ∆2 measure,
construct a ∆2 sequence that it will never converge on. The easiest way to
infer this is to realize that the ∆2 measures are precisely the ∆1 measures that
have access to the halting problem ∅′ as an oracle: in the diagonal proof we can
simply replace all occurances of ‘∆1’ with ‘∆1 in ∅′.’ In computability-theoretic
jargon, the diagonal argument can be relativized to ∅′, thus applying to the ∆2

measures.
Nor can we take a step back and settle for the class of Σ1 prediction meth-

ods. Once again it follows from Putnam’s argument above that there cannot
exist universal elements in the class of measures that induce the Σ1 prediction
methods: in the exact same way as above, one can for any given Σ1 conditional
measure construct a Σ1 conditional measure (namely, a computable sequence)
it will never converge on.

All of this easily relativizes to any jump ∅(n) of the Halting problem, show-
ing that the diagonal argument works for the class of ∆n+1 prediction methods
and the class of Σn+1 prediction methods, for any n ∈ N. The strategy for
optimality cannot work on any level in the arithmetical hierarchy.

* * *
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4.4. Conclusion

Thus we conclude our story on an unhappy note. We have discussed how
Putnam’s diagonal argument shows that no fixed method whatsoever can sat-
isfy at the same time two conditions to qualify as a universal prediction method:
the one on the ability to detect every true effectively computable pattern, the
other on the effective computability of the method itself. Faced with this impos-
sibility result, we allowed ourselves to consider as candidate universal prediction
methods definitions that only satisfy a weaker pair of conditions. Specifically,
we considered the Solomonoff-Levin definition. The overarching strategy we
identified to bring versions of the two conditions together is to locate a natural
class of effective functions that cannot be diagonalized, i.e., that contains uni-
versal elements. If one could reasonably identify this class of functions with all
possible prediction methods, then the universal elements would be vindicated
as universally optimal prediction methods: methods that are in a precise sense
at least as good as any other prediction method. In particular, we saw that
the Solomonoff-Levin measures were constructed as universal elements among
the Σ1 measures—and so, our hope ran, they could qualify as such optimal
prediction methods. Unfortunately, we found a fatal flaw in this strategy. We
are interested in prediction methods rather than the a priori measures they
are induced from, and there is a mismatch between the two when it comes to
their effectiveness properties. Specifically, while there exist undiagonalizable
classes of all measures of a particular level of effectiveness (the Σ1 measures
being the case in point), Putnam’s original argument reveals that there do not
exist undiagonalizable classes of all prediction methods of a particular level of
effectiveness, not at any level of the arithmetical hierarchy. This conclusively
blocks the possibility of a prediction method that is optimal among all possible
prediction methods, on any identification of the latter with a particular level
of effectiveness.

The Solomonoff-Levin definition does not give a universal prediction method.
No definition does. Putnam was right.

*
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CHAPTER 5

Datacompression and Occam’s razor

This chapter investigates the association of the Solomonoff-Levin predictor
with Occam’s razor, the principle of preferring simplicity. The standard view
of algorithmic information theory is that at its basis lies a general and objective
notion of simplicity qua compressibility of data sequences. In particular, the
Solomonoff-Levin predictor is often presented as a formalization of Occam’s
razor, and it is even suggested at times that this leads the way to a justification
of this principle.

In 5.1, I discuss the argument to justify Occam’s razor based on the Solo-
monoff-Levin predictor. In 5.1.1, I spell out the argument. In 5.1.2, I expose
why the argument fails. In 5.1.3, I indicate some leeway to resurrect it. In 5.2,
also in response to this hope of resurrection, I take up the question whether we
actually have to do with a convincing notion of complexity.

Innovations. A justification of a simplicity preference via the Solomonoff-
Levin definition is hinted at in many places, but it has, as far as I know, never
been articulated— let alone criticized—in detail, as done in section 5.1. (This

section is based on Sterkenburg, 2016.151617181920) Likewise, the supposed for-
malization of a notion of simplicity qua compressibility has before, as far as I
know, neither been spelled out nor evaluated in detail, as done in section 5.2.

5.1. A justification of Occam’s razor?

As explained in I.7 above, the challenge of the justification for the epis-
temic version of Occam’s razor is to show that we have epistemic grounds for
a simplicity preference, while avoiding any metaphysical simplicity assumption
on the world. This challenge is still preceded by the challenge of actually giving
a precise definition of simplicity.

As already mentioned in I.7 above, too, the notion of Kolmogorov complex-
ity is generally presented as giving a precise definition of simplicity, and the
Solomonoff-Levin predictor is generally presented as implementing this measure
to give a formalization of Occam’s razor. Moreover, the convergence theorem
2.9 is generally taken as showing that the Solomonoff-Levin predictor has the
epistemic virtue of a powerful reliability, a powerful truth-convergence.

Here emerges the argument that is suggested in many writings on the
subject. The argument concludes from (1) the definition a type of predictor
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with a preference for simplicity and (2) a formal proof that predictors of this
type are reliable that (per Occam’s razor) a preference for simplicity helps us
in finding the truth. Thus it is an argument to justify Occam’s razor.

5.1.1. The argument. Li and Vitányi (2008, 347f; 1997, 14) write,

It is widely believed that the better a theory compresses the data
concerning some phenomenon under investigation, the better we
have learned and generalized, and the better the theory predicts
unknown data, following the Occam’s razor paradigm about sim-
plicity. This belief is vindicated in practice but apparently has not
been rigorously proved before . . . We . . . show that compression is
almost always the best strategy . . . in prediction methods in the
style of R.J. Solomonoff.

The general form of the argument that we can distill from these words is as
follows. First, we identify a maximal class PR of prediction methods that have
a preference for simplicity (those prediction methods “following the Occam’s
razor paradigm”). Second, we prove that these predictors are reliable (“almost
always the best strategy”). Taken together, the two steps yield the statement
that prediction methods that possess a simplicity bias are reliable. In short, the
argument is as follows:

1. The predictors in class PR are those with a simplicity bias.
2. The predictors in class PR are reliable.
∴ The predictors with a simplicity bias are reliable.

The force of the argument is that it establishes a connection between two
seemingly distinct properties of a predictor: a preference for simplicity on the
one hand, and a general reliability on the other. Occam’s razor, in our set-
ting of sequential prediction, is the principle that a predictor should possess a
simplicity bias; the established connection provides an epistemic justification
for this principle. A predictor should possess a simplicity bias because that
guarantees its reliability. I proceed below to make precise the two steps of the
argument, including the relevant notions of simplicity and reliability.

5.1.1.1. *A sufficient or necessary condition? Let me first note, though,
that this argument would only show that a simplicity preference is sufficient
for reliability. This leaves open the possibility of predictors that do not have
a simplicity preference but that are likewise reliable. One might object that
a true justification for Occam’s razor would need to show that simplicity is in

fact necessary for reliability.21 I will proceed with the original argument, but
my refutation of the argument in 5.1.2 below can indeed be cast as exposing
that the below simplicity property is not necessary for reliability, 5.1.2.5 below.

5.1.1.2. Step 1: the class of predictors. The relevant class of predictors is
the class of Solomonoff-Levin predictors. To a first approximation (I take up a
more detailed discussion in 5.2 below), the identification of a simplicity bias in
these predictors proceeds as follows. We first observe from the definition of a
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Solomonoff-Levin measure that the value

QU (yyy) =
∑

2−|xxx|Jxxx ∈ b{xxx : ΦU (xxx) < yyy}cK,(47)

for yyy is higher as its descriptions xxx via universal machine U have greater uniform
measure λ(xxx) = 2−|xxx|. That is, yyy has a greater algorithmic probability as its
descriptions are shorter. The accompanying interpretation is that yyy has greater
algorithmic probability as it is more compressible. If we further interpret this
measure of compressibility as a measure of simplicity of finite sequences, then
the statement becomes: a sequence has greater algorithmic probability as it is
simpler. This transfers to a simplicity preference in sequential prediction with
the Solomonoff-Levin predictor as follows. The one-symbol extension of yyy with
the greatest probability QU (yyyy) among the two possibilities yyy0 and yyy1 is the
one that is the simpler; consequently, QU (y | yyy) = QU (yyyy)/QU (yyy) is greatest
for the y such that yyyy is the simpler. Hence, the Solomonoff-Levin predictor
QU (· | ·) will predict with higher probability the y that renders the complete
sequence yyyy more simple. This is, in the words of Ortner and Leitgeb (2011,
734), “evidently an implementation of Occam’s razor that identifies simplicity
with compressibility.”

5.1.1.3. *Other simplicity properties? Note, though, that this is only one
specific kind of a preference for simplicity: there might be other and very differ-
ent properties of prediction methods that can also be interpreted as simplicity
biases. If these are not likewise connected to reliability, then, strictly speaking,
the argument would not even establish that a simplicity bias is sufficient for reli-
ability. Strictly speaking, it would only establish this for the above specific kind
of simplicity-qua-compressibility bias; and it would only justify a specific form
of Occam’s razor about this particular simplicity-qua-compressibility. Having
noted this worry here, I will again just proceed with the argument; but the
peculiarity of this particular simplicity bias does play a role in my refutation
in 5.1.2, and will in fact be the topic of 5.2 below.

5.1.1.4. Step 2: the reliability. By ‘reliability’ I mean the property of almost-
sure convergence to the truth. The relevant result is the familiar convergence
theorem 2.9, asserting the Solomonoff-Levin predictors’ reliability under the
assumption of a Σ1 (or in particular, a ∆1) source. For the sake of the ar-
gument I will ignore the earlier discussion in 4.2 on the universal reliability
of the Solomonoff-Levin predictor, and charitably phrase this as reliability “in
essentially every case.”

5.1.1.5. *Reliability or optimality? The phrasing “almost always the best
strategy” in the passage at the start of this section perhaps suggests the prop-
erty of optimality—convergence to predictions that are at least as good as
those of any other prediction method—rather than reliability. However, when
theorem 2.9 is invoked in the literature to demonstrate the Solomonoff-Levin
predictors’ performance it is invariably interpreted as a reliability result (also
recall the quote on page 42). A link with finding the truth would indeed be the
most obvious epistemic virtue to try and connect to simplicity in a justification
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of Occam’s razor. Still, optimality can also count as an important epistemic
virtue, or such is the line I have taken in this thesis: and, arguably, it would
likewise be able to support the sought-for justification. This, in any case, does
not matter for the refutation of the argument in 5.1.2 below, see 5.1.2.4.

5.1.1.6. The argument, again. With the details provided by 5.1.1.2 and
5.1.1.4 we can restate the argument as follows.

1. The Solomonoff-Levin predictors are those with a simplicity-qua-
compressibility bias.

2. The Solomonoff-Levin predictors are reliable in essentially every case.
∴ Predictors that have a simplicity-qua-compressibility bias are reliable

in essentially every case.

Again, this connection between a simplicity preference and a general reli-
ability would seem to justify the principle that a predictor should prefer sim-
plicity, the principle of Occam’s razor.

5.1.2. The argument refuted.
5.1.2.1. Step 1 translated. By the representation theorem 2.16, the Solo-

monoff-Levin predictors, those predictors that possess the relevant simplicity-
qua-compressibility bias, are exactly the Σ1 mixture predictors, i.e., those mix-
ture predictors that operate under the inductive assumption of Σ1 effectiveness
(3.2.4 above). Hence the following two formulations of step 1 of the argument
are equivalent.

1. The Solomonoff-Levin predictors are those that have a simplicity-
qua-compressibility bias.

1. The Σ1 mixture predictors are those that operate under the inductive
assumption of Σ1 effectiveness.

5.1.2.2. Step 2 translated. Reliability ‘in essentially every case’ actually
means reliability under the assumption of Σ1 effectiveness. This same reliability
for the Σ1 mixtures is just the property of Bayesian consistency (3.2.4.5 above).
Hence the following two formulations of step 2 are equivalent.

2. The Solomonoff-Levin predictors are reliable in essentially every case.
2. The Σ1 mixture predictors are consistent.

5.1.2.3. The argument translated. If we make the property of consistency
in step 2 explicit, the two steps of the argument look as follows.

1. The Σ1 mixture predictors are those that operate under the inductive
assumption of Σ1 effectiveness.

2. The Σ1 mixture predictors are reliable under the assumption of Σ1 ef-
fectiveness.

Taken together, the two steps yield the conclusion that predictors that
operate under the inductive assumption of Σ1 effectiveness are reliable under
the assumption of Σ1 effectiveness.

5.1.2.4. *Optimality. On the optimality interpretation of the Solomonoff-
Levin predictors, we take the content of the representation theorem 2.16 to be
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that the Solomonoff-Levin predictors are exactly the Σ1 aggregating predictors.
Accordingly, the two steps of the argument can be translated as

1. The Σ1 aggregating predictors are those that aggregate over the Σ1 pre-
dictors.

2. The Σ1 mixture predictors are optimal among the Σ1 predictors.

Taken together, the two steps yield the conclusion that predictors that
aggregate over the Σ1 predictors are optimal among the Σ1 predictors. My
conclusion below applies as in the case of reliability.

5.1.2.5. *A necessary condition. The reliability of step 2 holds for every
prediction method corresponding to an a priori measure that is a universal
Σ1 measure. Since there are universal Σ1 measures that are not Solomonoff-
Levin measures (2.2.1.3 above), this means that the specific simplicity-qua-
compressibility bias associated with the Solomonoff-Levin predictors is not nec-
essary for this reliability. This strengthens my conclusion below that there is
no special role for simplicity here.

5.1.2.6. Conclusion. In the original formulation, we define a class of pre-
dictors with a characterizing simplicity bias that we can subsequently prove
to be reliable ‘in essentially every case.’ This formulation suggests that we
have established a connection between two properties of a predictor that are
quite distinct. We got out a general reliability, whereas we put in a specific
preference for simplicity. This link between a simplicity bias and reliability
would provide an epistemic justification of Occam’s razor, the principle that
a predictor should have a simplicity bias. The more explicit reformulation,
however, shows that the original formulation is misleading. We got out what
we put in, after all. We define a class of predictors that operate under the
inductive assumption of Σ1 effectiveness, that we can subsequently prove to be
reliable under the very same assumption of Σ1 effectiveness. Even if we want
to stick to the interpretation of a simplicity bias rather than a specific induc-
tive assumption, this clearly fails to count as a demonstration that a simplicity
preference is good without an assumption that reality itself is simple. To the
extent that a predictor’s inductive assumption of Σ1 effectiveness embodies a
simplicity preference we have to make the exact same simplicity assumption
on the world in order to prove the predictor’s good performance. Thus the
argument fails to justify Occam’s razor.

5.1.3. The room for reply. In a way, the revelation of 5.1.2 that “we

got out what we put in” is just what was to be expected.22 On a formal level,
obviously the two properties of simplicity and reliability cannot be very dis-
tinct: or it would not be possible to deductively derive the one from the other.
Indeed, we might say that any manner of defining a particular property that
provably guarantees another desired property will be “essentially circular, in
effect assuming what one wishes to prove”—in the words of Zabell (1988, 6),
when he discusses the property of exchangeability. “Of course, in one sense
this must obviously be the case. All mathematics is essentially tautologous,



126 5. DATACOMPRESSION AND OCCAM’S RAZOR

and any implication is contained in its premises.” Nevertheless, Zabell contin-
ues, “mathematics has its uses”; enabling us to “translate certain assumptions
into others more palatable” (ibid.). I have, indeed, discussed how the inductive
assumption of Σ1 effectiveness can be translated into two properties that do
seem conceptually different: a property of reliability and a property of sim-
plicity preference. Now, to rescue the justificatory force of the argument, one
could attempt to reassert the conceptual distinctness of the two notions; most
importantly, one could try to make the case that we are dealing with a natural
notion of simplicity, rather than just a peculiar interpretation of the assump-
tion of Σ1 effectiveness. This is the matter I take up in the remainer of the
chapter.

* * *

5.2. A formalization of Occam’s razor?

The driving force for the argument to justify Occam’s razor, and the essen-
tial component in any conceivable attempt to rescue it from the above critique,
is the idea that the Solomonoff-Levin measure implements a general and ob-
jective measure of complexity of data sequences. The aim of this section is to
shake that idea.

In 5.2.1, I spell out how the relevant simplicity-as-compressibility interpre-
tation comes about. In 5.2.2, I discuss the greatest challenge to this compress-
ibility notion, the well-known issue of variance. This issue is a symptom of the
great permissiveness of the notion of Σ1 universality, which, I argue, presents

a problem for the complexity interpretation.23

5.2.1. A quantitative notion of compressibility. Here I review the
information-theoretic foundation for the data-compression interpretation of the
Solomonoff-Levin measure. I discuss the notion of system of descriptions and
its equivalence with probability functions, leading up to the notion of universal
effective description length function and its equivalence with the Solomonoff-
Levin measure. A fuller account of the important concepts of this section is
provided in A.2.

5.2.1.1. Description systems and code systems. A description system is a
set D ⊆ B∗ × B∗ of pairs of source sequences and their description sequences,
so that D(yyy,xxx) means that xxx is a description of yyy. A coding system or simply
code is a description system that is a function itself, meaning that each source
sequence has a unique description. The usual type of codes in information
theory are the prefix codes (A.2.2); a more general type that is of relevance to
us are the sequential description systems (A.2.4).

5.2.1.2. Description length functions. A description system comes with a
description length function LD : B∗ → N that returns an expression of the
length(s) of a given source sequence’s shortest description(s). (In the simple



5.2. A FORMALIZATION OF OCCAM’S RAZOR? 127

case of a code, this is just the length of the given source sequence’s unique
description.)

5.2.1.3. Descriptions and probabilities. It is a central information-theoretic
fact that description systems and probability assignments can be treated as
interchangeable. Namely, for every description system D the function 2−LD

gives a probability assignment; conversely, for every probability assignment
there is some description system that thus corresponds to it. To put it more
precisely, in the relevant case of sequential description systems: for every such
description system D the function

(48) nD(·) := 2−LD(·)

is a pre-measure to a measure νD on B∗ ∪ Bω; conversely, for every measure ν
on B∗ ∪ Bω there is a sequential description system Dν with

(49) LDν (·) = − log ν(J·K).

As such, probabilities and description lengths are formally interchangeable. A
high probability ν(yyy) is equivalent to a small description length LD(yyy) and vice
versa.

5.2.1.4. Compressibility. If yyy has a small description length LD(yyy) then
one can say that D compresses yyy well, or even that yyy is simple to D. But it
should be clear that this formal notion of simplicity-to-D is a relative notion,
and really an expression of how well the sequence yyy is fit by D: it is equivalent
to νD’s likelihood given yyy, or the goodness-of-fit of νD for yyy.

5.2.1.5. Universal description systems. Let D be some class of description
systems. A universal description system DD for this class is “almost as good”
as any description system in D: for every D ∈ D there is an overhead constant
cD such that, for every source sequence yyy, the universal description length of yyy
via DD does not exceed the description length LD(yyy) more than this overhead.
A universal code for D represents the full class D in the sense that if some
D ∈ D assigns a particular sequence a short description, then the universal
code does too (up to the overhead cD).

5.2.1.6. Universal compressibility. In this sense, the description lengths of
a universal system for D can be said to reflect how well the class D compresses
sequences, or how simple sequences are to D. But we have to be careful here.
First and foremost, there is still the choice of overhead constants, that intro-
duces an element of arbitrariness or subjectivity. I delegate this issue to the
next section 5.2.2. Second, this notion of universal compressibility is again
really a measure of how well sequences are fit by the universal description
system, equivalent to the goodness-of-fit of the corresponding universal distri-
bution over the class P of distributions corresponding to D. Finally, the term
“universal” is slightly deceptive because a universal description system and the
accompanying universal compressibility measure are, of course, relative notions
still: relative to a class D of description systems.
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5.2.1.7. Universal effective compressibility. The last point would be ad-
dressed by the proposal of a class D that is sufficiently wide to render the
notion of compressibility-to-D a truly universal, fully general notion of com-
pressibility. Interestingly, this case could be made for the effective description
systems, as follows. To start, we could plausibly assert that it is part of the very
notion of description system that it comes with a decoding algorithm; hence, by
the Church-Turing thesis, that the decoding D−1 is given by a Turing machine.
In this spirit, we define the effective (sequential) description systems as those
with decoders given by (monotone) machines. Further, a universal machine
gives the decoder for an effective description method that is universal for the
class of effective description methods—i.e., we assert, the class of all description
systems. Consequently, compressibility relative to this class, as instantiated by
a universal element in this class, is a universal notion of compressibility.

5.2.1.8. Universal description systems and Solomonoff-Levin measures. Let
me pause a little longer on how natural the constraint of effectiveness on de-
scription systems is. The effective descriptions systems are precisely those with
decoders given by Turing machines. As conveyed, hopefully, by the discussion
in A.2–A.3, it is for a large part this identification of effective decoders with
machines that accounts for the elegance of algorithmic information theory as
a branch of information theory proper. Contrast this to the notion of a Σ1

measure on Bω ∪ B∗, which already gives a notion that is somewhat hard to
digest (certainly under the interpretation of a data-generating source, 3.2.4.3
above), and which leads to a class of prediction methods that is really not very
natural (4.3.2–4.3.3 above). Unless, perhaps, one motivates this class precisely
by falling back on the notion of effective description system. Namely, for-
mally the effective sequential description systems and the Σ1 measures (hence
the predictors corresponding to those) are again equivalent, in the sense of
5.2.1.3 above. Indeed, the definition of a universal effective sequential descrip-
tion length function is precisely the negative logarithm of a transformation λU ,
i.e., a Solomonoff-Levin measure (A.2.4.6). So perhaps one can argue that the
naturalness of this notion transfers to the Solomonoff-Levin measures. In par-
ticular, one might argue that a Solomonoff-Levin measure inherits a general
and objective notion of compressibility.

5.2.1.9. *Codes and Kolmogorov complexity. Instead of effective descrip-
tion methods, we could have considered effective codes. One might feel that
codes lead to a more proper notion of compressibility because the description
length function just gives the length of a single shortest description, rather
than an expression of multiple descriptions. (For instance, in the latter case, it
is conceivable that the function returns a low value if there is not necessarily
a short description but a large number of (long) descriptions.) A descrip-
tion length function for a universal effective code is precisely the Kolmogorov
complexity via a universal machine (see A.3); and indeed in the literature one
encounters the idea that the Solomonoff-Levin measure inherits a simplicity no-
tion insofar as it formally resembles monotone or even prefix-free Kolmogorov



5.2. A FORMALIZATION OF OCCAM’S RAZOR? 129

complexity: “[f]rom QU (xxx) ≈ 2−K(xxx) we see that QU assigns high probability
to simple strings (Occam)” (Hutter, 2005, 47, notation mine; also see Li and
Vitányi, 2008, 272f). This raises the question as to the extent of this resem-
blance. In the case of prefix-free Kolmogorov complexity KU and the universal
prefix description length functions there is the coding theorem that states their
equivalence up to an additive constant (see A.3.1.7); but in the relevant case
of monotone Kolmogorov complexity KmU and the universal sequential de-
scription length functions KMU = − log λU the situation is more messy (see
A.3.2.5). Moreover, even if the function KmU is “closer to the spirit of Occam’s
razor” (Hutter, 2006, 96), the resulting prediction method is in some respects
actually worse than QU (ibid.). I will not pursue this theme further, and only
note that Kolmogorov complexity as a complexity measure must also still face
the challenge of variance discussed in 5.2.2 below.

5.2.1.10. Taking stock. Does the notion of universal effective compressibil-
ity constitute a natural notion of complexity? On the one hand, the formal cor-
respondence between probability assignments and description systems means
that a universal description length is a direct translation of a Solomonoff-Levin
measure’s goodness-of-fit; as such, the corresponding notion of simplicity-qua-
compressibility does seem little more than a rewording of the particular as-
sumption of Σ1 effectiveness. On the other hand, there is clearly some intuitive
appeal to the notion of compressibility associated with a description system;
and we saw that a universal effective description system is arguably univer-
sal relative to all description systems, perhaps yielding a respectable notion
of truly universal compressibility. However, I have suspended discussion of
one important aspect, that perhaps presents the greatest challenge to this no-
tion. This is the issue of the arbitrariness or subjectivity in the introduction
of overhead constants, that I will call the issue of variance.

*Related approaches. The equivalence between description length func-
tions and probability functions is the cornerstone of the minimum description
length (MDL) approach to statistical inference (see the textbook Grünwald,
2007 and the overview paper De Rooij and Grünwald, 2011). The develop-
ment of MDL was influenced by Solomonoff’s ideas, and the two approaches,
including the role they attribute to Occam’s razor, are often not clearly dis-
tinguished. This is a mistake: MDL and Solomonoff’s approach part ways
in crucial respects. While Rissanen, the founder of MDL, acknowledges that
the “main source of inspiration in developing the MDL principle for general
statistical problems has been the theory of algorithmic complexity [algorith-
mic information theory],” he is quick to add that “the role of the algorithmic
complexity theory is inspirational, only, for almost everything about it, such
as the idea of a model and even the very notion of complexity, must be altered
to make the ideas practicable” (1989, 10).

One can say that in Solomonoff’s theory there is only one statistical model:
the class of all Σ1 hypotheses; and the prediction method that is universal for
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this class induces a complexity measure on individual data sequences. Now one
could use this model to define a data sample’s minimum description length:
this is the sample’s Kolmogorov complexity, and this approach also goes by
the name of “idealized MDL” (Grünwald, 2007). But this is only an idealized
relative of “practical MDL,” that is intended to apply to models one normally
encounters in statistics. To emphasize, in practical MDL there is no longer
a special role for effective computability, whereas this was the key ingredient
in Solomonoff’s proposal; and this leads to further important differences. The
modern or “refined” variant of MDL (first summarized in Barron et al., 1998)
rests on the design of universal codes for given statistical models, and, cru-
cially, the central notion of complexity pertains to these models rather than to
individual data sequences or single hypotheses (Grünwald, 2007, 30ff). Con-
sequently, the resulting simplicity bias is more akin to that in model selection
approaches like the Bayes factor method (ibid., 539ff; see Kass and Raftery,
1995). This also means that my discussion in this chapter of Occam’s razor in
Solomonoff’s approach has no direct ramifications for practical MDL.

Idealized MDL is subsumed by the general approach of “nonprobabilis-
tic” or “algorithmic statistics” based on algorithmic information theory, that
originated in the structure function that Kolmogorov proposed in two talks in
1974 (see Vitányi, 2005; Li and Vitányi, 2008, 401ff). The starting idea is to
decompose a data sample’s shortest description into two parts: one describing
a hypothesis that covers its structure, and one describing the remaining noise.
(For instance, a sequence’s shortest description via universal machine U , that
gives its Kolmogorov complexity via U , can be decomposed into a part giving
an index for a machine—the structural part—and a part giving the input to this
machine—the noise.) The length of the structural part gives the data sample’s
‘structural complexity’ or sophistication (Koppel and Atlan, 1991). However,
it appears to be hard to specify this in a way that avoids triviality (where the
structural part is either the complete description or is always given by the same
universal hypothesis), while retaining O(1)-invariance under different enumera-
tions of the hypotheses; and recently Bloem et al. (2015) have argued that this

is in fact impossible.24 This apparent impossibility—in particular, of a princi-
pled decomposition of universal description lengths into separate quantities for
a particular machine and an input for that machine—ties in with other results
that exhibit the great flexibility we have in characterizing universal elements,
which I turn to below (particularly, 5.2.2.7).

5.2.2. The issue of variance. If any choice of overhead constants for
the effective description systems gives a universal description system that is as
valid as the next one, does this not make such a choice fully arbitrary? And
if this is so, do we not end up with a notion of universal compressibility that
leaves way too much variance, that is way too loose to be meaningful?

5.2.2.1. The invariance theorem. The standard reply to this issue is the
invariance theorem, that states that any two choices of overhead constants are
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equivalent up to an additive constant (Li and Vitányi, 2008, 104ff, 200ff; also
recall 3.2.5.4 above). This is Kolmogorov (1993, 221; also see Shiryaev, 1989,
921):

The intuitive difference between “simple” and “complicated” ob-
jects has apparently been perceived a long time ago. On the way
to its formalization, an obvious difficulty arises: something that
can be described in one language may not have a simple descrip-
tion in another and it is not clear what method of description
should be chosen. The main discovery, made by myself and si-
multaneously by R. Solomonoff, is that by means of the theory
of algorithms it is possible to limit this arbitrary choice, defining
complexity in an almost invariant way (the replacement of one
method of description by another only leads to the addition of a
bounded summand).

The invariance theorem, hinted at by Solomonoff in (1964, 11ff) and indepen-
dently stated by Kolmogorov (1965, 5f) and Chaitin (1969, 156f), marks the
birth of algorithmic information theory (see Li and Vitányi, 2008, 95ff, 192).

5.2.2.2. Invariance and universality. To be precise, the invariance theorem
says that for any two universal effective description systems D1 and D2, there
are constants c1, c2 such that for every sequence yyy we have LD1

(yyy) ≤ LD2
(yyy)+c1

and LD2
(yyy) ≤ LD1

(yyy) + c2. It is important to note that invariance does not
necessarily follow for two description systems that are just universal for some
D in the sense of 5.2.1.6 above; a mutual divergence that remains within a
single overhead constant is only guaranteed if the universal systems are in D
themselves. Again, it is this property of including universal elements that
makes the class of effective description systems special.

5.2.2.3. Two perspectives. The bearing of the invariance theorem is that
“from an asymptotic perspective, the complexity . . . does not depend on ac-
cidental peculiarities of the chosen optimal method” (Kolmogorov, 1983, 33).
Given a universal description system, as we investigate increasingly long se-
quences, that will have increasing universal description lengths, the effect of
the arbitrary element in the description lengths becomes “disappearingly small”
(Kolmogorov, 1969, 207). More concretely: given two different universal de-
scription methods, as we investigate increasingly long sequences, the difference
in the two description lengths will become increasingly insignificant. Note,
however, that this presupposes a particular perspective: I fix some universal
description system, you fix another; then for any sequence we investigate the
description lengths will not differ more than a constant. An alternative per-
spective is this: I fix some universal description system, and for any sequence
I investigate, you can choose another universal description system such that
the two description lengths for this sequence diverge arbitrarily much. From
this perspective, my (and your) universal description lengths as a quantitative
measure of complexity of finite sequences do look arbitrary (Kelly, 2008, 324f)
or even “meaningless” (Muchnik et al., 1998, 315).
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5.2.2.4. The order of complexity. A view of Kolmogorov complexity that
is in line with the first perspective, and that indeed seems to be how many in
the field think about the notion, is that it allows us to give an expression of
the growth or the order of the complexity of a data stream. We can, within
a variance of order O(1), still distinguish, for instance, data streams for which
the Kolmogorov complexity is of order O(log t) from those of order O(1) or of
order O(t). This does constitute a certain coarse-graining that shifts focus to
data streams or infinite sequences, though; it is consistent with the view that
the complexity value of a single given finite sequence is “meaningless.”

5.2.2.5. Privileged systems. An intuition that does try to revive the mean-
ingfulness of the complexity of individual finite sequences, one that goes beyond
the invariance theorem, is that there will be a small number of ‘natural’ or
‘reasonable’ choices of universal description methods, that do not differ much
among each other (Kolmogorov, 1965, 6; Muchnik et al., 1998, 315). This is an
instance of the hope for natural or objective universal machines, that I men-
tioned and questioned in 3.2.5.7 above. But even if it were possible to isolate a
subclass of privileged universal description methods, that do induce a clear-cut
notion of complexity, this would necessitate a serious modification of the ar-
gument for the justification of Occam’s razor in 5.1 above. Namely, we would
need to have some stronger reliability result that is restricted to the subclass
of predictors that use this notion—or it would not be a simplicity preference
that drives the reliability.

5.2.2.6. Privileged priors. Consider the proposal of Li and Vitányi (2008,
295) of a Solomonoff-Levin measure (Σ1 mixture) with the particular weight
function v : i 7→ 2−K(i), a “mixture of hypotheses” that assigns “greater weight
to the simpler ones” and can thus “be viewed as a mathematical form of Oc-
cam’s razor” (ibid., 358). One obvious flaw in this proposal is that the problem
of subjectivity just reappears at the level of choosing the universal machine to
define the prefix-free Kolmogorov complexity K. (We can push the problem
further and further away, but that will not make it disappear.) But, again, if
the Solomonoff-Levin predictors with this particular prior are to figure in a jus-
tification of Occam’s razor, we would also have to demonstrate that they have
some special reliability properties. There is the argument by Hutter (2003b,
990f; 2005, 102f) that these predictors are optimal among all Σ1 mixtures, for
the reason that this weight function is universal (see 2.2.2.6 above). This would
imply that the constant for this weight function in proposition 3.4 about the
mixture’s regret bound dominates those for other weight functions. Proposition
2.18, however, shows that this optimality is meaningless: every Σ1 mixture can
be represented so as to have a universal weight function.

5.2.2.7. The permissiveness of universality. The previous example brings
me back to the fact that Σ1 universality, despite the invariance theorem, is an
extremely permissive notion. We have a great amount of freedom in character-
izing Σ1 universal elements; and this casts doubt on any interpretation that is
grounded in the peculiarities of just a single one of those characterizations. For
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instance, even if a particular Solomonoff-Levin can be represented as a mixture
with a universal weight function (with the interpretation of 5.2.2.6: an optimal
element!), this is just one representation among many: we can represent the
very same element with many other nonuniversal weight functions, even includ-
ing (proposition 2.17) computable ones. None of those other representations
admits of this optimality interpretation (save via the blunt fact of formal equiv-
alence to the original representation), so this seems an artifact of a particular
choice of characterization rather than an indicative property of these elements.
(This was confirmed by proposition 2.18 that indeed every Solomonoff-Levin
measure can be represented as such.) Something similar could be said about
the compressibility interpretation that I traced in 5.2.1. I introduced descrip-
tion systems and interpreted the accompanying description length functions as
measures of compressibility, to arrive at the universal description systems that
are given by the universal monotone machines. I noted that the definition of
a universal description length function is precisely the negative logarithm of a
universal transformation λU of the uniform measure (i.e., a Solomonoff-Levin
measure)—essentially because a sequence’s length is the negative logarithm of
its uniform probability. But, again, a Solomonoff-Levin measure’s representa-
tion as a uniform transformation (interpretation: a notion of compressibility!)
is just one among many: by theorem 2.13, we can represent the very same ele-
ment as a transformation of any continuous computable measure. None of those
other representations admits of this compressibility interpretation (save via the
blunt fact of their formal equivalence to the original representation), so, again,
this would rather seem an artifact of a particular choice of characterization.

5.2.2.8. Predictive complexity. The robust property of the Solomonoff-Levin
measures is their universality within the class of Σ1 measures. The claim that
these elements also incorporate a natural notion of simplicity of data sequences,
a notion that is more than a rephrasing of the inductive assumption of Σ1 effec-
tiveness, proceeds by the compressibility interpretation of a particular represen-
tation. But this interpretation is confronted with the fact that Σ1 universality
is such a permissive notion that the relevant representation is just one among
an endless number of representations, in none of which this interpretation is
manifest. As it stands, then, the case for a natural notion of simplicity remains
inconclusive, and the argument for the justification of Occam’s razor cannot
be made to work. Nevertheless, this leaves us free to talk about a specialized
complexity notion that is quite explicitly an expression of a Solomonoff-Levin
predictor’s success. We can still say that we have a specialized notion of the
complexity of a data sequence that is an explicit expression of how difficult it
is for a Solomonoff-Levin method to predict it. This brings us to Vovk’s notion
of predictive complexity, the topic of the next chapter.

*





CHAPTER 6

Predictive complexity

This chapter examines Vovk’s notion of predictive complexity of data se-
quences. Predictive complexity, via a given loss function, is an expression of
cumulative loss that is again universal in a precise sense. The main instance of
predictive complexity, via the logarithmic loss function, is precisely the cumu-
lative loss of the Solomonoff-Levin predictor. In general, different loss functions
specify different games in the theory of prediction with expert advice, and the
predictive complexity for each such game is given by the loss of an aggregat-
ing algorithm that appropriately generalizes the standard Bayesian updating
employed by the Solomonoff-Levin predictor.

In 6.1, I discuss the relevant part of the theory of prediction with expert
advice. In 6.1.1, I specify the general framework of a game of prediction with
expert advice. In 6.1.2, I introduce the log-loss game and critically discuss
various motivations for the logarithmic loss as the preferred loss function in
sequential prediction. In 6.1.3, I introduce the Brier game and the absolute-
loss game. In 6.1.4, I discuss Vovk’s aggregating (pseudo) algorithm for a given
game, and the important concept of mixability: for games that are mixable,
this aggregating algorithm defines a predictive complexity. In 6.2, I explain

and criticize the notion of predictive complexity.25

Innovations. The largest part of section 6.1—specifically, 6.1.1, 6.1.3, and
6.1.4—summarizes existent theory, but I hope to have succeeded at providing
a concise yet clear presentation of some ideas that are not so easily accessible
(particularly, the aggregating (pseudo) algorithm and the definition of mix-
loss). I know of no earlier critical discussion of the different motivations for
the log-loss function in sequential prediction, as given in 6.1.2. In particu-
lar, the identification of the property of sequential locality, and the fact that
this is a property of the log-loss function only, proposition 6.1, appears to be
novel. I also know of no earlier critical discussion of Vovk’s notion of predic-
tive complexity, as given in 6.2. Proposition 6.2, that constitutes an important
component of my critique, follows directly from older results, but has, I think,
not been employed in this context before.

135
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6.1. Games and loss functions

6.1.1. A game of prediction with expert advice. I repeat the speci-
fication of a prediction game, that I first described slightly more informally in
I.1, including the notions of cumulative loss and regret, that I first specified in
3.3.2 above.

A game G = (Ω,Γ, `) consists of an outcome space Ω, a prediction space
Γ, and a loss function ` : Γ × Ω → [0,∞]. We restrict ourselves here to the
familiar outcome space Ω = B, and the prediction space Γ = P of distribu-
tions over B. Then a prediction strategy p is as before a function from finite
outcome sequences in B∗ to distributions over B, the possible next symbols.
At each trial t+ 1, having observed sequence xxxt, the strategy issues prediction
p(xxxt), after which the outcome xt+1 ∈ B is revealed and the strategy suffers an
instantaneous loss given by `(p, xt+1) with p = p(xxxt). To slightly economize
notation, I will write this as ‘`p(xt+1),’ thus also leaving the preceding sequence
xxxt implicit. Always assuming a countable pool of prediction strategies indexed
by k ∈ N, I will further simply write ‘`k(xt+1)’ for the instantaneous loss of
predictor pk at t+ 1. The cumulative loss suffered by strategy p on a sequence
xxxs is the sum

(50) Lp(xxxs) :=

s−1∑
t=0

`p(xt+1)

of instantaneous losses. (Likewise ‘Lk’ stands for the sum of instantaneous
losses of pk.)

Given a game (that is, a loss function), we seek to formulate a prediction
strategy that, having available at each trial t + 1 all the predictions of some
countable pool of prediction strategies or experts, incurs a cumulative loss that
is never very bad compared to any of these experts. Defining the regret Rp,k(xxx)
of predictor p relative to predictor pk on finite sequence xxx as the excess loss
incurred by p on this sequence, i.e.,

Rp,k(xxx) := Lp(xxx)− Lk(xxx),

we seek to formulate a strategy p that manages a low regret relative to any
other expert pk on every data stream.

One way this goal might be construed is to find a bound on the worst-case
regret

(51) max
xxx∈B∗,pk∈H

Rp,k(xxx),

i.e., a single bound on the regret relative to any expert, on every single finite se-
quence. This, however, is too ambitious in the general case of a pool of infinitely
many experts, as I will always assume here. Consider the pool that contains
all computable experts: for every finite sequence there will be a predictor that
has predicted perfectly and hence incurred loss 0, so (51) actually reduces to
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the cumulative loss of p. Bounding (51) would come down to bounding p’s loss
on all possible data sequences.

However, we can derive meaningful bounds on the regret Rp,k(xxx) that
depend on pk. Without any assumptions whatsoever on the experts and the
origin of the data, we can still, it turns out, formulate general strategies such
that for every pk we have a meaningful bound on the worst-case regret

max
xxx∈B∗

Rp,k(xxx).

It is in this sense that we can design strategies that, compared to any given
expert in the pool, will never do much worse than this expert.

In fact, we are already familiar with the relevant strategy for one type of
game, a strategy, it turns out, that we can generalize for other games: the
Bayesian mixture over all experts, for the log-loss game.

6.1.2. The log-loss game. Indeed, in 3.3.2 above I already described
the game for the logarithmic or simply log-loss function, defined by `(p, x) :=
− ln p(x). (In the current context it is customary to use the base e rather
than the base 2 logarithm; this, of course, only makes for a difference of a
multiplicative constant.) To repeat, the instantaneous log-loss of a predictor
pk is then given by

`k(xt+1) = − ln pk(xt+1,xxx
t)

= − lnµk(xt+1 | xxxt),
where µk is the measure corresponding to pk; and by the telescoping effect the
cumulative log-loss simplifies to

(52)

Lk(xxxs) =

s−1∑
t=0

− lnµk(xt+1 | xxxt)

= − ln

s−1∏
t=0

µk(xt+1 | xxxt)

= − lnµk(xxxs).

The game with the log-loss function is called the log-loss game.
6.1.2.1. Conditions on loss functions. A scoring rule is a function that is to

express how good a probabilistic prediction was in light of an actual outcome
(what the “value” or “utility” of a particular prediction was, in a context
of “pure inference” where our only goal is to predict accurately, Bernardo
and Smith, 1994, 69ff). Its counterpart, a loss function, is to express how
bad a prediction was in light of an actual outcome (what the cost or loss
of a particular prediction was if our goal is to predict accurately). There
are a couple of basic requirements one wants to impose on a such a function
` : P × B → [0,∞]. It is natural to require that `(p, x) = 0 if (and only if)
p(x) = 1; and that `(p, x) is monotonically increasing in p(x). It is natural
to require a condition of smoothness (say, continuous differentiability in p(x)),
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with the motivation, apart from being mathematically convenient, that small
differences in predictions should only lead to small differences in loss. It is
natural, in the presupposed context of pure inference (as opposed to contexts
where, for instance, one unexpected outcome has more serious consequences
than another), to require a symmetry condition to the effect that `(p1, 0) =
`(p2, 1) if and only if p1(0) = p2(1). Moreover, it is natural to require that
the loss function should induce a predictor to be honest, by precluding that
the p-expected loss is actually minimized by a prediction different from p.
Accordingly, the requirement of propriety (Murphy and Epstein, 1967; Good,
1952, 112; also see Gneiting and Raftery, 2007) is that the p-expected loss
should always be minimized at prediction p, i.e.,

(53) arg min
p′

EX∼p `(p
′, X) = p.

The property of propriety extends to sequences of outcomes, a property that I
will call sequential propriety (see B.2.4.1 for the definition and proof).

6.1.2.2. Motivation for the log-loss function. The log-loss function satisfies
the preceding requirements—but so do other functions, including the Brier loss
function discussed in 6.1.3.1 below. Are there reasons why we should still prefer
the log-loss function? One can find several reasons in the literature, both of a
technical and of a more conceptual nature (see Merhav and Feder, 1998, 2127f).

6.1.2.3. Motivation for the log-loss function: telescoping. What I should
stress, once more, as a significant technical benefit of working with the log-
loss function, is its telescoping property (52)—which will in fact assume an
important role even in the analysis of games other than the log-loss game
(6.1.4.2 below).

6.1.2.4. Motivation for the log-loss function: sequential locality. In the case
of more than two possible outcomes, the log-loss function is the only proper
loss function that is also local, meaning that `(p, x) only depends on p(x), the
probability assigned to the outcome that actually obtained (Bernardo, 1979; it
is actually more accurate to say ‘loss functions of logarithmic form,’ see B.2.4.2
below). In our case of distributions over two outcomes, however, locality is vac-
uously satisified; and many other loss functions are possible. (Also see Bernardo
and Smith, 1994, 72ff.) Nevertheless, if we look at the loss over sequences of
outcomes, i.e., the cumulative loss, there is a corresponding form of sequen-
tial locality, that is again only satisfied by loss functions of logarithmic form.
Namely, the cumulative log-loss Lp(xxxs) over sequence xxxs of outcomes, by the
telescoping property, is a function of µp(xxxs) for the measure µp corresponding
to p; whereas in general the cumulative loss is a function of all the conditional
probabilities µp(xt+1 | xxxt) corresponding to the p(xt+1,xxx

t)’s for t < s.

Proposition 6.1. Loss functions of logarithmic form, and only those loss
functions, are sequentially local.

Proof. See B.2.4.3. �
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6.1.2.5. *Sequential locality: example. Here is a simple illustration of the
failure of locality, starring the absolute-loss function defined in 6.1.3.2 below.
Take the sequence 00 and two predictors p1 and p2 with corresponding µ1, µ2

such that µ1(0) = µ1(0 | 0) = 1
2 and µ2(0) = 1

4 , µ2(0 | 0) = 1. Then the
probability assignments for the complete sequence 00 are identical, µ1(00) =
µ2(00) = 1

4 , yet (the more cautious) predictor p1 is penalized more severely,

Lp1
(00) = 1 6= Lp2

(00) = 3
4 .

6.1.2.6. Motivation for the log-loss function: sequential locality, cont. Does
sequential locality make for a property that we should impose on a loss func-
tion? The original locality property rests on a very minimal demand: the
accuracy of two predictions p1 and p2 in light of a particular outcome x should
be judged the same if p1(x) = p2(x), regardless of possibly differing probability
values assigned to counterfactual outcomes that did not actually materialize.
The property of sequential locality rests on a stronger demand: the accuracy
of two predictors p1 and p2 in light of a sequence of outcomes xxx should be
judged the same if µp1

(xxx) = µp2
(xxx) for the corresponding total probability as-

signments to xxx, regardless of how these are built from the one-step predictions
or conditional probabilities on xxx. To restate, the difference is that sequential
locality is not a matter of disregarding probabilities of counterfactuals, but of
disregarding conditional probabilities that make up the total probability. To
further bring out the contrast, consider the likely motivation for rejecting each
property. An opening for rejecting locality and making accuracy dependent
on all probabilities would be the desire to take into account how cautious the
prediction p is (how flat the distribution p is)—but here it still needs explain-
ing why for p1(x) = p2(x) a difference in flatness elsewhere should impact the
accuracy on x. A reason for rejecting sequential locality could be the desire to
take into account how cautious the individual probability assignments to what
turned out to be the actual outcomes were (how close to one half the proba-
bilities were)—a desire that sounds sensible even in contexts of pure inference
(Popper’s methodology of making daring predictions comes to mind).

6.1.2.7. Motivation for the log-loss function: information. On a more con-
ceptual level, there is the strong link of the log-loss function to information
theory. The log-loss function is also called the self-information loss function:
“[a]s is well known, the self-information manifests the degree of uncertainty, or
the amount of information treasured in the occurrence of an event” (Merhav
and Feder, 1998, 2127). What is alluded to here is the interpretation of the
term

h(x) := − log p(x)

as the Shannon information content of the outcome x, which ties in with the
interpretation of a distribution’s Shannon entropy (Shannon, 1948; also see
A.2.3 below)

(54) H(p) = EX∼p [h(X)]



140 6. PREDICTIVE COMPLEXITY

as its expected information content (see MacKay, 2003, 67ff). The idea is that
h(x) represents the amount of information we gain when outcome x obtains,
as the extent of our surprisal : a low-probability outcome is highly surpris-
ing so very informative when it occurs, whereas a high-probability outcome is
unsurprising and we gain little from observing it. Consequently, the entropy
H(p) is a measure of the expected amount of information to be gained from
the next outcome; and as such, it is a measure of the uncertainty expressed
by p: if we are quite uncertain about the next outcome (i.e., p(0) ≈ p(1) ≈ 1

2 )
it will be informative to see it, but if we are very certain about the next out-
come (p(0) ≈ 1 or p(1) ≈ 1) we do not expect to learn much from it. Now it
is reasonable to choose a measure of information-as-surprisal for a loss func-
tion: the more suprised we are by an outcome, the less accurate our prediction
turned out to be. What is left unmotivated, however, is why this analysis had
to start with the function h—other than the bare fact that it is the function
used in information theory. That is, going the other direction, could we not
take any other proper loss function and likewise interpret it as a measure of
information-as-surprisal? All we have done now is to reduce the problem of
justifying the log-loss as the preferred loss function to the problem of justifying
it as the preferred surprisal function, but it is actually not clear that this task
is any easier. The apparent reason why it might be, again, is its status within
information theory, featuring in the definition of entropy that is uniquely char-
acterized by means of a number of axioms (1948, 392f). However, while it is
standard to interpret the Shannon entropy as a measure of uncertainty (see,
for instance, Cover and Thomas, 2006, 13ff), it is forcefully argued by Uffink
(1990, 65ff; also see Timpson, 2013, 25ff) that for the purpose of a measure
of uncertainty the last of Shannon’s axioms is not well-motivated, and so the
function H is still only one among a multitude of feasible definitions of a dis-
tribution’s uncertainty. Indeed, as discussed in detail by Grünwald and Dawid
(2004), we can define a notion of entropy for any given loss function by re-
placing h in (54) for this function. This blocks the strategy of justifying the
choice of the log-loss function as the uniquely preferred choice of a measure of
information-as-surprisal.

6.1.2.8. Motivation for the log-loss function: datacompression. The Shan-
non entropy is unique in a different sense. It gives a unique measure of the
optimal compression of the elements generated from a given probability distri-
bution, as follows (see A.2.3 for more details). The entropy H(p) of distribution
p over countable outcome space Ω, defined as the p-expected code length of the
idealized prefix coding sytem Lp(·) = − log p(·) corresponding to p, is a lower
bound on the p-expected code length of any distribution q’s corresponding
idealized coding sytem,

(55) H(p) = EX∼p [− log p(X)] ≤ EX∼p [− log q(X)] ,
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with equality precisely if p = q; which implies it is a lower bound on any
idealized prefix coding system’s p-expected code length,

H(p) ≤ EX∼p [LC(X)] .

This is the information inequality (proposition A.10, A.2.3.1 below); further
results show that the Shannon entropy likewise gives both a bound and a
guarantee on the p-expected code length achievable with actual (nonidealized)
coding systems (the source coding theorems, A.2.3.3–A.2.3.4 below). Interest-
ing as this cluster of theory is, however, it does not yet amount to an argument
in favour of the log-loss function. (The information inequality (55) as a prop-
erty of the log-loss function, saying that the p-expected loss is minimized by
prediction p, is certainly nice—but we already know that it is satisfied by other
functions, too: it is the property (53) of propriety!) Nevertheless, this connec-
tion to information theory points at a particular interpretation of the log-loss
function, that at least provides a further handle on understanding the im-
portance it is attributed. This is the interpretation of log-losses as description
lengths, and the goal of minimizing log-loss as learning by datacompression, the
philosophy that underlies MDL, the principle of minimum description length.
(See Rissanen, 1989 for the inventor’s spirited defense of this conception of
statistical inference, and Grünwald, 2007 for a somewhat more pragmatic pre-
sentation.) The fundament of MDL is the equivalence between probabilities
and description lengths (ibid., 90ff, “The Most Fundamental Section of This
Book”; also see A.2), and this strong structural similarity between probabilities
and log-losses can be seen to explain such benign properties as the telescoping,
the propriety, and the sequential locality of the log-loss function. Resting on
this equivalence, the general intuition that both drives and is reinforced by
work in MDL is that expressed in Grünwald’s “Concluding Remark on the
MDL Philosophy” (ibid., 595): “if one has learned something of interest, one
has implicitly also compressed the data,” which we can recast as: if one has
learned something, one has also achieved a low log-loss. That this is not a
trivial statement is supported by combinatorial observations to the effect that
there is only a tiny fraction of possible outcomes that can be significantly com-
pressed, indicating that it is hard to achieve low log-losses (see A.2.3.5 on the
no-hypercompression inequality). Further, the statement itself, or rather the
more precise version “if one achieves low loss via any reasonable loss function,
then one achieves low log-loss” can also be grounded in formal results. Namely,
Vovk (2001b) showed for the Brier loss function, and in (2015) extended this to
a general class of loss-functions, that if an infinite outcome sequence is random
under the log-loss function, it is random under the other loss function (i.e., the
contrapositive statement that if it is not possible to achieve low loss under the
log-loss function, it is not possible to achieve low loss under the other function;
see A.4 for details on randomness).
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6.1.2.9. Motivation for the log-loss function: conclusion. The previous col-
lected various reasons in support of the log-loss function for measuring the ac-
curacy of predictions. Most if not all of these reasons appear to be connected
to the strong structural correspondence between log-losses and probabilities.
We might say that the log-loss function provides the most faithful mapping
between probabilities and losses. Still, this does nothing to discount the simple
fact that there are other loss functions that are widely used (Vovk, 2015, 317),
and specific contexts can indeed dictate different loss functions (e.g., 6.1.3.2
below).

6.1.3. Other games.
6.1.3.1. The Brier game. A prominent alternative loss function is the square-

loss or Brier loss function (Brier, 1950; de Finetti, 1962), that, like the theory
of proper loss functions in general, originated in meteorology and in parallel as-
sumed an important role in foundational work in probability (see Dawid, 1986,
2008). In the case of two outcomes, we define it by

`(p, x) := (1− p(x))2,

i.e., `(p, x) = p(x̄)2. A notable difference from the log-loss function is that the
range of the Brier function is the interval [0, 1], whereas the log-loss function
has a range that is unbounded (indeed giving an infinite loss in the case of a
probability assignment of 0 to the actual outcome; this is an aspect one may
hold against the log-loss function, see Vovk, 2015, 317). The game with the
Brier loss function we call the Brier game.

6.1.3.2. The absolute-loss game. The setting I always assume is probabilis-
tic prediction: methods of prediction return probability distributions over the
possible outcomes. This is arguably the obvious setting if we want to allow for
the expression of uncertainty (Dawid, 1984, 278); at the same time, ordinary
prediction is rather done in a categorical manner—either 0 or 1. The corre-
sponding simple game is the game with prediction space Γ = Ω = B, and the
0/1-loss (‘zero-one loss’) function given by

`(y, x) := 1x6=y.

The simple game is actually hard when it comes to the goal formulated in 6.1.1.
An adversarial data sequence can make our strategy fail at every single point
in time, while already the inclusion in the pool of experts of the two constant
strategies (‘always 0’ and ‘always 1’) guarantees that the best expert fails no
more than half of the time, leading to a regret relative to this expert at least as
bad as t/2 (cf. Cesa-Bianchi and Lugosi, 2006, 67). A solution is to randomize:
to use a probability distribution in P to decide whether to say 0 or 1. Formally,
this gives the game where again Γ = P, and the loss function is the absolute
loss given by

`(p, x) := p(x̄).

Unlike the log-loss and the Brier loss function, the absolute-loss function is
not proper (for p with p(1) > 1

2 the p-expected loss is minimized for p′ with
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p′(1) = 1); nor is it sequentially local (see the example in 6.1.2.4 above).
Moreover, the absolute-loss game is still harder than the other two games,
in a sense made precise in 6.1.4.5 and 6.1.4.6 below.

6.1.4. Aggregating strategies.
6.1.4.1. The log-loss game: the mixture predictor. Recall from 3.3.1 that

the aggregating predictor pmix(w) is given by

(56) pmix(w)(xxx
t) =

∑
k

w(k | xxxt)pk(xxxt),

where w is a weight function over all strategies that is updated at each trial
t+ 1 by

(57) w(k | xxxt) =
w(k | xxxt−1)pk(xt,xxx

t−1)

Z
,

with Z =
∑
k w(k | xxxt−1)pk(xt,xxx

t−1) a normalizing term. Recall, too, the
optimality theorem 3.3 that says that the cumulative log-regret is bounded by
a constant,

(58) Rmix(w),k(xxxt) ≤ − lnw(k)

for any k and xxxt, and w given by the mixture measure ξw that corresponds to
pmix(w). So we have a strategy that, compared to any strategy in the given
pool, never accumulates a loss that exceeds this strategy’s cumulative loss
by a fixed constant—a constant that is in fact an expression of the weight
this aggregating predictor assigned to this strategy. (Cesa-Bianchi and Lugosi,
2006, 47, 55f refer to bounds like (58) as oracle inequalities.) To put it another
way, for any strategy in the pool, our aggregating strategy’s average loss per
outcome,

Lmix(w)(xxx
t)

t
,

converges to this strategy’s average loss at a rate faster than O(1/t), if it does
not even become smaller.

6.1.4.2. Towards other games. The pleasant property of the logaritmic loss
function is that it retains the telescoping effect of the conditional measures cor-
responding to the predictors, as shown in (52); this is what allows us to directly
infer the regret bound (58) on the aggregating predictor from the dominance
of the mixture measure. Unfortunately, we cannot rely on this property in
the case of other loss functions. We can, however, try to mimic this effect.
What we can do is formulate a mixture directly over the predictors’ losses
(according to the given loss function), in such a way that this mixture’s loss
will benefit from a telescoping effect and thus achieve a bound similar to (58).
This mix-loss (terminology De Rooij et al., 2014) is the loss corresponding to
Vovk’s aggregating (pseudo) algorithm (Vovk, 1990; also see Vovk, 1998, 2001a;
Cesa-Bianchi and Lugosi, 2006, 52ff; Grünwald, 2007, 573ff), which I will now
present as a generalization of the original mixture strategy.
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6.1.4.3. The generalized update rule. Note that we can rewrite the update
rule (57) directly in terms of the log-loss function, as

(59) w(k | xxxt) =
w(k | xxxt−1)e−`k(xt)

Z
.

This we can generalize to any given loss function. Introducing, in addition,
a parameter η > 0 that we call the learning rate, we define, for any `, the
generalized update rule

(60) wη(k | xxxt) :=
wη(k | xxxt−1)e−η`k(xt)

Z
,

with normalizing term Z =
∑
k wη(k | xxxt−1)e−η`k(xt). (Thus (57) is (60) with

the log-loss function and η = 1.) Compared to the base case of η = 1, the
larger a choice of η > 1, the more the inflation of differences in instantaneous
losses, the greater the change in weights, and the more aggressive the learning,
while the smaller a choice of η < 1, the more the deflation of those differences,
and the more conservative the learning; hence the name, learning rate.

6.1.4.4. The mix-loss. Generalizing the definition of the log-loss of the orig-
inal mixture predictor pmix(w), i.e.,

`mix(w)(xt+1) = − ln
∑
k

w(k | xxxt)e−`k(xt+1),

we define the instantaneous mix-loss as

(61) `mix(η,w)(xt+1) := −η−1 ln
∑
k

wη(k | xxxt)e−η`k(xt+1).

It is important to note that the mix-loss is different from the original loss
function `; I spell out the relation below. Crucially, the cumulative mix-loss
again incorporates a telescoping effect. Observing that as before

wη(k | xxxt) =
wη(k)e−ηLk(xxxt)

Z
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with Z =
∑
k wη(k)e−ηLk(xxxt), we have

Lmix(η,w)(xxx
s) =

s−1∑
t=0

`mix(η,w)(xt+1)

=

s−1∑
t=0

−η−1 ln
∑
k

wη(k | xxxt)e−η`k(xt+1)

= −η−1 ln

s−1∏
t=0

∑
k

wη(k | xxxt)e−η`k(xt+1)

= −η−1 ln

s−1∏
t=0

∑
k

wη(k)e−ηLk(xxxt)∑
k′ wη(k′)e−ηLk′ (xxxt)

e−η`k(xt+1)

= −η−1 ln

s−1∏
t=0

∑
k wη(k)e−ηLk(xxxt+1)∑
k′ wη(k′)e−ηLk′ (xxxt)

= −η−1 ln
∑
k

wη(k)e−ηLk(xxxs).

That means we can readily infer the bound

(62)
Rmix(η,w),k(xxxs) ≤ −η−1 ln

[
wη(k)e−ηLk(xxxs)

]
− Lk

= −η−1 lnwη(k)

for any predictor pk. Again, this means that, for any strategy pk, if the mean
mix-loss does not already drop below pk’s mean loss, it will at least converge
to that of pk at a rate O(1/t).

6.1.4.5. Mixable games. The catch here is that the mix-loss (61) might be
too good: it might not correspond to a possible prediction! (Note that we
defined the mix-loss `mix(η,w) as a direct generalization of the log-loss of a mix-
ture predictor, without first defining an actual generalized mixture predictor
pmix(η,w). For ` again the log-loss, and η = 1, this generalized mixture does

exist, but for other loss functions, it might not.) This is why Vovk used the
term “aggregating pseudo strategy” (APA). The derived aggregating strategy
(AA) sets this straight by inserting the step of picking an actual prediction
with a loss that matches the mix-loss as closely as possible. To be precise, let
G be the class of generalized predictions, or instantaneous loss functions of the
form

gw : x 7→ −η−1 ln
∑
k

w(k)e−η`k(x);

then the AA employs a substitution function Σ : G → P that maps a generalized
prediction g to an actual prediction p. Now the game might be such that for
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given η we can actually find a perfect substitution function Σ that satisfies

(63) `Σ(g)(x) ≤ g(x)

for all g and x. That means that there actually always exist allowed predictions
that suffer a loss no worse than the mix-loss. Hence the AA, employing such
a perfect substitution function, satisfies

LAA(η,w)(xxx
t) ≤ Lmix(η,w)(xxx

t),

and therefore gives an actual strategy that satisfies the regret bound (62).
A game for which this holds for given η we call η-mixable; we call a game
mixable if it is η-mixable for some η > 0. (The mixability of a game also has
a neat characterization as the convexity of the set of pairs (e−ηa, e−ηb)) with
`(p, 0) ≤ a, `(p, 1) ≤ b for some prediction p, see Vovk, 1998; Cesa-Bianchi and
Lugosi, 2006, 54.) The log-loss game is obviously mixable, for η ≤ 1 (see Vovk,
1998, 156): for η = 1 the AA coincides with the aggregating predictor. Less
obviously, the Brier game is mixable, too, and it is in fact so for η ≤ 2 (Vovk,
1990; Haussler et al., 1995; see Vovk, 1998, 156; note that the bound (62) is
stronger as η is larger). It is for the mixable games that we can define a notion
of predictive complexity (6.2.1 below).

6.1.4.6. Non-mixable games. But not all games are mixable—the absolute-
loss game is a case in point. What we can say in full generality is that there
always exists a substitution function Σ with

(64) `Σ(g)(x) ≤ c(η) · g(x)

where

(65) c(η) := inf{c : ∀g ∈ G ∃p ∈ P ∀x ∈ B `(p, x) ≤ c · g(x)}.

(Note that c(η) ≥ 1, with equality if the game is in fact mixable.) That means
that the AA always satisfies

LAA(η,w)(xxx
t) ≤ c(η)Lmix(η,w)(xxx

t),

so for any k we have

LAA(η,w)(xxx
t) ≤ c(η)Lk(xxxt)− c(η)

η
lnwη(k),

or

RAA(η,w),k(xxxt) ≤ (c(η)− 1)Lk(xxxt)− c(η)

η
lnwη(k).

So the AA’s mean loss converges to at most a factor c(η) of the (best) strategy
pk’s mean loss. Again, if c(η) = 1, this means that the mean loss per outcome
will at least be as good as that of pk (6.1.4.4 above); but if η > 1 this bound is
rather less interesting, as it is still consistent with the AA suffering every single
round more than a positive ε loss than the best expert (with ε depending on
the magnitude of c(η)− 1 and the minimal loss per round of the best expert).
Nevertheless, even if c(η) > 1 for all η, it might still be the case, as it indeed
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is for the absolute-loss game, that c(η)→ 1 as η → 0. That also still allows us
to define a notion of weak predictive complexity (6.3.1 below).

* * *

6.2. Predictive complexity

This section investigates the notion of predictive complexity that arises
from the theory of prediction with expert advice.

In 6.2.1, I lay out the definition of predictive complexity. In 6.2.2, I discuss
the question whether the definition succeeds to give a natural notion of the
difficulty of prediction of data sequences.

6.2.1. The definition.
6.2.1.1. The pool of all experts. The theory of prediction with expert advice

is about designing aggregating strategies that never perform much worse than
the best in the given pool of prediction methods or experts they aggregate over.
This leaves open the question of how we have selected the pool of experts in the
first place (see Vovk and Watkins, 1998, 16ff). An important part of the appeal
of the theory resides in it explicitly involving no assumptions whatsoever on
the origin of the data (recall 3.3.1 above); but such assumptions do threaten to
come in through the back door when our selection of a particular pool is guided
by the expectation that it contains experts that do well. A choice of pool of
experts is only truly assumptionless—and a strategy satisfying the constant
regret bound (62) for this pool is only truly universally good—if it is the pool
of all possible prediction methods. Note that I have begun to retrace a familiar
story: the next step is to assert that there is an obvious constraint on the
possible prediction methods, namely effective computability. This is indeed the
step taken by Vovk and Watkins (1998, 16):

instead of imposing restrictions on the Environment part we can
impose restrictions on the Learner part. Indeed, such Learner-
side limitations are very natural: we know that she must compute
her strategy . . . Instead of pools reflecting our beliefs we can
use pools reflecting Learner’s limitations such as the pool of all
computable strategies . . .

We proceed the analysis again directly on the level of the effective predictors’
losses.

6.2.1.2. The class of superloss processes. For a given game (loss function `),
I shall now refer to the cumulative loss function Lp of a prediction method p as
a loss process. Assuming that ` is computable (as the usual loss functions are),
the computable or ∆1 loss processes are precisely those corresponding to the
computable prediction methods. A loss process with a constant regret bound
relative to each computable loss process would then make for a truly universal
loss process (i.e., correspond to a truly universal prediction method)—were it
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not for the fact, all too familiar by now, that such a universal element must
itself fall outside the class of computable elements (ibid., 17):

It would be ideal if the class of computable loss processes con-
tained a smallest (say, to within an additive constant) element.
Unfortunately, for the loss functions in our games such a smallest
element does not exist: given a computable prediction strategy
S, it is easy to construct a computable prediction strategy that
greatly outperforms S on at least one . . . outcome sequence.

The proposed way to deal with this is familiar now, too. “Levin suggested (for
a particular game, the log-loss game; see below) a very natural solution to the
problem of the non-existence of a smallest computable loss process” (ibid.):
we extend the class of ∆1 loss processes to the class of Π1 superloss processes,
functions L : B∗ → [0,∞] that

(a) are upper semi-computable, or Π1 (this is the complementary prop-
erty to lower semi-computability or Σ1: function f is upper semi-
computable precisely if −f is lower semi-computable);

(b) satisfy L(∅∅∅) = 0, and for all xxx ∈ B∗, for some p ∈ P, for both x ∈ B,
L(xxxx) ≥ L(xxx) + `(p, x).

That is, we expand a diagonalizable class of computable elements to a non-
diagonalizable class of semi-computable elements. To prevent the collapse to
full computability we needed to weaken the notion of a loss process to the
definition (b) above; we can also interpret such a function as the loss process
corresponding to a method that makes superpredictions p′ that are no better
than actual predictions, i.e., that satisfy `(p′, x) ≥ `(p, x) on both x ∈ B for
some actual prediction p. (Perhaps ‘subprediction’ would have been a better
term.) The result is again that we have opened up the possibility of universal
elements—for the mixable games, anyway.

6.2.1.3. Predictive complexity. For the mixable games, our earlier work in
6.1.4.2–6.1.4.5 above immediately rewards us with a universal Π1 superloss
process: the mix-loss! To put it more precisely: for an η-mixable game, we have
that the mix-loss Lmix(η,w), for any semi-computable w over all Π1 superloss
processes, is itself a Π1 superloss process (one can easily verify (a) and (b), see
ibid., 22), and by design fulfills (62) or

Lmix(η,w) ≤+ Lk

for any Π1 superloss process Lk. This, then, gives Vovk’s measure of an η-
mixable game’s predictive complexity Kw : B∗ → R of data sequences (ibid.,
17). It is defined to be the mix-loss Lmix(η,w) with semi-computable w over all
Π1 superloss processes.

6.2.1.4. The log-loss game. Consider again the particular case of the log-
loss game. Here the loss processes are the cumulative log-loss functions, so the
functions L(·) = − lnµ(·) corresponding to all measures µ (6.1.2 above); and the
computable loss processes are clearly those corresponding to the computable or
∆1 measures. What about the Π1 superloss processes? Starting with condition



6.2. PREDICTIVE COMPLEXITY 149

(b), the functions L satisfying, for all xxx,

L(xxxx) ≥ L(xxx)− ln p(x) for x ∈ B, for some distribution p on B,

i.e., for all xxx,

L(xxxx) = L(xxx)− ln p(x) + cx for x ∈ B, for some cx ∈ R≥0, p on B,

are (by moving the constants into the scope of the logarithm) precisely those
satisfying, for all xxx,

L(xxxx) = L(xxx)− ln p′(x) for x ∈ B, for some semi -distribution p′ : x 7→ rxp(x).

Thus the superpredictions are the semi-distributions; and the functions L sat-
isfying (b) are precisely the loss processes corresponding to the semi-measures
ν. Furthermore, the condition (a) of upper semi-computability of L translates
precisely in the lower semi-computability of the correspoding ν. The Π1 su-
perloss processes are therefore precisely those loss procesess corresponding to
the Σ1 measures. What about the universal superloss processes given by the
mix-loss? The log-loss game is mixable for η = 1, so the mix-loss is the loss cor-
responding to the standard Bayesian mixture strategy; hence the mix-loss with
semi-computable prior over all Π1 superloss processes corresponds to the Bay-
esian mixture predictor with semi-computable prior over all Σ1 measures. That
is, these universal Π1 superloss processes are precisely the loss processes cor-
responding to the Solomonoff-Levin predictors. Wherefore the log-loss game’s
predictive complexity of a sequence is defined as the log-loss incurred on it by
the Solomonoff-Levin predictor.

6.2.1.5. Examples. Let me give some examples of predictive complexity on
infinite sequences in the log-loss game. Intuitively, the easiest to predict is a
computable ‘deterministic’ or single infinite sequence. Indeed, since there is a
∆1 predictor (the one corresponding to the deterministic measure generating
the sequence) that predicts it perfectly, incurring loss 0, the Solomonoff-Levin
predictor will incur not more than a single constant amount of loss and the
predictive complexity is of order O(1). This means that the mean loss per
outcome goes to 0. What about a Martin-Löf random sequence—a sequence
that is intuitively very hard to predict? Since by definition for such a sequence
xxxω

− logQU (xxxt) =+ − log λ(xxxt) =+ t,

the predictive complexity of such a sequence is of order t + O(1). In other
words, if the data is generated by the i.i.d. measure µθ with θ = 1

2 , then almost
surely the predictive complexity of the data stream is of order t + O(1), and
the mean loss per outcome goes to 1. Intuitively, moreover, the data should be
easier to predict if it is generated from an i.i.d. measure with a greater bias.
At the extreme points 0 and 1 the data is indeed again deterministic and the
predictive complexity of order O(1); but in general a data stream generated
from µθ will almost surely be a µθ-ML random sequence with a limiting relative
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frequency of 1− θ 0’s and θ 1’s wherefore

− logQU (xxxt) =+ − logµθ(xxx
t) =+ − log

(
(1− θ)(1−θ)tθθt

)
= tH(pθ),

with H the Shannon entropy that indeed has its maximum at θ = 1
2 . So, for

instance, with θ = 1
4 we have H(pθ) ≈ 0.8 hence the predictive complexity is

almost surely of order 0.8t+O(1).

6.2.2. Discussion. Vovk (2001b, 66, notation mine) writes:

The intuition behind the universal [Π1 superloss process] L is
that L(xxx) is an intrinsic measure of difficulty of a sequence xxx . . .

Can the definition of predictive complexity actually support this intuition?
6.2.2.1. From the intuition to the definition. A natural quantitative mea-

sure of the difficulty of a sequence, to a particular predictor p, is the predictor’s
cumulative loss on this sequence. (This measure is, of course, also relative to
the loss function of choice; and so is the definition of predictive complexity.) To
turn it into an intrinsic measure of a sequence’s difficulty (per a given loss func-
tion), we have to somehow lift it beyond its formulation relative to a particular
predictor, to be relative to any predictor or the universal pool of all predictors.
Again, this class is initially equated with the pool of computable predictors. At
this point we might, naively, attempt the following definition: the predictive
complexity of a sequence is the minimal loss that any (computable) predictor
incurs on it. But this leads to a trivial notion: for every finite sequence there
is a computable predictor that predicts it perfectly and so incurs no loss at all.
In order to avoid such trivialization, we can do the following: we still let the
measure be relative to a particular predictor, but we choose a predictor that
in a way represents the universal pool of all predictors. Namely, a universal
element in the universal pool of all predictors never does much worse than any
other predictor, while it is not too good because it is still a legitimate predictor
itself.

6.2.2.2. From the intuition to the definition: the final step. This is the
point where we realize that the pool of predictors corresponding to the ∆1

measures does not contain universal elements; and we are obliged to expand
to a nondiagonalizable class of Σ1 elements. There are at least two distinct
ways, however, in which we can make this step. The familiar way is to identify
the universal pool of possible predictors with those corresponding to the Σ1

measures, and to choose a universal element to represent the pool. This in-
terpretation turns out to be not just questionable for familiar reasons (6.2.2.3
below), but in fact problematic for novel reasons (6.2.2.6). A different interpre-
tation is suggested by the actual route that Vovk takes towards the definition of
predictive complexity. As we saw in 6.2.1 above, the analysis proceeds directly
at the level of loss processes instead of prediction methods: we thus expand
the class of ∆1 loss processes to the nondiagonalizable class of Π1 superloss
processes. We might, rather pragmatically, try to present the prediction meth-
ods corresponding to the Π1 superloss processes as the universal pool of all



6.2. PREDICTIVE COMPLEXITY 151

predictors; alternatively, we move right ahead to the fully pragmatic view that
the expansion to Σ1 elements is simply a device to obtain an approximation to
the losses of the original ∆1 predictors (6.2.2.7 below). Resuming the passage
I started this section with (ibid.),

The intuition behind the universal [superloss process] L is that
L(xxx) is an intrinsic measure of difficulty of a sequence xxx: the loss
of no computable prediction strategy is much less than L(xxx), but
the latter can be obtained “in the limit”.

That concludes my reconstruction of the route from the intuition to the defi-
nition. Let me now discuss the main moves in some more detail, starting from
the basic case of the log-loss game.

6.2.2.3. The Solomonoff-Levin definition as a measure of complexity. Re-
call the discussion in 5.2 about the Solomonoff-Levin predictor as implement-
ing a measure of complexity of data sequences. I conluded this discussion in
5.2.2.8 saying that while its interpretation as a general and objective measure
of simplicity-as-compressibility fails to be convincing, there always remains one
sense in which a Solomonoff-Levin predictor gives an expression of a sequence’s
complexity: simply as the difficulty it has predicting it. This is an instance of
the first step in 6.2.2.1 above: a quantification of the complexity of a sequence,
to a particular predictor, is the predictor’s loss on the sequence. But of course
any such particular complexity measure can only make a claim to generality
and objectivity insofar the corresponding predictor does. That means that, if
we seek to present the predictive complexity (in the log-loss game) as the diffi-
culty to (i.e., the log-loss incurred by) a particular Solomonoff-Levin predictor,
it inherits the issues that stand in the way of a particular Solomonoff-Levin pre-
dictor pQU ’s claim to generality and objectivity, the familiar issues of variance
and the choice of universal pool of predictors.

6.2.2.4. Variance. The issue of variance is that there is still a choice of
particular Solomonoff-Levin predictor (particular universal machine) to define
predictive complexity with (see 5.2.2 above); in general, there is still the choice
of particular universal superloss process. This is certainly a problem for the
view, suggested in the passage taken from Vovk, of any particular Solomonoff-
Levin predictor’s log-loss function (in general, any particular universal superloss
process) as quantifiying a given finite sequence’s intrinsic complexity. Never-
theless, by the invariance theorem every two choices only differ by an additive
constant; and we can still retain the view of predictive complexity as at least
measuring the growth or the order of the complexity of a data stream (5.2.2.4
above). We can distinguish between, for instance, data streams of order of
predictive complexity O(1) and t+O(1), or of t+O(1) and t

2 +O(1)—also see
the examples in 6.2.1.5 above. Thus, we alleviate the problem of variance by
taking a view of predictive complexity as tracking the order of complexity of
data streams or infinite sequences. There are, however, more serious problems
to come.
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6.2.2.5. The pool of predictors. The issue of the choice of pool of predic-
tors in the log-loss game I discussed in 4.3 above. The interpretation of the
Solomonoff-Levin predictor as a universal prediction method is barred by the
fact that the class of Σ1 measures does not correspond to a natural universal
pool of predictors or one-step conditional measures.

6.2.2.6. Superloss processes and predictors. While, therefore, the corre-
spondence between superloss processes and predictors in the case of the log-loss
is already less than satisfying, in the case of other games this correspondence
does not even seem to persist. In the log-loss case we have the nice equality
Lν = − log ν due to sequential locality, so that Lν ∈ Π1 precisely if ν ∈ Σ1.
But for any proper loss function that is not sequentially local (i.e., any proper
loss function that is not of logarithmic shape, 6.1.2.4 above) the cumulative
loss Lν depends on the individual instantenous losses `ν , that is, the individual
conditional probabilities ν(· | ·). Since these may not be Σ1—as exemplified
by the Solomonoff-Levin measures, proposition 4.1—the instantaneous losses
may not be Π1, in which case it seems unlikely in general that their sum, the
cumulative loss, is Π1 again. (To repeat, in the case of the log-loss the sum
on non-Π1 instantaneous losses is Π1 again, but this follows from the special
property of the log-loss that this sum reduces to a function of the unconditional
measure.) So a Σ1 measure may not correspond to a Π1 superloss process. (Al-
though I think this likely, I found it suprisingly tricky to actually prove it and
I have to admit that I have been unable to. I give some more details in B.2.5.)
Conversely, it seems that a Π1 cumulative loss (a Σ1 sum of predictions) is
compatible with a product of predictions that is not Σ1; which gives Π1 su-
perloss processes that do not correspond to Σ1 measures. (See again B.2.5.)
Moreover, it is certainly the case, by definition so, that for any game that is
not 1-mixable the universal Π1 superloss processes do not correspond to the
universal Σ1 measures. Note that this further implies that the pool of (univer-
sal) predictors that corresponds to the (universal) Π1 superloss processes can
differ for different games. In short, there looms a serious mismatch between ef-
fective prediction methods and effective superloss processes, which is probably
why Vovk moves away from the former and puts things directly in terms of the
latter.

6.2.2.7. Approximation of computable losses. The problem with setting
things up purely in terms of superloss processes is that it becomes unclear
how exactly we must make sense of predictive complexity as a measure of pre-
dictive complexity, a measure of the difficulty presented to prediction methods.
For that, we really do need a connection to a pool of prediction methods. (This
is certainly not solved by simply branding the superloss processes themselves
“superstrategies,” Kalnishkan, 2015, 118, or “strategies in a generalized sense,”
see Vovk, 2001a, 237.) But, again, the pool of prediction methods correspond-
ing to the Π1 superloss processes is not a very natural one. The more appealing
alternative is to forget about the interpretation of the superloss processes alto-
gether, and simply view the predictive complexity as an approximation to the
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losses of the original pool of ∆1 predictors. By design this certainly works one
way: the loss of no computable method is much less than that of the universal
Π1 superloss process. But we also need the universal Π1 superloss process not
to be too far removed from the computable methods from the other direction.
(The loss of no computable method is less than ‘always zero,’ either.) Both
directions are addressed in the passage I took from Vovk, where he says that

. . . the loss of no computable prediction strategy is much less than
L(xxx), but the latter can be obtained “in the limit”.

He continues:

The universal [Π1 superloss process] when applied to xxxt ∈ B∗

eventually learns all regularities in xxxt relevant to the on-line pre-
diction of x1, then x2, . . . , finally xt, but this process of learning
never ends: the upper semicomputability (but not computability)
of L means that there always remains [the] possibility of discov-
ering new regularities in xxxt which will decrease L’s estimate of
the loss attainable on xxxt.

But just the observation that computability “in the limit” is in some sense close
to computability is not enough: what we really need is that the universal Π1

superloss process is in some more precise sense not too good. In the above words,
might the universal Π1 superloss process not discover too many regularities,
regularities that no computable method can discover? As a matter of fact, it
does. There exist infinite sequences such that the log-loss of any computable
predictor is of order O(t), while the universal Π1 superloss is of order O(log t).

Proposition 6.2. There are sequences xxxω ∈ Bω such that

Lµ(xxxt) ≥+ t

for every µ ∈ ∆1, while
LQU (xxxt) ≤+ 3 log t

for any Solomonoff-Levin measure QU .

Proof. This follows from the existence of sequences that are computably
random yet ultracompressible (Lahtrop and Lutz, 1999). See B.2.6. �

That means that, for the purpose of an approximation to the ∆1 predictors’
losses, the universal Π1 superloss process is really too good.

6.2.2.8. Predictive complexity and descriptive complexity. Universal descrip-
tive complexity, or Kolmogorov complexity via a universal machine U , gives a
natural notion of minimum description length because, as I emphasized before
in 5.2.1.8, the class of description systems that have a decoding algorithm (with
the Church-Turing thesis, a decoder given by a Turing machine) is a natural
class of description systems. The universal class of effective decoders is (via
the Church-Turing thesis) precisely the class of Turing machines, and the uni-
versal elements among the latter, the universal Turing machines, give universal
effective decoders that in turn give a notion of universal minimum description
length. Importantly, this is a natural notion in spite of the fact that the function
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itself, the Kolmogorov complexity via universal U itself, is not computable, but
only semi-computable or Σ1. This is an aspect in which descriptive complexity
is markedly different from predictive complexity. Namely, here the relevant
class is the class of effective predictors (or effective loss processes) themselves,
and such effective prediction methods, methods that come with an algorithm
to calculate their actual predictions, must really be identified (via the Church-
Turing thesis) with the total computable or ∆1 predictors. We saw that a
method that only corresponds to a Σ1 measure strains a natural conception of
effective prediction method (4.3.2 above); and the situation is worse still for
the fact that the predictor itself need not even be Σ1 (4.3.3 above). (Again, for
the log-loss, the superloss processes are still Σ1; but this follows from the log-
loss function’s sequential locality and might not continue to hold for other loss
functions, 6.2.2.6 above.) Thus, while it is consistently highlighted in papers
on the subject that there is a formal coincidence between descriptive complex-
ity (monotone Kolmogorov complexity) and predictive complexity (at least for
the log-loss game), on an interpretational level there is an important difference
between the two, to the detriment of the latter.

6.2.2.9. Conclusion. Vovk’s notion of predictive complexity of data se-
quences must give an expression of the difficulty according to a particular pool
of predictors. In order for it to be an expression of ‘intrinsic’ difficulty, this
pool of predictors needs to be interpreted as the universal pool of all possible
predictors. But then it seems unable to escape the following dilemma. Either
it is to express the difficulty according to the particular pool corresponding
to the Π1 superloss processes, but this pool fails to be a natural one and can
hardly be interpreted as required. Or it is to express the predictive difficulty
according to the pool of ∆1 prediction methods, which is a natural choice, but
then the values it gives are too low.

* * *

6.3. Further topics

This section collects a number of topics that arose from the work in this
thesis, but that I have not been able to develop in sufficient depth to report
here in completed form. As such, this list of topics presents suggestions for—if
not promises of—future research.

6.3.1. A weaker predictive complexity. As mentioned in 6.1.4.5 above,
we can define predictive complexity for the mixable games. That is, for a game
such that for some η the constant c(η) as in (65) equals 1, there are universal Π1

superloss processes that are invariant up to an additive constant. However, as
mentioned in 6.1.4.6 above, not all games are mixable: the absolute-loss game
is not, and for this game we cannot define a predictive complexity (Kalnishkan
and Vyugin, 2002a). It is indeed the case that only the mixable games have a
predictive complexity (Kalnishkan et al., 2004).
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Nevertheless, some games that are not mixable still have the property that
c(η) → 1 as η → 0: this again includes the absolute-loss game (Kalnishkan
and Vyugin, 2002b). For such games, we can still define a weak predictive
complexity: a predictive complexity that is not invariant up to O(1), but up
to O(

√
t).

Kalnishkan and Vyugin (ibid., 108) write that the definition of “predictive
complexity up to f(n) . . . makes sense if f(n) = o(n) as n→∞,” i.e., if f(n)/n
goes to 0 as n grows. In other words, if the mean predictive complexity per
outcome is asymptotically invariant.

However, a more loose invariance means that the definition is less well-
equipped to register differences in the growth or order of complexity (6.2.2.4
above). As a simple example, compare the trivial computable sequence 0ω with
the sequence xxxω that is defined with the help of a Martin-Löf random sequence
yyyω by

xxxω(t) =

{
yyyω(
√
t) if

√
t ∈ N;

0 otherwise.

In words, xxxω is the sequence of all 0’s interpersed with one next bit from
a Martin-Löf random sequence at each position that is a square number—a
sequence that is intuitively quite unpredictable! A predictive complexity that
is invariant up to O(1) can indeed distinguish 0ω of complexity order O(1) from
xxxω of complexity order O(1)+

√
t, but a predictive complexity that is invariant

up to O(
√
t) is too coarse-grained to register the difference between the two.

Given that predictive complexity with invariance up to O(1) is impossible
for non-mixable games like the absolute-loss game, we cannot improve on this
definition in full generality; but we might still be able to strengthen it in special
cases. Namely, we might be able to define a notion of predictive complexity
that has a stronger invariance in the case of easy data. We might be able to
define a notion that is invariant up to O(

√
t) in general, but more fine-grained

in the natural cases where it is possible to predict succesfully; for instance,
when the data is in fact generated by an i.i.d. source with a strong bias, or is
a deterministic sequence with a clear structure.

An interesting case of easy data is when there is at least one prediction
method (superloss process) that does very well or indeed near perfect on the
data. This case was suggested in this context by Wouter Koolen: and he
described a definition of a Π1 superloss process, as a mixture with changing
learning rate (a version of the Squint algorithm of Koolen and Van Erven,

2015), that is invariant up to order mink
√

2Lk(xxxt)(− lnw(k) + ln ln t) +O(1),

hence invariant up to O(
√
t) in general but more fine-grained whenever there

is a superloss process that does well.
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6.3.2. Prediction and randomness. In A.4, I explain the notion of
Martin-Löf randomness and its predictive characterization. In this charac-
terization, a sequence xxxω is ML-random relative to computable µ (or µ-ML-
random) precisely if QU (xxxt) =× µ(xxxt), or equivalently, LQU (xxxt) =+ Lµ(xxxt)
with L the cumulative log-loss.

This is a direct characterization of ML-randomness in terms of Vovk’s pre-
dictive complexity for the log-loss game (given by the Π1 superloss process
LQU ), which invites a straightforward generalization to randomness for other
games, like the Brier game, that is similarly put in terms of the game’s pre-
dictive complexity (Vovk, 2001b). However, the interpretation of this notion
of randomness is susceptible to the same critique, set out in 6.2 above, that
applies to the notion of predictive complexity, and that is rooted in the uncon-
vincing link between the class of Π1 superloss processes and a natural class of
prediction strategies.

Perhaps a more natural road is to explicitly define a notion of randomness
relative to a given pool of prediction methods, in accordance with the above
characterization. Thus, given a pool of H of (measures corresponding to) pre-
diction methods, and µ ∈ H, we say that a sequence xxxω is µ-H-random if for
all µ′ ∈ H it holds that

(66) µ′(xxxt) ≤× µ(xxxt),

or equivalently (with L the cumulative log-loss),

(67) L′µ(xxxt) ≥+ Lµ(xxxt).

In words, a sequence is µ-random relative to a pool of (measures corresponding
to) prediction methods, if no prediction method in the pool is more successful
on this sequence than (the predictor corresponding to) µ is.

From this perspective, Martin-Löf randomness is not a terribly natural
notion, because, as argued extensively in this thesis, the corresponding pool
M of (prediction methods corresponding to) Σ1 measures is not a terribly
natural class. Things are actually worse for the fact that the original test
characterization breaks down for randomness relative to elements of M that
are not ∆1 measures (A.4.2.7).

Superficially, this analysis connects to the occasional discussion in the
field of algorithmic randomness on the ‘right’ notion of randomness within
the “randomness zoo” of existing notions (a recent example is Porter, 2016).
While Martin-Löf randomness is often presented as the most convincing notion
(e.g., Dasgupta, 2011), it also has properties that strain intuition. For one
thing, Chaitin is (in)famous for making the claim that the halting probability
Ω =

∑
xxx:T (xxx)↓ λ(xxx) of a universal prefix-free machine, which gives an infinite

sequence that is λ-ML-random (and that encodes the solutions to Diophan-
tine equations), illustrates how number theory is beset by randomness; but
a more sober observation is that a sequence that still has so much structure,
that is indeed left-c.e., hardly qualifies as random (cf. Van Lambalgen, 1989).
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In fact, the Martin-Löf random sequences still have so much structure that
every sequence is computable from some ML-random sequence (Gács, 1986).
In response to this, some have argued for stronger (more restrictive) notions
of randomness; in particular (Osherson and Weinstein, 2008), for the notion
of weak 2-randomness (Kurtz, 1981; Gaifman and Snir, 1982; see Downey and
Hirschfeldt, 2010, 287f). Others have actually argued for weaker notions of
randomness: notably, Schnorr (1971a) felt that the ML-test concept is at too
high a level of effectiveness (also see A.4.1.3) and proposed stricter ones.

From our earlier predictive perspective, it is in fact natural to advance
a weaker notion of randomness. Namely, the pool of computable prediction
methods is a natural pool of strategies, thus leading to a natural notion of a
sequence being µ-random if there is no strategy that beats µ on this sequence.
This notion is known as computable randomness in the literature: the predictive
(or martingale) characterization goes back to Schnorr (1971a; 1971b), and it
also allows for characterizations in terms of tests and complexity (Downey
et al., 2004; Merkle et al., 2006; see Downey and Hirschfeldt, 2010, 279ff). It
is often taken as a downside of this and other notions that, unlike for Martin-
Löf’s definition, there are no universal tests (or universal superloss processes,
or universal prediction methods, . . . ) available (cf. ibid., 275f). However, while
it is mathematically convenient to have a characterization in terms of a single
universal element (and while this was important in obtaining a complexity
measure), this is not at all necessary for a notion of randomness along the lines
set out here.

A further question is whether other important randomness notions also
admit of a natural predictive (martingale) interpretation; in particular, what
pools of prediction methods these would specify. Interestingly, for instance,
it is still an open question what kind of martingale characterization could be

given, if one can be given at all, for the notion of weak 2-randomness.26

6.3.3. Prediction with expert advice and meta-induction. Schurz
(2008) proposes a meta-inductive justification of induction in the setting of
sequential prediction, based on results from prediction with expert advice.

The naive reply to the problem of induction is that induction is justified
because it has been successful in the past. Naive, because this suggested jus-
tification is either circular (it requires induction itself), or, on a more refined
perspective, must rest on a higher principle of induction (the justification of
object-induction on the level of data requires meta-induction on the level of
methods), which itself begs for justification and so sets in motion an infinite
regress (recall I.1; also see Skyrms, 2000). Now Schurz’s idea is essentially
that this regress may be halted directly at the second level: it is possible to
give a purely analytic justification of meta-induction. If we tie in this analytic
justification with the empirical observation that object-induction has in fact



158 6. PREDICTIVE COMPLEXITY

been successful in the past, then meta-induction instructs us to proceed object-
inductively; and this, Schurz argues, comes down to an a posteriori justification
of object-induction.

The crucial analytic justification of meta-induction is grounded in results
in prediction with expert advice on the optimality of aggregating predictors. In
particular, Schurz bases much of his analysis on the weighted average forecaster
described in Cesa-Bianchi and Lugosi (2006, 12ff), that weighs a finite pool of
predictors directly based on their past performance, and that can be shown,
for all convex loss functions, to incur a mean loss converging to that of the
best predictor in the pool. The weighted average forecaster, or meta-inductive
method, follows those predictors that have been successful in the past; and this
strategy is provably optimal in the above sense.

By clearly separating object-induction on the level of the observation data
and meta-induction on the level of prediction strategies, Schurz manages to give
a precise form to Reichenbach’s fundamental observation that induction picks
up the past success of alternative methods. Does Schurz’s proposal succeed in
giving a justification of induction?

Of course, there is the basic concern that the framework of sequential pre-
diction falls short of capturing the essence of inductive inference (I.1 above),
and so a justification within this framework falls short of the real goal: to jus-
tify inductive or scientific reasoning (cf. Arnold, 2010, 591). Another possible
concern is that Schurz assumes that there is something like the object-inductive
method, thus simply side-stepping Goodman’s new riddle (2008, 279). How-
ever, as also noted in I.1, the problem of induction derives its bite from there
being something we can identify as scientific or inductive reasoning; and there-
fore the right approach here would be to consider things from a very general
perspective, where we distinguish ‘the scientific method’ from a number of
other ‘methods’ like accepting the predictions of politicians or consulting horo-
scopes. Then, since as a matter of empirical fact science has been the most
successful of known methods up to this point in human history, we would be
meta-inductively justified to keep following it: this is the proposed justification
of induction. Note, though, that this does not give a full-blown justification of
the scientific or object-inductive method: it might be the case that in the future
the scientific method will become less successful than some other method, and
then we will be meta-inductively pressed to use this method. Thus this would
only be a justification for sticking with the scientific method for now.

Arnold (2010) argues that the analytic justification of meta-induction does
not extend to aggregating predictors over infinitely many predictors, and that
this is a problem for Schurz’s proposal. As for the first point, in case of an
infinite pool of predictors there are some differences: most importantly, an
aggregating predictor must use weights that not only express the predictors’
success but also some prior loading. This means that uniform convergence is
no longer possible in general, but at least for the mixable loss functions an
aggregating predictor is still optimal in the sense of always converging to not



6.3. FURTHER TOPICS 159

more than any given predictor’ losses (the notion of optimality I studied in this
thesis). As for the second point, what Arnold seems to drive at here is a univer-
sally optimal method, that is optimal relative to the infinite pool of all possible
predictors. This is, of course, what I discussed in this thesis, and argued to be
impossible. However, in Schurz’s proposed justification, as I reconstructed it
above, all that needs to be taken into account are the necessarily finitely many
alternatives to the scientific method that have been suggested to us so far.

The latter does point at a different aspect that is of interest. Namely, there
is the possibility of new alternative methods being suggested over the course
of time, and this needs to be taken into account if Schurz’s justification is to
work. This asks for spelling out how exactly new methods are dynamically
incorporated by the meta-inductive strategy, and whether and in what sense
the analytic optimality is preserved. Certainly in case this can be made to
work, it promises to be very instructive to relate this to the discussion in 4.1
above on the fixity of the methods and the structurally similar issue of Bayesian

theory change.27

*
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APPENDIX A

Supplementary material

This appendix gathers and explains concepts, mostly from algorithmic in-
formation theory, that are peripheral to the main story, but still used through-
out the thesis.

In A.1, I present the Σ1 semi-distributions as stemming from the restriction
of monotone machines to prefix-free machines. In A.2, I present the notions of
description and coding systems from information theory, with an eye to their
role in algorithmic information theory. In A.3, I present notions of Kolmogorov
complexity (particularly, the prefix-free and the monotone variant) as the uni-
versal description length functions for effective description systems. Here I also
present a novel generalization of prefix-free Kolmogorov complexity, including
a generalized coding theorem, theorem A.16. In A.4, I present the notion of
Martin-Löf randomness, including a predictive interpretation.

A.1. The Σ1 semi-distributions

A.1.1. Prefix-free machines. I will present prefix-free machines here as
a variant of monotone machines (introduced in 2.1.2.4 above). The basic idea is
to limit monotone machines in such a way that for each infinite input sequence
at most one finite output sequence is produced. There are at least two ways to

make this conception perfectly precise (Shen et al., 20xx, 91ff).28

A.1.1.1. Prefix-stable machines. Consider the c.e. sets M of pairs of se-
quences that satisfy the following strengthening of characterization (14) in
2.1.2.4 above:

(68) if (xxx1, yyy1), (xxx2, yyy2) ∈M and xxx1 4 xxx2 then yyy1 = yyy2.

The induced functions ΦM that are defined as before by (15) are such that
if ΦM (xxx) is defined at all then Φ(xxx′) = Φ(xxx) for all extensions xxx′ < xxx. The
monotone machines that adhere to (68) are called the prefix-stable machines
(Levin, 1974, 207; Gács, 1974, 1477; see Shen et al., 20xx, 91; Gács, 2016, 3).

A.1.1.2. Prefix-free machines. But notice that (68) implies that M is al-
ready the graph of a function itself. These functions are exactly the p.c. func-
tions with prefix-free domain, which is the usual characterization of prefix-free
or self-delimiting machines (Chaitin, 1975, 330f; see Shen et al., 20xx, 91; Li
and Vitányi, 2008, 200f; Nies, 2009, 83; Downey and Hirschfeldt, 2010, 122).
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Definition A.1 (Levin, Gács, Chaitin). A prefix-free machine is a p.c.
function T : B∗ → B∗ with prefix-free domain.

We then call xxx a (prefix-free) T -description of yyy precisely if T (xxx) = yyy.
A.1.1.3. Universal prefix-free machines. A universal prefix-free machine is

given by

U(zzzexxx) = yyy :⇔ Te(xxx) = yyy

for all xxx,yyy ∈ B∗ and some computable prefix-free list {zzze}e of sequences that
serves as an encoding of an enumeration {Te}e∈N of all prefix-free machines.

A.1.2. The Σ1 semi-distributions. A transformation of λ by a prefix-
stable machine (a type of monotone machine) is, of course, a Σ1 measure on
Bω ∪ B∗ (see 2.1.2 above). But now consider just the minimal descriptions of
M , those xxx with (xxx,yyy) ∈ M for some yyy but not (xxx′, yyy) ∈ M for any prefix
xxx′ ≺ xxx. The set of all minimal xxx is prefix-free, by (68). This means, by the
Kraft inquality (see A.2.2.1), that the sum of the uniform probabilities of these
descriptions is bounded by 1. That in turn means that the uniform probabilities
of the descriptions induce a probability (semi-)distribution on B∗ (with positive
probability for those sequences that actually have a description). It is in this
spirit that we define a transformation on prefix-free machines.

A.1.2.1. Transformations. Analogous to definition 2.3 above for monotone
machines, we define the transformation of λ by prefix-free machine T by

λT (yyy) : = λ({xxx : (xxx,yyy) ∈ T})

=
∑

xxx: T (xxx)=yyy

λ(xxx).

Like in 2.2.1.1 above, this definition can be generalized to any ∆1 measure.

Definition A.2. The transformation µT of µ by prefix-free T is given by

µT (yyy) =
∑

xxx: T (xxx)=yyy

µ(xxx).

A.1.2.2. The ∆1 distributions. If the prefix-free set of T -descriptions is
complete, meaning that the sum of their uniform (or in general, µ-) probabili-
ties equals 1, then also

∑
yyy∈B∗ µ(yyy) = 1. Thus µT is a probability distribution

p over the finite sequences B∗. Morever, since for µ ∈ ∆1 we can computably
approximate µT (yyy) to any desired accuracy (we can both computably approxi-
mate µT (yyy) and 1−µT (yyy) =

∑
yyy′∈B∗\{yyy} µT (yyy′) from below), µT is a computable

or ∆1 distribution over B∗.
A.1.2.3. The Σ1 semi-distributions. In general, a transformation µT is a

semi-distribution over B∗, meaning that
∑
yyy∈B∗ µT (yyy) ≤ 1. Moreover, if µ is ∆1,

then µT is semi-computable or Σ1. Conversely, for any continuous ∆1 measure
µ, we have that every Σ1 semi-distribution over B∗ equals the transformation
of µ by some prefix-free T . Let Q denote the class of all Σ1 semi-distributions
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over B∗. We thus have the following analogue to proposition 2.10 about the Σ1

measures.

Proposition A.3. For every continuous ∆1 measure µ,

{µT }T = Q,

where the T range over all prefix-free machines.

Proof. See B.1.2.

A.1.2.4. Universal Σ1 semi-distributions. The notions of dominance and
universality are also inherited from the Σ1 measures. A semi-distribution q1

on B∗ dominates another semi-distribution q2 if there is a constant c such that
for every xxx ∈ B∗ it holds that

q1(xxx) ≥ c−1q2(xxx),

also written ‘q1 ≥× q2.’ A universal Σ1 semi-distribution dominates every Σ1

semi-distribution:

Definition A.4. A universal Σ1 semi-distribution q̊ is such that for every
Σ1 semi-distribution q we have

q̊ ≥× q.

A.1.2.5. Universal transformations: the Levin-Chaitin semi-distributions.
A universal Σ1 semi-distribution is given by a universal transformation of λ by
a universal prefix-free machine. I will refer to these universal transformations as
the Levin-Chaitin semi-distributions, as the definition was first independently
described by Levin (1974, 207) and Chaitin (1975, 332).

Definition A.5 (Levin, Chaitin). The Levin-Chaitin semi-distribution qU
via universal prefix-free machine is the universal transformation λU .

The class LC of Levin-Chaitin semi-distributions coincides with the class
of universal transformations of any continuous ∆1 measure µ.

Proposition A.6. For every continuous ∆1 measure µ,

{µU}U = LC,

where the U range over all universal prefix-free machines.

Proof. This can be derived in a manner identical to the proof of theorem
2.13 about the Solomonoff-Levin measures: see B.1.5, B.1.6.

* * *
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A.2. Description and coding systems

A.2.1. The basic definitions. I repeat the notions of description sys-
tem and code from 5.2.1.1 above. (Terminology varies in the literature; I follow
Grünwald, 2007, 79ff.) Let Ω be a countable set of source elements. A descrip-
tion system for Ω is a set D ⊆ Ω × B∗ of pairs of source elements and their
description sequences in B∗, so that D(a,xxx) means that xxx is a description of a.
A coding system is a description system that is a function itself, meaning that
each source sequence has a unique description or code.

A.2.2. Prefix description and coding systems. A description system
is prefix-free or simply prefix if no description is an initial segment of another.
We further stipulate that a prefix description system is not lossy : each descrip-
tion corresponds to a unique source sequence. Then each prefix description
system comes with a decoding function D−1 that maps descriptions to their
source sequences.

A.2.2.1. The Kraft inequality. The basic fact underlying the link between
description lengths and probabilities is the Kraft inequality (1949; McMillan,
1956).

Proposition A.7 (Kraft inequality). For every prefix-free set A ⊆ B∗ it
holds that

∑
xxx∈A 2−|xxx| ≤ 1. Conversely, for every (possibly infinite) sequence

l1, l2, . . . of lengths in N with
∑
i 2−li ≤ 1, there is a prefix-free set A =

{xxx1,xxx2, . . . } with |xxxi| = li for all i.

A.2.2.2. Request sets. A way of giving meaning to the converse direction
is the following. (See Nies, 2009, 86ff.) Let a request set {(ai, li)}i be a list of
pairs of source elements and integer lengths. Then for any request set that we
specify, as long as

∑
i 2−li ≤ 1 (we say that the request set is bounded), we are

guaranteed the existence of a prefix description system D with descriptions xxxi
such that D−1(xxxi) = ai and |xxxi| = li. If, in addition, ai 6= aj for i 6= j, there
exists a prefix coding system C with descriptions xxxi such that C(ai) = xxxi and
|xxxi| = li for all i.

A.2.2.3. Prefix code length functions and semi-distributions. Define LC :
a 7→ |C(a)| to be the code length function for coding system C. The first part
of the Kraft inequality tells us that for prefix coding system C we have that

(69) PC(·) := 2−LC(·)

satisfies
∑
a∈Ω PC(a) ≤ 1, i.e., is a semi-distribution on Ω. Conversely, for

any semi-distribution P , the set of requests (a, d− logP (a)e) for all a ∈ Ω
is bounded, hence there is a prefix coding system C that satisfies LC(·) =
d− logP (·)e. Writing ‘LP ’ for the unique code length function of any such C,
we can rephrase: for every distribution P we have a prefix code length function
LP with

(70) LP (·) = d− logP (·)e.
(Also see Cover and Thomas, 2006, 107ff; Grünwald, 2007, 91ff.)
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A.2.2.4. Example. Consider the set of source elemens Ω = {a1, a2, a3, a4}.
A coding system for Ω is C = {(a1, 0), (a2, 11), (a3, 100), (a4, 101)}. The corre-
sponding code length function LC assigns to (a1, a2, a3, a4) the values (1, 2, 3, 3);
and the probabilities via (69) are ( 1

2 ,
1
4 ,

1
8 ,

1
8 ). Conversely, a semi-distribution

P on Ω is given by ( 1
3 ,

1
6 ,

1
6 ,

1
6 ). This results via (70) in the code length func-

tion LP that gives lengths (2, 3, 3, 3), instantiated by (for instance) the codes
(00, 010, 011, 100).

A.2.2.5. Complete prefix code length functions and distributions. The last
example started with a strict semi-distribution (i.e., the probabilities did not
sum to 1), which gave a code length function that is incomplete. That is,
there are coding systems C ′ that are more efficient : LC′(a) ≤ LC(a) for all
source elements a ∈ Ω, with strict inequality for at least one element (for
example, the last code 100 could safely be replaced by the code 1 to give a
more efficient C ′). In general, proper probability distributions (like the first
example above) correspond to prefix coding systems C that are complete—at
least in the idealized case.

A.2.2.6. Idealized prefix codes. The correspondence between semi-distribu-
tions and prefix code length functions is not 1-1 because code lengths are in-
tegers, which calls for the rounding-off in (70). In general, however, it is an
unneccessary inconvenience to worry about the minor influence of this correc-
tion, and indeed the approach taken in MDL is to simply assert that there
is a 1-1 correspondence between semi-distributions and idealized code length
functions that return real-valued code lengths (Grünwald, 2007, 95f). That
is, every semi-distribution P corresponds uniquely to an idealized code length
function LP given by

(71) LP (·) = − logP (·).

A.2.2.7. Prefix description systems and semi-distributions. If we permit
source sequences to have multiple descriptions, there are at least two ways we
can define a description length function. We can take the length of the shortest
description,

(72) LD(a) := min{|xxx| : (a,xxx) ∈ D}.

In that case, LD is just the description length function of the code obtained
from D by deleting the pairs that do not change (72), and we have the corre-
spondence to semi-distributions as in A.2.2.3 above. Alternatively, we can take
into account all descriptions and define LD by

(73) LD(a) := − log
∑

xxx: (a,xxx)∈D

2−|xxx|,

which is motivated by the following correspondence to semi-distributions. The
first part of the Kraft inequality tells us that for prefix description system D



168 A. SUPPLEMENTARY MATERIAL

we have that

PD(·) : =
∑

xxx: (·,xxx)∈D

2−|xxx|

= 2−LD(·)

is again a semi-distribution on Ω. Conversely, for any semi-distribution P ,
there exists a bounded request set R = {(ai, li)} with

∑
l:(a,l)∈R 2−l = P (a)

for each a (every real can be expressed as a sum of binary powers—viz. the
binary expansion), hence there is a prefix-free description length function LP
that satisfies

(74) LP (·) = − logP (·).

Note that this gives a 1-1 correspondence between semi-distributions and de-
scription length functions, in contrast to (70).

A.2.2.8. The KC theorem. In the following, I will take the set Ω of source
elements to be the set B∗ of finite sequences, too. Let an effective prefix descrip-
tion system D be such that the decoding function D−1 is given by a prefix-free
machine (see A.1.1.1 above). Effective prefix description systems and com-
putably enumerable bounded request sets are linked by the following effective
version of the Kraft inequality, that I shall call the KC theorem, following
Downey and Hirschfeldt (2010, 125) who write

This result is usually known as the Kraft-Chaitin Theorem, as it
appears in [Chaitin, 1975, 333f], but it appeared earlier in [Levin,
1974] . . . There is also a version of it in [Schnorr, 1973, 380]. In
[Chaitin, 1975], where the first proof explicitly done for prefix-
free complexity seems to appear, the key idea of that proof is
attributed to Nick Pippinger. Thus perhaps we should refer to
the theorem by the rather unwieldy name of Kraft-Levin-Schnorr-
Pippinger-Chaitin Theorem. Instead, we will refer to it as the KC
Theorem. Since it is an effectivization of Kraft’s inequality, one
should feel free if one wishes to regard the initials as coming from
“Kraft’s inequality (Computable version)”.

Theorem A.8 (KC theorem). For every prefix-free machine T , the set
{(T (xxx), |xxx|) : T (xxx) ↓} is a c.e. bounded request set. Conversely, for every
c.e. bounded request set {(yyyi, li)}i, we can (effectively) construct a prefix-free
machine T with domain {xxxi}i such that T (xxxi) = yyyi and xxxi = li.

Proof. See Downey and Hirschfeldt (2010, 125f); Nies (2009, 88f). Al-
ternatively, see the proof in B.1.2 below of proposition A.1.2.1 above.

A.2.2.9. Effective prefix description systems and Σ1 semi-distributions. Gi-
ven effective description system D, consider the length function LD defined as
in (73) above. (If we define LD as in (72) we are led to the notion of Kol-
mogorov complexity, see A.3.1 below.) From the KC Theorem it follows that
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for our D we have that

PD(·) = 2−LD(·)

=
∑

xxx: T (xxx)=·

2−|xxx|

is a semi-distribution, that is Σ1 because the set {(T (xxx), |xxx|) : T (xxx) ↓} is c.e.
(we can effectively enumerate the lengths of descriptions that lead T to pro-
duce given yyy). Conversely, for every Σ1 semi-distribution P , we can effectively
construct a bounded request set R = {(yyyi, li)} with

∑
l:(yyy,l)∈R 2−l = P (yyy) for

each yyy, hence we can (effectively) construct an effective prefix-free description
system D that satisfies LD(·) = − logP (·). Thus every Σ1 semi-distribution
corresponds to a Σ1 description length function LP with

(75) LP (·) = − logP (·).

A.2.2.10. Transformations and Σ1 semi-distributions. Note that we can
rewrite PD above as

PD(·) =
∑

xxx: T (xxx)=·

λ(xxx).

Consequently, the correspondence between Σ1 semi-distributions and effective
prefix description systems is precisely the correspondence between Σ1 semi-
distributions and transformations of λ by prefix-free machines (A.1.2.1 above),
i.e., an instance of proposition A.3 above.

A.2.3. The Shannon entropy. Let p be a probability distribution over
a countable outcome space Ω (like B∗, or B). The Shannon entropy of a dis-
tribution p is the p-expected code length of the corresponding (idealized, see
A.2.2.6 above) prefix code length function Lp.

Definition A.9. The Shannon entropy of distribution p is

H(p) := EX∼p [− log p(X)]

= EX∼p [Lp(X)] .

A.2.3.1. The information inequality. The information inequality or Gibb’s
inequality (see MacKay, 2003, 34; Cover and Thomas, 2006, 28) says that the
optimal p-expected code length is given by the idealized code length function
Lp: any idealized Lq for q different from p will result in a greater p-expected
code length.

Proposition A.10 (Information inequality). For all distributions p, q,

H(p) ≤ EX∼p [− log q(X)]

= EX∼p [Lq(X)] ,

with equality iff p = q.
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Proof. We derive

EX∼p [− log p(X)] = EX∼p [− log q(X)] + EX∼p

[
log

q(x)

p(x)

]
≤ EX∼p [− log q(X)] + log EX∼p

[
q(x)

p(x)

]
= EX∼p [− log q(X)] + log

∑
x∈Ω

q(x)

= EX∼p [− log q(X)] ,

where the inequality follows from Jensen’s inequality, that says that for a convex
function f , like f(·) = − log ·, it holds that f(E [·]) ≤ E [f(·)]; hence for a
concave function, like f(·) = log ·, the reverse inequality. �

Since every idealized prefix code length function for Ω corresponds to some
distribution on Ω, the information inequality indeed states that

H(p) ≤ E [LC(X)]

for every idealized coding system C, with, again, equality iff LC = Lp.
A.2.3.2. The Kullback-Leibler divergence. The extent to which the p-expected

code length given by Lq is worse than that given by Lp is expressed by the rel-
ative entropy of p with respect to q or the Kullback-Leibler divergence from q
to p.

Definition A.11. The Kullback-Leibler divergence from q to p is

D(p ‖ q) := EX∼p

[
− log q(X)

− log p(X)

]
= EX∼p [Lq(X)− Lp(X)]

The information inequality, proposition A.10 above, says that the Kullback-
Leibler divergence is nonnegative,

D(p ‖ q) ≥ 0,

with equality iff p = q.
A.2.3.3. The source coding theorem for symbol codes. From all of the pre-

vious it quickly follows that, first, the Shannon entropy of p puts a lower bound
on the p-expected codelength of any actual (i.e., nonidealized) coding system,
and, second, that there always exists a coding system with p-expected code-
length within one bit of p’s entropy.

Theorem A.12 (Source coding theorem for symbol codes, Shannon). For
every distribution p, for every prefix coding system C,

EX∼p [LC(X)] ≥ H(p),

and there exists a code C with

EX∼p [LC(X)] < H(p) + 1.
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Proof. The first inequality can be derived from the information inequal-
ity and the Kraft inequality, propositions A.10 and A.7 above (cf. MacKay,
2003, 97). The second inequality is fulfilled by the codelength function L(·) =
d− log p(·)e, which corresponds to a valid coding system by the Kraft inequality
(A.2.2.3 above). �

A.2.3.4. The source coding theorem and the AEP. Shannon’s source coding
theorem for symbol codes must be distinguished from Shannon’s source coding
theorem simpliciter. This is rather a statement about lossy compression and
equivalent to what is known as the asymptotic equipartition property ; it is
basically a variant of the weak law of large numbers. For details, see MacKay
(2003, 74ff); Cover and Thomas (2006, 57ff).

A.2.3.5. Competitive optimality and no-hypercompression. The Shannon
entropy also gives optimal codelengths in a competitive sense, as follows (see
Cover and Thomas, 2006, 130ff). For distribution p on outcome space Ω and
any prefix-code C on Ω, we have that the probability of an outcome x such
that LC(x) ≤ H(p) − c is no greater than 2−c. This can be restated as what
Grünwald (2007, 103) calls the no-hypercompression inequality, and what gives
content to the assertion in 6.1.2.8 that it is hard to achieve low log-loss: for
every measure µ∗, and second measure µ, on Bω, the µ∗-probability of a finite
sequence xxx such that − logµ(xxx) ≤ − logµ∗(xxx) − c is no greater than 2−c. For
instance, this directly implies that a sequence generated from the i.i.d. mea-
sure µ1/2 is only significantly compressible with vanishing probability. In fact,
this is already quite easy to see from a purely combinatoric point of view: the
fraction of data sequences of length t that can be mapped to a unique sequence
that is c bits shorter decreases exponentially in c. The same combinatorial fact
returns in the property that most sequences have a Kolmogorov complexity
that is close to their length (Li and Vitányi, 2008, 116ff), and indeed in the
property that the preditive complexity of most sequences is close to that given
by the indifferent strategy (Kalnishkan et al., 2005).

A.2.4. Sequential description systems. In the same way that prefix-
free machines are the decoding functions for a certain type of effective descrip-
tion system, that stands in direct correspondence to the Σ1 semi-distributions,
we can define a type of description system that the monotone machines are
the decoding functions for, and that corresponds to the Σ1 measures. In the
following I will again take the class of source elements Ω = B∗.

A.2.4.1. Definition. A sequential description system D has the following
properties. First, if xxx is a description of yyy, so (yyy,xxx) ∈ D, then all its extensions
are also descriptions of all initial segments of yyy, so (yyy′,xxx′) ∈ D for all xxx′ < xxx
and yyy′ 4 yyy. Second, if (xxx1, yyy1), (xxx2, yyy2) ∈ D for two descriptions yyy1 and yyy2

that are compatible, then source sequences xxx1 and xxx2 must be compatible too.
(Cf. Shen et al., 20xx, 140.) In order to define a description length function for
such a sequential description system D, it is easier to work with the induced
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minimal description system D̂, with (yyy,xxx) ∈ D̂ if and only if (yyy,xxx) ∈ D and
not (yyy,xxx′) ∈ D for any shorter xxx′ ≺ xxx.

A.2.4.2. Examples. Consider the sequential description system D with, for
every yyy, pair (yyy,xxx) ∈ D for xxx = yyy. That is, each source sequence has itself
as a description. But then also (yyy′,xxx′) ∈ D for all xxx′ < yyy and yyy′ 4 yyy. That
is, for every yyy, every extension xxx′ of yyy is also a description for every initial
segment yyy′ of yyy. Now the corresponding minimal description system D̂ is such
that for every yyy, (yyy,xxx) precisely if yyy = xxx: that is, the minimal description
for yyy is again yyy itself. This description system leads to the uniform measure
λ, via the correspondence explained below. As another example, take some
infinite sequence yyyω ∈ Bω. Let us now define two different D1 and D2. The
first, D1, is such that for every t ∈ N, (yyyt,xxxt) ∈ D1 for every xxxt; that is,
every sequence of length t is a description for yyyω’s initial segment of length
t. The corresponding minimal description system D̂1 also has those and only
those pairs. The second is such that for every t, (yyyt,xxx) for every xxx ∈ B∗:
one can say that every sequence is a description for the whole of yyyω. The
minimal description system contains for every t only the pair (yyyt,∅∅∅): one can
say that the empty sequence is already a description for the whole of yyyω. Both
description systems lead to the deterministic measure that assigns probability
1 to yyyω, via the correspondence explained below. (But note the difference
between the two when we use the description length function given by (76)
rather than (77) below!)

A.2.4.3. Sequential description systems and measures on Bω ∪ B∗. To de-
fine a description length function LD for sequential description system D, we
consider the induced minimal description system D̂, with D̂(yyy,xxx) if and only

if D(yyy,xxx) and not D̂(yyy,xxx′) for any shorter xxx′ ≺ xxx. Then we can again define
the description length function either by

(76) LD(yyy) := min{|xxx| : D̂(yyy,xxx)}

or by

(77) LD(yyy) := − log
∑

xxx: D̂(yyy,xxx)

2−|xxx|.

For the latter definition we have that for any sequential D the function

nD(·) = 2−LD(·)

=
∑

xxx: D̂(·,xxx)

2−|xxx|

satisfies nD(∅∅∅) ≤ 1 and nD(xxx0) + nD(xxx1) ≤ nD(xxx) for all xxx ∈ B∗, hence is
a pre-measure to a measure on Bω ∪ B∗. Conversely, for every measure ν on
Bω ∪ B∗ there is a sequential description system Dν with

(78) LDν (yyy) = − log ν(JyyyK)
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for all yyy ∈ B∗. The proof of this correspondence is covered by the proof of
the correspondence between effective sequential description systems and Σ1

measures.
A.2.4.4. Effective sequential description systems and Σ1 measures. A mono-

tone machine M gives a decoding for a sequential description system D in the
sense that D(yyy,xxx) precisely if xxx is an M -description for yyy, i.e., ΦM (xxx) < yyy.
(This is no surprise given that the definition in A.2.4.1 above is designed to
fit the definition of monotone machine in 2.1.2.4 above.) We call the D that
are thus given by monotone machines the effective sequential description sys-
tems. Now consider the description length functions of the effective sequential
descriptions systems, defined as in (77). (If we define LD as in (76) we are
again led to a variant of Kolmogorov complexity, see A.3.2 below.) Then for
any effective sequential D with decoding given by monotone M we have that
the function

nD(·) = 2−LD(·)

=
∑

2−|xxx| Jxxx : ΦM (xxx) < · & ¬∃xxx′ ≺ xxx. ΦM (xxx′) < ·K

is a pre-measure to a measure on Bω ∪ B∗, that is Σ1 because we can effec-
tively approximate from above the minimal M -description lengths for given yyy.
Conversely, for every Σ1 measure ν on Bω ∪ B∗, we can (effectively) construct
a monotone machine that is the decoding function to a description system Dν

with

(79) LDν (xxx) = − log ν(JxxxK)

for all xxx ∈ B∗.
A.2.4.5. Transformations and Σ1 measures. Note that the unwieldy ex-

pression for nD above can be rewritten as

nD(·) = λ(Jxxx : ∃yyy′ < ·. (xxx,yyy′) ∈MK).

This shows that, similar to the prefix case, the correspondence between Σ1

measures and effective sequential description systems is precisely the correspon-
dence between Σ1 measures and transformations of λ by monotone machines
(2.1.2.6 above), i.e., proposition 2.5 (an instance of proposition 2.10) above.
For the proof of the correspondence between Σ1 measures and prequential de-
scription systems I therefore refer to the proof of proposition 2.10, in B.1.1
below.

A.2.4.6. The Solomonoff-Levin measures. In particular, the Solomonoff-
Levin measures were defined as the universal uniform transformations λU . The
Solomonoff-Leven measures are thus precisely those measures corresponding to
the sequential description systems with decoders that are universal monotone
machines.

* * *
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A.3. Kolmogorov complexity

Here I continue A.2 by presenting versions of Kolmogorov complexity as
description length functions for different effective description systems.

A.3.1. Prefix-free Kolmogorov complexity. I first consider the case
of prefix description systems, A.2.2 above.

A.3.1.1. The definition. Let D be an effective prefix description system, i.e,
the decoding function D−1 is given by a prefix-free machine T (A.2.2.8 above).
Now the prefix-free Kolmogorov complexity via T is given by the description
length function defined as in (72),

LD(yyy) = min{|xxx| : (yyy,xxx) ∈ D}
= min{|xxx| : T (xxx) = yyy}.

Definition A.13. The prefix-free Kolmogorov complexity via prefix-free
machine T is the function

KT (yyy) := min{|xxx| : T (xxx) = yyy}.

A.3.1.2. Invariance. Let U be a universal prefix-free Turing machine, defi-
nition A.1. It follows right from the definition that the Kolmogorov complexity
KU additively minorizes every KT : for every prefix-machine T , there is a con-
stant c such that for all xxx,

KU (xxx) ≤ KT (xxx) + c,

also simply written

(80) KU ≤+ KT .

Of course, for every two universal prefix-free machines U1 and U2, the func-
tions KU1 and KU2 minorize each other; they are equivalent up to an additive
constant. This fact is known as the invariance theorem (Li and Vitányi, 2008,
104ff, 200ff). We can say that KU1

and KU2
are asymptotically equivalent (on

average) in the sense that for every yyyω,

KU1
(yyyt)/t

t→∞−−−→ KU2
(yyyt)/t.

A.3.1.3. *Kolmogorov complexity of the natural numbers. In the literature,
KT is often applied to elements of N. Here ‘KT (n)’ for n ∈ N should be read as
‘KT (xxxn)’ with xxxn the n-th element in the lexicographical ordering of all finite
sequences (Li and Vitányi, 2008, 12). An upper bound on the Kolmogorov
complexity on natural numbers is given by

KU (n) ≤+ 2 log n,(81)

because the convergence of the series
∑
n n
−2 means that for some constant c

the set {(xxxn, cn2)}n is a valid bounded request set, which via the KC theorem
A.8 implies the existence of a prefix-free machine T with KT (n) ≤ log c+log n2

(also see Shen et al., 20xx).
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A.3.1.4. *Plain Kolmogorov complexity. The variant of descriptive com-
plexity originally proposed by Kolmogorov (1965) is defined in terms of all p.c.
functions or Turing machines, rather than just the prefix-free machines. The
original definition, nowadays known as the plain Kolmogorov complexity and
denoted by the letter ‘C,’ is the more straightforward; but as a complexity
measure it has certain drawbacks that the prefix-free variant overcomes (Li
and Vitányi, 2008, 197ff; Nies, 2009, 82f). Since the sum

∑
yyy∈B∗ 2−C(yyy) does

not generally converge, there is also no correspondence between the description
length functions C and probability functions.

A.3.1.5. Kolmogorov complexity and Σ1 distributions. The prefix-free Kol-
mogorov complexity via machine T corresponds to the Σ1 semi-distribution
2−KT . However, not every Σ1 semi-distribution can be expressed in this form.
The definition of Kolmogorov complexity, based on the definition (72) of a
description length function that only takes into account the single shortest
description, has a certain clunkiness that is reminiscient of that of the integer-
valued length functions of nonidealized prefix code systems (A.2.2.6 above): in
both cases there is a less than perfect correspondence with semi-distributions.

A.3.1.6. Kolmogorov complexity and prefix-free transformations. The def-
inition (73) of a description length function, that for effective description sys-
tems gives the definition of a uniform transformation by a prefix-free machine
(A.2.2.10 above), takes into account all descriptions. The latter definition,
we saw, corresponds precisely to the Σ1 semi-distributions (A.1.2.3, A.2.2.9
above). What can we say about the relation between this definition and the
Kolmogorov complexity? Precisely: what is the relation, for given T , between
the description length function KT and the description length function given
by (73), i.e., the negative logarithm of the transformation λU ,

− log λT (yyy) = − log
∑

xxx:T (xxx=yyy)

2−|xxx|?

One direction is obvious: since

2−min{|xxx|:T (xxx=yyy)} ≤
∑

xxx:T (xxx)=yyy

2−|xxx|,

we have

(82) − log λT ≤ KT .

In the other direction, however, there can be a serious divergence. To illustrate,
let (yyyi)i∈N be a listing of all sequences, and consider the prefix-free machine T

with for all yyyi, {(1i0xxx,yyyi) : xxx ∈ B2i} ⊆ T . That is, each yyyi has a total number

of 22i descriptions, each of length 2i + i+ 1. Hence KT (yyyi) = 2i + i+ 1, but

− logQT (yyyi) = − log 22i2−(2i+i+1) = i+ 1.

Thus the gap grows exponentially.
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A.3.1.7. The coding theorem. Nevertheless, it is not hard to tweak the
machine T of the previous example in such a way that KT again coincides
with − log λT : simply replace the above by (1i, yyyi) ∈ T for all i. In general,
for every given Σ1 semi-distribution p it is possible to construct some prefix-
free machine T such that KT ≤+ − log p does hold. Inserting the universal
transformation λU for p here, as well as in (82), we then get that

KT ≤+ − log λU ≤+ KU .

But then by the minorization property (80) of KU we actually obtain equiva-
lence of KU and − log λU up to an additive constant; in particular, we have that
2−KU is a universal Σ1 semi-distribution. This is the coding theorem (Levin,
1974; Chaitin, 1975). The interpretation is that (Li and Vitányi, 2008, 277)

A priori, an outcome x may have high probability because it has
many long descriptions. The coding theorem . . . tells us that in
that case it must have a short description too. In other words,
the a priori probability of x is dominated by the shortest program
for x.

Theorem A.14 (Coding theorem, Levin, Chaitin). For every universal
prefix-free machine U ,

− log λU =+ KU ,

equivalently,
λU =× 2−KU .

Proof. See the proof of theorem A.16 in B.1.7. �

A.3.1.8. A generalized Kolmogorov complexity. In the previous, we took
the perspective of description length functions, comparing Kolmogorov com-
plexity, that only takes the shortest description into account, to the description
length function that takes all descriptions into account—the latter is the nega-
tive logarithm of a uniform transformation λT . The complementary perspective
is that of distributions, where we compare a transformation

λT =
∑

xxx:T (xxx)=·

λ(xxx),

that takes all descriptions into account, to the semi-distribution that only takes
the maximal-probability description into account:

2−KT = 2−min{|xxx|:T (xxx)=·}

= λ(arg min
xxx:T (xxx)=·

|xxx|)

= max{λ(xxx) : T (xxx) = ·}.
The uniform transformations are a particular case of the general definition of
a transformation

µT =
∑

xxx:T (xxx)=·

µ(xxx)
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by a prefix-free machine of a computable measure µ. If we restrict this definition
to the single maximal-probability description, we obtain the semi-measure

max{µ(xxx) : T (xxx) = ·).(83)

We can now infer a generalized notion of prefix-free Kolmogorov complexity
Kµ
T , such that 2−K

µ
T equals (83), i.e.,

Kµ
T (yyy) := − log max{µ(xxx) : T (xxx) = yyy).

(So in particular KT = Kλ
T .)

A.3.1.9. A generalized coding theorem. Can we also generalize theorem
A.14 to show that, for computable µ other than λ, Kolmogorov complexity
Kµ
U and the negative logarithm of the universal transformation µU are equiv-

alent up to an additive constant? We do obviously have the generalization of
(82),

− logµT ≤ Kµ
T .(84)

It is in fact not so obvious that the minorization property (80) also generalizes to
Kµ
U ≤+ Kµ

T—though in the end it does, at least for those computable measures
µ that fulfill a condition that is still slightly stronger than being continuous.
Namely, it holds for every µ that is conditionally bounded away from 0 : there
is a d ∈ N such that for all xxx,yyy ∈ B∗ it holds that µ(xxx | yyy) ≥ 2−d. I state this
as

Lemma A.15. For every computable continuous measure µ that is condi-
tionally bounded away from 0, for every universal prefix-free machine U and
prefix-free machine T ,

Kµ
U ≤

+ Kµ
T .

Proof. See B.1.7.2. �

Conjoined with this lemma, a generalization of the construction to prove
the original coding theorem then does yield the statement for Kµ

U , with µ any
computable measure that is conditionally bounded away from 0.

Theorem A.16 (Generalized coding theorem). For every computable con-
tinuous measure µ that is conditionally bounded away from 0, for every univer-
sal prefix-free U ,

Kµ
U =+ − logµU .

Proof. See B.1.7.

A.3.2. Monotone Kolmogorov complexity. As for the prefix descrip-
tion systems, there is a notion of complexity connected to the sequential de-
scription systems (A.2.4 above).
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A.3.2.1. The definition. Let D be an effective sequential description sys-
tem, i.e, the decoding function D−1 is given by a monotone machine M (A.2.2.8
above). Now the monotone Kolmogorov complexity via M is again given by
a description length function for D that only takes into account the single
shortest description:

LD(yyy) = min{|xxx| : D̂(yyy,xxx)}
= min{|xxx| : ∃yyy′ < yyy.(xxx,yyy′) ∈M}.

Definition A.17 (Levin). The monotone Kolmogorov complexity via mono-
tone machine M is the function

KmM (yyy) := min{|xxx| : ∃yyy′ < yyy.(xxx,yyy′) ∈M}.

A.3.2.2. Invariance. As before, for every universal monotone machine U
and other monotone machine M it holds that

KmU ≤+ KmM ,

and hence that for every two universal monotone machines U1 and U2

KmU1
=+ KmU2

.

A.3.2.3. The relation with prefix-free Kolmogorov complexity. Since prefix-
free machines arise as a restriction of monotone machines (above), the mono-
tone Kolmogorov complexity is smaller than the prefix-free Kolmogorov com-
plexity in the sense that for universal monotone U and universal prefix-free U ′

we have (also see Shen et al., 20xx)

(85) KmU ≤+ KU ′ .

A.3.2.4. The complexity KM . The complexity measure that corresponds
to the effective description length function (77), i.e., a uniform transformation
by a monotone machine, is in the literature often denoted

KMM := − log λM .

A.3.2.5. The failure of a coding theorem. Like in the prefix-free case (82),
it is obvious from the fact that

2−min{|xxx|:∃yyy′<yyy.(xxx,yyy′)∈M} ≤
∑

xxx∈b{xxx:∃yyy′<yyy}c

2−|xxx|

that we have

KMM ≤ KmM .

But in the other direction things are worse than in the prefix-free case. Specif-
ically, there is no coding theorem that at least shows equivalence up to an
additive constant for universal monotone machines. Day (2011), improving on
work by Gács (1983), showed that for any real r < 1 there are infinitely many
xxx with

KmU (xxx) > KMU (xxx) + r log log |xxx|.
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A.3.2.6. *Other complexities and relations. An early overview of the dif-
ferent versions of Kolmogorov complexity and their relations, including notes
on the history and terminology, is given by Uspensky (1992; a later version
with proofs is Uspensky and Shen, 1996.)

* * *

A.4. Randomness

The motivation for the field of algoritmic randomness is the characteriza-
tion of random infinite sequences, in particular, uniformly random sequences:
data streams produced by the uniform measure λ. Here I discuss the main
notion of algorithmic randomness, the one due to Martin-Löf (1966).

A.4.1. The definition of Martin-Löf randomness. An intuition about
a data stream generated from an i.i.d. uniform measure is that it will not have
any properties that make it stand out from the majority of other possible data
streams: it will be a typical sequence. A way to try and make this precise is to
say that it will satisfy all probability-1 properties, or equivalently, that it will
avoid all probability-0 properties. That is, it will avoid all null sets, all subsets
of Bω that have uniform probability 0.

However, such a definition of a random sequence would render no infinite
sequence random: the singleton {xxxω} is always a null set. In other words, no
infinite sequence can be typical in all respects, if these are identified with all
properties of probability 1: the class Bω\{xxxω} always has uniform probability 1.
The basic idea due to Martin-Löf is therefore to restrict the typical properties
to the effective ones.

More accurately, the idea is that possessing an exceptional property, or
being contained in a null set, can be detected by means of a statistical test : and
the latter are restricted to the effective ones. The definition of a statistical test
in this context starts with the notion of an open set, which is a set of the form
JAK for some A ⊆ B∗. Now a setA is null precisely if there is a uniform sequence
(Gm)m∈N of open sets such that limm→∞ λ(Gm) = 0 and A ⊆

⋂
mGm. The

sequence (Gm)m∈N can be seen as a test for the exceptional propertyA: Martin-
Löf further put effectiveness constraints on both the sequence of tests and its
convergence to measure 0. (See Nies, 2009, 102ff.)

A.4.1.1. The definition. Thus a Martin-Löf (ML)-test is defined to be a
uniformly c.e. sequence (Gm)m∈N of open sets, such that, moreover, the mea-
sure λ(Gm) ≤ 2−m for all m ∈ N. A sequence xxxω is ML-random if it passes each
ML-test: xxxω /∈

⋂
mGm for each ML-test (Gm)m∈N. This definition generalizes

to computable µ other than the uniform measure.

Definition A.18 (Martin-Löf randomness). A µ-ML-test is a uniformly
c.e. sequence (Gm)m∈N of open sets such that µ(Gm) ≤ 2−m for all m ∈ N.
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A sequence xxxω is µ-ML-random if it passes each µ-ML-test: xxxω /∈
⋂
mGm for

each µ-ML-test (Gm)m∈N.

A.4.1.2. Universal ML-tests. A central fact is the existence of universal µ-
ML-tests, that include all other tests. Precisely, a univeral µ-ML-test (Um)m∈N
is a µ-ML-test such that

⋂
m Um ⊇

⋂
mGm for each other µ-ML-test (Gm)m.

That means that if xxxω passes a universal µ-ML-test, it passes all µ-ML-tests,
and it is µ-ML-random. Conversely, if xxxω does not pass a universal µ-ML-test,
it is not µ-ML-random. Hence a sequence is random if and only if it passes a
universal µ-ML-test.

A.4.1.3. Effectiveness. A µ-ML-test is effective in the sense that it is uni-
formly Σ1. More concretely, we can effectively verify that a sequence xxxω fails
the µ-ML test at a given significance level m: this is a Σ1 property. Still, the
actual failure to be µ-ML-random (i.e., failing a test at all significance levels)
transcends effective verifiability: this is a Π2 property.

A.4.1.4. ML-randomness for semi-measures. Note, too, that the definition
is restricted to µ-ML-randomness for computable measures µ. I discuss the
possibility of extending this definition to the Σ1 measures in general in A.4.2.7
below.

A.4.2. Other characterizations of Martin-Löf randomness. There
is another intuition about the nature of a random sequence, that might actu-
ally appear somewhat in tension with the intuition of typicality. This intu-
ition is that a random sequence is also highly irregular in the sense of lacking
clear patterns. As such, a random sequence is highly complex : this invites
its characterization in terms of Kolmogorov complexity; moreover, it is highly
unpredictable: this invites its characterization in terms of predictive success.
Interestingly, the different characterizations following from these intuitions lead
to the same notion.

A.4.2.1. Prefix-free Kolmogorov complexity. A central result is Schnorr’s
theorem (1973; or the Schnorr-Levin theorem, see below), that characterizes
Martin-Löf randomness in terms of prefix-free Kolmogorov complexity.

Theorem A.19 (Schnorr). A sequence xxxω is µ-ML-random if and only if
KU (xxxt) ≥+ − logµ(xxxt). In particular, sequence xxxω is ML-random if and only
if KU (xxxt) ≥+ t.

Proof sketch. The intuition is that a universal ML-test can be seen as a
uniformly c.e. sequence of prefix-free sets of low complexity, and so a sequence
xxxω is not random (is caught in a universal ML-test) precisely if infinitely many
of its initial segments are of low complexity. Somewhat more precisely (for
a detailed proof, see Nies, 2009, 108; or see the derivation in A.4.2.5 below),
the left-to-right direction follows from the fact that the open sets Om = {xxxω :
∃t.KU (xxxt) < − logµ(xxxt) − m} form a sequential test, that shows a sequence
that is not complex (i.e., KU (xxxt) 6≥+ − logµ(xxxt)) to be nonrandom; and the
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right-to-left direction follows from the fact that we can convert a universal µ-
ML-test via the KC theorem A.8 into a machine that gives description lengths
in accordance with the above, showing that a sequence that is not random
(caught by the universal test) is not complex. �

A.4.2.2. Monotone Kolmogorov complexity. Van Lambalgen (1987a, 147)
writes,

for an infinite sequence to be random it is necessary and sufficient
if it has no (except perhaps finitely many) initial segments of low
complexity. In other words, any complexity measure C is able to
characterise Martin-Löf randomness if the universal sequential
test can be written in terms of C. Nothing more is necessary, but
much more is possible.

We can indeed give an identical characterization in terms of monotone Kol-
mogorov complexity (A.3.2 above).

Theorem A.20 (Levin, 1973). A sequence xxxω is µ-ML-random if and only
if KmU (xxxt) ≥+ − logµ(xxxt). In particular, sequence xxxω is ML-random if and
only if KmU (xxxt) ≥+ t.

In fact, theorem A.20 still holds when we substitute the complexity measure
KMU for KmU (A.3.2.4 above). Since KMU is precisely the negative logarithm
of the universal transformation λU , i.e., of the Solomonoff-Levin measure, that
means that a sequence xxxω is µ-random if and only if

− logQU (xxxt) ≥+ − logµ(xxxt),(86)

or

QU (xxxt) ≤× µ(xxxt).(87)

(Also see Shen et al., 20xx.)
A.4.2.3. Martin-Löf randomness and the Σ1 measures. We thus have that

a sequence xxxω is µ-ML-random precisely if QU (xxxt) ≤× µ(xxxt); or, since by the
universality of the Solomonoff-Levin measure also QU (xxxt) ≥× µ(xxxt),

QU (xxxt) =× µ(xxxt).(88)

Hence a sequence xxxω is µ-Martin-Löf random precisely if the Solomonoff-Levin
predictor does not have higher likelihoods on xxxω than µ does. Equivalently, a
sequence xxxω is µ-Martin-Löf random precisely if no ν ∈ Σ1 has higher likeli-
hoods on xxxω than µ does: for every ν ∈ Σ1,

ν(xxxt) ≤× µ(xxxt).(89)

A related interpretation is that µ is in a precise sense the best explanation
(among all Σ1 measures) for xxxω.
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A.4.2.4. Prediction and predictive complexity. With L the cumulative log-
loss function, we have that a sequence xxxω is µ-ML-random precisely if

LQU (xxxt) =+ Lµ(xxxt).(90)

This gives a predictive interpretation of randomness: a sequence xxxω is µ-Martin-
Löf random precisely if the Solomonoff-Levin predictor cannot do better on xxxω

than µ does. Equivalently, a sequence xxxω is µ-Martin-Löf random precisely if
no ν ∈ Σ1 can do better on xxxω than µ does: for every ν ∈ Σ1,

Lν(xxxt) ≥+ Lµ(xxxt).(91)

In terms of Vovk’s notion of predictive complexity (6.2), a sequence is µ-ML-
random precisely if its predictive complexity for the log-loss, that is by defi-
nition given by the universal Π1 superloss process, is already given by the ∆1

loss process corresponding to µ.
A.4.2.5. A derivation of the equivalence. The predictive interpretation is

usually presented as a gambling interpretation (intuition: it is impossible to
make money on a random sequence; recall von Mises’s idea, I.6), and put
in terms of c.e. martingales, a notion representing gambling strategies that is
formally very close to the notion of (a predictor corresponding to) a Σ1 measure.
For completeness, and to provide some more intuition, I will here give a direct
derivation of the equivalence of the characterization of Martin-Löf randomness
in terms of tests and in terms of Σ1 measures, that is a translation of the proof
for martingales as given by Nies (2009, 265f).

Proof of xxxt is µ-ML-random ⇐⇒ ∀ν ∈ Σ1. Lν(xxxt) ≥+ Lµ(xxxt). Assu-
me without loss of generality that for all µ-ML-tests (Gm)m it holds that
Gm ⊇ Gm+1 for all m and that

∑
m µ(Gm) ≤ 1.

First, suppose that yyyω fails the test (Gm)m∈N. Consider the function νG :
xxxt 7→

∑
m∈N µ(Gm ∩ JxxxtK). It is clearly semi-computable, and it is a semi-

measure on Bω because µ(Gm ∩ JxxxtK) = µ(Gm ∩ Jxxxt0K) + µ(Gm ∩ Jxxxt1K) for all
xxxt and ν(∅∅∅) =

∑
m∈N µ(Gm) ≤ 1. Then

yyyω ∈
⋂
m

Gm ⇒ ∀m. yyyω ∈ Gm

⇒ ∀m∃t. JyyynK ⊆ Gm
⇒ ∀m∃t∀j ≤ m. JyyynK ⊆ Gj

⇒ ∀m∃t.
∑
j

µ(Gj | yyyt) > m

⇒ ∀m∃t. ν(yyyt)

µ∗(yyyt)
> m

⇒ ∀c∃t. Lµ(yyyt) > Lν(yyyt) + c.

Conversely, suppose that yyyω is such that Lµ fails to stay below Lν in the sense
of (91), for some ν. Consider the classes Gm = {xxxω : ∃t. Lµ(xxxt) > Lν(xxxt) +m}
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for all m ∈ N. This gives a sequence (Gm)m∈N of open sets that is clearly
uniformly c.e.; it is a µ-ML-test because moreover

µ(Gm) = µ
(
xxxω : ∃t. ν(xxxt) ≥ 2mµ(xxxt)

)
=
∑

µ(zzz)Jzzz ∈ b{xxx : ν(xxx) ≥ 2mµ(xxx)}cK

≤ µ(zzz)
ν(zzz)

2mµ(zzz)
Jzzz ∈ b{xxx : ν(xxx) ≥ 2mµ(xxx)}cK

= 2m.

Then

∀c∃t. Lµ(yyyt) > Lν(yyyt) + c⇒ ∀m∃t. µ(yyyt) < 2−mν(yyyt)

⇒ yyyω ∈
⋂
m

Gm. �

Thus the property of Lµ staying below the particular Π1 superloss process
Lν on yyyω, up to some constant, is assessed by a particular µ-ML-test that
attempts to falsify this for all constants or significance levels m. If yyyω passes
the test and so escapes falsification at some level m, i.e., yyyω /∈ Gm, that means
that Lµ stays below Lν on yyyω up to this m, and yyyω can still be µ-ML-random; if
it fails the test, i.e., yyyω ∈

⋂
mGm, that means that Lµ fails to stay below Lν on

yyyω up to any constant, and yyyω is not µ-ML-random. Naturally, a universal µ-
ML-test, that includes all other tests, assesses a universal Π1 superloss process,
that minorizes all other Π1 superloss processes.

A.4.2.6. The weakest of randomness assumptions. Recall from 3.1.3.4 the
interpretation by Levin of the Solomonoff-Levin measure as a universal a pri-
ori measure, with the motivation that “If nothing is known in advance about
the properties of [a] sequence, then the only (weakest) assertion we can make
regarding it is that it can be obtained randomly with respect to QU” (Zvonkin
and Levin, 1970, 104, my notation). Since we trivially have QU (xxxt) =× QU (xxxt),
by characterization (88) of Martin-Löf randomness it follows that every single
sequence xxxω is QU -ML-random.

A.4.2.7. ML-randomness for semi-measures. However, recall that the orig-
inal defintion of µ-ML-randomness was restricted to computable measures µ.
It is indeed the case that if ν is Σ1 but not ∆1, then the negation of (91) is
no longer Σ1, and the corresponding test is no longer uniformly Σ1—so it is
not a proper ML-test. This cannot be solved by only requiring a ν-ML-test to
be uniformly Σ1(ν) (so allowing ν as an oracle—for computable µ this reduces
to the standard definition). Namely, as mentioned above, for a universal ν̊
every sequence should be ν-ML-random according to (90), but it is not hard
to define a uniformly Σ1(̊ν) sequence of classes (Gm)m with ν̊(Gm) ≤ 2−m for
every m and

⋂
mGm 6= ∅. Hence the predictive characterization that naturally

extends to the whole class M of Σ1 measures leads to an unclear notion from
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the perspective of tests. (See Bienvenu et al., 2017 for a different attempt at
extending the definition of Martin-Löf randomness to Σ1 measures.)

*



APPENDIX B

Proofs

B.1. The Σ1 measures and semi-distributions

B.1.1. The proof of proposition 2.10.
B.1.1.1. The proof of (⇐). The easy direction is that every effective trans-

formation µM of a ∆1 measure µ is a Σ1 measure (see Day, 2011, theorem
4(i)).

Proof. Given ∆1 measure µ and monotone machine M . We have to verify
that µM : B∗ → [0, 1] is lower semi-computable and satisfies µM (∅∅∅) ≤ 1 and
µM (xxx0) + µM (yyy1) ≤ µM (xxx) for all xxx ∈ B∗.

First, let Ms denote the set of pairs enumerated in c.e. M by stage s,
and let g(yyy, t) = µMt(yyy). Clearly, g is computable, nondecreasing in t, and
limt→∞ g(yyy, t) = µM (yyy), meaning that µM is semi-computable.

Furthermore, we have that for every xxx such that ∃yyy′ < yyyy. (xxx,yyy′) ∈ M
certainly ∃yyy′ < yyy. (xxx,yyy′) ∈M , so

J{xxx : ∃yyy′ < yyy0. (xxx,yyy′) ∈M}K ∪ J{xxx : ∃yyy′ < yyy1. (xxx,yyy′) ∈M}K ⊆
J{xxx : ∃yyy′ < yyyy. (xxx,yyy′) ∈M}K;

and we have that for no xxx both ∃yyy′ < yyy0. (xxx,yyy′) ∈M and ∃yyy′ < yyy1. (xxx,yyy′) ∈M
(or we would get yyy0 ∼ yyy1 from property (14) of M), so

J{xxx : ∃yyy′ < yyy0. (xxx,yyy′) ∈M}K ∩ J{xxx : ∃yyy′ < yyy1. (xxx,yyy′) ∈M}K = ∅.

Hence µM (xxx0) + µM (yyy1) ≤ µM (xxx), and also µM (∅∅∅) ≤ µ(B∗) = 1. �

B.1.1.2. The derivation from Levin’s results. Proposition 2.10 is attributed
to Levin because the hard direction can already be derived from theorems
3.1(b) and 3.2 in Zvonkin and Levin (1970). Theorem 3.2 in that paper is
the characterization M = {λM}M in terms of uniform transformations, i.e.,
proposition 2.5 above; the hard part is that for every Σ1 measure ν we can
construct a machine M such that λM = ν. Theorem 3.1(b) in that paper
includes the assertion that for every continuous ∆1 measure µ we can construct
a machine M such that µM = λ. Together, we have that for every ν ∈ Σ1,
µ ∈ ∆1 we can construct M1,M2 with ν = (µM1

)M2
, i.e., ν = µM for machine

M defined by

(xxx,zzz) ∈M if and only if ∃yyy,yyy′. yyy′ < yyy & (xxx,yyy′) ∈M1 & (yyy,zzz) ∈M2.

185
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B.1.1.3. The direct proof of (⇒). Levin’s presentation (reproduced in Li
and Vitányi, 2008, theorem 4.5.2) of a construction to transform λ into any
given ν ∈ Σ1 is very quick; a more detailed construction was published by
Day (2011, theorem 4(ii); also see Downey and Hirschfeldt, 2010, theorem

3.16.2(ii)).29 The following direct proof of the case for any continuous ∆1 mea-
sure is an adaptation of this construction.

Proof of (⇒). Given ∆1 measure µ, and Σ1 measure ν with computable
approximation function g. We construct in stages s = 〈yyy, t〉 a monotone ma-
chine M =

⋃
sMs that transforms µ into ν. Let Ds(yyy) := {xxx ∈ B∗ : (xxx,yyy) ∈

Ms}.

Construction. Let M0 := ∅.
At stage s = 〈yyy, t〉, if µ(JDs−1(yyy)K) = g(yyy, t) then let Ms := Ms−1.
Otherwise, first consider the case yyy 6= ∅∅∅. By lemma 1 in Day (2011)

there is a set R ⊆ Bs of available sequences of length s such that JRK =
JDs−1(yyy−)K \ (JDs−1(yyy−0)K ∪ JDs−1(yyy−1)K). Denote a := µ(JRK), the amount
of measure available for descriptions for yyy, which equals µ(JDs−1(yyy−)K) −
µ(JDs−1(yyy−0)K) − µ(JDs−1(yyy−1)K) because we ensure by construction that
JDs−1(yyy−)K ⊇ JDs−1(yyy−0)K ∪ JDs−1(yyy−1)K and JDs−1(yyy−0)K ∩ JDs−1(yyy−1)K =
∅. Denote b := g(yyy, t) − µ(JDs−1(yyy)K), the amount of measure the current
descriptions fall short of the latest approximation of ν(yyy). We collect in the
auxiliary set As a number of available sequences from R such that µ(JAsK) is
maximal while still bounded by min{a, b}.

If yyy = ∅∅∅, then denote b := g(∅∅∅, t)−µ(JDs−1(∅∅∅)K). Collect in As a number
of available sequences from R ⊆ Bs with JRK = Bω \ JDs−1(∅∅∅)K such that
µ(JAsK) is maximal but bounded by b.

Put Ms := Ms−1 ∪ {(xxx,yyy) : xxx ∈ As}.

Verification. The verification of the fact that M is a monotone machine
is identical to that in Day (2011).

It remains to prove that µM (yyy) = ν(yyy) for all yyy ∈ B∗. Since by construction
JDs(yyy

′)K ⊆ JDs(yyy)K for any yyy′ < yyy, we have that µMs
(yyy) = µ(∪yyy′<yyyJDs(yyy

′)K) =
µ(JDs(yyy)K). Hence µM (yyy) = lims→∞ µ(JDs(yyy)K), and our objective is to show
that lims→∞ µ(JDs(yyy)K) = ν(yyy). To that end it suffices to demonstrate that
for every δ > 0 there is some stage s0 where µ(JDs0(yyy)K) > ν(yyy)− δ. We prove
this by induction on the finite sequences.

For the base step, let yyy = ∅∅∅. Choose positive δ′ < δ. There will be a
stage s0 = 〈∅∅∅, t0〉 where g(∅∅∅, t0) > ν(∅∅∅) − δ′, and (since µ is continuous)
µ(JxxxK) ≤ δ− δ′ for all xxx ∈ Bs0 . Then, if not already µ(JDs0−1(∅∅∅)K) > ν(∅∅∅)− δ,
the latter guarantees that the construction will select a number of available
sequences in As0 such that ν(∅∅∅)− δ < µ(JDs0−1(∅∅∅)K) + µ(JAsK) ≤ g(∅∅∅, t0). It
follows that µ(JDs0(∅∅∅)K) = µ(JDs0−1(∅∅∅)K) + µ(JAsK) > ν(∅∅∅)− δ as required.
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For the inductive step, let yyy 6= ∅∅∅, and denote by yyy′ the one-bit extension
of yyy− with yyy′ | yyy. Choose positive δ′ < δ. By induction hypothesis, there exists
a stage s′0 such that µ(JDs′0

(yyy−)K) > ν(yyy−)− δ′. At this stage s′0, we have

µ(JDs′0
(yyy−)K)− µ(JDs′0

(yyy′)K) ≥ µ(JDs′0
(yyy−)K− ν(yyy′)

> ν(yyy−)− δ′ − ν(yyy′)

≥ ν(yyy)− δ′,

where the last inequality follows from the semi-measure property ν(yyy−) ≥
ν(yyy) + ν(yyy′). There will be a stage s0 = 〈yyy, t0〉 ≥ s′0 with g(yyy, t0) > ν(yyy) − δ′
and µ(JxxxK) ≤ δ − δ′ for all xxx ∈ Bs0 . Clearly, we have min{µ(JDs0(yyy−)K) −
µ(JDs0(yyy′)K), g(yyy, t0)} > ν(yyy) − δ′. Then, as in the base case, if not already
µ(JDs0−1(yyy)K) > ν(yyy) − δ, the construction selects a number of available de-
scriptions such that µ(JDs0(yyy)K) > ν(yyy)− δ as required. �

B.1.2. The proof of proposition A.3. The fact that every Σ1 semi-
distribution q can be obtained as a transformation of λ is usually inferred (e.g.,
Downey and Hirschfeldt, 2010, 130; Nies, 2009, 90) from the effective version
of Kraft’s inequality that is called the KC theorem (A.2.2.8 above). However,
we can easily prove the general case in a direct manner by a much simplified
version of the construction for proposition 2.10 in B.1.1.3 above.

Proof. Given ∆1 measure µ. Every transformation µT for a prefix-free
machine T is lower semi-computable: to calculate µT (yyy), enumerate all possible
inputs to T and add µ(JxxxK) to the approximation as soon as T (xxx) ↓= yyy. More-
over, µT is a semi-distribution: the set DT = {xxx : T (xxx) ↓} of all T -descriptions
xxx is by definition prefix-free, hence all corresponding cones JxxxK are disjoint and∑

xxx∈DT µ(JxxxK) ≤ 1, which entails that
∑
yyy∈B∗ µT (yyy) ≤ 1.

Conversely, let q be a Σ1 semi-distribution with computable approximation
function g. We construct a prefix-free machine T =

⋃
s Ts with µT = q in stages

s = 〈yyy, t〉. Let Ds(yyy) = {xxx ∈ B∗ : (xxx,yyy) ∈ Ts}.

Construction. Let T0 = ∅.
At stage s = 〈yyy, t〉, if µ(JDs−1(yyy)K) = g(yyy, t) then let Ts := Ts−1.
Otherwise, let the set R ⊆ Bs of available sequences be such that JRK =

Bω \ J∪zzz∈B∗Ds−1(zzz)K. Collect in the auxiliary set As a number of available
sequences xxx from R with

∑
xxx∈As µ(JxxxK) maximal but bounded by g(yyy, t) −

µ(JDs−1(yyy)K), the amount of measure the current descriptions fall short of the
latest approximation of q(yyy). Put Ts := Ts−1 ∪ {(xxx,yyy) : xxx ∈ As}.

Verification. It is immediate from the construction that ∪yyy∈B∗Ds(yyy)
is prefix-free at all stages s, so T = lims→∞ Ts is a prefix-free machine. To
show that µT (yyy) = lims→∞ µ(JDs(yyy)K) equals q(yyy) for all yyy ∈ B∗, it suffices to
demonstrate that for every δ > 0 there is some stage s0 where µ(JDs0(yyy)K) >
q(yyy)− δ.
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Choose positive δ′ < δ. Wait for a stage s0 = 〈yyy, t0〉 with µ(JxxxK) ≤ δ − δ′
for all xxx ∈ Bs0 and g(yyy, t0) > q(yyy)− δ′. Clearly, the available µ-measure

µ(JRK) = 1−
∑
zzz∈B∗

µ(JDs0−1(zzz)K)

≥ 1− µ(JDs0−1(yyy)K)−
∑

zzz∈B∗\{yyy}

q(zzz)

≥ q(yyy)− µ(JDs0−1(yyy)K)
≥ g(yyy, t0)− µ(JDs0−1(yyy)K).

Consequently, if not already µ(JDs0−1(yyy)K) > q(yyy)− δ, then the construc-
tion collects in As0 a number of descriptions of length s0 from R such that
µ(JDs0(yyy)K) = µ(JDs0−1(yyy)K) +

∑
xxx∈As0

µ(JxxxK) > q(yyy)− δ as required. �

B.1.3. The proof of proposition 2.12. We adapt the construction for
proposition 2.10 in B.1.1.3 above in such a way that the constructed machine
M fails to be even weakly universal.

Proof. Let U be an arbitrary universal machine. We construct a machine
M with µM = ν such that for every constant c ∈ N there is a yyy such that for
some xxx′ with (xxx′, yyy) ∈ U , we have that |xxx| > |xxx′|+ c for all xxx with (xxx,yyy) ∈M .
This ensures that M is not weakly universal.

Construction. The only change to the earlier construction is that at
stage s we try to collect available sequences of length ls, where ls is defined
as follows. Let l0 = 0. For s = 〈yyy, t〉 with t > 0, let ls = ls−1 + 1. In case
s = 〈yyy, 0〉, enumerate pairs in U until a pair (xxx′, yyy) for some xxx′ is found. Let
ls := max{ls−1 + 1, |xxx′|+ s}.

Verification. The verification that µM = ν proceeds as before. In ad-
dition, the construction guarantees that for every c ∈ N, we have for yyy with
c = 〈yyy, 0〉 that |xxx| > |xxx′|+ c for the first enumerated xxx′ with (xxx′, yyy) ∈ U and all
xxx with (xxx,yyy) ∈M . �

B.1.4. The proof of theorem 2.16. The left-to-right direction is lemma
2 in Wood et al. (2013).

Proof of (⇒). Given universal U with associated encoding {xxxe}e of all
monotone machines, we write out
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λU (yyy) = λ({xxx : ∃yyy′ < yyy((xxx,yyy′) ∈ U)})

=
∑
e

λ({xxxexxx : ∃yyy′ < yyy((xxx,yyy′) ∈Me)})

=
∑
e

λ(xxxe)λ({xxx : ∃yyy′ < yyy((xxx,yyy′) ∈Me)})

=
∑
e

λ(xxxe)λMe
(yyy).

We know by proposition 2.5 above that the λMe range over all elements in
M. Moreover, w : e 7→ λ(xxxe) is a weight function because {xxxe}e is prefix-free.
That means that λU is a Σ1 mixture. �

The right-to-left direction is lemma 4 in Wood et al. (2013). The follow-
ing presentation streamlines their proof, to facilitate a generalized version for
theorem 2.13 in B.1.5.2 below.

Proof of (⇐). Given Σ1 mixture ξ
{νi}i
v with (defective) weight function

v. Let {xxxi}i be some effective prefix-free listing of finite sequences; then func-
tion q : Bω → [0, 1] defined by

q(yyy) =

{
v(i) if yyy = xxxi for i ∈ N
0 otherwise

is a Σ1 semi-distribution. By the proof of proposition A.3 above we can con-
struct a prefix-free machine T that transforms λ into q: so λT = q, and∑

i

v(i)νi(yyy) =
∑
i

λT (xxxi)νi(yyy).

Denote by ni := #{zzz : (zzz,xxxi) ∈ T} the number of T -descriptions of xxxi, and let
〈·, ·〉 : N×N→ N be a partial computable pairing function that maps the pairs
(i, j) with j < ni onto N. Let zzz〈i,j〉 be the j-th enumerated T -description of
xxxi. We then have ∑

i

λT (xxxi)νi(yyy) =
∑
i

∑
j<ni

λ(zzz〈i,j〉)νi(yyy).

Now for every 〈i, j〉 for which zzz〈i,j〉 becomes defined we can run the con-
struction of proposition 2.10 above on λ and νi to obtain a machine M〈i,j〉. In
this way we obtain an enumeration of machines {Me}e such that λM〈i,j〉 = νi
(with j < ni) for all i, resulting in∑

i

∑
j<ni

λ(zzz〈i,j〉)νi(yyy) =
∑
e

λ(zzze)λMe(yyy)

= λU (yyy),

where we define U by (zzzexxx,yyy) ∈ U :⇔ (xxx,yyy) ∈Me.
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It does still remain to verify that U is universal. Namely, we cannot take
for granted that {Me}e is an enumeration of all machines, whence it is not
clear that U is universal. (This issue is overlooked in the original proof by
Wood et al.) Note that it is enough if there were a single universal machine
U ′ in {Me}e, but even that is not obvious (by proposition 2.12 we know that
there are for any universal U non-universal M such that λM = λU ). However,
there is a simple patch to the enumeration that guarantees this fact. Namely,
given an arbitrary universal machine U ′, we may simply put Me := U ′ at some
e = 〈i, j〉 where it so happens that λU ′ = λMe (this is finite information so the
existence of such e implies the existence of the patched enumeration). �

B.1.5. The proof of proposition 2.11. We generalize the left-to-right
direction of the proof of theorem 2.16, that is given in B.1.4 above. For this

we require a lemma that is a refined version of proposition 2.10.30

B.1.5.1. A fixed-point lemma. Write µxxx(·) := µ(· | xxx) for measure µ condi-
tional on xxx ∈ B∗. Let µxxxM denote the transformation of µxxx by M .

Lemma B.1. Given effective enumeration {Me}e of the monotone machines
with computable prefix-free encoding {xxxe}e∈N. For every continuous ∆1 mea-
sure µ with µ(xxxe) > 0 for every e,

{µxxxeMe
}e =M.

Proof. Let ν be any Σ1 measure. Since µxxxe is obviously a continuous
∆1 measure for every e ∈ N, by the construction in B.1.1.3 above we obtain
for every e a monotone machine M with ν = µxxxeM . Indeed, there is a total
computable function g : N → N that for given e retrieves an index g(e) in the
given enumeration {Me}e∈N such that ν = µxxxeMg(e)

. But by Kleene’s recursion

theorem (see Soare, 2016, 29), there must be a fixed point ê such that Mg(ê) =
Mê, hence µxxxêMê

= µxxxêMg(ê)
.

This shows that for every ν there is an index e such that ν = µxxxeMe
. Con-

versely, by the proof in B.1.1 above the function µxxxeMe
gives a Σ1 measure for

every e. �

B.1.5.2. The proof of proposition 2.11. We can show that a universal trans-
formation µU of a continuous ∆1 measure is a Solomonoff-Levin measure, as
long as universal monotone U has an associated encoding {xxxe}e that does not
receive measure 0 from µ: so µ(xxxe) > 0 for every e. Call (the associated
encodings of) such machines compatible with µ. (This is clearly no restric-
tion for those µ that give positive measure to all sequences, which includes all
non-deterministic i.i.d. measures.)
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Proof. Given continuous ∆1 measure µ and µ-compatible universal ma-
chine U . We write out

µU (yyy) = µ({xxx : ∃yyy′ < yyy((xxx,yyy′) ∈ U)})

=
∑
e

µ({xxxexxx : ∃yyy′ < yyy((xxx,yyy′) ∈Me)})

=
∑
e

µ(xxxe)µ({xxx : ∃yyy′ < yyy((xxx,yyy′) ∈Me)} | xxxe)

=
∑
e

µ(xxxe)µ
xxxe
Me

(yyy).

Our lemma B.1 tells us that the µxxxeMe
range over all elements in M. Moreover,

w : e 7→ µ(xxxe) is a (defective) weight function because {xxxe}e is prefix-free and
U is compatible with µ. So µU is a Σ1 mixture, hence, by theorem 2.16, a
Solomonoff-Levin measure. �

B.1.6. The proof of theorem 2.13. We show that for every two con-
tinuous ∆1 measures µ and µ̄, for any universal monotone machine U that is µ-
compatible, there is a universal monotone machine V such that µU = µ̄V . This
implies (since λ is itself a continuous ∆1 measure) that every Solomonoff-Levin
measure can be written as a universal transformation µU of any continuous
∆1 measure µ. The proof is a generalization of that of theorem 2.16 in B.1.4
above.

Proof. Given continuous computable µ and µ̄, and universal U compati-
ble with µ. Write out as in B.1.5.2 above

µU (yyy) =
∑
e

µ(xxxe)µ
xxxe
Me

(yyy).

The function

q(yyy) =

{
µ(yyy) if yyy = xxxe for e ∈ N
0 otherwise

is a Σ1 semi-distribution; hence by proposition A.3 we can construct a prefix-
free machine T such that q = µ̄T . Let ne := #{zzz : (zzz,xxxe) ∈ T}, and let p.c.
〈·, ·〉 : N × N → N map the pairs (e, j) with j < ne onto N. Let zzz〈e,j〉 be the
j-th enumerated T -description of xxxe. We then have∑

e

µ(xxxe)µ
xxxe
Me

(yyy) =
∑
e

µ̄T (xxxe)µ
xxxe
Me

(yyy)

=
∑
e

∑
j<ne

µ̄(zzz〈e,j〉)µ
xxxe
Me

(yyy).

For every 〈e, j〉 for which zzz〈e,j〉 becomes defined we run the construction of
proposition 2.10 above on µ̄zzz〈e,j〉 and µxxxeMe

to obtain an enumeration of machines

{Nd}d such that µ̄
zzz〈e,j〉
N〈e,j〉

= µxxxeMe
(with j < ne) for all e. Then
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∑
e

∑
j<ne

µ̄(zzz〈e,j〉)µ
xxxe
Me

(yyy) =
∑
d

µ̄(zzzd)µ̄
zzzd
Nd

(yyy),

which we can rewrite to µ̄V (yyy), defining V by (zzzdxxx,yyy) ∈ V :⇔ (xxx,yyy) ∈ Nd.
We then still need to enforce that V is in fact universal by putting Nd := V ′

for some universal V ′ and some d = 〈e, j〉 with µ̄
zzz〈e,j〉
V ′ = µxxxeMe

. Our final

objective is thus to show that µ̄
zzz〈e,j〉
V ′ = µxxxeMe

for some e, j. To that end, define

computable function g : N→ N by µxxxeMg(e)
= µ̄

zzz〈e,0〉
V ′ . Since µ̄T (xxxe) > 0 for each

e, the sequence zzz〈e,0〉 is defined for each e. Hence µ̄
zzz〈e,0〉
V ′ is defined, and g, that

retrieves the index g(e) of a machine that transforms µxxxe to this Σ1 measure, is
total. Then by the recursion theorem there is an index ê such that Mê = Mg(ê),

so µxxxêMê
= µxxxêMg(ê)

= µ̄
zzz〈ê,0〉
V ′ . �

B.1.7. The proof of theorem A.16. The generalized coding theorem
follows from a generalization of the construction for the original coding theorem
(see Li and Vitányi, 2008, 273ff; Shen et al., 20xx), together with lemma A.15.

B.1.7.1. The main construction31. This is

Proposition B.2. For every computable measure µ that is conditionally
bounded away from 0, there is for every Σ1 semi-distribution p a prefix-free
machine T such that Kµ

T ≤+ − log p.

Proof. Let p be any Σ1 semi-distribution, with uniformly computable
approximation function g. Let µ be conditionally bounded away from 0 by d.
We will construct a prefix-free machine T such that Kµ

T ≤+ − log p in stages
s = 〈yyy, t〉. Let Ds(yyy) = {xxx ∈ B∗ : (xxx,yyy) ∈ Ts}.

Construction. Let T0 = ∅, and also R0 = ∅.
At stage s = 〈yyy, t〉, let k ∈ N be such that 2−k ≤ g(yyy, t) < 2−k+1. If

T〈yyy,r〉 = T〈yyy,r〉−1 for those r < t where g(yyy, r) ≥ 2−k already (in particular, if

r = t is the first r where g(yyy, r) ≥ 2−k), then we proceed as follows.
Let zzz0 be the left-most sequence of length s with Jzzz0K∩J∪s′<sRs′K = ∅, i.e.,

JzzzK ⊆ J∪s′<sRs′K for all zzz ∈ Bs with zzz <L zzz0. Starting with this zzz0, construct
set Rs by iteratively adding the next left-most sequence zzzi >L zzzi−1 of length s,
until

∑
zzz∈Rs µ(zzz) ≥ 2−k−2. If already

∑
zzz∈Rs µ(zzz) ≥ 2−k−1, then reset Rs := ∅,

put Ts := Ts−1, and proceed to next stage. Otherwise, select a string xxx of
maximal measure µ(xxx) that satisfies JxxxK ⊆ JRsK, and put Ts := Ts−1∪{(xxx,yyy)}.

Verification. For given yyy, let k ∈ N minimal such that p(yyy) > 2−k; so
p(yyy) ≤ 2−k+1. We will show that the construction enumerates a pair (xxx,yyy)
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with µ(xxx) ≥ 2−k−d−3 in T . This guarantees that, for all yyy ∈ B∗,

Kµ
T (yyy) = − log max{µ(xxx) : (ρ,yyy) ∈ T}

≤ − log(2−d−3p(yyy))

= − log p(yyy) + d+ 3.

Let s0 = 〈yyy, t0〉 be large enough to satisfy g(yyy, t0) ≥ 2−k and, by nonatomic-
ity of µ, µ(zzz) < 2−k−2 for all zzz ∈ Bs. If still D〈yyy,r〉(yyy) = D〈yyy,r〉−1(yyy) for those

r < t0 where already g(yyy, r) ≥ 2−k (otherwise we are done), then from the fact
that

∑
l:2−l≤p(zzz) 2−l ≤ 2 · p(zzz), we also have that

∑
s<s0

µ(JRsK) <

∑
zzz∈B∗

∑
l:2−l≤p(zzz)

2−l−1

− 2−k−1

≤

(∑
zzz∈B∗

p(zzz)

)
− 2−k−1

≤ 1− 2−k−1.

Thus the construction has room to select in Rs0 a number of sequences
from Bs0 such that 2−k−2 ≤

∑
zzz∈Rs0

µ(zzz) ≤ 2−k−1. All that remains to show

is that there is xxx with JxxxK ⊆ JRs0K such that µ(xxx) ≥ 2−k−d−3.
To that end, consider the sequence xxx0 with Jxxx0K ⊆ JRs0K of smallest length.

Suppose without loss of generality that xxx0 = xxx−0 0. Then for xxx′0 := xxx−0 1 with
possibly Jxxx′0K ∩ JRs0K 6= ∅ (but not Jxxx′0K ⊆ JRs0K or xxx−0 would be shortest)
we have that µ(xxx0) ≥ 2−dµ(xxx′0). Moreover, let xxx1 the shortest sequence with
xxx1 <L xxx0 and Jxxx1K ⊆ JRs0K (if such sequence exists). Again, for xxx′1 := ρ−1 0 with
possibly Jρ′1K∩ JRs0K 6= ∅ but not Jxxx′1K ⊆ JRs0K we have that µ(xxx0) ≥ 2−dµ(xxx′1).
It follows that for xxx equal to xxx0 or to xxx1 it must hold that µ(xxx) ≥ 2−d−1µ(JRs0K),
and we are done. �

B.1.7.2. The proof of lemma A.15. It does not follow immediately from
proposition B.2 that for µ conditionally bounded away from 0 we have Kµ

U ≤+

− log p for every universal prefix-free machine U and Σ1 semi-distribution p.
While we have that for any universal U and all e ∈ N,

(92)

Kµ
U (yyy) = − log max{µ(xxx) : (xxx,yyy) ∈ U}

≤ − logµ(xxxe)− log max{µ(xxx | xxxe) : (xxx,yyy) ∈ Te}

= Kµe

Te
(yyy) +O(1),

we have to do a little more work to show that this implies that also Kµ
U ≤+ Kµ

Te
.

Proof. For given prefix-free T , we can employ the construction of propo-

sition B.2 to define a computable g : N→ N such that Kµe

Tg(e)
≤+ Kµ

T . Now by
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the Kleene recursion theorem there is a fixed point ê such that Tg(ê) = Tê, so

we have Kµê

Tê
≤+ Kµ

T , and by (92) also Kµ
U ≤+ Kµê

Tê
, hence Kµ

U ≤+ Kµ
T . �

B.1.7.3. The proof of theorem A.16.

Proof. By proposition B.2 we can exhibit a prefix-free T such thatKµ
T ≤+

− logµU . Moreover, by lemma A.15 we have Kµ
U ≤+ Kµ

T and by (84) also
− logµU ≤+ Kµ

U , hence − logµU =+ Kµ
U as required. �

B.1.8. The proof of proposition 2.17. Call an enumeration {νi}i∈N of
all Σ1 measures acceptable if it is generated from an enumeration {Mi}i of all
monotone Turing machines by the procedure in B.1.1.3 above, i.e., νi = λMi

.
This terminology matches that of the definition of acceptable numberings of
the p.c. functions (Rogers, 1967, 41; Soare, 2016, 21). Every effective listing
of all Turing machines yields an acceptable numbering. Importantly, any two
acceptable numberings differ only by a computable permutation (Rogers, 1958);
in our case, for any two acceptable enumerations {νi}i and {ν̄i}i there is a
computable permutation f : N→ N of indices such that ν̄i = νf(i).

Proof. Given λU ∈ SL, with enumeration {Mi}i of all monotone ma-

chines corresponding to U . We know that λU is equal to ξ
{ν̄i}i
v for some ac-

ceptable enumeration {ν̄i}i = {λMi
}i of M and (defective) weight function v.

First we show that ξ
{ν̄i}i
v is equal to ξ

{νi}i
v′ for given acceptable enumeration

{νi}i and (defective) weight function v′; then we show that it is also equal to

ξ
{νi}i
w for proper weight function w.

Since enumerations {νi}i and {ν̄e}e are both acceptable, there is a 1-1
computable f such that ν̄i = νf(i). Then

∑
i

v(i)ν̄i(·) =
∑
i

v(i)νf(i)(·)

=
∑
i

v(f−1(i))νi(·)

=
∑
i

v′(i)νi(·),

with v′ : i 7→ v(f−1(i)).
We proceed with the description of a proper weight function w. The idea

is to have w assign to each i a positive computable weight that does not exceed
v′(i), additional computable weight to the index of a single suitably defined
Σ1 measure in order to regain the original mixture, and all of the remaining
weight to an “empty” Σ1 measure.

Let a ∈ Q be such that ξ
{νi}i
v′ (∅∅∅) < a < 1, and let c be such that∑

i 2−i−c < 1−a. Let v′0(i) denote the first approximation of semi-computable
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v′(i) that is positive. We now define computable g : N→ Q by

g(i) = min{2−i−c, v′0(i)}.
Clearly,

∑
i g(i) < 1 − a. Moreover,

∑
i g(i) is computable because for any

δ > 0 we have a j ∈ N with
∑
i>j 2−i−c < δ, hence

∑
i≤j g(i) <

∑
i g(i) <∑

i≤j g(i) + δ.

Next, define π(·) := a−1
∑
i (v′(i)− g(i)) νi(·). This is a semi-measure

because π(∅∅∅) ≤ a−1ξ
{νi}i
v′ (∅∅∅) < a−1a = 1. Let k be such that νk = π, and let l

be such that νl is the “empty” Σ1 measure with ν(xxx) = 0 for all xxx ∈ B∗ (both
indices exist even if we cannot effectively find them).

Finally, we define w by

w(i) =


g(i) if i 6= k, l

g(i) + a if i = k

1− a−
∑
j 6=l g(j) if i = l

.

Function w is computable and indeed a proper weight function, and∑
i

w(i)νi(·) =
∑
i

g(i)νi(·) + aνk(·) + 0

=
∑
i

g(i)νi(·) +
∑
i

(v′(i)− g(i)) νi(·)

=
∑
i

v′(i)νi(·). �

B.1.9. The proof of proposition 2.18.

Proof. By proposition 2.17 we know that any given element in SL equals

ξ
{νi}i
w (·) for some computable weight function w over given {νi}i. Let k be such

that νk(·) =
∑
i 2−K(i)νi(·), with K(i) the prefix-free Kolmogorov complexity

(via some universal prefix-free machine T̊ ) of the i-th lexicographically ordered
string; 2−K(·) is a universal weight function. Define

v̊(i) =

{
w(i) + w(k) · 2−K(i) if i 6= k

w(k) · 2−K(i) if i = k
,

which is a weight function because
∑
i v̊(i) <

∑
i 6=k w(i) + w(k) =

∑
i w(i).

Moreover, v̊ is universal because 2−K(·) is, and∑
i

v̊(i)νi(·) =
∑
i 6=k

w(i)νi(·) + w(k)
∑
i

2−K(i)νi(·)

=
∑
i

w(i)νi(·). �

* * *
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B.2. Sequential prediction

B.2.1. The proof of convergence theorem 2.9. In the main text I
presented this result as a direct corollory of the Blackwell-Dubins theorem
(1962). However, in the literature (Li and Vitányi, 2008, 352ff; Hutter, 2003a,
2062; Poland and Hutter, 2005, 3781) it is usually presented as a consequence
of (variations of) the following stronger result, first shown by Solomonoff (1978,
426f; already presented in 1975).

Let us introduce as a measure of the divergence between two distributions
p1 and p2 over B the squared Hellinger distance

(93) H(p1, p2) :=
∑
x∈B

(√
p1(x)−

√
p2(x)

)2

.

Then:

Theorem B.3 (Solomonoff). For every µ ∈ ∆1, the expected infinite sum
of squared Hellinger distances between one-step conditional QU and µ

(94) EXω∼µ

[ ∞∑
t=0

H
(
µ1(· | Xt), Q1

U (· | Xt)
)]

is bounded by a constant.

Proof of theorem 2.9. To see how theorem 2.9 follows from theorem
B.3, suppose that QU does not satisfy (I: ∆1): there is a µ ∈ ∆1 such that with
probability ε > 0 there is a δ > 0 such that |µ(xt+1 | xxxt)−QU (xt+1 | xxxt)| > δ
infinitely often. But that means that with positive probability the infinite sum
of squared Hellinger distances is infinite, and the expectation (94) cannot be
bounded by a constant. �

B.2.1.1. Constant bound on log-regret. Theorem B.3, in turn, rests on the
following simple but crucial consequence of QU ’s universality.

Proposition B.4. For every µ ∈ ∆1, the cumulative log-regret of pQU
relative to pµ is bounded by a constant.

Proof. Recall from 3.3.2.5 or 6.1.2 above that the cumulative log-regret
of pQU relative to pµ is given by

RQU ,µ(xxxs) = − ln
QU (xxxs)

µ(xxxs)
.

By the universality of QU in the class of Σ1 measures we know that QU dom-
inates µ: there is a constant c such that for every finite xxx we have QU (xxx) ≥
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c−1µ(xxx). This fact allows us to derive that for every single sequence xxx

RQU ,µ(xxx) = − ln
QU (xxx)

µ(xxx)

≤ − ln
c−1µ(xxx)

µ(xxx)

= ln c. �

B.2.1.2. *Constant bound on log-regret: Σ1 measures. Proposition B.4 ac-
tually directly generalizes to the Σ1 measures on Bω ∪ B∗, or semi-measures.

Proposition B.5. For every ν ∈ Σ1, the cumulative log-regret of pQU
relative to pν is bounded by a constant.

Proof. As in proposition B.4, because all that is required is the dominance
of QU over ν. �

B.2.1.3. Squared Hellinger distance and Kullback-Leibler divergence. An-
other lemma that is needed for the proof of theorem B.3 is the fact that
the squared Hellinger distance is bounded by the Kullback-Leibler divergence,
which, recall (A.2.3.2 above), is defined by

(95) D(p1 ‖ p2) = EX∼p1

[
− ln

p2(X)

p1(X)

]
,

i.e., as the p1-expected log-regret of p2 relative to p1.

Lemma B.6. For all non-zero semi-distributions p1 and p2,

H(p1, p2) ≤ D(p1 ‖ p2).
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Proof. We derive

H(p1, p2) =
∑
x∈B

(√
p1(x)−

√
p2(x)

)2

=
∑
x∈B

(
p1(x) + p2(x)− 2

√
p1(x)p2(x)

)

≤ 2− 2
∑
x∈B

(
p1(x)

√
p2(x)

p1(x)

)
(96)

= −2

(
EX∼p1

[√
p2(X)

p1(X)

]
− 1

)

≤ −2 ln EX∼p1

[√
p2(X)

p1(X)

]
(97)

≤ EX∼p1

[
−2 ln

√
p2(X)

p1(X)

]
(98)

≤ EX∼p1

[
− ln

p2(X)

p1(X)

]
.

Here (96) follows from the semi-distribution property that p(0) + p(1) ≤ 1;
(97) follows from the inequality ln y ≤ y − 1 for y > 0; and (98) follows from
Jensen’s inequality. �

B.2.1.4. The proof of theorem B.3. The result now follows easily from the
previous.

Proof of theorem B.3. We use lemma B.6 to bound every expected
finite sum of the first s divergences between one-step conditional QU and µ,

(99) EXs−1∼µ

[
s−1∑
t=0

H
(
µ1(· | Xt), Q1

U (· | Xt)
)]
,

by

(100) EXs−1∼µ

[
s−1∑
t=0

EXt+1∼µ(·|Xt)

[
− ln

QU (Xt+1 | Xt)

µ(Xt+1 | Xt)

]]
.
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Moving around the sums and the expectations, we work out that (100) equals

s−1∑
t=0

EXs−1∼µ

[
EXt+1∼µ(·|Xt)

[
− ln

QU (Xt+1 | Xt)

µ(Xt+1 | Xt)

]]

=

s−1∑
t=0

EXt∼µ

[
EXt+1∼µ(·|Xt)

[
− ln

QU (Xn+1 | Xt)

µ(Xt+1 | Xt)

]]
(101)

=

s−1∑
t=0

EXt+1∼µ

[
− ln

QU (Xt+1 | Xt)

µ(Xt+1 | Xt)

]

= EXs∼µ

[
s−1∑
t=0

− ln
QU (Xt+1 | Xt)

µ(Xt+1 | Xt)

]
,(102)

where step (101) follows from the fact that for s ≥ t measure µ satisfies µ(xxxt) =∑
µ(xxxs)Jxxxs ∈ Bs : xxxs < xxxtK. But (102) is the expected log-regret

EXs∼µ [RQU ,µ(xxxs)] ,(103)

and since by proposition B.4 we know that for some constant c we have for
every sequence xxxs of any length s that

RQU ,µ(xxxs) < c,

we also have the constant bound c on (103) and hence on (94). �

B.2.2. The proof of consistency theorem 3.1. Since Solomonoff’s
proof of theorem B.3 in B.2.1 above only depends on QU ’s property of domi-
nance over the relevant class of measures, we can similarly derive the parallel
result for the mixture predictors pmix(w) in general.

B.2.2.1. Constant bound on log-regret: optimality. In particular, proposi-
tion B.4 holds for mixtures in general, and the constant that bounds a mixture
predictor’s regret relative to pi is indeed given by the weight w(i). That is, for
every pmix(w) over H and µi ∈ H, we have that Rmix(w),i ≤ w(i). I actually
stated this fact as optimality theorem 3.3 above, and gave the proof in the
main text.

B.2.2.2. Bound on expected Hellinger distance. From optimality theorem
3.3 we can as before derive the bound on the Hellinger distance.

Theorem B.7. For every µ ∈ H, the expected infinite sum of divergences
between the predictions given by pmix(w) and the one-step conditional probabil-
ities given by µ

(104) EXω∼µ

[ ∞∑
t=0

H
(
µ1(· | Xt), pmix(Xt)

)]
is bounded by a constant.

This implies as before the Bayesian consistency theorem 3.1.



200 B. PROOFS

B.2.2.3. Reinterpretation: anticipation of convergence. As mentioned in
3.3.2.1, we might reinterpret consistency theorem 3.1 for aggregating mixtures
as follows: for every such pmix(w), every pi in the pool H, pi anticipates with

almost-certainty (per pi’s a priori measure µi) that pmix(w)’s predictions con-
verge to pi’s own. In particular, two different aggregating predictors both an-
ticipate with probability 1 that their predictions converge to each other. This is
in fact close in spirit to the original statement of the Blackwell-Dubins theorem
as a result about the merging of opinions of two Bayesian agents that are mu-
tually continuous with respect to each other (also see Huttegger, 2015). (But
note that this statement—merging of the full conditional measures—is stronger
than what I discuss here: convergence of predictions or one-step conditional
measures.) It is of interest to state that two Solomonoff-Levin predictors both
expect with almost-certainty that their predictions will converge to each other
(given the fact, theorem 3.2, that they do not necessarily do converge). How-
ever, it is not perfectly clear how to make sense of almost-certainty in the case
of measures on Bω ∪ B∗ or semi-measures.

B.2.2.4. Convergence to semi-measures. To make sense of the Bayesian
consistency result applied to Σ1 mixtures (both in the original interpretation
and that of B.2.2.3 above), we need to make precise what ‘almost surely’ should
mean for such ‘semi-measures.’ We might try to do this as follows. Let a ν ∈ Σ1

be represented by a measure ν′ over {0, 1, s}ω, with ‘s’ a ‘stopping symbol’:
we have ν′(xxx0) + ν′(xxx1) + ν′(xxxs) = ν′(xxx) and we stipulate ν′(xxx) = ν(xxx) and
ν′(xxxss) = ν′(xxxs) for all xxx ∈ B∗. Then for all ν ∈ Σ1 we have that Q′U domi-
nates ν′, hence ν′ � Q′U and the Blackwell-Dubins theorem applies as before.
But one can object to this way of setting things up: in particular the ‘conver-
gence’ on appearence of an s, where both the measure and the predictor jump
to forever following the deterministic sequence sω, is quite trivial. In case of a

semi-measure ν with probability 1 of reaching an s (i.e.,
∑
xxxt∈Bt ν(xxxt)

t→∞−−−→ 0),
for instance, even a modified predictor ‘that never learns’ (given by an i.i.d.
strict semi-measure, i.e., with ν′ that gives positive probability to s) would
converge on ν with probability 1! In light of this, one might prefer to try to re-
strict attention to the infinite sequences Bω; ostensibly, a way of doing this is to
consider a normalization of ν that preserves relevant structure of ν. One pos-
sibility is the normalization µLev

ν (xxxt+1) = lims

∑
yyys∈Bs ν(xxxt+1yyys)/µLev

ν (∅∅∅) with

µLev
ν (∅∅∅) = lims

∑
xxxs ν(xxxs) (Levin and V’yugin, 1977, 360, also discussed by

Bienvenu et al., 2017, 317 towards a notion of randomness for semi-measures);
another is µSol

ν (xxxt+1) = µSol
ν (xxxt)ν(xxxt+1)/(ν(xxxt0) + ν(xxxt1)) with µSol

ν (∅∅∅) = 1
(Solomonoff, 1978, 423ff; see Li and Vitányi, 2008, 302ff, though here the focus
is on normalizing the Solomonoff-Levin predictor and not the possible sources
ν). Note, however, that the normalization µLev

ν is not even defined for the above
ν with probability 0 of tracing a non-s infinite path. The normalization µLev

ν

is defined in this case, and it preserves important structure in the sense that
it keeps the ratio between ν(xxx0) and ν(xxx1). Still, it necessarily fails to retain



B.2. SEQUENTIAL PREDICTION 201

some structure (specifically the relationship between ν(xxx) and its two one-bit
extensions); and what may also be lost here is the dominance of a universal
Σ1 measure (e.g., the Solomonoff-Levin measure), which complicates how we
would proceed to make sense of the convergence on the normalized measure as
a substitute for the original ν. In conclusion of this discussion, I have not been
able to come up with a truly satisfying way of making sense of almost-sure

convergence in the case of a semi-measure.32

B.2.3. The proof of theorem 3.2. The proof rests on the specification
by Hutter and Muchnik (2007, 251ff) (also see Lattimore and Hutter, 2015,
5ff) of a particular Martin-Löf-random sequence xxxω (which the authors denote
‘α’), and a particular Σ1 measure ν that is defined with the help of xxxω. The
specification of xxxω and ν is quite complicated; I refer for the details to the
original paper and mention in the proof only the properties that are needed
there.

Proof. We suppose xxxω and ν as mentioned. Given some Solomonoff-Levin
measure, or universal Σ1 mixture ξw, we define a second universal Σ1 mixture
by

ξw′(·) := γξw(·) + (1− γ)ν(·)
for some γ ∈ (0, 1), and we show that ξw and ξw′ do not converge on xxxω.

First of all, since xxxω is ML-random, we have that λ(xxxt) ≥ c−1
1 ξw(xxxt) for

some c1 and all t, and hence that

ξw(x | xxxt) =
∑
i

w(i | xxxt)νi(x | xxxt)

=
∑
i

w(i)νi(xxx
t)

ξw(xxxt)
νi(x | xxxt)

≥ w(iλ)λ(xxxt)

ξw(xxxt)
λ(x | xxxt)

≥ w(iλ)λ(xxxt)

c−1
1 λ(xxxt)

λ(x | xxxt)

= c1w(iλ)
1

2
,

i.e., a constant. This means that there are amin, amax strictly between 0 and
1 such that for all t, the probability ξw(xt+1 | xxxt) that ξw assigns to the next
element of xxxω must lie within the interval [amin, amax].

Another consequence of xxxω being ML-random is that it must contain the
subsequence 01 infinitely often. We focus on these occurences, employing the
specific properties that ν (and xxxω) were specifically designed to fulfill.

Namely, ν is specified in such a way that for all yyy ∈ B∗ \ {∅∅∅}, ν(yyy) =
ν(yyy0) + ν(yyy1), and

◦ if xt = 1, then ν(xxxt−10) = 2−t;
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◦ if xt = 0, then ν(xxxt−11) = 0.

Now consider the infinitely many t such that xxxt+2 = xxxt01. For such t, it holds,
first, that ν(xxxt1) = 0, so that ν(xxxt) = ν(xxxt0) = ν(xxxt+1) hence ν(xt+1 | xxxt) = 1.
Second, for such t it holds that ν(xxxt) ≥ ν(xxxt+10) = 2−t−2 = 2−2λ(xxxt).

We then consider

ξw′(x | xxxt) =
∑
j

w′(j)νj(xxx
t)

ξw′(xxxt)
νj(x | xxxt)

= γ
∑
i

w(i)νi(xxx
t)

ξw′(xxxt)
νi(x | xxxt) + (1− γ)

ν(xxxt)

ξw′(xxxt)
ν(x | xxxt).

Since
w(i)νi(xxx

t)

ξw′(xxxt)
≥× w(i)νi(xxx

t)

ξw(xxxt)
= w(i | xxxt),

and, by the fact that infinitely often ν(xxxt) ≥× λ(xxxt), also infinitely often

ν(xxxt)

ξw′(xxxt)
≥× ξw′(xxx

t)

ξw′(xxxt)
= 1,

we have infinitely often that ξw(x | xxxt) is of the form

ξw′(xt+1 | xxxt) = γ′ξw(xt+1 | xxxt) + (1− γ′)ν(xt+1 | xxxt)

with γ′ contained in an interval [γmin, γmax] for γmin, γmax strictly between 0
and 1. In fact, we saw that for these t it holds that ν(xt+1 | xxxt) = 1, wherefore

ξw′(xt+1 | xxxt) = γ′ξw(xt+1 | xxxt) + (1− γ′)
≥ γmaxξw(xt+1 | xxxt) + (1− γmax)

= ξw(xt+1 | xxxt) + (1− γmax)
(
1− ξw(xt+1 | xxxt)

)
≥ ξw(xt+1 | xxxt) + (1− γmax) (1− amax)

infinitely often, and the predictions of ξw′ and ξw do not converge to each other
on xxxω. �

B.2.4. Sequential propriety and locality.
B.2.4.1. Sequential propriety. Let us call a loss function ` sequentially proper

if the cumulative loss function is proper in the sense that for all t,

arg min
pt

EXt∼µ
[
Lp(Xt)

]
= ptµ,

meaning that a predictor that minimizes the µ-expected cumulative loss over
a sequence of length t must correspond to µ up to t (i.e., must be a p with
p(xs+1,xxx

s) = µ(xs+1 | xxxs) for s ≤ t). Sequential propriety carries over from
propriety:

Proposition B.8. Every proper loss function is also sequentially proper.
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Proof. We write out

EXt∼µ Lp(Xt) = EXt∼µ

[
t−1∑
s=0

`(p(Xs), Xs+1)

]

=

t−1∑
s=0

EXs+1∼µ [`(p(Xs), Xs+1)]

=

t−1∑
s=0

( ∑
xxxs∈Bs

µ(xxxs) EXs+1∼µ|xxxs [`(p,Xs+1)]

)
.

Then by the propriety of `, every term

EXs+1∼µ|xxxs [`(p,Xs+1)]

is minimized by p = µ1(· | xxxs), hence the total sum of terms is minimized by
the p with p(xxxs) = µ1(· | xxxs) for all s ≤ t, i.e., the p corresponding to µ up to
t. �

B.2.4.2. Locality. Recall that ` is local if `(p, x) is a function of p(x). For
distributions p over B, this is a vacuous property: every loss function must
satisfy it. For distributions p over Ω with |Ω| > 2, a smooth proper loss
function is local only if it is of the form

(105) `(p, x) = −r ln p(x) + cx

for constants r > 0 and cx for all x ∈ Ω.

Proof. See Bernardo and Smith (1994, 73f). �

Note that we obtain the log-loss function if we set all cx = 0 in (105).
B.2.4.3. Sequential locality. In the following, we restrict ourselves again to

the outcome space B. Let us call a loss function ` sequentially local if the
cumulative loss Lp(xxx) of p on xxx is only a function of µp(xxx) for µp corresponding
to p. The log-loss function, with Lp(xxxt) = − lnµp(xxxt), is obviously sequentially
local. Conversely, every proper loss function that is sequentially local must
again be of the logarithmic form (105).

Proof of proposition 6.1. Take any smooth (sequentially) proper loss
function `, and suppose it is sequentially local, so Lp(xxx) is a function of µp(xxx).
In particular, restricting the cumulative loss function to sequences of a fixed
length t, Lp(xxxt) is a function of µtp(xxxt). But the measures restricted to sequences

of length t are just the distributions p on Bt; so we can view the function Lt

restricted to sequences of length t as an instantaneous loss function `t for the
distributions over Bt, which is local because `tp(xxx) = Lp(xxx) for xxx ∈ Bt is a

function of p(xxx) = µtp(xxx). Then, since `t is also proper (because ` is proper and
so sequentially proper by assumption), it must take the form (105), i.e.,

`t(p,xxxt) = −rt ln p(xxxt) + cxxxt .
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Switching views again, it follows that for all t the function L must take the
form

(106) Lp(xxxt) = −rt lnµp(xxxt) + cxxxt .

But then the special case t = 1 implies that

`(p(∅∅∅), x) = −r lnµp(x) + cx,

for any p, x ∈ B, for r = r1 (note that this entails for (106) that all rt equal
the same factor r, and that cxxxt only depends on the number of 0’s and 1’s).
That is,

`(p, x) = −r ln p(x) + cx,

for any p ∈ P, x ∈ B, which is what was to be shown. �

B.2.5. The semi-computability of cumulative losses. Let ν ∈ Σ1.
Then − ln ν(·) ∈ Π1. However, it might be the case that ν(· | ·) 6∈ Σ1; QU is a
case in point, proposition 4.1. In such a case, also − ln ν(· | ·) 6∈ Π1.

Nevertheless, the sum
∑s−1
t=0 − ln ν(xt+1 | xxxt) as a function of xxxs is Π1,

because it is the function − ln ν(·). This is despite the fact that the individual
terms in the sum are not Π1. It is a direct reflection of the fact that ν is Σ1

but conditional ν(· | ·) is not.
In other words, the cumulative log-loss Lν of a ν ∈ Σ1 is always Π1, even

if the instantaneous losses `ν might not be. The question is: does this fail to
hold for other loss functions? Specifically, could it not be the case that the
cumulative loss Lν for ν ∈ Σ1 is not Π1, if `ν is not?

As an obvious start, can we show that the sum
∑s−1
t=0 ν(xt+1 | xxxt) might

not be Σ1, if the conditional ν(· | ·) itself is not? In particular, is the sum∑s−1
t=0 QU (xt+1 | xxxt) in Σ1? I found this surprisingly hard to either prove or

disprove, hence I must leave it here as an open question.

Question B.9. Is the function S : xxxt+1 7→
∑s−1
t=0 QU (xt+1 | xxxt) in ∆2 \Σ1?

B.2.6. The proof of proposition 6.2.

Proof. This follows from the result of Lahtrop and Lutz (1999, also see
Merkle, 2008; Nies, 2009, 271ff) that there exist computably random sequences
that are at the same time ultracompressible. Namely, a computably random
sequence xxxω is such that for every ∆1 measure µ it holds that

Lµ(xxxt) = − lnµ(xxxt) ≥+ − lnλ(xxxt) = t,

while xxxω is ultracompressible if for every computable unbounded non-decreasing
function (every computable order function) g : N→ N, for almost all t,

K(xxxt) < K(t) + g(t).

Since (see A.3.2.3)
LQU =+ KM ≤+ K

and (see A.3.1.3)
K(t) ≤+ 2 ln t,
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by choice of order function g : t 7→ ln t we have LQU (xxxt) ≤+ 3 ln t. �

*
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ematischen Grundlagen der Wahrscheinlichkeitsrechnung. Sijthoff, Leiden, 1935. [p. 29]

H. Reichenbach. Experience and Prediction. University of Chicago Press, Chicago, IL, 1938.
[pp. 3, 29, and 30]

J. Reimann. Randomness—beyond Lebesgue measure. In S. B. Cooper, H. Geuvers, A. Pillay,
and J. Väänänen, editors, Logic Colloquium 2006, volume 32 of Lecture Notes in Logic,

pages 247–279. Association for Symbolic Logic, Chicago, IL, 2009. [pp. 64 and 66]
J. J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100,

1986. [p. 41]
J. J. Rissanen. Stochastic complexity (with discussion). Journal of the Royal Statistical

Society, Series B, 49:223–239, 252–265, 1987. [p. 41]
J. J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15 of Series in Computer

Science. World Scientific, Singapore, 1989. [pp. 129 and 141]



Bibliography 219
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*





Nederlandse samenvatting

In dit proefschrift onderzoek ik de theoretische mogelijkheid van universele voor-
spellers: voorspelmethodes die in zekere zin succesvol zijn in alle mogelijke gevallen.
Daartoe beschouw ik de formele specificatie van een voorspelmethode die teruggaat
naar Solomonoff (1964) en Levin (1970), en die zich onderscheidt door de rol van
effectieve berekenbaarheid en de associatie met een eenvoudsvoorkeur.

De eerste hoofdlijn van dit proefschrift is de interpretatie van de Solomonoff-
Levindefinitie als een universele voorspelmethode. Mijn vertrekpunt is de relatie van
dit voorstel met Carnaps onderzoeksprogramma van inductieve logica; in het bijzon-
der bestudeer ik een invloedrijk argument van Putnam tegen Carnaps programma,
een wiskundig bewijs dat de onmogelijkheid van een universele voorspelmethode moet
aantonen. Ik presenteer de Solomonoff-Levinvoorspellers als het natuurlijke resultaat
van een uitdrukkelijke poging om een klasse van effectieve voorspellers bloot te leg-
gen die immuun is voor Putnams bewijsprocedure. Dit maakt, zo lijkt het, de weg
vrij voor een Reichenbachiaanse interpretatie van de Solomonoff-Levinvoorspellers als
optimaal onder alle mogelijke voorspellers.

Mijn conclusie is echter negatief: deze interpretatie houdt geen stand, en de reden
is een discrepantie tussen de effectiviteitsniveaus van de Solomonoff-Levinmaten en
de Solomonoff-Levinvoorspellers. Deze laatste zijn niet vatbaar voor de gewenste
interpretatie, en dit blijkt al te volgen uit Putnams oorspronkelijke bewijs.

De tweede hoofdlijn van dit proefschrift is de associatie van het Solomonoff-
Levinvoorstel met het ongrijpbare concept van eenvoud. Ik analyseer het idee dat de
Solomonoff-Levinvoorspellers niet slechts een formalisering geven van een eenvouds-
voorkeur in voorspelling, het principe van Occams scheermes, maar ook een rechtvaar-
diging daarvan. Ik bespreek de relevante notie van eenvoud als comprimeerbaarheid,
en reconstrueer het geopperde argument voor een kentheoretische rechtvaardiging die
circulariteit weet te vermijden. Tevens evalueer ik Vovks gerelateerde formele notie
van voorspelcomplexiteit als een notie van de intrinsieke moeilijkheid van datareeksen.

Mijn conclusies zijn opnieuw negatief. De voorgestelde rechtvaardiging gaat niet
op, juist omdat de relevante eenvoudsvoorkeur al een specifieke inductieve aanname
vertegenwoordigt. Daarbij beargumenteer ik dat de betreffende definitie van een-
voud als comprimeerbaarheid niet kan overtuigen als een objectieve formalisering
van een eenvoudsvoorkeur in voorspelling. Hoewel, tenslotte, de notie van voorspel-
complexiteit een meer rechtstreekse en daarom ogenschijnlijk minder problematische
interpretatie kent, schiet deze toch tekort als intrinsieke-complexiteitsmaat.
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