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ABSTRACT 

In a recent paper in the British Journal for the Philosophy of Science, Kosso 

discussed the observational status of continuous symmetries of physics. While 

we are in broad agreement with his approach, we disagree with his analysis. In 

the discussion of the status of gauge symmetry, a set of examples offered by ’t 

Hooft has influenced several philosophers, including Kosso; in all cases the 

interpretation of the examples is mistaken. In this paper we present our preferred 

approach to the empirical significance of symmetries, re-analysing the cases of 

gauge symmetry and general covariance. 

 

1 Direct and Indirect Empirical Significance 

The notion of symmetry that we are concerned with is defined with respect to the laws of motion. Given the 

laws, specified in terms of dependent and independent variables, a symmetry transformation is a 

transformation of these variables that preserves the explicit form of the laws. The issue we are interested in 

is the empirical status of such symmetry transformations. Galileo’s famous ship experiment (Galileo 

[1967], pp. 186-8) provides an example of where (to an appropriate approximation) a symmetry 

transformation is both physically implementable and directly observable. The transformation is 

implemented via two empirically distinct scenarios of the ship at rest and in uniform motion with respect to 

the shore, and the symmetry is observed by noticing that, relative to the cabin of the ship, the phenomena 

inside the cabin do not enable us to distinguish between the two scenarios. Following Brown and Sypel 

([1995]),1 we maintain that the direct empirical significance of physical symmetries rests on the possibility 

of effectively isolated subsystems that may be actively transformed with respect to the rest of the universe.2 

This active transformation need not be physically implementable in practice (try boosting a planet, for 

example); the point is that we compare two empirically distinct possible scenarios at least theoretically, one 

containing the untransformed subsystem and one the transformed subsystem.  

The example of Galileo’s ship also illustrates that observing a symmetry involves two 

observations, as has been discussed by Kosso ([2000]). He writes (p. 85): 
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As long as one can claim to be able to observe that the transformation prescribed by a 

particular symmetry has taken place, and that the associated invariance held, then one can 

claim to be able to directly observe the physical symmetry in nature. 

 And he goes on (p. 87): 

To observe the transformation is to observe both the unchanged reference and the 

changed system. 

In other words, we first observe the transformation, which involves transforming a subsystem with respect 

to some reference that is itself observable, and we then observe that the symmetry holds for the subsystem 

(p. 86): 

observation of a symmetry will always require two components: One must observe that 

the specified transformation has taken place, and one must observe that the specified 

invariant property is in fact the same, before and after. 

In broad agreement with Kosso, we require that two conditions are met in order for a symmetry to 

have direct empirical significance: 

1. Transformation Condition: the transformation of a subsystem of the universe with respect to a reference 

system must yield an empirically distinguishable scenario; and 

2. Symmetry Condition: the internal evolution of the untransformed and transformed subsystems must be 

empirically indistinguishable. 

Not everyone agrees with this account of the empirical significance of symmetry. For example, 

Morrison ([1995], p. 159) writes that ‘symmetries ... should not be viewed straightforwardly as concrete 

claims about the world’, and then goes on to claim that ‘Conservation laws provide the empirical 

component or manifestation of symmetries’. 

Similarly, Sklar ([1996], p. 78) endorses the view that  

the invocation of charges is simply another way of stating what the various symmetries 

are. There is a redundancy of the ‘theoretical structure’ on the ‘observational data’ to be 

explained. 

However, even in cases where a given conservation law is connected to a certain symmetry (via Noether’s 

first theorem, say, of which more below), the conservation law does not exhaust the empirical 

manifestation of the symmetry.3 Invariance of the dynamical laws under spatial translation, for example, is 

directly manifested by the insensitivity of the dynamical evolution of systems to their location. Similarly, 

the invariance of the dynamical laws under boosts4 is directly manifested by Galileo’s ship experiment. A 
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symmetry of the laws manifests itself directly whenever an active interpretation of an effectively isolated 

subsystem can be operationally instantiated.5  

Since symmetries are defined with respect to the laws they have not only direct empirical 

significance, but also indirect empirical significance, arising from properties of the laws that are connected 

with symmetries and that themselves have direct empirical significance. In similar vein, Kosso writes 

([2000], p. 85): 

Indirect evidence of the symmetry, by contrast, amounts to the observation of some 

consequence of the symmetry, but not of the transformation and invariance themselves. 

For example, it is proven by Noether’s theorem that every continuous, global symmetry 

is associated with a conservation law.6 

This indirect empirical significance is independent of whether any active transformation of effectively 

isolated subsystems can be defined, and consists of claims of various different types, both actual and 

counterfactual; for example, if the laws didn’t have this symmetry then we would be in a different universe, 

various empirical consequences of the symmetry wouldn’t hold, and so forth.7 Notice also the bearing this 

has on the issue of the meaning of symmetries for the universe as a whole: while symmetries of the 

universe as a whole have no direct empirical significance, they do have indirect empirical significance via 

the laws of physics if these are assumed to hold for any isolated system.  

2 Global and local continuous symmetries 

Continuous symmetries come in different varieties, one important distinction being between external and 

internal symmetries. External symmetries are symmetries of space and time: the symmetry transformations 
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6 This statement is subject to certain restrictions; see section 5, below. Note also that Noether proved the 
converse of her theorem. 
7 Whenever a symmetry is ‘observationally complete’ (Kosso [2000], p. 88) it can have only indirect, and 
not direct, empirical significance.  

  



are applied to the spatio-temporal degrees of freedom, and give rise to translations and rotations, for 

example. Internal symmetry transformations came into physics with the advent of quantum theory, in 

which additional (non-spatio-temporal) degrees of freedom are attributed to the system. Further details of 

this distinction can be found in Kosso’s discussion ([2000], p. 84), for example.8 Kosso ([2000], p. 84-5) 

also distinguishes between global and local symmetries, but here he is not quite careful enough, and since 

this may be one source of problems later in his paper, we will take care to explain the distinction clearly 

here. 

The terms ‘global’ and ‘local’ are used in philosophy of physics with a variety of meanings. One 

contrast is between global in the sense of applying to the universe as a whole versus local in the sense of 

applying to some region of the universe. Other examples come from debates concerning locality (and non-

locality) in quantum theory, and discussions of the concept of locality pertinent to relativity theory. In the 

context of continuous symmetries, and in particular gauge symmetries, the contrast between global and 

local is none of these. Rather, the terms are used to mark the distinction between symmetries that depend 

on constant parameters (global symmetries) and symmetries that depend on arbitrary smooth functions of 

space and time (local symmetries). Examples of global symmetries are the familiar Galilean spacetime 

symmetries of spatial and temporal translations, spatial rotations, and boosts, along with internal global 

symmetries such as the global phase invariance of the Schrödinger equation for a free particle. The gauge 

symmetry of electromagnetism (an internal symmetry) and the diffeomorphism invariance in General 

Relativity (an external symmetry) are examples of local symmetries, since they are parameterized by 

arbitrary functions of space and time.  

The sense of ‘local’ here is that intended by Weyl is his 1918 theory (Weyl [1918]) where he 

introduced the idea of local scale transformations. Weyl built a theory in which the lengths of two vectors 

are directly comparable only when the vectors are in the same place. If there is no direct way to compare 

the lengths of two spatiotemporally separated vectors, then fixing the length scale at one spacetime location 

does not fix the length scale at any other spacetime location. In contrast, a global length scale is a length 

scale which, once fixed at one spacetime point, is fixed everywhere. The same local/global distinction is 

intended by Yang and Mills ([1954], p. 192, our emphasis): 

The conservation of isotopic spin is identical with the requirement of invariance of all 

interactions under isotopic spin rotation. This means that when electromagnetic 

interactions can be neglected, as we shall hereafter assume to be the case, the orientation 

of the isotopic spin is of no physical significance. The differentiation between a neutron 

and a proton is then a purely arbitrary process. As usually conceived, however, this 

arbitrariness is subject to the following limitation: once one chooses what to call a 

proton, and what a neutron, at one space-time point, one is then not free to make any 

choices at other space-time points. 
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Martin ([2003]). See also Castellani ([2002]). 

  



It seems that this is not consistent with the localized field concept that underlies the 

usual physical theories. In the present paper we wish to explore the possibility of 

requiring all interactions to be invariant under independent rotations of the isotopic spin 

space at all space-time points, so that the relative orientation of the isotopic spin at two 

space-time points becomes a physically meaningless quantity (the electromagnetic field 

being neglected). 

In other words, Yang and Mills intend to implement a local freedom in the specification of proton versus 

neutron, analogous to Weyl’s implementation of a local freedom in the length scale; fixing what isotopic 

spin state constitutes a proton at one location does not determine all the proton-states everywhere else. Of 

course, once I have fixed the proton state at a given spacetime location relative to one nucleon, it is fixed 

for all nucleons at that spacetime location. 

This global/local distinction is between ‘the same at every point’ and ‘freely varying from point to 

point’. In terms of transformations, a global scale transformation changes the length scale at every point by 

the same amount, whereas for a local scale transformation the change in the length scale varies smoothly 

but otherwise arbitrarily from point to point. This is the sense of global and local that is at work in the 

terminology ‘global gauge transformation’ and ‘local gauge transformation’. 

The Weyl and Yang-Mills distinction clearly differs from that of applying a transformation to the 

universe as a whole versus applying it to a part of the universe (or, more generally, to an entire system 

versus a part of that system), and here we reserve the terms ‘global’ and ‘local’ for the former distinction. 

The crucial difference between these two distinctions can be seen by considering a system consisting of 

two sub-systems. A Weyl-type local scale transformation applied to the system allows for one subsystem to 

be freely rescaled relative to the other only when the two subsystems are spatially separated; it does not 

allow us to vary the scale of one subsystem with respect to the scale of the other when they are at the same 

location. How could it? Relative length at the same spacetime location is directly observable, this was 

where the Weyl argument began. In contrast, a scale transformation of one subsystem with respect to 

another is independent of whether those two subsystems are in the same place or not, and can indeed result 

in a change in the relative scale of the two sub-systems even at the same spacetime location.  

3 Gauge symmetry 

Following an article in the Scientific American by G. ’t Hooft ([1980]), several authors (Auyang [1995]; 

Mainzer [1996]; and Kosso [2000]) have made a set of claims concerning gauge symmetry, for which the 

evidence they cite involves variations on the familiar ‘two-slits experiment’.   

In the case of local gauge symmetry, the examples concern electrons (the matter fields) and the 

electromagnetic field (the gauge fields). Two claims are made: 

(1) local gauge transformations of the matter fields alone (i.e. local phase transformations) are not 

symmetry transformations; 

(2) local  gauge transformations of the matter fields plus the gauge fields are symmetry transformations 

having indirect but not direct empirical significance. 

  



Both these claims are correct, but the evidence cited in each case is mistaken, and this means that the 

accompanying interpretation of local gauge symmetry, including the understanding of its empirical status, 

is wrong. 

There is also a problem in the case of global gauge symmetry. The claim here is that a global phase 

transformation is a symmetry transformation, and that it has direct empirical significance. However, the 

evidence cited is, once again, mistaken, showing that the understanding of global gauge symmetry is 

flawed. We discuss global gauge symmetry later, but first the local case. 

3.1 Local gauge symmetry 

3.1.1. Discussion of the first claim. Consider first the claim (1) above, that local gauge transformations 

of the matter fields alone are not symmetry transformations. This is true. The Schrödinger equation for the 

free electron is: 
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and this is not invariant under a local phase transformation of the wavefunction for the electron, 

 ( ),iq x te θψ ψ ψ′→ = , (1.2) 

where ( , )x tθ  is an arbitrary function of space and time. This is not in question; the problem arises when ’t 

Hooft, Auyang, Mainzer and Kosso appeal to a variation on the two-slits experiment with electrons, as 

described by ’t Hooft in his 1980 article, as experimental evidence of the failure of invariance. However, 

this experiment cannot be interpreted as the implementation of a local phase transformation (1.2), as we 

will now discuss. 

Let the wavefunction associated with the beam of electrons be Ψ , where for each closed loop 

between source and screen 

 (1
2

)I IIψ ψΨ = + , (1.3) 

Iψ  and IIψ  being associated with paths through the first and second slits respectively. An interference 

pattern is produced at the screen as a result of the phase relations between Iψ  and IIψ  at each point along 

the screen. Call this interference pattern A. If we now insert a phase shifter into the path of only one 

component of the wavefunction, say Iψ , we obtain a new interference pattern, say pattern B. According to 

’t Hooft ([1980], p. 98), this experiment constitutes evidence that a local gauge transformation of the matter 

fields alone is not a symmetry transformation: 

a theory of the electron fields alone, with no other forms of matter or radiation, is 

not invariant with respect to a ... local gauge transformation. 

In other words, inserting the phase shifter into the path of one component of the wavefunction is to be 

regarded as actively implementing a local gauge transformation, and there are empirical consequences of 

this transformation: the change in the interference pattern is to be viewed as a failure of local gauge 

  



symmetry. Kosso ([2000]) uses ’t Hooft’s example in his discussion of the empirical and observational 

status of local gauge symmetry. He writes (p. 95): 

Passing the one beam through a half-wave plate, for example, while leaving the other 

beam alone, amounts to a local phase shift, that is, a gauge transformation. In this way, 

the active gauge transformation is observable. 

Similarly, Auyang ([1995], p. 57) concludes that:  

In the two-slits experiment, the interference pattern changes with a local phase change. 

This means that the free electron Lagrangian is not invariant under local phase 

transformations. The failure of invariance is unsatisfactory... 

We believe that this analysis of the experiment is mistaken, and that the insertion of a phase-shifter into one 

path of the two-slits experiment cannot be interpreted as a local phase transformation. Introducing a phase 

shifter into one path results in new wavefunction , ′′Ψ , (related to a new ray in Hilbert space):  

 ( ) ( )1 1 ,
2 2

i
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where Λ  is a constant, and the components of the wavefunction have been transformed by 
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Thus, the relative phase of the two components – i.e. of Iψ  with respect to IIψ  – is changed by a constant 

amount (i.e. by the same amount at every point on the screen, and with no time variation). We use the new 

wavefunction, , to calculate the new interference pattern. Now compare this with a local phase 

transformation of , where we interpret ‘local’ in the Weyl sense, which is the standard sense in which the 

terminology ‘local gauge transformation’ is used. A local gauge transformation of the wavefunction has the 

following form: 

′′Ψ

Ψ

 ( ) ( )( , ) ( , )1 1
2 2

i x t i x t
I II I IIe θψ ψ ψ ψ′′′Ψ = + → Ψ = + = Ψe θ . (1.6) 

This new wavefunction, , differs from that obtained by inserting a phase shifter into one component of 

the wavefunction:  and  are not the same. This is the point, in a nutshell. A local gauge 

transformation of the matter fields (i.e. a local phase transformation) has the form (1.6), and this differs 

from a relative phase transformation which has the form (1.4). The experiment described by ’t Hooft 

realises a relative phase transformation, and not a local phase transformation. 

′′Ψ

Ψ′′′Ψ ′′

 If more needs to be said in order to make the point convincing, then the easiest way to see that the 

wavefunctions Ψ  and  differ is to focus on what happens at the screen, and in particular on the 

relative phase of 

′′′ ′′Ψ

Iψ  with respect to IIψ  at each point along the screen, since this is what gives rise to the 

interference pattern. The expectation values associated with position for ′′′Ψ  and Ψ  are the same, and so 

both give rise to the same interference pattern (pattern A). The fact that the interference pattern is 

unchanged is readily seen by noticing that the relative phase of Iψ  with respect to IIψ  at any point 1x  is 

  



unchanged, even though the overall phase of the new wavefunction ′′′Ψ  differs from that of the original 

wavefunction  point by point. The wavefunction Ψ ′′Ψ , on the other hand, gives rise to a different 

interference pattern (pattern B). The change in the interference pattern is due to the change in the relative 

phase of Iψ  with respect to IIψ  at each point along the screen. A local gauge transformation, such as (1.6), 

will not achieve this. Local gauge freedom is the freedom to vary the overall phase of the wavefunction 

from point to point, but it is not the freedom to vary the phase of Iψ  with respect to IIψ  at a single 

spacetime point. Under a local gauge transformation the phase of Iψ  at some point on the screen will be 

changed by the same amount as the phase of IIψ  at that same point. What we need in order to change the 

interference pattern is a relative phase transformation of Iψ  with respect to IIψ  at each point on the 

screen.  
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 One source of confusion might perhaps be that in spatial regions where Iψ  and IIψ  do not 

overlap, a local gauge transformation (1.6) and a relative phase transformation (1.4) can be made to 

coincide by choosing (i)  in (1.6) throughout that part of the spatial region occupied by θ = IIψ , and 

(ii)  wherever ,θ = Λ ψ  is present. However, an interference pattern occurs only where Iψ  and IIψ  

overlap, and clearly these conditions on ( xθ  cannot be met in such a region.  

0

 This may leave a puzzle: how can it be that (1.6) and  (1.4) coincide at some time t , when the 

wavepackets associated with 

0=

 and IIψ  do not overlap, but that when we evolve the wavefunction 

forward we reach different predictions for the interference pattern at the screen? The reason is that ′′Ψ  and 

 obey different dynamics:  satisfies the free Schrödinger equation but ′′′Ψ ′′ ′′′  does not. In more detail, 

the situation is as follows. The two wavefunctions  and ′′  give rise to distinct interference patterns, 

due to the relative phase transformation of the components of  Ψ  (see (1.4)). Nevertheless, both   and 

 satisfy the same dynamical equations, the Euler-Lagrange equations associated with the Lagrangian for 

a free complex scalar field, i.e. the free Schrödinger equation (1.1). The two wavefunctions  and 

Ψ

′′Ψ

Ψ ′′′Ψ , on 

the other hand, give rise to the same interference pattern, but ′′′Ψ  does not satisfy the free Schrödinger 

equation. In order to find equations of motion for  we have to introduce an additional dependent 

variable, which (for empirical reasons) we associate with the electromagnetic potential; this is the so-called 

gauge principle in action (see Brown [1999]). The Schrödinger equation for a single spinless particle 

moving in an electromagnetic potential is: 

 
22

2
q i

m c
−

∇ − =  (1.7) 

where A  is the vector potential and φ  is the scalar potential. This equation is not invariant under 

local phase transformations of the wavefunction ψ  alone, but it is invariant under local gauge 

transformations of the form 
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where ( , )x tχ χ=  is an arbitrary smooth function of space and time. Even in the case where there is no 

electromagnetic field present, a local gauge transformation involves not only a local phase transformation 

of the matter fields, but also a local gauge transformation of the electromagnetic potential. This leads to the 

different predictions when we evolve forwards from the region where Iψ  and IIψ  do not overlap to the 

region where they do.  

 In short, then, the experiment described by ’t Hooft constitutes a relative phase transformation and 

not a local gauge transformation of the matter fields. 

 

3.1.2 Discussion of the second claim. In our discussion of the above case we introduced the full local 

gauge transformations (1.8) in which the electromagnetic potentials ( , )x tA and ( , )x tφ  are transformed 

along with the matter fields ( , )x tψ . This brings us to the second of the claims made by ’t Hooft and co., 

i.e., that local gauge transformations of the matter fields plus the gauge fields are symmetry transformations 

having indirect but not direct empirical significance. Once again, the claim is correct:  first, the 

transformations (1.8) are symmetry transformations of the equation (1.7), and second, these transformations 

have indirect but not direct empirical significance. We will explain the reason why this latter part of the 

claim is true once we have discussed the evidence cited by ’t Hooft and co., since their account of why this 

claim holds depends on that evidence. 

 According to ’t Hooft ([1980, p. 98]), introducing electromagnetism into our theory allows us to 

achieve local gauge symmetry: ‘describing the two fields together the local symmetry can be extended to 

both of them.’ This is something that can be observed, he claims, using the Aharonov-Bohm solenoid. The 

Aharonov-Bohm set-up is described in various textbooks, including Ballentine ([1990], section 11-4). A 

long solenoid is placed behind the two slits and the magnetic field is contained entirely within the solenoid, 

in the ‘shadow’ region behind the two slits, where the wavefunction does not pass, and furthermore it is 

shielded from electrons. Nevertheless, when the electromagnetic field is switched on, a change in the 

interference pattern results, and the field strength can be chosen so that we get pattern B. We can also (as 

Auyang does) insert a phase-shifter into one beam so that the relative phase shift due to the Aharonov-

Bohm solenoid is compensated for by the phase-shifter, and we recover interference pattern A. How should 

these further scenarios be interpreted? Following ’t Hooft, Mainzer ([1996], p. 423) writes: 

If the phase is shifted ... behind only one slit, then the interference pattern changes. ... 

Thus a local change of the interference pattern is realised experimentally. To ‘restore the 

symmetry’, a force field must be found which compensates for the local change of the 

phase shift. 

  



Auyang describes the situation as follows ([1995], p. 56): 

The effect of the local phase shift is compensated by the potential Aµ  of the 

electromagnetic field. ... At some value of Aµ , the original interference pattern is 

recovered. This demonstrates that the interacting electron-electromagnetic field system 

can be made invariant under local phase transformations. 

As we have seen, the local gauge symmetry of the Schrödinger equation (1.7) depends on the introduction 

of a new dependent variable, which we associate with the electromagnetic potential. However, as Auyang 

herself points out (p. 58), the Lagrangian associated with the Schrödinger equation (1.7) is locally gauge 

invariant even when the electromagnetic fields happen to vanish – the potential could be a fixed flat 

background potential with which no dynamical field is associated, and we would still have a locally gauge 

invariant theory. Local gauge invariance alone does not require non-zero electromagnetic fields (see Brown 

[1999], especially p. 53). Therefore, the presence of a non-zero electromagnetic field cannot be necessary 

for the phenomena to exhibit local gauge symmetry. To put the point another way, the result of inserting a 

phase-shifter into one path in the above experiment can be described by the locally gauge invariant 

equation  (1.7), just as well as when the A-B solenoid is added. Local gauge symmetry is independent of 

whether there are electromagnetic fields present.  

 It is true that, in the scenario described, a combined transformation of matter field (via a phase 

shifter) and electromagnetic potential (via the A-B solenoid) gives us empirical invariance. But this 

transformation of the matter field and of the electromagnetic potential is not a local gauge transformation. 

What is shown by this experiment is that both the phase-shifter and the Aharonov-Bohm solenoid can be 

used to introduce a change in the relative phase of Iψ  with respect to IIψ , and hence that the 

electromagnetic field strength can be carefully chosen so that the specific relative phase change due to a 

given phase-shifter is cancelled out by the relative phase change induced by that particular current through 

the Aharonov-Bohm solenoid.  

 In short, the analysis of the above experiments offered by ’t Hooft and co. must be mistaken: no 

local gauge transformation of a system of matter and gauge fields can bring an electromagnetic field into 

(or out of) existence; no change in the interference pattern can result from a local gauge transformation.  

 What, then, of the claim that local gauge symmetry has only indirect but not direct empirical 

significance? Kosso ([2000]) has argued that local gauge symmetry can be observed only indirectly on the 

grounds that the insertion of a phase shifter into one path results in a violation of the symmetry, and the 

symmetry can be restored only by adding a new force (electromagnetism) to our theory. In this he again 

follows ’t Hooft, and similar arguments are given by Auyang ([1995], p. 57-8) and Mainzer ([1996], p. 

421-4). As we have seen, this analysis and explanation of the status of local gauge symmetry cannot be 

right. The reason why local gauge symmetry has indirect but no direct empirical significance lies 

elsewhere. 

 Consider first the question of whether local gauge symmetry has direct empirical significance: i.e. 

is there a ‘Galilean ship’ analogue for local gauge transformations? Consider an effectively isolated system 

  



of matter plus gauge fields, and transform this relative to some other system, such that the resulting 

scenario is empirically (= observationally = measurably, in this case) distinct? The measurable quantities 

are the relative phase relations between components of the wavefunction of a single system, and the 

electromagnetic field strengths. The latter are unchanged by a local gauge transformation (only the 

potentials, not the field strengths, transform), and so no empirical consequences can arise. In the former 

case, the overall phase of one system relative to another is not measurable, and so again there can be no 

observable consequences of transforming one system with respect to another. The only remaining option is 

to consider a region where the wavefunction can be decomposed into two spatially separated components, 

and then to apply a local gauge transformation to one region (i.e. to the component of the wavefunction in 

that region, along with the electromagnetic potential in that region) and not to the other. But then either the 

transformation of the electromagnetic potential results in the potential being discontinuous at the boundary 

between the ‘two subsystems’, in which case the relative phase relations of the two components are 

undefined (it is meaningless to ask what the relative phase relations are), or the electromagnetic potential 

remains continuous, in which case what we have is a special case of a local gauge transformation on the 

entire system – and this of course brings us back to where we started – such a transformation has no 

observable consequences. The most fundamental point is perhaps this: in theories with local gauge 

symmetry, the matter fields are embedded in a gauge field, and the local symmetry is a property of both 

sets of fields jointly. Because of this, we cannot apply a symmetry transformation to one subsystem of 

matter fields independently of some other subsystem – we must also transform the gauge fields in order for 

the transformation to be a symmetry transformation, and both subsystems of matter fields are embedded in 

the same gauge fields. Thus, a transformation applied to one subsystem will involve the other subsystem, 

even if only because the transformation of the gauge field goes smoothly to the identity. In conclusion, 

there can be no analogue of the Galilean ship experiment for local gauge transformations, and therefore 

local gauge symmetry has only indirect empirical significance (being a property of the equations of 

motion). We will have more to say about this indirect empirical significance in section 5, below. 

3.2 Global Gauge Symmetry 

Return to the original two-slits experiment, and now insert identical phase shifters into each path. The 

result will be an unchanged interference pattern. According to ’t Hooft, this demonstrates the global gauge 

invariance of the electron field; Auyang, Mainzer and Kosso agree. Kosso ([2000], p. 83) writes: 

This invariance is easily observed, and the experiment as a whole amounts to an 

observation of the internal, global symmetry in nature. 

However, the experiment described does not constitute an observation of global gauge symmetry, and this 

is because it does not meet the first of the two conditions required by Kosso himself: we have not observed 

that a transformation has taken place. Mathematically, inserting the phase shifters corresponds to the 

following transformation: 
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Hence,  and  differ mathematically by an overall global phase.Ψ ′Ψ 9 However, this overall global phase is 

of no empirical significance: physically, Ψ  and ′Ψ  represent exactly the same quantum mechanical state, 

indistinguishable in every way. This means that a global gauge transformation cannot be used to create an 

empirically distinguishable scenario. Perhaps it will be objected that the insertion of the phase shifters is 

enough to ensure that the transformation of Ψ  to ′Ψ  is physically implemented. But it is not the means by 

which the alleged transformation is carried out that guarantees that we have a physical transformation, it is 

the resulting empirically distinct scenario. Another objection might take the form of a counterfactual: if 

global gauge symmetry were violated then inserting the phase shifters would lead to an empirically 

different outcome, but it doesn’t, so observing no change is equivalent to observing global gauge symmetry 

directly. But this will not serve our needs: if global gauge symmetry were violated, then we would have 

evidence that inserting a phase shifter changes the physical state of the system; in the absence of this, we 

have no evidence that a transformation has been physically implemented. Criterion (1) for direct empirical 

significance cannot be met, and so the empirical significance of global gauge symmetry is solely indirect.10 

 We end by noting as different possible approach to the direct observation of a global phase 

transformation. It might be tempting to interpret the relative phase transformation (1.4) as a global phase 

transformation of Iψ  with respect to IIψ , and thereby claim that global phase transformations are directly 

observable in that experiment, rather than in the case where we insert phase shifters into both paths. The 

crucial issue here is whether the two components of the wavefunction, Iψ  and IIψ , can be interpreted as 

representing genuine subsystems of . Our position is that only Ψ Ψ represents a physical system, with Iψ  

representing one (basis-dependent) component of the wavefunction Ψ . (If we kill the second component of  

 (i.e. Ψ IIψ ), then Iψ  represents a physical system, but now the interference pattern between Iψ  and IIψ  

cannot be observed, and we are back to square one.) The point is made particularly vivid by considering a 

single electron passing through the two slits: on our view there is only one system here, described by Ψ , 

and the components Iψ  and IIψ  do not represent subsystems of the electron. The same general point holds 

                                                 
9 Notice that this conclusion rests on the assumption that the electron beam closely approximates a plane 
wave. If we were to consider wavepackets instead, then the insertion of suitably chosen dispersive phase 
shifters would lead to a delay in the time of arrival of the wavepacket at the screen, and hence we would be 
able to empirically distinguish the case with the phase shifters present from the ones without. However, in 
the case of wavepackets, not only is it extremely difficult in practice to preserve the form of the wavepacket 
as it passes through the phase shifter, but also the resulting wavefunction is not related to the original 
wavefunction by a global phase transformation. The resulting time delayed wavefunction ( ),x t τΨ +  is 

only equivalent to  for the case of the plane wave.  ( ,ie xθΨ )t
10 This conclusion requires the qualification that we are assuming the absence of a further interaction that 
does not respect the symmetry in question. 

  



even on an ensemble interpretation, and – at least in the absence of further argument – it seems that Iψ  and 

IIψ , cannot be interpreted as representing genuine subsystems. 

4 Space-time symmetries 

Global space-time symmetries, such as the spatial translations and rotations of particle mechanics, have an 

active interpretation in terms of subsystems of the universe; furthermore, these active transformations are 

implementable in experiments such as the Galilean ship experiment. This much is uncontroversial. The 

question arises of whether local space-time symmetries – arbitrary co-ordinate transformations that leave 

the explicit form of the equations of motion unaffected – also have an active interpretation. As in the case 

of local gauge symmetry, it has been argued in the literature that the introduction of a force is required to 

‘restore’ local symmetry (see Rosen [1990] and Kosso [2000]). In the case of arbitrary co-ordinate 

transformations, the force invoked is gravity. Once again, we believe that the arguments (though seductive) 

are wrong, and that it is important to see why. 

Kosso’s discussion of arbitrary coordinate transformations is analogous to his argument with 

respect to local gauge transformations. He writes ([2000], p. 89): 

Observing this symmetry requires comparing experimental outcomes between two 

reference frames that are in variable relative motion, frames that are relatively 

accelerating or rotating. 

He goes on: 

One can, in principle, observe that this sort of transformation has occurred. … just look 

out of the window and you can see if you are speeding up or turning with respect to some 

object that defines a coordinate system in the reference frame of the ground. 

Then: 

Now do the experiments to see if the invariance is true. Do the same experiments in the 

original reference frame that is stationary on the ground, and again in the accelerating 

reference frame of the train, and see if the physics is the same. One can run the same 

experiments, with mechanical forces or with light and electromagnetic forces, and 

observe the results, so the invariance should be observable.  

And he concludes: 

But when the experiments are done, the invariance is not directly observed. Spurious 

forces appear in the accelerating system, objects move spontaneously, light bends, and so 

on. ... The physics is different. 

In other words, if we place ourselves at rest first in an inertial reference frame, and then in a non-inertial 

reference frame, our observations will be distinguishable. For example, in the non-inertial reference frame 

objects that are seemingly force-free will appear to accelerate, and so we will have to introduce extra, 

‘spurious’, forces to account for this accelerated motion. The transformation described by Kosso is clearly 

not a symmetry transformation. Despite that, his claim appears to be that if we move to General Relativity 

  



this transformation becomes a symmetry transformation. In order to assess this claim, let’s begin by 

considering Kosso’s experiment from the point of view of classical physics. 

Suppose that we describe these observations using Newtonian physics and Maxwell’s equations. 

We would not be surprised that our descriptions differ depending on the choice of coordinate system: 

arbitrary coordinate transformations are not symmetries of the Newtonian and Maxwell equations of 

motion as usually expressed. Nevertheless, we are free to re-write Newtonian and Maxwellian physics in 

generally covariant form. But notice: the arbitrary coordinate transformations now apply not just to the 

Newtonian particles and the Maxwellian electromagnetic fields, but also to the metric, and this is necessary 

for general covariance.  

Kosso’s example is given in terms of passive transformations – transformations of the coordinate 

systems in which we re-coordinatise the fields. In the Kosso experiment, however, we re-coordinatise the 

matter fields without re-coordinatising the metric field. This is not achieved by a mere coordinate 

transformation in generally covariant classical theory: a passive arbitrary coordinate transformation induces 

a re-coordinatisation of not only the matter fields but also the metric. The two states described by Kosso are 

not related by an arbitrary coordinate transformation in generally covariant classical theory. Further, such a 

coordinate transformation applied to only the matter and electromagnetic fields is not a symmetry of the 

equations of Newtonian and Maxwellian physics, regardless of whether those equations are written in 

generally covariant form. 

With this in mind, let’s turn our attention to General Relativity. Suppose that we use General 

Relativity to describe the above observations. Kosso suggests that in General Relativity the observations 

made in an inertial reference frame will indeed be related by a symmetry transformation to those made in a 

non-inertial reference frame. He writes ([2000], p. 90): 

The invariance can be restored by revising the physics, by adding a specific dynamical 

principle. This is why the local symmetry is a dynamical symmetry. We can add to the 

physics a claim about a specific force that restores the invariance. It is a force that exactly 

compensates for the local transform. In the case of the general theory of relativity the 

dynamical principle is the principle of equivalence, and the force is gravity. … With 

gravity included in the physics and with the windows of the train shuttered, there is no 

way to tell if the transformation, the acceleration, has taken place. That is, there is now no 

difference in the outcome of experiments between the transformed and untransformed 

systems. The force pulling objects to the back of the train could just as well be gravity. 

Thus the physics, all things including gravity considered, is invariant from one locally 

transformed frame to the next. The symmetry is restored. 

This analysis mixes together the equivalence principle with the meaning of invariance under arbitrary 

coordinate transformations in a way which seems to us to be confused, with the consequence that the 

account of local symmetry in General Relativity is mistaken. 

  



Einstein’s field equations are covariant under arbitrary smooth coordinate transformations. 

However, as with generally covariant Newtonian physics, these symmetry transformations are 

transformations of the matter fields (such as particles and electromagnetic radiation) combined with 

transformations of the metric. Kosso’s example, as we have already emphasised, re-coordinatises the matter 

fields without re-coordinatising the metric field. So, the two states described by Kosso are not related by an 

arbitrary coordinate transformation even in General Relativity. We can put the point vividly by locating 

ourselves at the origin of the coordinate system: I will always be able to tell whether the train, myself, and 

its other contents are all freely falling together, or whether there is a relative acceleration of the other 

contents relative to the train and me (in which case the other contents would appear to be flung around). 

This is completely independent of what coordinate system I use – my conclusion is the same regardless of 

whether I use a coordinate system at rest with respect to the train or one that is accelerating arbitrarily. 

(This coordinate independence is, of course, the symmetry that Kosso sought in the opening quotation 

above, but his analysis is mistaken.) 

What, then, of the equivalence principle? The Kosso transformation leads to a physically and 

observationally distinct scenario, and the principle of equivalence is not relevant to the difference between 

those scenarios. What the principle of equivalence tells us is that the effect in the second scenario, where 

the contents of the train appear to accelerate to the back of the train, may be due to acceleration of the train 

in the absence of a gravitational field, or due to the presence of a gravitational field in which the contents of 

the train are in free fall but the train is not. Mere coordinate transformations cannot be used to bring real 

physical forces in and out of existence.  

It is perhaps worthwhile briefly indicating the analogy between this case and the gauge case 

considered above. Active arbitrary coordinate transformations in General Relativity involve 

transformations of both the matter fields and the metric, and they are symmetry transformations having no 

observable consequences. Coordinate transformations applied to the matter fields alone are no more 

symmetry transformations in General Relativity than they are in Newtonian physics (whether written in 

generally covariant form or not). Such transformations do have observational consequences. Analogously, 

local gauge transformations in locally gauge invariant relativistic field theory are transformations of both 

the particle fields and the gauge fields, and they are symmetry transformations having no observable 

consequences. Local phase transformations alone (i.e. local gauge transformations of the matter fields 

alone) are no more symmetries of this theory than they are of the globally phase invariant theory of free 

particles. Neither an arbitrary coordinate transformation in General Relativity, nor a local gauge 

transformation in locally gauge invariant relativistic field theory, can bring forces in and out of existence: 

no generation of gravitational effects, and no changes to the interference pattern.  

5 Direct and indirect empirical significance again 

In so far as internal global symmetries and local symmetries are perfect symmetries (i.e., there are no other 

interactions that fail to respect the symmetry in question), they have no direct empirical significance, only 

indirect empirical significance. These symmetries are properties of the associated laws of motion, and 

  



therefore have consequences for the behaviour of systems described by these laws. These consequences can 

be vividly highlighted using three theorems that are derivable from a mathematical problem posed by 

Emmy Noether (Noether [1918]).11 Noether’s first theorem is the most famous of these theorems, and it 

connects global symmetries (both external and internal) with conservation laws.12 In the same paper 

Noether also proved a second theorem associated with local symmetries; and, with Noether’s assistance, 

Klein derived results that are related to a third theorem which is again associated with local symmetries. 

We call this third theorem the Boundary theorem, for reasons associated with its derivation. 

Noether’s First Theorem relates the global phase symmetry of the Schrödinger equation for a free 

particle (1.1) to the condition that normalization must be time-independent. In the case of local symmetry, 

Noether’s second theorem and the Boundary theorem demonstrate that the restrictions on the possible form 

of a theory with a given local symmetry are very dramatic. For example, in any theory for which (1.8) are 

symmetry transformations, we can use Noether’s second theorem to show that not all the equations of 

motion are independent of one another:13 this leads to an underdetermination in the theory which may be 

removed by opting for a theory in which the dynamical fields act non-locally (see Belot [1998] for a 

detailed discussion of this problem in electromagnetism and of the options available).14 Using the Boundary 

theorem we can show that the matter fields act as the source of the electromagnetic fields, and what the 

form of the coupling is between the matter fields and the electromagnetic potential; we can also derive the 

form of a current that is conserved when either the matter field equations or the electromagnetic field 

equations are satisfied. These and other results of the Noether and Boundary theorems are discussed in 

Brading and Brown [2003]; a discussion of these theorems in relation to general covariance and General 

Relativity can be found in Brown and Brading [2002]. What they show is that the requirement of local 

symmetry imposes extremely strong restrictions on the possible form of a theory, and it is this that gives 

local symmetry its indirect – but potentially very powerful – empirical significance. 

6 Conclusion 

By way of brief conclusion then, the central point is an important distinction between continuous global 

space-time symmetries and all other continuous symmetries. Global space-time symmetries have a special 

status, both theoretically and practically: theoretically, they have an active interpretation in the sense that a 

                                                 
11 This problem can be posed for all theories that can be given a Lagrangian formulation. See Brading and 
Brown ([2003]). 
12 In fact, Noether’s theorems do not apply to all continuous symmetries of the Euler-Lagrange equations, 
and the connection depends on satisfaction of further conditions. These being met, in field theory the 
theorem connects a linear combination of Euler derivatives with a divergence expression, such that if all the 
fields on which the Lagrangian depends satisfy Euler-Lagrange equations, the divergence expression 
vanishes. This can then be converted into a conservation law, subject to suitable boundary conditions being 
satisfied. See Brading and Brown ([2003]). 
13 More accurately, Noether’s second theorem tells us that not all the Euler derivatives are independent of 
one another. 
14 For the general connection between Noether’s second theorem and indeterminism, see Barbashov and 
Nesterenko ([1983], section 7), and Brading and Brown ([2003]). See also Earman ([2002]) and Redhead 
([2002]) for further philosophical discussion. 

  



symmetry transformation applied to a subsystem of the universe yields an empirically distinct scenario; 

and, furthermore, instances of these active transformations are implementable in practice through the use of 

effectively isolated subsystems. Neither global internal symmetries, nor local symmetries of either variety, 

have even a theoretical active interpretation of this kind.  
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