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Abstract

In a recent paper, Wigglesworth claims that syntactic criteria of theoretical
equivalence are not appropriate for settling questions of equivalence between
logical theories, since such criteria judge classical and intuitionistic logic to be
equivalent; he concludes that logicians should use semantic criteria instead. How-
ever, this is an artefact of the particular syntactic criterion chosen, which is an
implausible criterion of theoretical equivalence (even in the non-logical case).
Correspondingly, there is nothing to suggest that a more plausible syntactic cri-
terion should not be used to settle questions of equivalence between different
logical theories; such a criterion (which may already be found in the literature) is
exhibited and shown to judge classical and intuitionistic logic to be inequivalent.
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Wigglesworth (2017) argues that the logical anti-exceptionalist—someone who
“takes logical theories to be continuous with scientific theories”1—must pay atten-
tion to the question of when two logical theories are equivalent, in the same way that
philosophers of science have long asked the question of when two scientific theories
are equivalent. To do so, he proposes taking criteria of equivalence that have been
discussed in the philosophy of science, and adapting them to the context of com-
paring systems of logic. Whilst the overall project of comparing logical systems for
equivalence or translatability is definitely an important andworthwhile project, I have
some reservations about the particular conclusions Wigglesworth draws—especially,
his contention that syntactic criteria for equivalence are less appropriate in the logical
case than in the scientific case. This article articulates these concerns.

First, a brief summary of the syntactic criteria discussed in the philosophy of sci-
ence (although these criteria originated, and are still much used, in the context of
mathematics and logic).2 Suppose that L1 and L2 are two languages, but languages
of the same logic; that is, that L1 and L2 differ only over their nonlogical vocabulary.
An interpretation from L1 to L2 is an arity-preserving3 map τ from the formulae of
L1 to those of L2 which commutes with the logical constants, so that τ(¬φ) = ¬τ(φ),
τ(φ ∧ ψ) = (τ(φ) ∧ τ(ψ)), etc. Alternatively (and more relevantly to what will come
later), we can consider an arity-preserving map from the nonlogical vocabulary of L1

to formulae ofL2,4 and take an interpretation to be the unique extension of such amap
to a map from formulae of L1 to formulae of L2, generated by requiring commutation.

Let a theory be a set of sentences, closed under the ambient logic. For any set
of sentences S, let TLS denote the logical closure of S under the logic L; to reduce
notational clutter when writing about logics L1, L2, etc., I’ll write T iS to denote the
closure of S under Li. Given two theories T1 and T2, formulated in the languages L1

and L2 respectively, an interpretation τ : L1 → L2 is a translation from T1 to T2 if, for
any L1-sentence φ, if φ ∈ T1 then τ(φ) ∈ T2. Thus, translations are interpretations
which map consequences to consequences. And we say that T1 and T2 are mutually
interpretable if there is both a translation τ : T1 → T2 and a translation σ : T2 → T1.

Now, these ideas cannot immediately be applied to the comparison of different
logical theories: since these theories (in general) use different logical constants, it is
1(Wigglesworth, 2017, p. 1)
2For further discussion of such criteria, see Barrett and Halvorson (2016).
3Here, “arity-preserving” should be taken to mean not just that it maps n-place formulae to n-place
formulae, but that if exactly the variables ξ1, . . . , ξn occur free in φ, then exactly those variables
occur free in τ(φ); moreover, it is assumed that τ commutes with uniform substitution of variables.

4Where the same technicalities apply as in the previous footnote.
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not appropriate to require that interpretations commute with all the constants. So
Wigglesworth proposes a weakening, whereby one requires only that interpretations
commutewith negation: i.e., that τ(¬φ) = ¬τ(φ). Call this aW-interpretation; let us say
that aW-interpretation between two theories is aW-translation if it maps consequences
to consequences; and let us say that T1 and T2 are mutually W-interpretable if there are
W-translations in both directions. The stated criterion of equivalence for logics is then
the following: that two logics L1 and L2 are W-equivalent if, for any set of sentences S,
T 1
S is mutually W-interpretable with T 2

S .
However, this definition is problematic in a number of ways. First, the construction

Wigglesworth uses to compare classical and intuitionistic logic does not suffice to
show that they are W-equivalent. The problem is with the translation from classical
to intuitionistic logic, which Wigglesworth claims is provided by the Gödel-Gentzen
mapping γ: contra Wigglesworth, it is not the case (at least for first-order logic) that
“for any S and any φ, if φ ∈ T CS , then γ(φ) ∈ T IS .”5 Rather, for any S and any φ,
if φ ∈ T CS , then γ(φ) ∈ T Iγ(S), where γ(S) = {γ(ψ)|ψ ∈ S}. A counterexample to the
original claim is provided by letting S = {¬∀xPx}: then¬∀xPx is (trivially) a classical
consequence of S, but its Gödel-Gentzen translation ¬∀x¬¬Px is not an intuitionistic
consequence of S.

Second, the criterion of W-equivalence permits us to change what interpretation
is being used, depending on which set of sentences we are considering the logical
closure of. That is, it would fall within the definition to offer one way of translating
the formulae of L1 into those of L2 when considering the closure of the set S, and
another when considering the closure of the set S ′. Intuitively, this is too weak to
provide a robust sense of equivalence: we would expect an interpretation between
two logics to be chosen “once and for all”.

Finally, the notion of a W-interpretation seems inappropriate: it is both too restric-
tive and too permissive. It is too restrictive, because it is unable to consider cases
where we want to non-trivially interpret the negation symbol of one logic in terms of
another. For example, suppose that we wish to capture the sense in which a classi-
cal logic using ¬ for negation is equivalent to one using ∼; or the sense in which a
uniform replacement of ¬ by ¬¬¬ is a translation of classical logic into itself. And
it is too permissive, because it puts no restrictions of uniformity on the translations
of formulae featuring other connectives. For example, a W-interpretation could map
(P ∧Q) to (F ∨G) but (Q ∧ P ) to ¬(F → (G ∧H)), say.

5(Wigglesworth, 2017, p. 4)
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Webeginwith the thirdproblem; its resolution is already tobe found in the literature
on translating between logics.6 The key idea is that whereas interpretation within a
fixed background logic involved mapping formulae to one another, interpretation
between logics will require us to map schemata to one another. Let us say that a
schema-string is a formula featuring metalinguistic variables, such as (φ ∨ ψ) or ∀ξφ.
We will take a schema to be the map from formulae (and possibly variables) to
formulae that a schema-string encodes: for instance, the first schema-string encodes
a map taking 〈P, (Q → R)〉 to (P ∨ (Q → R)), whilst the latter encodes a map taking
〈y, Fy〉 to ∀yFy. To indicate that schemata are the maps rather than the strings, I’ll
use lambda notation: so the first schema-string above encodes the map λφλψ.(φ∨ ψ),
whilst the latter encodes the map λξ;λφ.∀ξφ.7

Let us say that the logical vocabulary for a language consists of the logical constants
for that language: wewill only consider the casewhere the logical vocabulary consists
of a set of connectives (each with a certain arity) or quantifiers (all assumed to only
take a single variable and a single formula). I won’t count the stock of variables as
part of the logical vocabulary; I’ll just assume that all the languages we consider are
using the same stock of variables. Once we specify a non-logical vocabulary for the
language, i.e. a stock of predicates and function-symbols, we are able to generate
the set of formulae of the language in the standard recursive fashion. Since we will
make use of them below, I here state the recursive clauses appropriate to any logical
vocabulary:

• Given any n-place connective C in the logical vocabulary, and any formulae
ψ1, . . . , ψn, Cψ1 . . . ψn is a formula.

• Given any quantifier Q, any variable ξ, and any formula ψ, Qξψ is a formula.

I will assume that we are only considering languages with the same non-logical
vocabulary. In principle, it should be reasonably straightforward to extend what I do
here to languages with different non-logical vocabularies (by combining the material
here with the standard work on interpretation and translation rehearsed above), but
for simplicity’s sake I forebear from doing so.

6See, in particular, Pelletier and Urquhart (2003) and references therein; cf. Barrett and Halvorson
(2016) and McSweeney (2016).

7Strictly speaking, it’s somewhat ambiguous what map a schema-string encodes unless we assume
some ordering on the metalinguistic variables: for instance, one could also claim that the schema-
string (φ ∨ ψ) encodes a map taking 〈P, (Q→ R) to ((Q→ R) ∨ P ). But this will not be an issue in
practice, so I gloss over worrying about it.
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Now, given two languages L1 and L2, a schematic interpretation T• from L1 to L2

consists of the following data:

• A one-place schema Tα of L2

• For every n-place connective C of L1, an n-formula schema TC of L2

• For every quantifier Qof L1, a one-variable and one-formula schema T Qof L2,
with the property that for any variable ξ and any formula φ, ξ does not occur
free in T Q(ξ;φ)

A schematic interpretation T• determines a map τ : L1 → L2, by recursion:

• If φ is atomic, then τ(φ) = Tα(φ)

• If φ = Cψ1 . . . ψn, then τ(φ) = TC(τ(ψ1), . . . , τ(ψn))

• If φ = Qξψ, then τ(φ) = T Q(ξ; τ(ψ))

Call such a map an interpretation*. And given an L1-theory T1 and an L2-theory T2,
closed under logics L1 and L2 respectively, say that an interpretation* τ : L1 → L2 is
a translation* from T1 to T2 if it maps consequences to consequences: that is, if φ ∈ T1
implies τ(φ) ∈ T2. And, again, we can say that T1 and T2 are mutually interpretable*
if there is a translation* from T1 to T2, and from T2 to T1.

In order to avoid the first and second problems discussed above, we now proceed
as follows. Given two logics L1 and L2, let us say that an interpretation* τ is a
translation* from L1 to L2 if, for any set of L1-sentences S, τ is a translation* from
T 1
S to T 1

τ(S), where τ(S) := {τ(s)|s ∈ S}. And let us say that L1 and L2 are mutually
interpretable* if there is a translation* from L1 to L2, and a translation* from L2 to
L1. Mutual interpretability* does not suffer from the three problems outlined above
for W-equivalence; I therefore propose to use it as a suitably debugged version of
W-equivalence.

In these terms, the relevant result for Wigglesworth’s argument is that classical and
intuitionistic logic are mutually interpretable*. The translation* from intuitionistic
to classical logic is provided by the identity mapping (since any intuitionistic conse-
quence is always a classical consequence), and the translation* in the other direction
is—as mentioned already—provided by the Gödel-Gentzen mapping γ. This map-
ping is generated by the following schematic interpretation, Γ•: for any formulae φ
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and ψ, and any variable ξ, the values of the schematic interpretation of the standard
first-order logical vocabulary are

Γα(φ) = ¬¬φ (1)

Γ¬(φ) = φ (2)

Γ∧(φ, ψ) = (φ ∧ ψ) (3)

Γ∨(φ, ψ) = ¬(¬φ ∧ ¬ψ) (4)

Γ→(φ, ψ) = (φ→ ψ) (5)

Γ∀(ξ;φ) = ∀ξφ (6)

Γ∃(ξ;φ) = ¬∀ξ¬φ (7)

As is well-known, for any set of sentences S, γ is a translation* from T CS to T Iγ[S];8 thus,
γ is a translation* from C to I. So there are translations* in both directions, and hence
C and I are mutually interpretable*, and hence equivalent according to that criterion.

Wigglesworth goes on to show that this is not the case for alternative criteria of
equivalence between logics: specifically, he shows that the category of models of clas-
sical logic is not categorically equivalent to the category of models of intuitionistic
logic.9 He claims that the difference in verdicts is due to the criterion above being
a syntactic criterion (i.e. one formulated in terms of translations between sentences)
whereas the category-theoretic criterion is a semantic criterion (i.e. one formulated
in terms of comparisons between models). Given that classical and intuitionistic
logic are not intuitively equivalent, he concludes that “though there are two gen-
eral approaches—one syntactic and one semantic—to theoretical equivalence in the
philosophy of science, the logical anti-exceptionalist should prefer the semantic ap-
proach.”10

But the syntactic criteria discussed above (i.e., W-equivalence and mutual inter-
pretability*) are motivated by the claim that mutual interpretability is a serious con-
tender as a criterion of equivalence in the philosophy of science. And that claim is
dubious, for it is implausible to treat mutually interpretable theories as equivalent.
For instance, consider the two theories T1 and T2, generated by taking the (classical)

8(Troelstra and van Dalen, 1988, p. 58, Theorem 3.5)
9I’m being a little loose here in talking about the category of models of classical or intuitionistic
logic, since there’s a bit of leeway in how exactly one characterises such a category (e.g. whether
it should have homomorphisms or elementary embeddings as morphisms); but for our purposes,
these details won’t matter.

10(Wigglesworth, 2017, p. 7)
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closure of the following sets of sentences:

S1 = {Px ∨ ¬Px}

S2 = {Fx ∨Gx}

Intuitively, these theories are not equivalent: T1 is trivial, whereas T2 is not, and it is
implausible that any trivial theory should be regarded as saying the same thing as
any non-trivial theory. Yet they are mutually interpretable. The only consequences of
S1 are logical validities, so (say) mapping P to F will map every consequence of S1 to
a consequence of S2 (since logical validity is preserved by such a map). Contrariwise,
mapping F to P and G to ¬P will map every consequence of S2 to a logical validity,
which is thereby a consequence of S1.

Given Wigglesworth’s discussion, this may seem somewhat surprising. For he ar-
gues that the criterion of mutual equivalence is closely related, at least in the context
of classical logic, to the criterion of definitional equivalence—and, as he says, “Defini-
tional equivalence is an interesting and powerful notion of theoretical equivalence in
its own right.”11 Certainly, definitional equivalence has received significant attention
from philosophers of science.12 But given the example above, it seems that it could not
be such an interesting or powerful notion if, as Wigglesworth claims, it is essentially
equivalent tomutual interpretability: that is, if it is the case that “if [two] theories have
disjoint signatures [i.e. disjoint nonlogical vocabularies], then they are definitionally
equivalent iff they are mutually interpretable.”13
However, the claim just quoted is false. Definitional equivalence entails mutual

interpretability, but the converse does not hold (evenwhen the signatures are disjoint):
it is straightforward, for instance, to show that the theories T1 and T2 above are not
definitionally equivalent. The results that Wigglesworth refers to, Theorems 1 and
2 of Barrett and Halvorson (2016), show instead that intertranslatability is necessary
and sufficient for definitional equivalence (given the disjointness of the signatures).
Two theories T1 and T2 are intertranslatable when there exist a pair of translations
τ : T1 → T2 and σ : T2 → T1, and which are such that for any L1-formula φ and any

11(Wigglesworth, 2017, p. 3)
12See, especially, Glymour (1970) and Glymour (1977); for an analysis of how the (syntactic) criterion

of definitional equivalence relates to semantic notions, see de Bouvère (1965).
13(Wigglesworth, 2017, p. 3)
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L2-formula ψ,

T1 ` φ↔ σ(τ(φ)) (8)

T2 ` ψ ↔ τ(σ(ψ)) (9)

Thus, intertranslatability is a (substantial) strengthening of mutual interpretability,
requiring not only that there be translations between the two theories, but that the
compositions of these translations map formulae to formulae which are equivalent
modulo the ambient theory.

Introducing the notion of intertranslatability also suggests a natural strengthening
of (the amendedversionof) the syntactic criteriondiscussedbyWigglesworth.14 Let us
say that two logicsL1 andL2, in languages L1 and L2 respectively, are intertranslatable*
if there are translations* τ : L1 → L2 and σ : L2 → L1 such that, for any L1-theory T1
and L1-formula φ,

T1, φ `1 σ(τ(φ)) (10)

T1, σ(τ(φ)) `1 φ (11)

and for any L2-theory T2 and L2-formula ψ,

T2, ψ `2 τ(σ(ψ)) (12)

T2, σ(τ(ψ)) `2 ψ (13)

where `i indicates the consequence relation in Li.
As one would hope, it turns out that classical and intuitionistic logic are not inter-

translatable*.15

Proof. Up to logical equivalence, there are only three non-trivial one-place schemata
in intuitionistic logic (λφ.φ, λφ.¬φ and λφ.¬¬φ). Thus, there are only three possible
interpretations of each of the classical atomic and negation schemata in intuitionistic
logic. This means nine interpretation-schemata from (the pure negation fragment of)
classical logic to intuitionistic logic; however, it is easy to show that six of these do

14cf. Pelletier and Urquhart (2003)’s notion of “translational equivalence”; it is also shown there that
this criterion coincides with a natural criterion of definitional equivalence between logics.

15Note that the proof also shows that C and I fail to satisfy certain natural weakenings of intertrans-
latability*: for example, a criterion requiring merely that σ ◦ τ takes L1-formulae to L1-equivalent
formulae, and that τ ◦σ takesL2-formulae toL2-formulae (effectively, replacing equivalencemodulo
an arbitrary Li-theory by equivalence modulo T i

∅).
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not generate translations*, even over this fragment. This leaves the interpretation-
schemata

T1
α(φ) = ¬¬φ T1

¬(φ) = ¬φ (14)

T2
α(φ) = ¬φ T2

¬(φ) = ¬¬φ (15)

T3
α(φ) = ¬φ T2

¬(φ) = φ (16)

(The first of these is, of course, the pure-negation part of the Gödel-Gentzen transla-
tion.) Similarly, there are only two non-trivial one-place schemata in classical logic
(λφ.φ and λφ.¬φ), and hence only two ways to interpret the intuitionistic atomic and
negation schemata in classical logic, and hence only four interpretation-schemata. Of
these, two do not generate translations* even over the pure negation fragment, leaving

Σ1
α(φ) = φ Σ1

¬(φ) = ¬φ (17)

Σ2
α(φ) = ¬φ Σ2

¬(φ) = φ (18)

It is then just a matter of computation to show that for any pair of interpretation-
schemata, their composition (in one direction or the other) will not always return
formulae to logically equivalent formulae (under classical or intuitionistic logic, as
appropriate). For example, the composition of (14)with (17) fails to return the formula
P to an intuitionistically equivalent formula: P is mapped by (17) to P , and thence by
(14) to ¬¬P .

I conclude that these considerations do not show that the logical anti-exceptionalist
must prefer semantic to syntactic criteria for equivalence: it is not the case that
“the standard syntactic approach in terms of intertranslatability forces the anti-
exceptionalist to say that classical logic and intuitionistic logic are equivalent logical
theories.”16 On the contrary, the standard approach, when extended to the context of
comparing logics, delivers the intuitively correct verdict that classical and intuitionis-
tic logic are inequivalent.17

16(Wigglesworth, 2017, p. 7) Note thatWigglesworth here is using “intertranslatability” synonymously
with “mutual interpretability”.

17I’m grateful to Thomas Barrett, Laurenz Hudetz, John Wigglesworth and two anonymous referees
for comments on and discussions of this material.
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