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Abstract

The cosmological constant problem is widely viewed as an important barrier and

hint to merging quantum field theory and general relativity. It is a barrier insofar as

it remains unsolved, and a solution may hint at a fuller theory of quantum gravity. I

critically examine the arguments used to pose the cosmological constant problem, and

find many of the steps poorly justified. In particular, there is little reason to accept

an absolute zero point energy scale in quantum field theory, and standard calculations

are badly divergent. It is also unclear exactly how a semiclassical treatment of gravity

would include a vacuum energy contribution to the total stress-energy. Large classes

of solution strategies are also found to be conceptually wanting. I conclude that one

should not accept the cosmological constant problem as standardly stated.

1 Introduction: What’s the problem?

There is a near consensus among theoretical physicists working on a quantum theory of

gravity—particularly those trained in particle physics—that the cosmological constant poses

a major theoretical problem.1 That’s where the consensus ends; exactly what the problem is
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1There is not complete consensus, however. See Bianchi and Rovelli (2010) for one notable criticism of

the idea that the cosmological constant poses any problem at all.
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and how it affects our understanding of physics is unclear. In his seminal review, Weinberg

(1989) introduces the cosmological constant problem (CCP) as one of the few crises available

to serve as fodder for theoretical physicists:

Perhaps it is for want of other crises to worry about that interest is increasingly

centered on one veritable crisis: theoretical expectations for the cosmological

constant exceed observational limits by some 120 orders of magnitude. (p. 1)

Others share the worry, but drastically decrease the magnitude of the discrepancy. Burgess

(2013) claims that the CCP stems from attempting to answer a simple question: “What is

the vacuum’s energy, and how does it gravitate?”

[I]t is a problem because observations indicate a vacuum energy that is more that

50 orders of magnitude smaller than we think it should be, given the particles

and interactions that we find in experiments. (p.1)

Others take a different approach to stating the problem. Rather than focus on the mag-

nitude of the discrepancy between prediction and observation, one may wonder why the

observed cosmological constant is so small, why it isn’t exactly zero, or why the vacuum

energy density is on the same order of magnitude as the current matter energy density of the

universe (see Nobbenhuis 2006, Section 1).2 Still others think that all or these are ill-stated,

and don’t get at the heart of the CCP:

In some respects, the biggest problem with the cosmological constant problem

is that it is rarely stated properly. Why is the cosmological constant so small?

Why is it not Planckian? Why is it not zero? All of these questions belittle

2A brief comment on the nature of the citations given here. I focus on review articles and lecture notes
from physicists. Lecture notes are particularly illuminating, since they are used to convince the “uninitiated”
graduate students that the problem really is a problem. Given the near-universal acceptance of the CCP
among working physicists, these arguments are often unstated in published articles. The review articles
are an exception—they often feature critical analyses of proposed solutions, as well as somewhat detailed
discussion of the nature of the CCP itself.
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the cosmological constant problem, and if we are to have any hope of solving

it, we had better be clear about what the problem really is. . . [T]he real issue

with the cosmological constant is not so much one of fine tuning, but of radiative

instability, and the need to repeatedly fine tune whenever higher loop corrections

are included. (Padilla 2015, p.2)

Radiative instability is uniquely a problem for perturbative formulations of the CCP,

order-by-order fine-tuning only occurs in a perturbative treatment. A small minority don’t

think that there even is such a thing as the CCP! Bianchi and Rovelli (2010) are highly

critical of stating the CCP as a crises for current physics:

There is no great mystery, in an accelerated expansion of the universe. This is a

phenomenon which is clearly predicted and simply described by well-understood

current physical theory. It is well understood in the context of general relativity,

which naturally includes a cosmological constant. . . the common theoretical objec-

tions against this interpretation of the acceleration are either weak, or ill-founded.

(p. 1)

So, with the disagreement amongst physicists about what the problem is, or whether there

is a problem at all, it is no surprise that the CCP remains a confusing ground for philosophers.

Saunders (2002) has examined the philosophical issues concerning the reality of the quantum

vacuum, in analogy with the electromagnetic ether and the Dirac negative energy sea. In the

latter cases, physics managed to do away with these concepts while maintaining phenomena

they were originally thought to explain. The technical issues with the vacuum in quantum

field theory are a bit tougher, however. Rugh and Zinkernagel (2002) provide the first detailed

philosophical analysis of the CCP as a whole, and critically highlight some of the conceptual

barriers I discuss below. Where they remain largely agnostic regarding the resolution of these

barriers, I argue that they provide good reason to reject the CCP.
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In Section 1.1, I will provide the relevant background to the CCP, and attempt to disam-

biguate the seemingly distinct issues that get lumped together under its umbrella. I take all

of these to contribute to the CCP, but each is worth mentioning as a separate piece. Section 2

outlines the background assumptions that one must accept in order to accept the CCP as a

real problem. In subsections I detail the steps, and highlight philosophical issues with each.

The steps build upon one another; if one rejects any step—as I will argue one should—then

the CCP doesn’t arise at all. Section 3 puts these issues aside, and outlines some of the

broad strategies for solving some form of the CCP, given that one takes it to be a problem in

the first place. Though interesting models have been proposed in response to the CCP, none

adequately deal with the problem. Coupling the lack of solution with the shaky motivation,

I conclude that one should not take the CCP seriously.

1.1 Multiple CCPs

From the previous section, we learn that physicists often speak of different—though related—

problems using the phrase “the cosmological constant problem.” In fact, introductions to

the problem will often list three distinct problems, commonly referred to as the old CCP, the

new CCP, and the coincidence problem. The first two are more appropriately thought of as

challenges for future models of quantum gravity, rather than issues with the current Standard

Model of particle physics of the ΛCDM model of cosmology. Our best theory of matter—

quantum field theory—tells us that the vacuum has an enormous energy density. Our best

theory of gravity—general relativity—tells us that this energy density should gravitate, and

a semiclassical merger of the two indicates that vacuum energy density should couple to

the Einstein field equations in the form of a cosmological constant term. What we get

from quantum field theory is an enormous cosmological constant term, well beyond what
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would be physically allowable based on observation.3 Requiring that the quantum vacuum

be Lorentz invariant heavily constrains the form of the vacuum stress-energy tensor. The

most general tensor quantity that is Lorentz invariant is a multiple of the Minkowski metric,

so 〈T µν〉 ∝ ηµν . Through the standard process of minimal gravitational coupling, we replace

the Minkowski metric with a general Einstein metric, and introduce the expectation value of

the vacuum energy as the correct constant of proportionality,

〈T µνvac〉 = −〈ρvac〉gµν . (1.1.1)

Conservation of stress-energy forces 〈ρvac〉 to be constant.4 Equation 1.1.1 looks like a special

case of the stress energy of a perfect fluid, where pvac = −〈ρvac〉, indicating that the equation

of state for the vacuum is parameterized by w = −1. If we insert 〈T µνvac〉 into the Einstein

field equations, it takes on a form identical to that of the cosmological constant, with Λvac =

8πG〈ρvac〉. By taking the vacuum energy seriously, we seem to “predict” the presence of a

cosmological constant in a semiclassical treatment of gravity.

The old CCP assumes that Λ = 0, and leads to attempts to find mechanisms going beyond

quantum field theory and general relativity for eliminating the vacuum energy contribution.

However, observations have since indicated that the expansion of the universe is accelerating,

meaning that our best cosmological models now include a nonzero Λ. Thus, the new CCP

is a bit more challenging: one must find a way of canceling the vacuum contributions, while

also including a small, positive effective Λ. Cancellations in light of the new CCP need to

be finely tuned to at least 50 orders of magnitude in order to leave a residual Λ 6= 0, which

3The discrepancy is so large that the very fact of our existence would preclude a cosmological constant
term anywhere near that predicted. Weinberg (1989) famously “predicted” the now observed value of the
cosmological constant by placing anthropic bounds on its value.

4While 〈ρvac〉 must be constant, we should expect ρvac to vary heavily. The quantum vacuum fluctuates,
and these fluctuations are supposed to provide some empirical evidence for the reality of vacuum energy. A
fully quantum treatment would force ρvac to be far from constant.
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physicists find unnatural.5

Both the old and new CCPs are made more severe by the fact of radiative instability.

Unlike certain other quantities in quantum field theory—such as the mass and charge of the

electron in quantum electrodynamics—the diverging value of the cosmological constant is

not properly renormalizable. Renormalization involves “redefining” constants in a theory

in such a way that divergences cancel out. A renormalizable term is cured of divergences

at a finite order within a perturbative expansion, and remains cured at all higher orders.

The vacuum energy in quantum field theory is radiatively unstable, which leads to the tra-

ditional forms of the CCP. Radiatively unstable terms can be tuned to a given order in a

perturbative expansion, but they diverge again when higher order terms are included. If

the vacuum energy were renormalizable, there would be no CCP at all. One would simply

redefine the vacuum energy as the physically observed vacuum energy, and this would be

no more puzzling than the mass or charge of the electron. One may be unsatisfied with the

renormalization procedure, but this is a separate issue from the CCP. Though not explicitly

stated in many formulations of the CCP, the radiative instability of the vacuum energy is

extremely important for understanding problems with fine-tuning solutions.

Given the radiative instability of the vacuum energy, a finite value is obtained by placing

an explicit cutoff in the integrals of the theory. Though this step is often taken in quantum

field theory, renormalizable terms end up without a dependence on the exact value of the

cutoff used. The vacuum energy density, by contrast, scales at high energies like σ4, where σ

is the cutoff scale. Though the explicit cutoff value is somewhat arbitrary, some value must

be chosen to get a quantitative prediction for the vacuum energy density.6 The fact that

the problem persists across any physically reasonable choice of cutoff is used as justification

5It’s not obvious why a high degree of cancellation resulting in Λ = 0 is any more natural than one
resulting in Λ 6= 0, but theorists intuitions seem to make the new CCP even more pressing.

6The size of the discrepancy in the CCP depend on the exact cutoff used. Weinberg gets a 120 order of
magnitude disagreement by taking the cutoff up to the Planck scale, while taking the cutoff to just above
energies accessible at the LHC gives something like a disagreement of 50 orders of magnitude.
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for the robustness of the problem: even though we don’t know the correct cutoff scale for

Standard Model quantum field theory, the CCP will arise at any value of the cutoff.

The coincidence problem, which is often grouped together with the CCP, is a rather

distinct problem, independent of considerations from quantum field theory. In cosmological

models the total stress energy tensor is dominated by various contributions at different time

scales. In the early universe, radiation dominates. But because there is a finite amount of

radiation, and it’s energy density in a region of radius r scales as r−4, the radiation dilutes

quickly, and the universe moves into a matter dominated stage. The matter dominated stage

is one in which structures can form, and beings like us can evolve. Matter energy density

dilutes as r−3 and so this epoch is also temporary. Finally, the energy density from the

cosmological constant is (unsurprisingly) constant, and the final epoch is dominated by Λ.

This is an era of mostly empty space, rapidly expanding and diluting the matter and radiation

present in the universe. Based on observation and our best cosmological models, matter

contributions (including dark matter) make up just over one quarter of the energy in the

universe, while dark energy (in the form of a cosmological constant) makes up the remainder.

Thus, it appears we are in an era where the matter and vacuum energy contributions are of

the same order of magnitude. If we were to pick a time interval at random from the life of

the universe, this would seem an improbable era in which to exist.7 Even factoring in that

we must live in an era with sufficient matter, it seems odd then that we are in a transition

era between matter dominated and dark energy dominated. A convincing solution to this

coincidence problem would make it less surprising that we find ourselves in this current era,

and not some other. This is a mostly unrelated problem, but it does involve the observed

magnitude of the cosmological constant, so it often falls under the umbrella of the CCP. As

7There is a rich philosophical literature on issues like this, and whether likelihoods are being appropriately
applied within cosmology. Norton (2010), White (2000), and McCoy (2017) are all rather critical of the use of
probabilities or likelihoods in these cosmological settings, while Kotzen (2012) and Benétreau-Dupin (2015)
defend their standard use, with slight modifications.
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such, I will put the coincidence problem aside for the purposes of this paper.

2 The steps required to accept a CCP

In order to accept the CCP as a problem, one must accept a series of implicit steps. These are

rarely mentioned in presentations of the problem, and when they are, it is only in passing.8

In the three of the four steps outlined below, there are convincing reasons for rejecting the

orthodoxy and therefore rejecting the CCP. Regardless of the purpose that the CCP serves in

constraining future theories of quantum gravity, it is ill-motivated from the point of view of

quantum field theory, and questionable when quantum field theory is stitched together with

general relativity. This section will proceed as follows. I will list a step necessary to arrive

at the CCP, present a standard argument for it, and raise some objections to its acceptance.

Since the steps build off one-another, the objections are independent. That is, if you reject

my objections to step one, then continue on to step two. If you accept the objections, then

that suffices to reject the CCP in full.

2.1 Is the vacuum energy real?

In quantum field theory on Minkowski spacetime, a particular dynamical model is described

by an action. For simplicity, I will work with a free scalar field in an external potential.

Nothing regarding a vacuum energy term depends on this choice, except where noted. The

8For example, Padilla (2015) highlights the Lamb shift and Casimir effect as evidence in favour of accepting
step 1 (below). In a footnote, he notes:

However, as Jaffe (2005) has emphasized, the calculation of both of these effects correspond to
Feynman diagrams with external legs of Standard Model fields. A true vacuum bubble has no
external legs at all, and from a gravitational perspective the diagrams we are interested in only
have external graviton legs. (p. 4)

This footnote acknowledges that there is controversy over accepting the CCP, but is not mentioned again in
the rest of the lecture notes.

8



action for a free scalar field φ in external potential V is given by

S =

∫
d4x

[
V (φ) +

1

2
(∂φ)2

]
. (2.1.1)

The energy density of the field is given by the Hamiltonian density operator

H = V (φ) +
1

2
(∂tφ)2 +

1

2

∑
i

(∂iφ)2,

where the index i runs over the spatial coordinates. This Hamiltonian density is minimized

at some constant field configuration φ0 (depending on the particular form of the potential

V ). The leading quantum corrections to the Hamiltonian density come from a quadratic

expansion of the excitations about φ0 in terms of creation and annihilation operators,9

φ̂(x) := φ(x)− φ0 =
∑
k

[
uk(x)âk + u∗k(x)â†k

]
. (2.1.2)

Putting equation 2.1.2 into the Hamiltonian density, and integrating over the spatial coordi-

nates gives the total energy operator

Ĥ =

[
1

2

∑
k

ωk + V (φ0)

∫
d3x

]
+
∑
k

ωkâ
†
kâk, (2.1.3)

where the term in square brackets is the zero point, or vacuum energy associated with φ̂,

and ∂tuk(x) = −iωkuk(x), ωk ≥ 0. Note that the vacuum energy as given in equation 2.1.3 is

divergent in two ways. First, one sums over ωk for all k. This is analogous to summing the

ground state energy of an infinite collection of harmonic oscillators, indexed by k. Second, as

9Strictly speaking, we have first put the field theory in a finite volume first. As we take the volume to
infinity, the sums below become integrals over continuous k, and technically the operators become unbounded.
These issues are glossed over in most of the physics literature, especially in presentations of the CCP, so I
neglect them here.
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one takes the volume of space to infinity, the integral over space diverges linearly. For most

purposes in quantum field theory, this infinite zero point energy is simply ignored. We are

often interested in expectation values of excited states, and the relevant energy quantities

are differences between the excited and ground states. The vacuum energy term is simply

discarded, and the energy operator is defined as Ĥ :=
∑

k ωkâ
†
kâk.

10

In terms of path integrals and scattering amplitudes in quantum field theory, vacuum

energy terms appear as bubble diagrams in the perturbative expansion. In calculating scat-

tering amplitudes, bubble diagrams appear as a product of all diagrams with external matter

lines in the numerator, and so cancel out the analogous bubble diagrams in the denominator.

Thus true vacuum energy terms never appear in calculations in quantum field theory.

If we don’t ever use it, what grounds do we have for taking the vacuum energy in quantum

field theory to be anything more than an inconvenient feature of quantization that we rid

ourselves of when calculating? As mentioned above, the Casimir effect and the Lamb shift

are often mentioned as effects that force us to take the vacuum energy seriously. I will start

with the Casimir effect, as typical presentations appear to depend explicitly on the vacuum

state. Casimir (1948) first predicted that closely spaced, uncharged parallel plates would feel

a small attractive force, apparently due to fluctuations in the electromagnetic vacuum energy.

If one approximates the plates as infinite, impenetrable boundaries, then the spontaneous

creation of virtual photons11 out of the vacuum is constrained between the two plates, but

not outside. Since the plates are impenetrable, only photons of appropriate wavelength (i.e.,

those for which the plate separation is an integer multiple of their wavelength) can be created

between the plates. This causes a decrease in energy density in the gap between the plates,

10In the context of a scalar field, the “subtraction” of vacuum energy can be justified by demanding that
the operators in our theory be normal ordered. Roughly, this means that all operators are redefined such
that creation operators are always to the right of annihilation operators. However, normal ordering does not
work for more realistic gauge theories.

11Virtual particles are short lived fluctuations that go undetected by normal means. In addition to their
rapid annihilation, virtual particles are not constrained to obey mass-energy relations, and are therefore often
called “off mass-shell.”
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and therefore a decrease in pressure. The plates then move toward each other with a small

attractive force. The effect was measured by Sparnaay (1957), seemingly verifying the reality

of quantum vacuum fluctuations.

Jaffe (2005) has called into question this orthodoxy, however. He re-derives the Casimir

effect in terms of relativistic forces between charges within the plates and current couplings

between the two.

[T]he Casimir effect gives no more (or less) support for the reality of the vacuum

energy of fluctuating quantum fields than any other one-loop effect in quantum

electrodynamics, like the vacuum polarization contribution to the Lamb shift,

for example. The Casimir force can be calculated without reference to vacuum

fluctuations, and like all other observable effects in [quantum electrodynamics],

it vanishes as the fine structure constant, α, goes to zero. (p. 1)

On Jaffe’s construction, the Casimir effect does not depend on vacuum pressure differences,

but simply on loop diagram corrections. This is also a more general construction, since

different geometric configurations can lead to repulsive forces between conducting plates,

and these are not explainable by appeal to the vacuum pressure. It is clear at least that

the Casimir effect need not be thought of as a differential vacuum pressure on the parallel

plates. Following Jaffe, the Casimir effect should not be treated as any more special than the

Lamb shift. Now I will turn to the Lamb shift, and argue that it—along with other one-loop

correction effects—should not be taken as evidence for the reality of vacuum energy.

Lamb and Retherford (1947) discovered a small difference in the energy of 2s and 2p

orbitals in the hydrogen atom not predicted by the Dirac equation. In quantum electro-

dynamics, the effect can be seen in a one loop correction to the interaction between the

hydrogen’s proton and electron. The one loop correction is often interpreted as a polar-

ization of the vacuum in response to the interaction between proton and electron. This
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polarization causes an energy shift in the effective potential, proportional to the square am-

plitude of the electron’s wavefuntion at the centre of the atom. Since all electronic orbitals

but the s-orbitals vanish at the origin, the shift only affects orbitals with angular momentum

l = 0, ∆E ≈ (4me)/(3πn
3)ln(1/α)δl,0.

Does vacuum polarization force us to take the magnitude of the quantum vacuum se-

riously? Recall that the magnitude of the vacuum energy is represented pictorially by the

bubble diagrams in a perturbative expansion. Bubble diagrams are Feynman diagrams with

no external matter lines, and are therefore (by definition) undetectable. What I have been

referring to as vacuum polarization effects are at best evidence for fluctuations in the vac-

uum energy in response to ordinary matter and its interactions. At worst, one might caution

against reading Feynman diagrams too literally; then the vacuum fluctuations as represented

in loop diagrams might be interpreted as simply components of nonlinear interaction effects

between ordinary matter. Effects like the Lamb shift and Casimir effect give evidence for

nothing more than energy fluctuations within the vacuum. The actual magnitude of energy

contained in the vacuum has no evidential support. Even within quantum field theory itself,

there is no reason to trust the prediction of expected vacuum energy.

2.2 How much energy is in the vacuum?

Suppose we reject the arguments against the zero point energies presented in the last section.

Given that the vacuum contribution to equation 2.1.3 is divergent, how should we determine

the magnitude of the vacuum energy density? In order to get a prediction to compare to

cosmological observation, we need some way of managing the divergence. Standard renor-

malization procedures introduce a cutoff scale into the momentum integrals in scattering

amplitudes. As long as the divergent quantities (e.g., charge and mass in quantum electro-

dynamics) scale logarithmically with the cutoff, the divergences can be safely absorbed into

other parameters, and the cutoffs can be taken to infinity with the newly redefined physi-
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cal masses and charges, for example. This procedure fails for the divergent vacuum energy,

however.12 Vacuum energy corresponding to a field of mass m scales with σ4, where σ is the

cutoff scale:

ρvac ∝
∫ σ

0

√
k2 +m2 k2dk ≈ σ4. (2.2.1)

Estimates of the magnitude of vacuum energy density from quantum field theory start by

assuming a reasonable cutoff energy scale, up to which we trust the Standard Model. This is

typically taken to be the TeV scale, and so “predictions” of the vacuum energy’s contribution

to the cosmological constant are on the order of at least (TeV )4. It turns out that the

exact scale at which the cutoff is introduced is irrelevant—for any realistic cutoff scale,

ρvac � Λobserved. The robustness of the problem under changes to the cutoff is supposed to

indicate that the problem is somehow independent of the cutoff.

The problem here lies in the fact that any calculation of the vacuum energy cannot be

written in a cutoff independent fashion. Given the more modern view of the Standard Model

as an effective field theory, strict renormalizability might not necessarily be required to have a

well-defined or physically meaningful vacuum energy. At higher energies, nonrenormalizable

terms in an effective field theory are suppressed by some characteristic energy factor, or by

the introduction of counterterms in the Lagrangian. However, given our ignorance of beyond

Standard Model physics, there are no principled grounds for assuming that the divergences of

ρvac will generically by cured in higher energy theories. Any convincing argument supporting

suppression will assume a particular class of high energy solution, and this is problematic.

The CCP is supposed to be a generic problem, and if a particular class of successor theories

is required to even state the problem, one may naturally question its universality, as well as

relevance to current well-accepted theories.

12Though more sophisticated renormalization techniques exist, such as Wilson and Kogut’s (1974) lat-
tice renormalization and ’Hooft and Veltman’s (1972) dimensional regularization, they do not succeed in
renormalizing the vacuum energy.
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Further, the effective field theory framework assumes a clean separation of physics at

differing energy scales (Weinberg 1997). When physics separates cleanly at different scales,

high energy dynamics have little effect of low energy dynamics, typically in the form of fixing

certain “constants” in the low energy domain. These can be empirically determined, and then

the high energy theory is screened off from the low energy domain of interest. This separation

of scales works very well for local matter theories, but some question its applicability in

cosmological contexts, particularly those involving a global cosmological constant (Afshordi

2015). As I will discuss below, certain classes of proposed solutions also violate separation

of scales, and therefore the motivation for the CCP is undercut in a solution.

Historically, divergent terms in a quantum field theory are not trusted until some mech-

anism for their suppression or renormalization has been demonstrated. I believe that the

vacuum energy should be no different; cutoff-dependent values for ρvac should not be taken

as good quantitative predictions, nor even estimates for the magnitude of a cosmological

constant.

2.3 How should the vacuum energy enter Einstein’s field equations?

Suppose, again, that we reject the arguments from the previous two subsections, accept the

vacuum energy as real, and accept the cutoff dependent value that is calculated from Standard

Model quantum field theories. How should we couple the vacuum energy to gravity? As

outlined in Section 1.1, global Lorentz invariance and minimal coupling introduce a vacuum

stress-energy contribution of the form shown in Equation 1.1.1. In Minkowski spacetime,

Lorentz invariance of vacuum observables properly constrains 〈ρvac〉 to be constant. I will go

into a bit more detail regarding the process of minimal coupling here.13

Starting with the Einstein-Hilbert Lagrangian, we add a matter Lagrangian—in particular

13Thanks to Michael Schneider for helpful discussion regarding the differences in minimal coupling between
general relativity and quantum field theory.
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the vacuum energy density contribution—and introduce an interaction of the form αRρvac

to couple the two Lagrangians. Minimal coupling is the requirement that the interaction

term vanishes, or that α = 0. This is the simplest way to introduce the vacuum energy

into the Einstein-Hilbert action. Now, gravity only couples to the vacuum energy via the

Lorentz-invariant measure
√
−gd4x:

S =

∫
d4x
√
−g
{

1

2κ
R + 〈ρvac〉

}
. (2.3.1)

Deriving the equations of motion by varying the action leads to a stress energy tensor

of the form T µν = −〈ρvac〉gµν . Since minimal coupling works so well in quantum field

theory, this appears to be the most natural way to couple the vacuum energy to gravity.

Even if more complicated couplings are introduced, if variations of the action are determined

perturbatively, this zeroth order minimal coupling term will appear in much the same way.

This raises a few philosophical concerns regarding semiclassical treatments of gravity.

We know that classical general relativity is incompatible with quantum field theory, and

semiclassical treatments of the two merged can differ depending on the route one takes.

As presented above, the priority lies in defining quantities on a highly symmetric Minkowski

background, and introducing gravity as a coupling between the metric and Minkowski matter.

In effect, this is equivalent to treating spacetime curvature due to gravity as a perturbation

to a Minkowski background space. Though certainly the majority view amongst theorists

working on a quantum theory of gravity—and the basis for string theory—other approaches to

merging general relativity and quantum field theory exist. In particular, some physicists argue

that a major desideratum for quantum gravity is that, like general relativity, it should be

a background-independent theory.14 This means that a background Minkowski spacetime is

not assumed, and then quantities like the vacuum energy cannot be defined as they currently

14It’s not exactly clear that general relativity is best understood as a background independent theory, but
the insight that the dynamics play an important role in dictating the spacetime structure is well-established.
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are in ordinary quantum field theory (Smolin 2006). These differences may be reflected

in other approaches to semiclassical gravity, where quantum fields are defined on curved

spacetime backgrounds. Hollands and Wald (2010) have developed an axiomatic framework

for quantum field theory on curved spacetimes, and vacuum energy does not arise in this

context, since a vacuum state is not in general well-defined.

One of the key insights is that—apart from stationary spacetimes or spacetimes

with other very special properties—there is no unique, natural notion of a “vac-

uum state” or of “particles.” Indeed, unless the spacetime is asymptotically

stationary at early or late times, there will not, in general, even be an asymptotic

notion of particle states. (p. 86)

Though decidedly against orthodoxy, this remains a viable avenue of research, and completely

does away with the CCP by privileging curved spacetimes over a Minkowski background.

Even in the standard treatments involving minimal coupling, the use of the expectation

value of the vacuum energy may be suspect. Wang, Zhu, and Unruh (2017) emphasize that

a more fully quantum treatment of the vacuum energy would highlight that it is far from

constant.

Instead, at each spatial point, the spacetime sourced by the vacuum oscillates

alternatively between expansion and contraction, and the phases of the oscilla-

tions at neighboring points are different. In this manner of vacuum gravitation,

although the gravitational effect produced by the vacuum energy is still huge at

sufficiently small scales (Planck scale), its effect at macroscopic scales is largely

canceled. (pp. 1-2)

If Wang et al. are correct, then the “predicted” cosmological constant is an artifact of an

improperly classical treatment of the vacuum energy in quantum field theory. An appro-
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priately quantum treatment then leads to exponential suppression of the vacuum energy at

macroscopic scales.

Though minimal coupling of 〈ρvac〉 to gravity is certainly an open option, it is by no

means the only available means for coupling quantum matter to gravity. Given that it leads

to such a terrible “prediction” of the cosmological constant, alternative avenues like those

just sketched should be more widely pursued. If any alternative to the orthodox coupling

turns out to be correct, then the CCP is likely to disappear again.

2.4 Does anything else act like Λ?

If we reject the concerns raised in the previous three steps, we are left with a cosmological

constant “prediction” from quantum field theory that is at least 50 orders of magnitude larger

than the observed Λ used in the concordance model of cosmology. If the quantum vacuum

energy is the lone source of the cosmological constant, then this is a huge problem—even a

“crisis.” However, there may be other exotic physics that leads to additional counterterms

in the Einstein field equations, such that

Λobserved = 8πG〈ρvac〉+ C1 + C2 + · · · , (2.4.1)

where each Ci is a contribution from some other physical mechanism. In effect, this would

be an attempted solution to the CCP, since the new counterterms would presumably be high

energy effects from a theory of quantum gravity. However, it seems reasonable to first treat

the sources we know of; I do not see any problems in this final step, and include it only for

completeness.

As stated above, if any of the arguments presented in Sections 2.1–2.3 are accepted,

then the CCP is no longer a problem. Even if the arguments are rejected, I hope to have

shown that there is far more subtlety to the CCP than standard treatments suggest. Setting
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aside these concerns, however, in the next section I look at some broad classes of potential

solutions.

3 Plausibility of attempted solutions

Because of the appeal of the CCP, there are nearly as many proposed solutions as there

are physicists who have heard of the problem. In this section, I will outline a few different

strategies for a solution, and some problems that prevent any from standing out as the best

way forward. Given the criticisms of the formulation of the problem outlined above, the lack

of a clear solution strategy is further reason to reject the CCP as worth pursuing.15

3.1 ’t Hooft naturalness

’t Hooft naturalness, also known as technical naturalness, is a mathematical means of shield-

ing otherwise unconstrained parameters from being too large. If a theory contains a param-

eter that would go to zero with an added symmetry, and that added symmetry is not too

badly broken by the original theory, then the scale of symmetry breaking “protects” that

parameter from getting too large. This notion of naturalness, as the name implies, is due

to ’t Hooft (1980). The classic example is the pion mass due to near chiral symmetry. If

chiral symmetry—the symmetry between left-handed and right-handed particles—were an

exact symmetry in nature, the pseudoscalar meson masses would be forced to zero. Spon-

taneous breakdown of global chiral symmetry would then lead to the presence of massless

Goldstone bosons. Nambu and Jona-Lasinio (1961) originally posited that the pion would

be the Goldstone boson related to chiral symmetry breaking in the limit of equal mass fun-

damental states—what we would now call quarks. Since the quarks are not massless nor

15For more in depth reviews of different approaches to solving the CCP, review articles such as Nobbenhuis
(2006) are a good place to start. Here I am concerned simply with common conceptual features of broad
classes of solutions, and do not expand on any technical details.
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of equal mass, neither is the pion, but the pion’s relatively small mass is protected by the

approximate flavour symmetry between the up and down quarks. As the bare masses of the

up and down quarks approach equality, the pion mass approaches zero. Naturalness thus

explains why the pion mass is so much smaller than other quark bound states. The hope

regarding the CCP is that one can find an approximate symmetry under which the vacuum

energy would be zero, to help explain its small observed value in the form of a cosmological

constant.

The most well-known naturalness solution is supersymmetry. Vacuum energy contri-

butions from bosons and fermions are of opposite sign, so if each known particle had a

superpartner with the same quantum numbers, all contributions would cancel out, resulting

in total vacuum energy of zero. Standard theoretical predictions require MSUSY ∝ Λ1/2,

and the lack of observed superpartners up to the currently accessible TeV scale means that

supersymmetry—if it exists—is too badly broken to protect the cosmological constant.

Other symmetries have been proposed to protect the vacuum energy, including conformal

symmetry. Conformal symmetry forbids any terms in a Lagrangian that set a length scale, so

the vacuum energy would be excluded in a conformally invariant theory. Unfortunately for

the plausibility of conformal invariance, mass terms are also disallowed. However, conformal

invariance can be used as a motivation for modifying the Einstein-Hilbert action, in effect

rewriting the action in terms of the trace-free component of the Riemann tensor. A residual

cosmological constant term then comes out as a boundary term for the action. This leaves

open the question of how the quantum vacuum should factor into gravity.

The problem with most of the approaches utilizing ’t Hooft naturalness is that the sym-

metries would need to be far more exact empirically to dramatically reduce the magnitude of

the vacuum energy as standardly predicted. Outside of supersymmetry, naturalness does not

address the “prediction” of 〈ρvac〉 from quantum field theory. If the CCP is taken seriously
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in its standard form, something other than naturalness seems to be needed to solve it.

3.2 Violate equivalence principle

If one believes in the vacuum energy from quantum field theory, a plausible way to dissolve

the CCP is to propose a mechanism to decouple the vacuum energy from the Einstein field

equations. In effect, this is a violation of the equivalence principle, since then only nonvacuum

energy would gravitate. I include in this class of solutions solutions that generalize the

equivalence principle as well. In one class of proposals, extra dimensions are introduced,

and the large vacuum energy leads to high curvature and compactification of all but the

familiar four spacetime dimensions of classical general relativity. In this class of solutions,

the equivalence principle is technically not violated, but only appears to be violated due

to our ignorance of the extra dimensions. Though compatible with string theories, the

addition of new submillimeter scale dimensions is a high price to pay for a solution to an

ill-motivated problem. A further mechanism must also be included to explain why all but

four dimensions would compactify due to 〈ρvac〉, as well as why the equivalence principle —at

least approximately—holds for nonvacuum energy in four dimensions.

Further strategies involve infrared modifications to the gravitational interaction, leading

to effectively massive gravitons (e.g., Arkani-Hamed et al. (2004)), so-called “fat gravitons”

(e.g., Sundrum (2004)), or symmetry breaking where gravitons appear as the Goldstone

bosons associated with the broken symmetry (e.g., Weinberg and Witten (1980)). A benefit

of infrared modifications is that small corrections to general relativity may be observable

at galactic or even solar system scales, making this class of attempted solutions empirically

testable. However, many of these solutions end up also violating the assumption that grav-

itational physics has a clean separation of energy scales. Microscopic phenomena (such as

modifications to graviton couplings) end up directly altering cosmic expansion rates. As men-

tioned in Section 2.2, the cutoff dependence of ρvac depends conceptually on an effective field
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theory framework, in which there is clear separation of energy scales. This brings up a worry

that these sorts of modifications undermine the very problem they wish to solve. To this

point in time, modifications to general relativity have not been observed, and these models

are therefore constrained by observation in the degree to which they can modify gravity at

observable scales.

3.3 Statistical solutions

Considerations from quantum cosmology and inflation have led many physicists to take se-

riously the prospects that our universe is just one in an ensemble of universes, making up

the multiverse. It is further conjectured that the fundamental constants of nature—such as

the electron charge, strong coupling constant, and the cosmological constant—are variable

between universes. The ensemble is assumed to be so vast that all physically possible values

of the constants are realized in some universe. We can thus put bounds on possible values of

Λ with anthropic considerations (Weinberg 1989). Despite the numerous concerns involved in

defining a measure over an ensemble of unobservable universes, this sort of “solution” to the

CCP does not explain why the apparently large vacuum energy from quantum field theory

does not gravitate in the form of a cosmological constant.

If we look at the wavefunction of the universe, it should in general be a superposition of

all physically possible values of the cosmological constant. Hawking (1984) argued that the

wavefunction of the universe would be heavily peaked around Λ = 0. If correct, this might

help solve the old CCP, but the new CCP becomes more puzzling in light of Hawking’s

work. Both the anthropic and quantum statistical solutions to the CCP suffer from the

same sorts of defects. First, neither address the vacuum energy or its lack of gravitation.

They aim only to make the observed Λ less surprising, and disconnect the quantum vacuum

from the cosmological constant. Second, there is no good way to delimit which values of

Λ are physically possible, and which aren’t. So we have an ill-defined space of possibilities

21



from which to sample. Even if that problem can be surmounted, there are no grounds for

introducing a measure over the possibility space, and thus statistical arguments cannot be

justified here. Norton (2010) argues that statistical arguments like these are doomed to fail

in cosmology; in any case, they do little to solve the CCP.

4 Conclusions

I have argued against taking the CCP seriously. There are major hurdles to be overcome

in (1) believing in an absolute value for the bare vacuum energy, (2) trusting the cutoff

dependent perturbative calculation of 〈ρvac〉, and (3) inserting the expectation value of the

vacuum energy into the Einstein field equations. If one rejects any of these steps, then the

CCP—at least as standardly presented—does not arise. Suppose that the CCP is meant to

be a guiding problem in constructing a quantum theory of gravity. Then perhaps it needn’t

be well supported so long as it serves its heuristic purpose. If we look at the sheer number of

attempts to solve the CCP, then it has undoubtedly been successful as a heuristic motivator.

However, no clear solution strategy has led to major progress in developing quantum gravity.

Many of the solution strategies outlined in Section 3 are either ad hoc—their purpose is to

solve the CCP, so they have been constructed to do little more than that—or inspired by

solution strategies proposed independent of the CCP. Many do not even solve the CCP as

traditionally stated. If successful, these “solutions” would have nothing to say about the

quantum vacuum.

The issues behind accepting the CCP highlight the reliance on heuristics in arguments in

high-energy physics. Due to the lack of empirical access to high-energy phenomena, problems

are formulated based on extrapolation of methods and heuristics that have been successful

in low-energy particle physics. Often this is not a problem—symmetry arguments, gauge

theory, and locality are generally taken to apply at all energy scales—but the heuristics seem
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to break down in the case of the CCP.

It is possible that a better argument supporting the CCP can be formulated. If so, it

would be interesting to see the details. Unless it can avoid all of the concerns I have raised

in Section 2, I am skeptical that it should be accepted. However, even if the problem can

be strengthened to avoid some of my concerns, the improved generality may help to better

highlight the assumptions involved in the CCP, as well as the best way to “solve” it in a new

theory of quantum gravity.
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