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Abstract

In the paper [2] a hierarchy of modal logics have been defined to capture the logical

features of Bayesian belief revision. Elements in that hierarchy were distinguished by the

cardinality of the set of elementary propositions. By linking the modal logics in the hierarchy

to Medvedev’s logic of (in)finite problems it has been shown that the modal logic of Bayesian

belief revision determined by probabilities on a finite set of elementary propositions is not

finitely axiomatizable. However, the infinite case remained open. In this paper we prove that

the modal logic of Bayesian belief revision determined by standard Borel spaces (these cover

probability spaces that occur in most of the applications) is also not finitely axiomatizable.

Keywords: Modal logic, Bayesian inference, Bayes learning, Bayes logic, Medvedev frames,

Non finite axiomatizability.

1 Introduction and background

Bayes logics have been introduced in the recent paper [2] in order to investigate (modal) logical

properties of statistical inference (Bayesian belief revision). If (X,B, p) is a probability space, then

elements of B can be regarded as propositions or possible statements about the world, and the

probability measure p describes knowledge of statistical information (or say, it represents degree of

beliefs in the truth of these propositions). Learning proposition A ∈ B to be true means revising

the probability measure p on the basis of the evidence A, and replacing p by some other probability

q in certain ways. The transition from p to q is statistical inference: This new probability measure

q can be regarded as the probability measure that one infers from p on the basis of the information

(evidence) that A is true. A fundamental model of statistical inference is the standard Bayes model

which relies on Bayes conditionalization of probabilities: given a prior probability measure p and

an evidence A ∈ B the inferred measure q is defined by conditionalizing p upon A using Bayes’

rule:

q(B)
.
= p(B | A) =

p(B ∩A)

p(A)
(∀B ∈ B) (1)

provided p(A) 6= 0. The paper [2] aimed at studying the logical aspects of this type of inference

from the perspective of modal logic.1
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It is very natural to regard the move from p to q in terms of modal logic: The core idea is to

view A in the Bayes’ rule (1) as a variable and say that a probability measure q can be inferred

from p if there exits an A in B such that q(·) = p(· | A). Equivalently, we will say in this situation

that “q can be (Bayes) learned from p”. That “it is possible to obtain/learn q from p” is clearly

a modal talk and calls for a logical modeling in terms of concepts of modal logic. For further

motivation and background we suggest [2].

We will use the standard unimodal language given by the grammar

a | ⊥ | ¬ϕ | ϕ ∧ ψ | ♦ϕ (2)

defining formulas ϕ, where a belongs to a nonempty countable set Φ of propositional letters. As

usual � abbreviates ¬♦¬. We refer to the books [1, 4] concerning basic notions in modal logic

and we mostly follow notation of the book [1].

Let 〈X,B〉 be a measurable space and denote by M(X,B) the set of all probability measures

over 〈X,B〉. Bayes accessibility relation has been defined in [2] as follows: For v, w ∈M(X,B) we

say that w is Bayes accessible from v if there is an A ∈ B such that w(·) = v( · | A). We denote

the Bayes accessibility relation on M(X,B) by R(X,B).

Definition 1.1 (Bayes frames). A Bayes frame is a Kripke frame 〈W,R〉 that is isomorphic, as a

directed graph, to F(X,B) = 〈M(X,B), R(X,B)〉 for a measurable space 〈X,B〉. �

From the point of view of applications the most important classes of Bayes frames F(X,B)

are Bayes frames determined by standard Borel spaces 〈X,B〉. A measurable space 〈X,B〉 is

standard Borel if X can be endowed with a metric which makes it a complete, separable metric

space in such a way that B is the Borel σ-algebra (the smallest σ-algebra containing the open

sets). According to the Borel isomorphism theorem (Section 17 in [7]) a standard Borel space is

always isomorphic to one of 〈{1, . . . , n}, ℘({1, . . . , n})〉, or 〈N, ℘(N)〉, or 〈[0, 1],B〉, where B is the

set of Borel subsets of [0, 1] ([0, 1] endowed with the Euclidean topology). If 〈X,B〉 is a standard

Borel space and w is a probability measure on B, then the completion of 〈X,B, w〉 is a standard

probability space (see Section 17.F in [7]). Thus any standard probability space is isomorphic

(modulo zero) to either 〈[0, 1],L, λ〉, where L is the Lebesgue σ-algebra and λ is the Lebesgue

measure; or to an atomic probability space with countable (possibly finitely) many atoms; or the

combination (disjoint union) of both. Let 〈X,A, p〉 and 〈Y,B, q〉 be two probability spaces and

r ∈ (0, 1). Denote the the disjoint union of the two spaces by 〈X + Y,A+B, p+ q〉, where X + Y

is the disjoint union of X and Y ; A + B is the σ-algebra generated by A ∪ B and p + q is the

probability measure r ·p+(1−r) ·q. (If we would like to make r explicit, we write p+r q). It follows

that any standard probability space is isomorphic (modulo zero) to 〈N + [0, 1], ℘(N) + L, p + λ〉,
where 〈N, ℘(N), p〉 is an arbitrary probability space (as p might not be faithful, this covers the

finite case as well).

Let us introduce the following notation

Fn = 〈M(X,℘(X)), R(X,℘(X))〉, where X = {1, . . . , n} (3)

Fω = 〈M(X,℘(X)), R(X,℘(X))〉, where X = N (4)

similar to what we consider here can be (and have been) asked regarding these other types of inference rules (cf.

[2, 3]), but taking the first steps we stick to the basic case of Bayesian inference here.
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Note that if the measurable space 〈X,B〉 is finite or countable, then B is the full powerset algebra

℘(X) (we rely on the convention that elementary events {x} for x ∈ X always belong to the

algebra B).

Definition 1.2 (Bayes logics). A family of normal modal logics have been defined in [2] based on

finite or countable or countably infinite or all Bayes frames as follows.

BLn = {φ : Fn 
 φ} (5)

BL<ω = {φ : (∀n ∈ N)Fn 
 φ} (6)

BLω = {φ : Fω 
 φ} (7)

BL≤ω = BL<ω ∩BLω (8)

BL = {φ : (∀ Bayes frames F) F 
 φ} (9)

We call BL<ω (resp. BL≤ω) the logic of finite (resp. countable) Bayes frames; however, observe

that the set of possible worlds M(X,B) of a Bayes frame F(X,B) is finite if and only if X is a

one-element set, otherwise it is at least of cardinality continuum. �

BL<ω is the set of general laws of Bayesian learning based on all finite Bayes frames. The

general laws of Bayesian learning independent of the particular representation 〈X,B〉 of the events

is then the modal logic BL.

The following theorem has been proved in [2] (see Proposition 3.1 and Theorem 4.1 therein).

Theorem 1.3. S4 ⊆ BL ⊆ S4.1 ( BLω = BL≤ω ( S4.1 + Grz ( BL<ω.

The finite Bayes frame case has been completely described in [2] and, in particular, it has been

shown that BL<ω has the finite frame property and is not finitely axiomatizable (see Propositions

5.8, 5.9 in [2]), but the infinite case remained almost completely open.

In this paper we deal with Bayes frames F(X,B), where 〈X,B〉 is a standard Borel space (such

frames we will refer to as standard Borel Bayes frames). This covers the finite and countably

infinite cases (e.g. BL<ω and BLω) but is more general because the uncountably infinite space

〈[0, 1],B, λ〉 is also considered. Let us write BLst for the standard Bayes logic

BLst = {φ : (∀Standard Borel Bayes frames F) F 
 φ} .

By relating standard Borel Bayes frames and standard Bayes logics to generalized Medvedev

frames (the definitions will be recalled later on) and continuing Shehtman’s [11] analysis we will

prove the following two main theorems.

Theorem 3.3. Let 〈X,B〉 be a standard Borel space and F(X,B) be the corresponding Bayes

frame. The logic Λ(F(X,B)) is not finitely axiomatizable.

Theorem 3.4. BLst is not finitely axiomatizable.
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We will also see the containments

S4 ⊆ BL ⊆ BLst ( S4.1 ( BLω = BL≤ω ( S4.1Grz ( BL<ω

but the general case BL remains open:

Problem 1.4. Is BL = BLst? If not, is BL finitely axiomatizable? Is BL = S4?

Structure of the paper. In the remaining part of the Introduction we recall useful facts from

modal logic that we will make use of many times. To obtain not finite axiomatizability results we

employ the techniques presented in Shehtman [11] which we recall in Section 2. In Subsections 2.1

and 2.2 we prove that the logics corresponding to finitary Boolean frames and measure algebra

frames are not finitely axiomatizable. These are the key preliminary theorems that we will apply in

Section 3, where we prove that standard Bayes logic BLst is not finitely axiomatizable (Theorem

3.4).

Useful preliminaries. By a frame we always understand a Kripke frame, that is, a structure of

the form F = 〈W,R〉, where W is a non-empty set (of possible worlds) and R ⊆W ×W a binary

relation (accessibility). Kripke models are tuples M = 〈W,R, [| · |]〉 based on frames F = 〈W,R〉,
and [| · |] : Φ→ ℘(W ) is an evaluation of propositional letters. Truth of a formula ϕ at world w is

defined in the usual way by induction:

• M, w 
 p ⇐⇒ w ∈ [| p |] for propositional letters p ∈ Φ.

• M, w 
 ϕ ∧ ψ ⇐⇒ M, w 
 ϕ AND M, w 
 ψ.

• M, w 
 ¬ϕ ⇐⇒ M, w 6
 ϕ.

• M, w 
 ♦ϕ ⇐⇒ there is v such that wRv and M, v 
 ϕ.

Formula ϕ is valid over a frame F (F 
 ϕ in symbols) if and only if it is true at every point in

every model based on the frame. For a class C of frames the modal logic of C is the set of all

modal formulas that are valid on every frame in C:

Λ(C) =
{
φ : (∀F ∈ C) F 
 φ

}
(10)

Λ(C) is always a normal modal logic. Let us recall the most standard list of modal axioms (frame

properties) that are often considered in the literature (cf. [1] and [4]).

Basic frame properties

Name Formula Corresponding frame property

T �φ→ φ accessibility relation R is reflexive

4 �φ→ ��φ accessibility relation R is transitive

M �♦φ→ ♦�φ 2nd order property not to be covered here

Grz �(�(φ→ �φ)→ φ)→ φ T + 4 + ¬∃P (∀w ∈ P )(∃v wRv)(v 6= w ∧ P (v))

S4 T + 4 preorder

S4.1 T + 4 + M preorder having endpoints
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For two frames F = 〈W,R〉 and G = 〈W ′, R′〉 we write FEG if F is (isomorphic as a frame to) a

generated subframe of G. We recall that if FEG, then G 
 φ implies F 
 φ, whence Λ(G) ⊆ Λ(F)

(see Theorem 3.14 in [1]). If w ∈W , then we write Fw to denote the subframe of F generated by

w, and we call such subframes point-generated subframes. Further, let F � G denote a surjective,

bounded morphism (sometimes called p-morphisms). Such morphisms preserve the accessibility

relation and have the zig-zag property (see [1]). Recall that if F � G, then F 
 φ implies G 
 φ,

hence Λ(F) ⊆ Λ(G) (see Theorem 3.14 in [1]).

2 A method for non-finite axiomatizability

We start by recalling definitions and theorems from [11] and [2]. Medvedev’s logic of finite problems

and its extension to infinite problems by Skvortsov originate in intuitionistic logic. (For an overview

we refer to the book [4] and to Shehtman [11]; Medvedev’s logic of finite problems is covered in

the papers [9, 12, 10, 11, 8, 6]).

Definition 2.1 (Medvedev frame). A Medvedev frame is a frame that is isomorphic (as a directed

graph) to P0(X) = 〈℘(X) r {∅},⊇〉 for a non-empty finite set X. �

Medvedev’s logic ML<ω is the modal logic that corresponds to the Medvedev frames:

MLn =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| = n

}
(11)

ML<ω =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| non-empty, finite

}
(12)

A Skvortsov frame is defined in the same way except with X is a non-empty set of any cardinality.

We denote the corresponding Skvortsov logics by MLα for sets X of cardinality α. It has been

proved (see Theorem 2.2 in [12]) that

ML
def
=
⋂
α

MLα = MLω (13)

As a slight abuse of notation we will use the term Medvedev frame for any frame of the form P0(X)

(thus X need not be finite here). One of the main results in [2] is Theorem 5.2:

Theorem 2.2 (Theorem 5.2 in [2]). Countable Bayes and Medvedev’s logics coincide.

ML = MLω = ML≤ω ( ML<ω ( MLn

∪ q q q q
BL ( BLω = BL≤ω ( BL<ω ( BLn

(14)

To gain not finite axiomatizability results we follow the method presented in Shehtman [11] and

we recall the most important lemmas that we make use of.

Lemma 2.3 (cf. Proposition 4 in [11]). Let F be a generated finite S4-frame. Then there is a

modal formula χ(F) with the following properties:

(A) For any S4-frame G we have G 1 χ(F) if and only if ∃u Gu � F .
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(B) For any logic L ⊇ S4 we have L ⊆ Λ(F) if and only if χ(F) /∈ L.

Definition 2.4 ([11]). For m > 0 and k > 2 the Chinese lantern is the S4-frame C(k,m) formed

by the set

{(i, j) : (1 ≤ i ≤ k − 2, 0 ≤ j ≤ 1) OR (i = k − 1, 1 ≤ j ≤ m) OR (i = k, j = 0)}

with the accessibility relation being an ordering:

(i, j) ≤ (i′, j′) iff (i, j) = (i′, j′) OR i > i′

�

C(m, k) is illustrated on page 373 in [11], however, we will not need any particular information

about C apart from two lemmas that we recall below.

Lemma 2.5 (Lemma 22 in [11]). Let φ be a modal formula using l variables and let m > 2l.

Then C(k,m) 1 φ implies C(k, 2l) 1 φ.

Lemma 2.6 (Lemma 24 in [11]). For any n > 1 we have C(2n, 2n) 
ML<ω.

For a natural number l a logic L is l-axiomatizable if it has an axiomatization using only

formulas whose propositional variables are among p1, . . . , pl. Every finitely axiomatizable logic is

l-axiomatizable for a suitable l: take l to be the maximal number of variables the finitely many

axioms in question use.

Theorem 2.7. Let L be a normal modal logic with S4 ⊆ L ⊆ ML<ω. Suppose that for every

l ≥ 1 and k > l there is n ≥ k such that χ(C(k, 2n)) ∈ L. Then L is not l-axiomatizable for any

number l.

Proof. By way of contradiction suppose L is l-axiomatizable, that is, L = S4+Σ where Σ is a set

of formulas that can use only the first l propositional variables. Let k = 2l. By assumption there

is n ≥ k so that χ(C(k, 2n)) ∈ L. That Σ axiomatizes L means that every formula in L can be

derived (in the normal modal calculus) from a finite set of axioms from Σ. Therefore there is an

l-formula φ ∈ L such that χ(C(k, 2n)) ∈ S4+φ. This implies, by Lemma 2.3(B), that C(k, 2n) 1 φ.

As n ≥ k = 2l > l, Lemma 2.5 ensures C(k, 2l) 1 φ. In particular, C(k, 2l) 1 L.

On the other hand Lemma 2.5 implies (as k = 2l) that C(k, 2l) 
 ML<ω. By assumption

L ⊆ML<ω so it follows that C(k, 2l) 
 L which is a contradiction.

Corollary 2.8. Let F be a frame, L = Λ(F) and assume S4 ⊆ L ⊆ ML<ω. Suppose for any

k ≥ 1 there is n ≥ k such that for all u ∈ F we have Fu 6� C(k, 2n). Then L is not l-axiomatizable

for any finite number l.

Proof. Under the given assumptions Lemma 2.3(A) implies that for all k ≥ 1 there is n ≥ k so

that χ(C(k, 2n)) ∈ L. Then Theorem 2.7 applies.
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2.1 Not finite axiomatizability of the logic of finitary Boolean frames

Let F = 〈W,≤〉 be a finite ordering (partially ordered set) and pick x ∈ W . y is an immediate

successor of x if x < y and there is no x < z < y. (As usual < means ≤ ∩ 6=). The branch index

bF (x) is the cardinality of the set of immediate successors of x, and the depth dF (x) is the least

upper bound of cardinalities of chains in F whose least element is x. Thus, dF (x) = 1 means that

x has no immediate successors. We adopt Lemma 17 in [11] in a slightly more general setting:

Definition 2.9. Let B ⊆ P(X) be a Boolean algebra of subsets of X such that all finite subsets

of X are contained in B. A frame isomorphic to B0 = 〈B r {∅},⊇〉 is called a finitary Boolean

frame. �

The connection with Medvedev frames is transparent: for any set X the frames P0(X) =

〈℘(X)r{∅},⊇〉 are finitary Boolean frames. Note that any point-generated subframe of B0 is also

a finitary Boolean frame.

Lemma 2.10. Let B0 be a finitary Boolean frame and let F be a finite, point-generated ordering

(frame) such that bF (x) 6= 1 for every x ∈ F . If B0 � F , then bF (x) < 2dF (x) for all x ∈ F .

Proof. Suppose h : B0 � F is a surjective bounded morphism. We show first that for all x ∈ F
there is a set Ax ∈ B0 such that h(Ax) = x and |Ax| < 2dF (x). We proceed by induction. The case

d(x) = 1 is straightforward: For some A ∈ B0 we have h(A) = x. As d(x) = 1, x has no proper

successors, therefore for all B ⊆ A, B ∈ B0 we have h(B) = x. Pick any Ax = {a} ⊆ A, then

h(Ax) = x and |Ax| = 1 < 21 (by assumption all finite subsets of X belong to B0, thus {a} ∈ B0).

Suppose now (inductive hypothesis) that we know the statement for all x ∈ F with d(x) = n

and consider the case d(x) = n + 1. There is a set A ∈ B0 such that h(A) = x. By assumption

b(x) 6= 1, therefore x has at least two immediate successors x1 and x2. Then d(xi) = n therefore,

by induction, there are sets A1, A2 ⊆ A such that h(Ai) = xi and |Ai| < 2d(xi). Let Ax = A1∪A2.

It is clear that |A| < 2d(x1) + 2d(x2) ≤ 2n+1, so we need to show h(Ax) = x. Since A ⊆ Ax and h

is a homomorphism, it follows that x ≤ h(Ax). Similarly, Ax ⊇ Ai, therefore h(Ax) ≤ h(Ai) = xi.

As x1 and x2 are immediate successors, the only element h(Ax) that can satisfy the equations

x ≤ h(Ax) ≤ xi is x.

To complete the proof pick an arbitrary x ∈ F and a set A ∈ B0 such that h(A) = x and

|A| < 2d(x). As A is finite we can assume that A is as small as possible: there is no B ⊆ A such

that h(B) = x. The branching index of A is b(A) = |A| < 2d(x), thus it suffices to show that

b(A) ≥ b(h(A)). Take an immediate successor y of x. Then there is B ⊆ A such that h(B) = y.

B is contained in an immediate successor C of A, and as B ⊆ C ⊆ A holds, we have h(C) is

either x or y. But it cannot be x, because of the minimality of A. Therefore, with any immediate

successor of x we can associate an immediate successor of A. This completes the proof.

Corollary 2.11. Let B0 be a finitary Boolean frame. Then there is no surjective bounded mor-

phism B0 � C(k, 2k).
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Proof. The point x = (k, 0) in C(k, 2k) has depth d(x) = k and branch index b(x) = 2k. If there

is B0 � F , then Lemma 2.10 applies and we would have b(x) < 2d(x) which is impossible.

Corollary 2.12. Let B0 be an infinite finitary Boolean frame. Then L = Λ(B0) is not finitely

axiomatizable.

Proof. We intend to apply Corollary 2.8. It is straightforward that the reverse-Boolean ordering

⊇ is transitive and reflexive, therefore B0 is an S4-frame (i.e. S4 ⊆ L).

Next, let us verify that L ⊆ ML<ω. To this end it is enough to prove B0 � P0(N) as in

this case L ⊆ Λ(P0(N)) = MLω ⊆ ML<ω. As B0 is infinite, there are countably infinite many

pairwise disjoint elements ai ∈ B0 (i ∈ N) such that
⋃
i ∈ Nai = X. The idea is to extend the

mapping ai 7→ i to a bounded morphism. Define f : B0 → P0(N) as

f(a) = {i ∈ N : a ∩ ai 6= ∅} 6= ∅

Then f(X) = N and f(ai) = {i}. We claim that f is a surjective bounded morphism.

Surjectivity: For a non-empty A ⊆ N we have f(
⋃
i ∈ Aai) = A.

Homomorphism: Suppose for a, b ∈ B0 we have a ⊇ b. Then whenever b ∩ ai 6= ∅ we also have

a ∩ ai 6= ∅, therefore

{i ∈ N : a ∩ ai 6= ∅} ⊇ {i ∈ N : b ∩ ai 6= ∅}

meaning that f(a) ⊇ f(b).

Zig-zag property: Suppose f(a) = A and A ⊇ B 6= ∅. We need to find a b with a ⊇ b and

f(b) = B. Take b = ar
⋃
i∈ArB ai. Then a ⊇ b and f(B) = {i : b ∩ ai 6= ∅} = B rA = B.

Finally, to fulfill all requirements of Corollary 2.8 we show that for all u ∈ B0 we have

(B0)u 6� C(k, 2k). As point-generated subframes of B0 are also finitary Boolean frames, the

result follows from Corollary 2.11.

2.2 Not finite axiomatizability of the logic of certain measure algebra

frames

Suppose 〈X,B, w〉 is a probability space. Two measurable sets A and B are said to be w-equivalent,

A ∼w B in symbols (when it is clear we omit w from the subscript), if the w-measure of their

symmetric difference is 0. ∼ is a congruence on the Boolean σ-algebra B and thus we can consider

the quotient structure B/∼ which also is a σ-complete Boolean algebra with the quotient operations.

E.g. A/∼ ≤ B/∼ if and only if A ⊆ B modulo w-measure zero for any representatives A and B

respectively of A/∼ and B/∼. The measure w can be pushed down to B/∼ by the definition

w̄(A/∼) = w(A) for any A ∈ B. For every A ∈ B with w(A) = 0 we have A/∼ = ∅/∼, therefore ∅/∼
is the only element in B/∼ which has w̄-measure zero. A similar argument shows that only X/∼

has w̄-measure 1 in B/∼. 〈B/∼, w̄〉 is called a measure algebra.
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Definition 2.13. A frame isomorphic to M(X,B, w) = 〈B/∼w r {∅/∼w},≥〉 is called a measure

algebra frame. Here 〈X,B, w〉 is a probability space and ≥ is the converse of the Boolean ordering

of B/∼w
. �

There is a straightforward connection with Medvedev frames: the set of possible worlds of a

Medvedev frame is ℘(X) r {∅} for some (finite) set X. ℘(X) is a Boolean algebra, thus we can

think of the possible worlds of a Medvedev frame as the structure that results when we cut out

the least element of a Boolean algebra. We did the same thing in case of finitary Boolean frames

(Definition 2.9) and we do something similar here: we take the Boolean algebra B/∼ and cut out

its least element. If X is a finite set, then every subset of X is measurable, thus B = ℘(X). Take

now a faithful probability measure w over B. Then no proper subsets of X are ∼w equivalent,

therefore B/∼ is (isomorphic to) ℘(X). Consequently, the Medvedev frame P0(X) and the measure

algebra frame M(X,B, w) are isomorphic when X is finite. For infinite X the connection is more

subtle: the Lebesgue measure algebra (where X = [0, 1], B = all Borel sets of [0, 1], w = Lebesgue

measure) has no σ-complete set representation (it is not realized as a σ-complete Boolean algebra

of subsets of some set), therefore it is not isomorphic to any (finitary) Boolean frame.

From now on, in this subsection, B denotes the Borel σ-algebra over the unit interval [0, 1],

L the Lebesgue σ-algebra over [0, 1], and λ the Lebesgue measure. ∼ means ∼λ. As L is the

completion of B, it follows that the measure algebras L/∼ and B/∼ are isomorphic. Therefore

M([0, 1],L, λ) and M([0, 1],B, λ) are also isomorphic (as frames). Note that both B r {∅} and

Lr{∅} are infinite finitary Boolean frames (in the sense of Definition 2.9), thus their modal logics

are not finitely axiomatizable (Corollary 2.12).

Lemma 2.14. If M is a measure algebra frame and a ∈M, then the generated subframe Ma is

also a measure algebra frame. If M =M([0, 1],L, λ), then Ma is isomorphic to M.

Proof. Pick any M =M(X,B, w) and an element a ∈ M. There is A ∈ B such that A/∼w = a.

Measurable subsets of A are exactly the sets in B � A = {A ∩B : B ∈ B} and v(·) = w(· | A) is a

probability measure on B � A. It is not hard to see that the generated subframeMa is isomorphic

to M(A,B � A, v).

For the second statement we only have to note that for a Lebesgue measurable A ⊆ [0, 1] we

have M(A,L � A, λ) ∼=M([0, 1],L, λ).

Theorem 2.15. The modal logic of M =M([0, 1],L, λ) is not finitely axiomatizable.

Proof. Write L = Λ(M). We intend to apply Corollary 2.8; the first part of the proof is almost

identical to that of Corollary 2.12. It is straightforward that the reverse-Boolean ordering ≥ is

transitive and reflexive, therefore M is an S4-frame (i.e. S4 ⊆ L).

Next, we verify L ⊆ML<ω. It is enough to proveM� P0(N) as in this case L ⊆ Λ(P0(N)) =

MLω ⊆ ML<ω. As M is infinite, there are countably infinite many pairwise disjoint elements

ai ∈ M (i ∈ N) such that
∨
i∈N ai = [0, 1]/∼. (Note that each ai has a representative Ai ∈ B

so that ai = Ai/∼. Then Ai ∩ Aj is λ-measure zero for all i 6= j and
⋃
i∈NAi = [0, 1] (modulo
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λ-measure zero)). Define f :M→ P0(N) as

f(a) = {i ∈ N : a ∧ ai 6= 0} 6= ∅

Then f([0, 1]/∼) = N and f(ai) = {i}. We claim that f is a surjective bounded morphism.

Surjectivity: For a non-empty A ⊆ N we have f(
∨
i∈A ai) = A.

Homomorphism: Suppose for a, b ∈ M we have a ≥ b. Then whenever b ∧ ai 6= 0 we also have

a ∧ ai 6= 0, therefore

{i ∈ N : a ∧ ai 6= 0} ⊇ {i ∈ N : b ∧ ai 6= 0}

meaning that f(a) ⊇ f(b).

Zig-zag property: Suppose f(a) = A and A ⊇ B 6= ∅. We need to find a b with a ≥ b and

f(b) = B. Take b = a−
∨
i∈ArB ai. Then a ≥ b and f(B) = {i : b ∧ ai 6= 0} = B rA = B.

Finally, to fulfill all requirements of Corollary 2.8 we prove that for all u ∈ M we have

Mu 6� C(k, 2k). As generated subframes of measure algebra frames are measure algebra frames

(Lemma 2.14) it is enough to prove that M 6� C(k, 2k).

Suppose, seeking a contradiction, that there is f : M � C(k, 2k). Write L+ = {B ∈ L :

λ(B) > 0} and let N be the frame N = 〈L+,⊇〉. The mapping f can be lifted up to a surjective

bounded morphism f+ : N � C(k, 2k) by letting f+(B) = f(B/∼). Clearly, if A ∼ B, then

f+(A) = f+(B). To complete the proof we would like to apply Corollary 2.11, but the problem is

that N is not a finitary Boolean frame as finite subsets of [0, 1] has λ-measure zero. Therefore, we

need to further extend f+ as follows. Let A be a non-empty Lebesgue measurable set and suppose

{Ai}i∈N is a sequence of positive measure sets (Ai ∈ L+) such that Ai ⊇ Ai+1 modulo measure

zero and A =
⋂
i∈NAi. Then define F (A) = sup{Ai}i∈N

limi f
+(Ai). For every such sequence {Ai}

the limit exists as C(k, 2k) is finite and f+(Ai) ≤ f+(Ai+1). If two sequences {Ai} and {Bi} give

a different limit, then {Ai∩Bi} yields a greater (or equal) limit as f+(Ai∩Bi) ≥ f+(Ai), f
+(Bi).

It follows that the supremum always exists. Denote the frame extended with elements of such

form by N ? = 〈L?,⊇〉, where

L? =
{
A : A ∈ L, ∃{Ai} ⊆ L+ : A = ∩iAi, Ai ⊇ Ai+1

}
It is straightforward to verify that F : N ? � C(k, 2k) is a surjective bounded morphism.

To complete the proof observe that each finite subset can be obtained in the form
⋂
i∈NAi:

if Z is a finite subset of [0, 1], then Z =
⋂
i∈N(Z ∪ (0, 1i )). Therefore the frame N ? is a finitary

Boolean frame, thus Corollary 2.11 implies that there is no bounded morphism N ? � C(k, 2k).

This contradicts to F being such a bounded morphism.

Suppose X is a finite or countably infinite set and consider the probability space 〈X,℘(X), w〉
for some probability measure w. We can assume that w is faithful, otherwise we would switch

to a smaller X. As noted above M(X,℘(X), w) is isomorphic to the Medvedev frame P0(X).

Consider now the probability space whose underlying set is [0, 1] ∪X, its σ-algebra is the algebra

generated by L ∪ ℘(X) and the probability measure is ν = r · λ + (1 − r) · w for some r ∈ (0, 1).
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Denote the corresponding measure algebra frame by M([0, 1] ∪X,L+ ℘(X), ν). (By replacing L
with B we obtain the same measure algebra frame).

Theorem 2.16. The modal logic of M =M([0, 1]∪X,L+℘(X), ν) is not finitely axiomatizable.

Proof. The same proof as that of Theorem 2.15 works with the obvious modifications. The proof

for S4 ⊆ L ⊆ ML<ω is identical. To show that for all u ∈ M we have Mu 6� C(k, 2k) we need

two cases: if u ≤ X/∼, thenMu is isomorphic to a subframe of P0(X) which is a finitary Boolean

frame, thus the proof completes by applying Corollary 2.11; if u intersects [0, 1]/∼, then the proof

continues identically.

3 Standard Bayes logic is not finitely axiomatizable

Recall (from the Introduction) that every standard probability space is isomorphic (modulo zero)

to 〈N + [0, 1], ℘(N) + L, p+ λ〉, where 〈N, ℘(N), p〉 is an arbitrary probability space.

Lemma 3.1. There is no surjective bounded morphismM(N+ [0, 1], ℘(N) +L, p+λ)� C(k, 2k).

Proof. The proof of this statement is part of the proof of Theorem 2.16 (cf. the proof of Theorem

2.15).

Lemma 3.2. Let F = F(X,B) be a Bayes frame. For any possible world (probability measure)

w ∈ F the generated subframe Fw is isomorphic to M(X,B, w).

Proof. As Fw is generated by w, for any u ∈ Fw there is a non w-measure zero set Au such

that u(·) = w(· | Au). This Au is unique up to w-measure zero equivalence: if Au ∼w A′u, then

w(· | Au) = w(· | A′u). Therefore u can be identified with the element Au/∼ ∈ B/∼. Indeed, let f

be the mapping f : Fw → B/∼r {∅/∼} defined by f(u) = Au/∼. (In particular f(w) = X/∼ which

is the top element of the Boolean algebra B/∼, i.e. the element which generates M). It is fairly

easy to check that f is an isomorphism between the frames F and M.

Theorem 3.3. Let 〈X,B〉 be a standard Borel space and F(X,B) be the corresponding Bayes

frame. The logic Λ(F(X,B)) is not finitely axiomatizable.

Proof. Let L = Λ(F(X,B)). We intend to apply Corollary 2.8. We already know that

S4 ⊆ L ⊆ML<ω (cf. Theorem 1.3) thus we only need to see that for any k and every u ∈ F we

have Fu 6� C(k, 2k). By Lemma 3.2 we know that Fu is isomorphic toM(X,B, u). But as 〈X,B〉
is a standard Borel space, the probability space 〈X,B, u〉 is also standard (more precisely, the com-

pletion of it is standard), therefore it is isomorphic modulo zero to 〈N+ [0, 1], ℘(N) +L, p+ λ〉 for

some p. Lemma 3.1 states there is no bounded morphismM(N+[0, 1], ℘(N)+L, p+λ)� C(k, 2k),

which completes the proof.
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Theorem 3.4. The standard Bayes logic

BLst = {φ : (∀Standard Borel Bayes frames F) F 
 φ}

is not finitely axiomatizable.

Proof. Take F = F(N + [0, 1], ℘(N) + L, p + λ), where p is any faithful measure on ℘(N). Then

every standard Borel Bayes frame is a generated subframe of F , thus Λ(F) = BLst. But then

Theorem 3.3 applies and completes the proof.

Open problems. We have seen that none of the logics BL<ω, BLω and BLst are finitely axiom-

atizable (moreover, none of them can be axiomatized by formulas using finitely many propositional

variables only). We know that the following containments hold:

S4 ⊆ BL ⊆ BLst ( S4.1 ( BLω = BL≤ω ( S4.1 + Grz ( BL<ω

Problem 3.5. Is BL = BLst?

Problem 3.6. Is BL = S4?

Problem 3.7. If S4 6= BL 6= BLst, then is BL finitely axiomatizable?
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