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I. A MISLEADING NOTION: QUANTUM
STATE

In his celebrated 1926 paper [1], Erwin Schrödinger
introduced the wave function ψ and computed the Hy-
drogen spectrum from first principles.

But the theory we call “quantum mechanics” (QM)
was born one year earlier, in the work of Werner Heisen-
berg [2], and had already evolved into its current full set
of equations in a spectacular series of articles by Born,
Jordan and Heisenberg [3, 4]. Dirac, following Heisen-
berg’s breakthrough, got to the same structure indepen-
dently, in 1925, the year before Schrödinger’s work, in a
work titled “The fundamental equations of quantum me-
chanics” [5]. (See [6, 7] for a historical account.) Even
the Hydrogen spectrum had been computed by Pauli in
[8], using the language of Heisenberg, Born and Jordan,
based on the equations

[q, p] = i~,
dA

dt
= − i

~
[A,H] (1)

and the relation between physical values and eigenvalues,
with no reference to ψ.

So, what did Schrödinger do, in his 1926 paper?
With hindsight, he took a technical and a conceptual

step. The technical step was to change the algebraic lan-
guage of the theory, unfamiliar at the time, into a familiar
one: differential equations. This brought ethereal quan-
tum theory down to the level of the average theoretical
physicist.

The conceptual step was to introduce the notion of
“wave function” ψ, soon to be evolved into the notion of
“quantum state” ψ, endowing it with heavy ontological
weight. This conceptual step was wrong, and dramat-
ically misleading. We are still paying the price for the
confusion it has generated.

The confusion got into full shape in the influential sec-
ond paper of the series [9], where Schrödinger stressed
the analogy with optics: the trajectory of a particle is like
the trajectory of a light ray: an approximation for the
behaviour of an underlying real physical wave in physical
space. That is, the ψ function is the “actual stuff”, like
the electromagnetic field is the “actual stuff” underlying
the nature of light rays.

Notice that this step is entirely “interpretational”. It
doesn’t add anything to the predictive power of the
theory, because this was already fully in place in the

previous work of Heisenberg, Born and Jordan, where
the “quantum state” does not play such a heavy role.
Schrödinger’s conceptual step provided only a (mislead-
ing) way of reconceptualising the theory.

The idea that the quantum state ψ represents the “ac-
tual stuff” described by quantum mechanics has pervaded
later thinking about the theory. This is largely due to the
toxic habit of introducing students to quantum theory be-
ginning with Schrödinger’s “wave mechanics”: thus be-
traying at the same time history, logic, and reasonable-
ness.

The founders of quantum mechanics saw immediately
the mistakes in this step. Heisenberg was vocal in point-
ing them out [10]. First, Schrödinger’s basis for giving on-
tological weight to ψ was the claim that quantum theory
is a theory of waves in physical space. But this is wrong:
already the quantum state of two particles cannot be
expressed as a collection of functions on physical space.
Second, the wave formulation misses the key aspect of
atomic theory: energy discreteness, which must be re-
covered by additional ad hoc assumptions, since there is
no reason for a physical wave to have energy related to
frequency. Third, and most importantly, if we treat the
“wave” as the real stuff, we fall immediately into the hor-
rendous “measurement” problem. In its most vivid form
(due to Einstein): how can a “wave”, spread over a large
region of space, suddenly concentrate on a single place
where the quantum particle manifests itself?

All these obvious difficulties, which render the onto-
logicisation of ψ absurd, were rapidly pointed out by
Heisenberg. But Heisenberg lost the political battle
against Schrödinger, for a number of reasons. First, all
this was about “interpretation” and for many physicists
this wasn’t so interesting after all, once the equations
of quantum mechanics started producing wonders. And
differential equations are easier to work with and sort of
visualise, than non-commutative algebras. Third, Dirac
himself, who did a lot directly with non-commutative al-
gebras, found it easier to make the calculus concrete by
giving it a linear representation on Hilbert spaces, and
von Neumann to some extent followed, giving weight
to the notion of state. Fourth, and most importantly,
Bohr —the recognised fatherly figure of the community—
tried to mediate between his two brilliant bickering chil-
dren, by obscurely agitating hands about a shamanic
“wave/particle duality”.

If we want to get any clarity about quantum mechanics
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what we need is to undo the conceptual confusion raised
by Schrödinger’s introduction of the wave function, or
the quantum state ψ.

The abstract of the breakthrough paper by Heisenberg
reads: “The aim of this work is to set the basis for a
theory of quantum mechanics based exclusively on rela-
tions between quantities that are in principle observable.”
Only relations between variables, not new entities. The
philosophy is not to inflate ontology: it is to rarefy it.

Felix Bloch reports an enlightening conversation with
Heisenberg [11]: “We were on a walk and somehow be-
gan to talk about space. I had just read Weyl’s book
Space, Time and Matter, and under its influence was
proud to declare that space was simply the field of linear
operations. ‘Nonsense,’ said Heisenberg, ‘space is blue
and birds fly through it.’ This may sound naive, but I
knew him well enough by that time to fully understand
the rebuke. What he meant was that it was dangerous
for a physicist to describe Nature in terms of idealised
abstractions too far removed from the evidence of ac-
tual observation. In fact, it was just by avoiding this
danger in the previous description of atomic phenomena
that he was able to arrive at his great creation of quan-
tum mechanics. In celebrating the fiftieth anniversary of
this achievement, we are vastly indebted to the men who
brought it about: not only for having provided us with
a most powerful tool but also, and even more significant,
for a deeper insight into our conception of reality.”

What is thus this “deeper insight onto our conception
of reality”, that allowed Heisenberg to find the equations
of quantum mechanics, and that has no major use of the
quantum state ψ?

II. QUANTUM THEORY AS A THEORY OF
PHYSICAL VARIABLES

Classical mechanics describes the world in terms of
physical variables. Variables take values, and these val-
ues describe the events of nature. Physical systems are
characterised by sets of variables and interact affecting
one another differently, depending on the value that their
variables take. Given knowledge of some of these values,
we can, to some extent, predict more of them.

The same does quantum mechanics. It describes the
world in terms of physical variables. Variables take val-
ues, and these values describe the events of nature. Phys-
ical systems are characterised by sets of variables and in-
teract affecting one another differently, depending on the
value that their variables take. Given knowledge of some
of them, we can, to some extent, predict more of them.

The basic structure of the two theories is therefore the
same. The differences between classical and quantum
mechanics are three, strongly interdipendent:

(a) There is fundamental discreteness in nature, be-
cause of which many physical variables can take
only certain specific values and not others.

(b) Predictions can be made only probabilistically,
in general.

(c) The values that a variables of a physical system
takes are such only relative to another physical
system. Values taken relatively to distinct physical
systems do not need to entirely fit together coher-
ently, in general.

I discuss with more precision these three key aspects of
quantum theory, from which all the rest follows, below.
The first is the most important and characteristic: it
gives the theory its name. It is curiously disregarded on
many, if not most, philosophers’ discussions on quantum
theory. The third is the one with heavy philosophical
implications, which I shall briefly touch below.

This account of the theory is the interpretative frame-
work called “Relational QM”. It was introduced in 1996
in [12] (see also [13–16]). In the philosophical literature
it as been extensively discussed by Bas van Fraassen [17]
from a marked empiricist perspective, by Michel Bitbol
[18] who has given a neo-Kantian version of the interpre-
tation, by Mauro Dorato [19] who has defended it against
a number of potential objections and discussed its philo-
sophical implication on monism, and recently by Laura
Candiotto [20] who has given it an intriguing reading in
terms of (Ontic) Structural Realism. Metaphysical and
epistemological implications of relational QM have also
been discussed by Matthew Brown [21] and Daniel Wood
[22].

A. Discreteness

I find it extraordinary that so many philosophical dis-
cussions ignore the main feature of quantum theory: dis-
creteness. Discreteness is not an accessory consequence of
quantum theory, it is its core. Quantum theory is char-
acterised by a physical constant: the Planck constant
h = 2π~. This constant sets the scale of the discreteness
of quantum theory, and thus determines how bad is the
approximation provided by classical mechanics. Several
“interpretations” of quantum theory seem to forget the
existence of the Planck constant and —more seriously—
offer no account of its physical meaning.

Here is a more detailed account of discreteness:
A physical system is characterised by an ensemble of

variables. The space of the possible values of these vari-
ables is the phase space of the system. For a system with
a single degree of freedom, the phase space is two di-
mensional. Classical physics assumes that the variables
characterising a system have always a precise value, de-
termining a single point in phase space. Concretely we
never deterine a point in phase space with infinite preci-
sion —this would be meaningless—, we rather say that
the system “is in a finite region R of phase space”, imply-
ing that determining the value of the variables will yield
values in R. Classical mechanics assumes that the region
R can be arbitrarily small.
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Now, the volume V ol(R) of a region R of phase space
has dimensions [Length2×Mass/T ime], for each degree
of freedom. This combination of dimensions [Length2 ×
Mass/T ime] is called ‘action’ and is precisely the dimen-
sion of the Planck constant. Therefore what the Planck
constant fixes is the size of a (tiny) region in the space of
the possible values that the variables of any system can
take.

Now: the major physical characterisation of quantum
theory is that the volume of the region R where the sys-
tem happens to be cannot be smaller that 2π~:

V ol(R) ≥ 2π~ (2)

per each degree of freedom. This implies that the number
of possible values that any variable distinguishing points
within the region R of phase space and which can be
determined without altering the fact that the system is
in the region R itself, is at most

N ≤ V ol(R)

2π~
(3)

which is a finite number. That is, this variable can take
discrete values only. If it wasn’t so, the value of the vari-
able could distinguish arbitrary small regions of phase
space, contradicting (2). In particular: any variable sep-
arating finite regions of phase space is necessarily dis-
crete.

Quantum mechanics provides a precise way of coding
the possible values that a physical quantity can take.
Technically: variables of a system are represented by
(self-adjoint) elements A of a (C∗) algebra A. The values
that the variable a can take are the spectral values of the
corresponding algebra element A ∈ A.

B. Probability

Mechanics predicts the values of some variables, given
some information on the values that another set of vari-
ables has taken. In quantum mechanics, the available
information is coded as a (normalized positive linear)
functional ρ over A. This is called a ‘state’. The the-
ory predicts that the statistical mean value of a variable
A is ρ(A). Thus, in general, values of variable can be
predicted only probabilistically.

The state ρ is obtained from values that variables take.
(Technically: using the notation ρ(A) = Tr[ρA], a vari-
able b taking value in the interval I of its spectrum, de-
termines the state ρ = cP b

I where P b
I is the projector

associated to I in the spectral resolution of B and c is
the normalization constant fixed by ρ(11) = 1. If then a

variable b′ takes value in I ′, ρ changes to ρ′ = cP b′

I′P b
IP

b′

I′

and so on.)
The value of a quantity is sharp when the probabil-

ity distribution is concentrated on it (which is to say
ρ(A2) = (ρ(A))2). For a non-commutative quantum al-
gebra, there are no states where all variables are sharp.

Therefore the values of the variables can never determine
a point in phase space sharply. This is the core of quan-
tum theory, which is therefore determined by the non-
commutativity of the algebra. The Planck constant ~ is
the dimensional constant on the right hand side of the
commutator: it determines the amount of non commu-
tativity, hence discreteness, hence impossibility of sharp-
ness of all variables.

The non-commutativity between variables is Heisen-
berg breakthrough, understood and formalised by Born
and Jordan, who were the first to write the celebrated re-
lation [q, p] = i~ and to recognize this non-commutativity
as the key of the new theory, in 1925.

The non-commutativity of the algebra of the variables
(measured by ~) is the mathematical expression of the
physical fact that variables cannot be simultaneously
sharp, hence there is a (~-size) minimal volume attain-
able in phase space, hence predictions are probabilistic.

The fact that values of variables can be predicted only
probabilistically raises the key interpretational question
of quantum mechanics: when and how a probabilistic
prediction is resolved into an actual value?

C. The relational aspect of quantum theory

When and how a probabilistic prediction about the
value of a variable a of a physical system S is resolved
into an actual value?

The answer is: when S interacts with another phys-
ical system S′. Value actualisation happens at interac-
tions since variables represent the ways systems affect
one another. Any interaction counts, irrespectively of
size, number of degrees of freedom, presence of records,
consciousness, degree of classicality of S′, decoherence,
or else.

In the course of the interaction, the system S affects
the system S′. If the effect of the interaction on S′ de-
pends on the variable a of S, then the probabilistic spread
of a is resolved into an actual value, or, more generally,
into an interval I of values in its spectrum.

Now we come to the crucial point. The actualisation
of the value of a is such only relative to the system S′.
And: the corresponding state ρ′ determined by the ac-
tualisation is a state relative to S′, in the sense that it
predicts only the probability distribution of variables of
S in subsequent interactions with S′. It has no bearing
on subsequent interactions with other physical systems.

This is the profoundly novel relational aspect of quan-
tum mechanics.

Why are we forced to this extreme conclusion? The
argument, detailed in [12], can be summarised as follows.

We must assume that variables do take value, because
the description of the world we employ is in terms of val-
ues of variables. However, the predictions of quantum
mechanics are incompatible with all variables having si-
multaneously a determined value. A number of mathe-
matical results, such as the Kochen-Specker [23] theorem,
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confirm that if all variables could have a value simulta-
neously, the predictions of quantum mechanics would be
violated. Therefore, something must determine when a
variable has a value.

The textbook answer is “when we measure it”. This
obviously makes no sense, because the grammar of Na-
ture certainly does not care whether you or I are “mea-
suring” anything. Measurement is an interaction like any
other. Variables take value at any interaction.

But, (this is the key point) if a system S interacts with
a system S′, QM predicts that in a later interaction with
a further system S′′, a variable b of the S ∪ S′ system
is not determined by ρ′. Rather, it is determined by the
joint dynamical evolution of the S ∪S′ quantum system.
In physicists parlance: quantum theory predicts interfer-
ence effects between the different branches corresponding
to different values of the variable a, as if no actualisation
had happened.

We have thus to combine the presence of these interfer-
ence effects (which pushes us to say that a had no value)
with the fact that the variable a does take a value.1

The answer of relational QM is that the variable a of
the system S actualized in the interaction with S′ takes
value with respect to S′, but not with respect to S′′. This
is the core idea underlying the “relational” interpretation
of quantum mechanics.

Relationality is no surprise in physics. In classical me-
chanics the velocity of an object has no meaning by it-
self: it is only defined with respect to another object.
The color of a quark in strong-interaction theory has no
meaning by itself: only the relative color of two quarks
has meaning. In electromagnetism, the potential at a
point has no meaning, unless another point is taken as
reference; that is, only relative potentials have meanings.
In general relativity, the location of something is only
defined with respect to the gravitational field, or with
respect to other physical entities; and so on. But quan-
tum theory takes this ubiquitous relationalism, to a new
level: the actual value of all physical quantities of any
system is only meaningful in relation to another system.
Value actualisation is a relational notion like velocity.

III. WHAT IS THE QUANTUM STATE?

The above discussion shows that the quantum state
ρ does not pertain solely to the system S. It pertains
also to the system S′, because it depends on variables’

1 In Many World interpretations, a takes a value indexically rel-
ative to a world. In Bohm-like theories only a (abelian) subset
of variables has value, not all of them. In Quantum Information
interpretations, a takes a value only when the interaction is with
the idealistic holder of the information. In Copenhagen-like in-
terpretations, when the interaction is with the “classical world”.
In Physical Collapse theories, when some not yet directly ob-
served random physical phenomenon happens...

values, which pertain only to S′. The idea that states
in quantum mechanics are relative states, namely states
of a physical system relative to a second physical system
is Everett’s lasting contribution to the understanding of
quantum theory [24].

A moment of reflection shows that the quantum states
used in real laboratories where scientists use quantum
mechanics concretely is obviously always a relative state.
Even a radical believer in a universal quantum state
would concede that the ψ that physicists use in their
laboratories to describe a quantum system is not the hy-
pothetical universal wave function: it is the relative state,
in the sense of Everett, that describes the properties of
the system, relative to the apparata it is interacting with.

What precisely is the quantum state of S relative to
S′? What is ψ (or ρ)? The discussion above clarifies
this delicate point: it is a theoretical devise we use for
book-keeping information about the values of variables
of S actualised in interactions with S′, values which can
in principle be used for predicting other (for instance
future, or past) values that variables may take in other
interactions with S′.

Charging ψ with ontological weight is therefore like
charging with ontological weight a distribution function
of statistical physics, or the information I have about
current political events: a mistake that generates myste-
rious “collapses” anytime there is an interaction. More
specifically, in the semiclassical approximation ψ ∼ eiS

where S is a Hamilton-Jacobi function. This shows that
the physical nature of ψ is the same as the physical na-
ture of a Hamilton-Jacobi function. Nobody in her mind
would charge S with ontological weight, in the context
of classical mechanics: S is a calculational device used to
predict an outcome on the basis of an input. It “jumps”
at each update of the calculation.

Quantum mechanics is thus not a theory of the dynam-
ics of a mysterious ψ entity, from which mysteriously the
world of our experience emerges. It is a theory of the
possible values that conventional physical variables take
at interactions, and the transition probabilities that de-
termine which values are likely to be realized, given that
other are [25].

The fact that the quantum state is a book-keeping de-
vise that cannot be charged with ontological weight is
emphasized by the following observation [16]. Say I know
that at time t a particle interacts with a x-oriented Stern-
Gerlach device. Then I can predict that (if nothing else
happens in between) the particle has probability 1

2 to
be up (or down) spinning, when interacting with a z-
oriented Stern-Gerlach devise at time t′. Key point: this
is true irrespectively on which comes earlier between t
and t′. Quantum probabilsitic predictions are the same
both forth and back in time. So: what is the state of the
particle in the time interval between t and t′? Answer:
it depends only on what I know: if I know the future (re-
spectively, past) value, I use the state to book-keep the
future (respectively, past) value. The state is a coding of
the value of the x spin that allows me to predict the z
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spin, not something that the particle “has”. We can be
realist about the two values of the spin, not about the
ψ in between, because ψ depends on a time orientation,
while the relevant physics does not.

A coherent ontology for quantum mechanics is thus
sparser than the classical one, not heavier.

A good name for the actualisation of the value of a vari-
able in an interaction is “quantum event”. The proper
ontology for quantum mechanics is a sparse ontology of
(relational) quantum events happening at interactions
between physical systems.

A. Information

Equation (2) can be expressed by saying that
(P1) The amount of information that can be extracted

from a finite region of phase space is finite.
“Information” means here nothing else than “number

of possible distinct alternatives”.
The step from ρ to ρ′ determined by an actualisation

modifies the predictions of the theory. In particular, the
value of a, previously spread, is then predicted to be
sharper. This can be expressed in information theoretical
theorems by saying that

(P2) An interaction allows new information about a
system to be acquired.

There is an apparent tension between the two state-
ments (P1) and (P2). If there is a finite amount of infor-
mation, how can we keep gathering novel one? The ten-
sion is only apparent, because here ‘information’ quanti-
fies the data relevant for predicting the value of variables.
In the course of an interaction, part of the previously rel-
evant information becomes irrelevant. In this way, infor-
mation is acquired, but the total amount of information
available remains finite.2

It is the combination of (P1) and (P2) that largely
characterises quantum theory (for the case of qubit-
systems, see [29]). These two statements were proposed
as the basic “postulates” of quantum mechanics in [12].
The apparent contradiction between the two capturing
the counterintuitive character of QM in the same sense
in which the apparent contradiction between the two
Einstein’s postulate for Special Relativity captures the
counterintuitive character of relativistic spacetime geom-
etry. Very similar ideas were independently introduced
by Zeilinger and Brukner [26, 27].

An attempt to reconstruct the full formalism of quan-
tum theory starting from these two information-theoretic

2 Here is a simple example: if a spin- 1
2
particle passes through a

z oriented Stern-Gerlach apparatus and takes the “up” path, we
have one bit of information about the orientation of its angular
momentum. If it then crosses an x oriented apparatus, we gain
one bit of information about the angular momentum (in the x
direction) and we loose one bit of information about the angular
momentum (in the z direction).

postulated was initiated in [12] (see also [28]). Recently a
remarkable reconstruction theorem along these lines has
been successfully completed for the case of finite dimen-
sional systems in [29, 30], shedding considerable new light
on the structure of the theory and its physical roots.

The role of information at the basis of quantum the-
ory is a controversial topic. The term ‘information’ is
ambiguous, with a wide spectrum of meanings ranging
from epistemic states of conscious observers all the way
to simply counting alternatives, à la Shannon. As pointed
out for instance by Dorato, even in its weakest sense
information cannot be taken as a primary notion from
which all others can be derived, since it is always in-
formation about something. Nevertheless, information
can be a powerful organisational principle in the sense
of Einstein’s distinction between ‘principle theories’ (like
thermodynamics) versus ‘constructive theories’ (like elec-
tromagnetism) [31]. The role of the general theory of me-
chanics is not to list the ingredients of the world —this is
done by the individual mechanical theories, like the stan-
dard model, general relativity, of the harmonic oscillator.
The role of the general theory of mechanics (like classical
mechanics or quantum mechanics) is to provide a general
framework within which specific constructive theories are
realized. From this perspective, the notion of information
as number of possible alternatives may play a very useful
role.

It is in this sense that the two postulates can be un-
derstood. They are limitations on the structure of the
values that variables can take. The list of relevant vari-
ables, which define a physical system, and their algebraic
relations, are provided by specific quantum theories.

There are several objections that come naturally to
mind when one first encounters relational QM, which
seem to render it inconsistent. These have been long
discussed and have all been convincingly answered, see
in particular the detailed arguments in van Fraassen [17]
and Dorato [19] and the original paper [12]; I will not
re-discuss them here. Relational QM is a consistent in-
terpretation of quantum theory.

But, like all other consistent interpretations, it comes
at a price.

IV. PHILOSOPHICAL IMPLICATIONS

A. Every interpretation has a cost

Every interpretation of quantum theory comes with a
“cost”.

Examples from some interpretations popular nowadays
are the following. The cost of the Many World interpre-
tations is the hugely inflated ontology of a continuous
family of equally existing “worlds”, of which we basi-
cally know nothing, and an awkward difficulty of rig-
orously recovering the actual values of the variables in
terms of which we describe the world, from the pure-ψ
picture taken as fundamental. The cost of the Physical
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Collapse interpretations is to be based on so far unob-
served and seemingly improbable physics. The cost of
the Bohmian interpretations is to postulate the existence
of stuff which is unobservable in principle and which vi-
olates almost anything we have learned about Nature in
the last century. The cost of Quantum Informational in-
terpretations (partially inspired by relational QM [32]) is
to be tied to a basically idealistic stance where the holder
of the information is treated as an unphysical entity, a
priori differently from all other physical systems, which
cannot be in superpositions. The so called Copenhagen
Interpretations, which are held by the majority of real
physicists concretely working with quantum mechanics,
postulate the existence of a generally ill-explained “clas-
sical world”, whose interactions collapse quantum states.
And so on...

This is not meant to dismiss these interpretations:
there is no interpretation of quantum mechanics that is
not burdened by a heavy cost of some sort, which appears
too heavy a price to pay to those who do not share the
passion for that particular interpretation. Many discus-
sions about quantum theory are just finger pointing to
one another’s cost.

The evaluation of these costs depends on wider philo-
sophical perspectives that explicitly or implicitly we
hold. Attachment to full fledged strong realism leads
away from Quantum Informational interpretations and
towards Bohm or Many Worlds. Sympathy for empiri-
cism or idealism leads in opposite directions, towards
Copenhagen or Quantum Information. And so on; the
picture could be fine grained.

The beauty of the problem of the interpretation of
quantum mechanics is precisely the fact that the spec-
tacular and unmatched empirical success of the theory
forces us to give up at least some cherished philosophical
assumption. Which one is convenient to give up is the
open question.

The relational interpretation does not escape this dire
situation. As seen from the reactions in the philosophi-
cal literature, relational QM is compatible with diverse
philosophical perspectives. But not all. How strong is
the philosophical “cost” of relational QM?

Its main cost is a challenge to a strong version of real-
ism, which is implied by its radical relational stance.

B. Realism

‘Realism’ is a term used with different meanings. Its
weak meaning is the assumption that there is a world
outside our mind, which exists independently from our
perceptions, beliefs or thoughts.

Relational QM is compatible with realism in this weak
sense. “Out there” there are plenty of physical systems
interacting among themselves and about which we can
get reliable knowledge by interacting with them; there
are plenty of variables taking values, and so on. There
is nothing similar to ‘mind’ required to make sense of

the theory. What is meant by a variable taking value
“with respect to a system S′” is not S′ to be a conscious
subject of perceptions —it just the same as when we say
that the velocity of the Earth is 40km/s “with respect
to the sun”: no implication of the sun being a sentient
being “perceiving” the Earth. In this respect, quantum
theory is no more and no less compatible with realism
(or other metaphysics) than classical mechanics. I myself
think that we, conscious critters, are physical systems like
any other. Relational QM is anti-realist about the wave
function, but is realist about quantum events, systems,
interactions... It maintains that “space is blue and birds
fly through it” and space and birds can be constituted by
molecules, particles, fields, or whatever. What it denies
is the utility –even the coherence– of thinking that all
this is made up by some underlying ψ entity.

But there is a stronger meaning of ‘realism’: to assume
that it is in principle possible to list all the features of
the world, all the values of all variables describing it,
at each moment of continuous time, as is the case in
classical mechanics. This is not possible in relational QM.
This stronger version of the realist credo is therefore in
tension with relational QM. It is not even realized in the
relatively weaker sense of considering a juxtaposition of
all possible values relative to all possible systems. The
reason is that the very fact that a quantity has value with
respect to some system is itself relative to that system
[12].

There are three specific challenges to strong realism
that are implicit in relational QM. The first is that val-
ues taken with respect to different systems can be com-
pared [12] (hence there no solipsism), but the compari-
son amounts to a physical interaction, and its sharpness
is therefore limited by ~. Therefore we cannot escape
from the limitation to partial views: there is no coherent
global view available. Matthew Brown has discussed this
point in [21].

The second, emphasized by Dorato, is the related ‘anti-
monistic’ stance implicit in relational QM. Since the state
of a system is a book-keeping device of interactions with
something else, it follows immediately that there is no
meaning in “the quantum state of the full universe”.
There is no something else to the universe. Everett’s
relative states are the only quantum states we can mean-
ingfully talk about. Every quantum state is an Everett’s
quantum state. A reason for rejecting relational QM,
therefore, comes if we assume that the monistic idea of
the “state of the whole” must makes sense and must be
coherently given in principle.3

The third element of relational QM that challenges
a strong version of realism is its sparse ontology. The
question of “what happens between quantum events” is
ill posed in the theory. The happening of the world is

3 This does not prevent conventional quantum cosmology to be
studied, since physical cosmology is not the science of everything:
it is the science of the largest-scale degrees of freedom.
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a very fine-graned but discrete swarming of quantum
events, not the permanence of entities that have well de-
fined properties at each moment of a continuous time.
In [33] Laudisa criticises relational QM because it does
not provide a “deeper justification” for the “state reduc-
tion process”. This is like criticising classical mechanics
because it it does not provide a “deeper justification”
for why a system follows its equations of motion. It is a
stance based on a very strong realist (in the narrow sense
specified above) philosophical assumption. In the history
of physics much progress has happened by realising that
some naively realist expectation where ill founded, and
therefore dropping these kind of questions (How are the
spheres governing the orbits of planet arranged? What is
the mechanical underpinning of the electric and magnetic
fields? Into where is the universe expanding?) To some
extent, one can say that modern science itself was born
in Newton’s celebrated “hypotheses non fingo”, which
is precisely the recognition that questions of this sort
can be misleading. When everybody else was trying to
find dynamical laws accounting for atoms, Heisenberg’s
breakthrough was to realise that the known laws where
already good enough, but the ontology was sparser and
the question of the actual continuous orbit of the elec-
tron was ill posed. I think that we should not try to keep
asking what amounts to this same question over and over
again: trying to fill-in the sparse ontology of Nature with
our classical intuition about continuity.

The relational stance of relational QM requires a philo-
sophical perspective where relations play a central role.
This is why Candiotto [20] suggest to frame relational
QM in the general context of Ontic Structural Realism.
This is certainly an intriguing possibility. My sympa-
thy for a natural philosophical home for relational QM
is an anti-foundationalist perspective where we give up
the notion of primary substance carrying attributes, and
recognize the mutual dependence of the concepts we use
to describe the world. Other perspectives are possible, as
we have seen in the strictly empiricists and neo-Kantian
readings by van Fraassen and Bitbol. But strong real-
ism in the strict sense of substance and attributes always
uniquely determined is not.

C. How to go ahead?

There are three distinct kinds of events that could
move us forward.

The first is novel empirical information. Some inter-
pretations of quantum theory lead to empirically distin-
guishable versions of the theory. Empirical corroboration
of their predictions would change the picture; repeated
failure to detect discrepancy from standard QM weakens
their credibility. This is the way progress happens in ex-
perimental physics. So far, QM has been unquestionably
winning for nearly a century, beyond all expectations.

The second is theoretical fertility. If for instance quan-
tum gravity turned out to be more easily comprehensible

in one framework than in another, then this framework
would gain credibility. This is the way progress happens
in theoretical physics.

My focus on relational QM, indeed, is also motivated
by my work in quantum gravity [34, 35]. In quantum
gravity, where we do not have a background spacetime
where to locate things, relational QM works very neatly
because the quantum relationalism combines in a sur-
prisingly natural manner with the relationalism of gen-
eral relativity. Locality is what makes this work. Here
is how [36]: the quantum mechanical notion of “physical
system” is identified with the general relativistic notion
of “spacetime region”. The quantum mechanical notion
of “interaction” between systems is identified with the
general relativistic notion of “adjacency” between space-
time regions. Locality assures that interaction requires
(and defines) adjacency. Thus quantum states are asso-
ciated to three dimensional surfaces bounding spacetime
regions and quantum mechanical transition amplitudes
are associated to “processes” identified with the space-
time regions themselves. In other words, variables ac-
tualise at three dimensional boundaries, with respect to
(arbitrary) spacetime partitions. The theory can then
be used locally, without necessarily assuming anything
about the global aspects of the universe.

The third manner in which progress can happen is how
it does in philosophy: ideas are debated, absorbed, prove
powerful, or weak, and slowly are retained or discarded.
I am personally actually confident that this can happen
for quantum theory.

The key to this, in my opinion, is to fully accept this
interference between the progress of fundamental physics
and some major philosophical issues, like the question
of realism, the nature of entities and relations, and the
question of idealism. Accepting the reciprocal interfer-
ence means in particular to reverse the way general philo-
sophical stances color our preferences for interpretation.
That is, rather than letting our philosophical orientation
determine our reading of QM, be ready to let the discov-
eries of fundamental physics influence our philosophical
orientations.

It woundn’t certainly be the first time that philosophy
is heavily affected by science. I believe that we should
not try to understand the world rigidly in terms of our
conceptual structure. Rather we should humbly allow
our conceptual structure to be moulded by our empirical
discoveries. This, I think, is how knowledge develops at
best.

Relational QM is a radical attempt to directly cash
out the initial breakthrough that has originated the the-
ory: the world is described by variables that can take
values and obey equations which are those of classical
mechanics, but products of these variable have a tiny
non-commutativity that generically prevents sharp value
assignment, leading to discreteness, probability and to
the relational character of the value assignment.

The fathers of the theory expressed this relational char-
acter in the “observer-measurement” language. This lan-
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guage seems to require that special systems (the observer,
the classical world, macroscopic objects...) escape the
quantum limitations. As soon as we relinquish this ex-
ception, and realize that any physical system can play the

role of a Copenhagen’s “observer”, we fall into relational
QM. Relational QM is Copenhagen quantum mechanics
made democratic by bringing all systems on the same
footing.
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