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Abstract

It is a striking fact from reverse mathematics that almost all theorems
of countable and countably representable mathematics are equivalent
to just five subsystems of second order arithmetic. The standard view
is that the significance of these equivalences lies in the set existence
principles that are necessary and sufficient to prove those theorems. In
this article I analyse the role of set existence principles in reverse math-
ematics, and argue that they are best understood as closure conditions
on the powerset of the natural numbers.

1 Introduction

What axioms are truly necessary for proving particular mathematical the-
orems? To answer this question, Harvey Friedman [1975, 1976] initiated
a research program called reverse mathematics. By formalising ordinary
mathematical concepts in the language of second order arithmetic, Fried-
man was able to show not only that many theorems of ordinary mathematics
could be proved in relatively weak subsystems of second order arithmetic,
but that such theorems often turned out to be equivalent to the axioms used
to prove them, with this equivalence being provable in a weak base theory.
Consider, for example, the least upper bound axiom for the real numbers.
Not only are different formulations of the least upper bound axiom provably
equivalent, but they are also provably equivalent to the axiom scheme of
arithmetical comprehension. Reverse mathematics thus provides a unified
framework within which one can precisely determine the strength of the
axioms necessary to prove theorems of ordinary mathematics.
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Reverse mathematics is carried out within subsystems of second order
arithmetic, for which the canonical reference is Simpson [2009]. These sub-
systems are formulated in the language of second order arithmetic Lo. This
is a two-sorted first order language, the first sort of variables xg, x1,... be-
ing called number variables, and intended to range over natural numbers,
and the second sort of variables Xg, X1,... being called set variables and
intended to range over sets of natural numbers. Ly includes the non-logical
symbols of first order Peano arithmetic (constant symbols 0 and 1, function
symbols + and x, and the relation symbol <), as well as a relation symbol
€ standing for set membership.

The system of full second order arithmetic or Zs consists of: the basic
arioms of Peano arithmetic minus the induction scheme, PA™; the X{ in-
duction scheme, consisting of the universal closures of all formulas of the
form

(X}-IND) ((0) AVn(p(n) = ¢(n +1))) = Vn ¢(n)

where p(n) is a X{ formula (which may contain free number and set vari-
ables); and the second order comprehension scheme, which consists of the
universal closures of all formulas of the form

(T1L,-CA) 3XVn(n € X < ¢(n))

where p(n) is an Lo-formula with X not free (but possibly with other free
number and set variables). Zs is, in the context of arithmetic, a very strong
system, with consistency strength far beyond that of first order Peano arith-
metic PA. The systems employed in reverse mathematics are all subsystems
of Z5, in the sense that all of their axioms are theorems of Zs.!

The most fundamental subsystem of second order arithmetic for reverse
mathematics is RCAq. Its axioms are: the basic axioms; the 3{ induction
scheme; and the recursive (or AY) comprehension scheme, which consists of
the universal closures of all formulas of the form

(AY-CA) Vn(p(n) <> ¥(n)) = 3XVn(n € X < ¢(n))

where ¢ is a ¥ formula, 1 is a I formula, and X is not free in ¢ (although
¢ may contain other free variables). It is the Recursive Comprehension Ax-
iom that gives RCAq its name.? RCA( is the standard base theory for reverse
mathematics: the system in which the equivalences between theorems and
axioms are typically proved. In the rest of this article, unqualified expres-
sions of the form “7 is equivalent to S”, where 7 is a mathematical theorem

'In order to achieve a streamlined and uniform presentation of Z, and its subsystems,
this article deviates slightly from Simpson [2009], mainly in its treatment of induction
axioms. This does not affect the results quoted in any material way.

2The ‘0’ subscript indicates that this is a system with a restricted induction axiom, i.e.
it does not prove the full second order induction scheme.



and S a subsystem of second order arithmetic, should be taken to mean that
a faithful formalisation of 7 can be proved in RCAg to be implied by, and
imply, the axioms of S. Similarly, “7 reverses to .S” means that a faithful
formalisation of 7 can be proved in RCAg to imply the axioms of S.3 As
RCA( is the base theory for most reverse mathematics, the other systems
considered in this article generally include the axioms of RCAy. The system
WKLy, for example, consists of the axioms of RCAy plus the axiom known
as weak Konig’s lemma, which states that every infinite subtree of the full
binary tree 2<N has an infinite path through it. In such cases we say that
the distinguishing axiom of WKLy is weak Konig’s lemma.

While there are many other subsystems of second order arithmetic, a
particularly important group are known as the Big Five. As well as RCAg
and WKLy, this group consists of ACAg, whose distinguishing axiom is the
arithmetical comprehension scheme; ATRy, whose distinguishing axiom is
the scheme of arithmetical transfinite recursion; and I1}-CAg, whose dis-
tinguishing axiom is the II}-comprehension scheme.* Each of these sys-
tems is stronger than the preceding systems, in the following sense: a
system Sy is proof-theoretically stronger than a system Sy, S1 < S, just
in case So proves all the theorems of 57, but there is at least one theo-
rem of Sy that is not a theorem of S;. For the Big Five we have that
RCA( < WKLy < ACA¢ < ATR( < IT3-CAy, although it should be noted that
increases in proof-theoretic strength do not necessarily involve increases in
consistency strength.

In most cases studied to date, ordinary mathematical theorems con-
cerning countable and countably-representable objects have been found to
be either provable in the base theory RCAg or are equivalent over RCAq
to another of the Big Five. This is a remarkable phenomenon: Simpson
[2010, p. 115] estimates that hundreds of theorems have been found that fall
into these five equivalence classes. There is also is a substantial and grow-
ing body of statements that fall outside of this classification, known as the
Reverse Mathematics Zoo [Dzhafarov, 2015]. These were originally drawn
largely from infinitary combinatorics, by considering weakenings of Ram-
sey’s theorem; an excellent starting point for the study of these statements
is Hirschfeldt [2014]. However, the Zoo now contains examples from many
other areas of mathematics including model theory, set theory, the theory
of linear orderings, and descriptive set theory. Relatively few theorems from
other core areas of mathematics such as analysis or algebra are known to
lie outside the Big Five, although this situation is also changing: a recent
example from analysis is Birkhoff’s recurrence theorem [Day, 2016].

3The term “reversal” implies that the implication S = 7 is already known, so I will
not characterise implications 7 = T where T is proof-theoretically weaker than 7 as
“reversals”; instead I shall simply call them “implications”.

4The historical development of these canonical five subsystems of second order arith-
metic is traced in Dean and Walsh [2017].



Explaining why the Big Five phenomenon occurs is an important task,
and if an account of the significance of reversals could accomplish it, this
would be a substantial accomplishment. However, it is also not one I take
to be necessary for such accounts, and consequently I shall not address it
directly in this article. One explanation offered by Montalban [2011] is that
the Big Five, and perhaps some other subsystems, are robust systems: they
are invariant under certain perturbations of the axioms involved. Elabora-
tions on this view can be found in Sanders [2013, 2015].

The standard view in the field of reverse mathematics is that the sig-
nificance of reversals lies in their ability to demonstrate what set existence
principles are necessary to prove theorems of ordinary mathematics. For
example, they show that the arithmetical comprehension scheme is neces-
sary in order to prove the least upper bound axiom for the real numbers,
because the latter implies the former over the weak base theory RCAg. In
contrast, arithmetical comprehension is not necessary in order to prove the
Hahn-Banach theorem for separable Banach spaces, since this theorem can
be proved in a weaker system than ACAg, namely WKLy. However, weak
Ko6nig’s lemma is necessary to prove the separable Hahn—Banach theorem,
and this necessity is demonstrated by the fact that RCAgy proves that the
latter implies the former. A view of this sort, in more or less the terms just
used, is articulated by Simpson [2009, p. 2] as his “Main Question”: “Which
set existence axioms are needed to prove the theorems of ordinary, non-set-
theoretic mathematics?”. Similar sentiments can be found elsewhere.’

It is not difficult to see why the standard view became and remains the
orthodoxy, since in some sense the view can be simply read off from the
mathematical results: each of the distinguishing axioms of the Big Five as-
sert the existence of certain sets of natural numbers, and the hierarchy of
proof-theoretic strength that we see in the Big Five can thus be understood
as a hierarchy of set existence principles of increasing power. It also provides
precise explanations of commonly expressed opinions such as “Godel’s com-
pleteness theorem is nonconstructive”: the completeness theorem reverses
to WKLy, which implies the existence of noncomputable sets, so any proof
of the completeness theorem will necessarily employ a nonconstructive (in
the sense of noncomputable) set existence principle. Finally, it allows us to
comprehend within a common framework the various foundations for math-
ematics that can be faithfully formalised by subsystems of second order
arithmetic as being differentiated (in terms of their mathematical conse-
quences, rather than their philosophical justifications) by their commitment

®Such as in Friedman, Simpson, and Smith [1983, p. 141], Brown and Simpson [1986,
p. 557], Jaeger [1987, p. 172], Brown, Giusto, and Simpson [2002, p. 191], Avigad and
Simic [2006, p. 139] and Dorais, Dzhafarov, Hirst, Mileti, and Shafer [2016, p. 2]. There
are many more examples to be found in the reverse mathematics literature, although it
should be noted that many of the participants are students or coauthors of Simpson, and
thus the similarity in language is not surprising.



to set existence principles of differing strengths. Simpson [2010] proposes
that each of the Big Five corresponds to a particular foundational program:
RCA( to computable mathematics; WKL to a partial realisation of Hilbert’s
program, as in Simpson [1988a]; ACA( to the predicative theory proposed
by Weyl [1918]; ATR( to the predicative reductionist approach pioneered
by Feferman [1964]; and I13-CAq to the program of impredicative analysis
found in Buchholz et al. [1981].°

From the usual statement of the standard view, one might easily con-
clude that no ordinary mathematical theorems have been found that are not
equivalent to particular set existence principles, but this is not the case. A
formal version of Hilbert’s basis theorem was shown by Simpson [1988b] to
be equivalent to the wellordering of a recursive presentation of the ordinal
w“, while Rathjen and Weiermann [1993] showed that Kruskal’s theorem is
equivalent to the wellordering of a recursive presentation of ¥2“, the small
Veblen ordinal. These wellordering statements are IT!, and prima facie are
not set existence principles. If anything, they are set nonexistence principles,
stating that there exist no infinite sets witnessing the illfoundedness of the
recursive linear orders representing the ordinals w* and ¥Q* respectively.
Another class of examples is provided by the fragments of the first order
induction scheme given by the ¥ induction and bounding schemes. Hirst
[1987] showed that Ramsey’s theorem for singletons, RT1<OO, is equivalent
over RCAy to the 39 bounding scheme BX9. Equivalences to stronger and
weaker fragments of first order induction are also proved in Simpson and
Smith [1986] and Friedman, Simpson, and Yu [1993]. These cases demon-
strate that the standard view should not be interpreted as the claim that all
equivalences proved in reverse mathematics concern set existence principles.
Rather, in cases where a reversal from theorem 7 to a subsystem S of second
order arithmetic show that a set existence principle is required to prove T,
the reversal demonstrates which set existence principle is required.

Since the base theory RCAg is both expressively impoverished and proof-
theoretically weak, the coding involved in representing ordinary mathemat-
ical objects (such as real numbers, complete separable metric spaces, Borel
and analytic sets, and so on) in that theory is substantial. For reversals to
have the significance ascribed to them by the standard view requires that the
process of formalisation is faithful, in the sense that the formal statements in
the language of second order arithmetic formally capture the mathematical
content of statements of ordinary mathematics. In what follows, we shall
take this faithfulness for granted, at least for the specific mathematical the-
orems discussed. Nevertheless, there are cases where we might doubt this
faithfulness, or at least worry about the commitments that attend certain
types of coding, as in the investigations of Kohlenbach [2002] and Hunter

SFurther references for these connections can be found in Simpson [2010], while a more
thoroughgoing analysis of them appears in Dean and Walsh [2017].



[2008].

Despite its appeal, the standard view as it has been advanced in the
literature to date has a major weakness, namely that its central concept of a
set existence principle is left unanalysed, and thus the precise content of the
view is unclear. The goal of this article is therefore to provide such an analy-
sis. Our starting point is to note that accounts of the significance of reversals
may offer at least two kinds of explanation. The first is the significance of
reversals as a general matter: what do the equivalences proved in reverse
mathematics between theorems of ordinary mathematics and canonical sub-
systems of second order arithmetic tell us? Let us call such explanations
“global”. The second is the significance of reversals to a particular system,
such as the significance of reversals to WKL discussed above. Let us call
explanations of this sort “local”. Depending on the account one offers, local
explanations may follow from global explanations, in part or in whole, or
they may not. The standard view is, prima facie, committed to a global
explanation of the significance of reversals, namely that they allow us to
calibrate the strength of set existence principles necessary to prove theo-
rems of ordinary mathematics. However, without a clear understanding of
what set existence principles are, it is unclear what the relationship between
local and global explanations is under the standard view. For example, it is
commonly held that reversals to WKLy demonstrate that proofs of the given
theorem must involve some form of compactness argument. In itself this is a
local explanation, but without a fuller account of what set existence princi-
ples are, it is left open whether it follows from the global explanation of the
significance of reversals in terms of set existence principles, or whether it is
genuinely local in character. As we shall see, the answer to this question
is highly sensitive to the particular account of set existence principles one
adopts.

2 Set existence as comprehension

One initially attractive way of cashing out the notion of a set existence prin-
ciple is taking it to be identical to the concept of a comprehension scheme.
I call this view “set existence as comprehension” or SEC. A comprehension
scheme is a schematic principle, each instance of which asserts the existence
of the (uniquely determined, by extensionality) set of all and only those ob-
jects that satisfy a given predicate. In the case of second order arithmetic,
the objects are natural numbers, and the predicates concerned are formulas
of the language Lo of second order arithmetic. Typically, a comprehension
scheme collectively asserts the existence of the sets defined by a particular
formula class, as follows. Let I' be a set of formulas in the language Lo
of second order arithmetic. The I'-comprehension scheme consists of the



universal closures of all formulas of the form
(I-CA) AXVn(n € X < ¢(n))

where ¢ belongs to I' and X is not free in ¢. If I" consists of all Lo-formulas,
we obtain the full comprehension scheme I1%_-CA of second order arithmetic,
the distinguishing axiom of full second order arithmetic Zy. By restricting
I" to different formula classes, we obtain different comprehension schemes.
For example, if I' consists of formulas with only number quantifiers, we
obtain the arithmetical comprehension scheme, the distinguishing axiom of
the subsystem ACAj. By restricting to formulas of the form 3k6(k) where
0 is quantifier-free (X9 formulas), we obtain the %9-comprehension scheme;
this is in fact equivalent to the arithmetical comprehension scheme. By
restricting to formulas of the form VX 6(X) where 0 is arithmetical, we obtain
the IT}-comprehension scheme, the distinguishing axiom of the subsystem
IT3-CAg. Some comprehension schemes do not follow this template to the
letter, most notably the recursive comprehension scheme (A{-CA). This is
a subscheme of ¥.{-comprehension incorporating the further restriction that
each admissible formula be not merely 2(1), but provably equivalent to a H(l)
formula (i.e. of the form Vk6(k) where 6 is quantifier-free).

The idea that any given formal property (i.e. one defined by a formula
of a formal language properly applied to some domain) has an extension is a
highly credible basic principle, so long as appropriate precautions are taken
to avoid pathological instances. Second order arithmetic is a fragment of
simple type theory, which guards against Russell-style paradoxes, as formu-
las like X ¢ X are not well-formed and thus cannot appear in instances of
comprehension. Moreover, comprehension schemes fall into straightforward
hierarchies, with increasingly strong comprehension schemes permitting the
use of syntactically broader classes of definitions. This harmonises with the
fact that some theorems are true even of the computable sets, while others
entail the existence of witnesses that are computability-theoretically highly
complex, and strong axioms are therefore needed in order to prove them.
Such gradations can also be seen as hierarchies of acceptability: if one de-
nies that noncomputable sets exist then recursive comprehension forms a
natural stopping point; if one repudiates impredicativity then arithmetical
comprehension could be a good principle to adopt; and so on.

Of the Big Five subsystems of second order arithmetic which are of pri-
mary importance to reverse mathematics, only three are characterised by
comprehension schemes: RCAp, ACAg and H%—CAO. The intermediate sys-
tems WKLy and ATR are obtained by adding further axioms (weak Konig’s
lemma in the former case, arithmetical transfinite recursion in the latter)
to a comprehension scheme. Nevertheless, one might think that while weak
Konig’s lemma and arithmetical transfinite recursion are not formulated as
comprehension schemes, they are nonetheless equivalent to comprehension



schemes. The following result of Dean and Walsh shows that this is not the
case for weak Konig’s lemma.”

Theorem 2.1 (Dean and Walsh, private communication). No subset of the
arithmetical comprehension scheme is equivalent over RCAg to weak Konig’s
lemma.

Proof. Assume for a contradiction that there is a set of arithmetical formulas
¥ such that RCAg proves that W-CA is equivalent to weak Konig’s lemma.
Without loss of generality, we may assume that there is a single arithmetical
formula ¢(n, X) with only the displayed free variables such that

RCAg F WKL + VXCy(X),

where C,(X) is the instance of arithmetical comprehension asserting that
the set {n € N | ¢(n, X) } exists.

Let M be a countable w-model of WKL, and thus of VXC,(X). WKL
is computably false, so there exist X, Y € M with Y ={ncw|¢(n,X) }
and X <7 Y. By cone avoidance for H? classes, there exists a countable
w-model M’ of WKLy such that X € M’ but Y ¢ M’. Since M’ must also
be a model of Cy,(X), there exists Z € M’ such that n € Z <> p(n, X) for
all n € w. But then by extensionality Z = Y, contradicting the fact that
Y & M. O

Dean and Walsh [2017, pp. 29-30] argue that weak Konig’s lemma is
therefore a counterexample to SEC. Crucially, WKLg is not merely a sub-
system of second order arithmetic that is not equivalent to a comprehension
scheme: it is a mathematically natural one, since weak Konig’s lemma is
equivalent over RCAg to the Heine—Borel covering lemma, Brouwer’s fixed
point theorem, the separable Hahn-Banach theorem, and many other theo-
rems of analysis and algebra.

Simpson [2010, p. 119] defines a subsystem of second order arithmetic
as being mathematically natural just in case it is equivalent over a weak
base theory to one or more “core” mathematical theorems. WKLy, ACAy,
ATRg and IT}-CAq are all mathematically natural systems, since each one
is equivalent over RCAg to many theorems from different areas of ordinary
mathematics. This is a notion that seems to admit of degrees: some systems
may, in virtue of being equivalent to many core mathematical theorems, be
more mathematically natural than those which are only equivalent to a few

"Dean and Walsh’s proof of this theorem appeals to Simpson, Tanaka, and Ya-
mazaki [2002]’s result that WKLg is conservative over RCAq for sentences of the form
VX3Ye(X,Y), where ¢ is arithmetical. The theorem also follows from the non-existence
of minimal w-models of WKL and, as in the proof I give here, from basis theorems for
9 classes (Diamondstone, Dzhafarov, and Soare [2010] is a good reference for such basis
theorems). My thanks to the two anonymous referees for their suggestions towards a more
optimal proof.



such theorems. When a claim of the form “S is a mathematically natural
system” is used in an unqualified way in the rest of this article, it should be
taken to mean that S meets the minimum requirement of being equivalent
to at least one core mathematical theorem. The notion of mathematical
naturalness appears to give us a partial answer to the question of the signif-
icance of reversals: by proving an equivalence between a theorem of ordinary
mathematics 7 and a subsystem of second order arithmetic S, we thereby
demonstrate that S is a mathematically natural system. However, this still
leaves us in the dark about the significance of the reversal for the theorem
7: what important property of this theorem of ordinary mathematics do we
come to know when we prove its equivalence over a weak base theory to .S,
that we did not know before? It is this question that the standard view,
and thus the SEC account as an explication of the standard view’s central
theoretical notion, attempts to answer.

Dean and Walsh’s argument that SEC fails runs as follows: since weak
Ko6nig’s lemma is neither a comprehension scheme, nor equivalent to one, it
cannot be a set existence principle (as by SEC, set existence principles are
just comprehension schemes). So the significance of a reversal from a theo-
rem 7 to weak Konig’s lemma cannot lie in the comprehension scheme that
is both necessary and sufficient to prove it, since there is no such scheme. Ei-
ther the significance of reverse mathematics does not lie in the set existence
principles which theorems reverse to, or the set existence as comprehension
view is false. Proponents of the standard view are thus on shaky ground.
They must adopt a more sophisticated way of spelling out their core con-
tention, or abandon the idea that the significance of reversals lies in set
existence principles. We can also understand Dean and Walsh’s point in
terms of the distinction between local and global explanations: SEC fails
to offer a local explanation of the significance of reversals to weak Konig’s
lemma, since it is not a comprehension scheme, despite the fact that reversals
to WKLg are clearly significant. The global explanation of the significance
of reversals offered by the SEC account is therefore inadequate.

One response to Dean and Walsh’s argument is to endorse a more ex-
pansive conception of set existence principles, based on the fact that Weak
Konig’s lemma and arithmetical transfinite recursion are equivalent to schematic
principles of a different sort, namely separation schemes. The separation
scheme for a class of formulas I holds that if two formulas ¢, € I' are prov-
ably disjoint, then there exists a set whose members include every n € N
such that ¢(n), and exclude every n € N such that ¢)(n). Weak Konig’s
lemma is equivalent over RCAg to X.9-separation, while arithmetical transfi-
nite recursion is equivalent over RCAg to ¥i-separation.

Definition 2.2 (separation scheme). Let I' be a class of formulas, possibly
containing free variables. The I'-separation scheme, I'-SEP, consists of the



universal closures of all formulas of the form
(I-SEP) Vn(=(p(n)A¢(n))) — FXVn((¢(n) — n € X)A(P(n) — n & X)),
where @,y € I with X not free.

One response to Dean and Walsh’s argument is to endorse the following
more expansive conception of set existence principles: both comprehension
schemes and separation schemes are set existence principles.

In line with our existing terminology, we call the proposal that both
comprehension schemes and separation schemes are set existence principles
SECS. This solves the immediate problem with the SEC view, since each of
the Big Five are equivalent over RCA to either a comprehension scheme or
a separation scheme. But although SECS accommodates both weak Konig’s
lemma and arithmetical transfinite recursion, and thus evades the coun-
terexamples that sink SEC, it does so at the price of a seemingly ad hoc
modification to the view.

3 Conceptual constraints

The arguments levelled against the SEC account and its variants tacitly
appeal to different constraints which the concept of a set existence principle
should satisfy, if it is to play a role in explaining the significance of reversals.
I shall now attempt to make these constraints explicit, by presenting three
conditions which any satisfactory account of the concept of a set existence
principle should meet, together with some reasons to believe that these
conditions are plausible. I shall then show how the SECS account meets
two of the stated conditions, but fails to satisfy a third. In the following
we take A to be some account of the concept of a set existence principle
(e.g. SEC, SECS) with an associated extension S(.A), consisting of the set
of subsystems of second order arithmetic which, according to the account
A, express set existence principles.

(1) NONTRIVIALITY. Not all subsystems of second order arithmetic are
classified as set existence principles by A, i.e. at least one subsystem
is not a member of S(A).

(2) COMPREHENSIVENESS. If S is a mathematically natural subsystem
of second order arithmetic, and S actually expresses a set existence
principle, then A classifies S as expressing a set existence principle:

SeSA).

(3) UNiTY. The subsystems of second order arithmetic which A classifies
as expressing set existence principles, i.e. the members of S(A), are
conceptually unified.

10



Consider some account of set existence principles A. Such an account
should lend substance to the claim that the significance of reversals lies in
the set existence principles necessary to prove theorems of ordinary math-
ematics, by providing some degree of analysis of the concept of a set ex-
istence principle, and a way to determine whether a subsystem of second
order arithmetic expresses a set existence principle (for example, the SEC
account does this by stating that set existence principles are just compre-
hension schemes). If A does not satisfy the nontriviality condition (3) then
it cannot do this. There are many statements of second order arithmetic,
such as purely arithmetical ones containing no set quantifiers, that prima
facie are not set existence principles. Violating the nontriviality condition
therefore entails failing to provide a theory that is truly an account of set
existence principles at all.

If A does not meet the comprehensiveness condition (3), then it not
only fails to include prima facie set existence principles, but ones that are
equivalent to core mathematical theorems. A would therefore fail to pro-
vide a satisfactory reconstruction of the concept of a set existence principle
in reverse mathematics, and the reconstruction offered would be unable to
play its intended role in the standard view. The antecedent of the condi-
tion is relatively strong, since it requires that a system both express a set
existence principle and be mathematically natural. As noted in §1, some
core mathematical theorems reverse to principles that are prima facie not
set existence principles, such as Hilbert’s basis theorem which is equivalent
over RCA( to WO(w®). Tt is thus not to A’s detriment—and, indeed, may be
to its credit—if it does not classify such systems as set existence principles.
On the other hand, there are also systems that prima facie express set exis-
tence principles, but that are not mathematically natural, or at least are not
known to be. It is reasonable, but not required, for A to include such sys-
tems. The A}-comprehension scheme is a set existence principle according
to the SEC account, but it has not been proved equivalent to any theorem
of ordinary mathematics. Various forms of the axiom of choice, such as the
systems Y1-AC and Y1-DC, also appear to be set existence principles that
are not mathematically natural, but in these cases the SEC account does not
classify them as set existence principles.® The comprehensiveness condition
(3) permits such cases because in order for an account of the concept of a
set existence principle to elucidate the standard view of reverse mathemat-
ics, it does not need to say anything about the status of systems which are
not equivalent to any theorem of ordinary mathematics. With these points
in mind, we can see clearly why the fact that SEC does not include weak
Konig’s lemma is so problematic. Resisting its mathematical naturalness is
difficult, since it is equivalent to dozens of core mathematical theorems in
analysis, algebra, logic, and combinatorics. Moreover, it is prima facie a set

8See definition VII.6.1 of Simpson [2009, p. 294] for details of these systems.
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existence principle, albeit in a somewhat different sense to comprehension
schemes. The standard view that reversals demonstrate the set existence
axioms necessary to prove theorems of ordinary mathematics would not be
the standard view in the field if it did not include WKLy.

Any failure of A to meet the unity condition (3) has a somewhat dif-
ferent character. The standard view is an attempt to provide a general
account of the significance of reversals, one that does not make overt refer-
ence to particular systems. Such generality requires that the systems which
A countenances as set existence principles have some features in common.
For example, while recursive comprehension, arithmetical comprehension
and TTi-comprehension are all different, the SEC account still satisfies the
unity condition precisely because they are all comprehension schemes, and it
can offer a theory under which all comprehension schemes can legitimately
be considered to be set existence principles. If A does not satisfy the unity
condition then it cannot be considered as offering a satisfactory theory of
set existence principles, even if it is extensionally adequate in the sense of
satisfying conditions (3) and (3). If no account meeting this condition can
be found then we are reduced to merely offering local explanations of the sig-
nificance of reversals to particular systems, rather than a global explanation
of the significance of reverse mathematical results. Moreover, an inability to
provide a unified account of the concept of a set existence principle would
cast doubt on whether there is indeed a unified concept that can play the
explanatory role the standard view requires of it.

Unity, however, comes in degrees, and so accounts of the concept of a set
existence principle can satisfy it in a stronger or weaker way. When there
are strong connections between the different systems considered to be set
existence principles, then the account under which those systems are consid-
ered to be set existence principles can be said to strongly satisfy the unity
condition. In such cases it seems reasonable to expect that the significance
of reversals to a particular system S will, in large part, be given in terms of
the account of set existence principles, rather than in terms of specific prop-
erties of .S that are at substantial variance to other set existence principles.
The SEC account exhibits this property: different comprehension schemes
are learly the same type of principle, and can be obtained by simple syn-
tactic restrictions on a stronger principle, namely the full comprehension
scheme. evertheless, requiring that any theory of set existence principles
satisfies the unity condition as strongly as the SEC account is an onerous
requirement that may well be impossible to meet in a theory that also sat-
isfies the comprehensiveness condition. Allowing for theories to satisfy the
unity requirement only weakly, and have different set existence principles
bear a mere family resemblance to one another, rather than be strictly of
the same type of axiom in some strong syntactic sense, seems a reasonable
relaxation of the ondition.

Since the comprehensiveness condition (3) is a conditional and not a bi-
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conditional, it does not require that every subsystem that expresses a set
existence principle according to A also expresses set existence principle by
the lights of our naive, informal, or intuitive understanding of the concept.
This reflects the kind of counterexample encountered in §2 and §4, namely
WKL and WWKL. These are sentences that prima facie express set ex-
istence principles, but are not classified as such, by the SEC and SECS
accounts respectively. Contrastingly, we have few examples of sentences
that are classified as set existence principles by the accounts currently on
the table, and yet prima facie do not express set existence principles.? More-
over, such cases do not seem to undermine the coherence or usefulness of
the concept of a set existence principle in the way that counterexamples like
WKL and WWKL do, because they do not give us the same sense that our
theory of set existence principles is somehow inadequate to the data. The
nontriviality condition (3) and the unity condition (3) are therefore formu-
lated so as to constrain how extensive the class of subsystems classified as
set existence principles by A is, but the conditions as a whole do not require
that A provide a list of subsystems that is coextensive with our informal
understanding of the concept of a set existence principle.

4 Set existence as comprehension and separation

Admitting separation schemes as set existence principles is, prima facie,
an ad hoc modification of the SEC view that weakens one of the main
strengths of the SEC view, namely its strong satisfaction of the unity con-
dition (3). The primary point of difference between separation and compre-
hension schemes is that as straightforward definability axioms, comprehen-
sion schemes tell us which particular sets exist. Separation schemes, on the
other hand, do not always do so: an axiom asserting the mere existence of
a separating set may not pin down a particular set as the witness for this
assertion. A striking theorem in this vein is that the only sets which every
w-model of X{-separation (i.e. WKLg) has in common are the computable
ones. This illustrates Friedman [1975, p. 235]’s point that “Much more is
needed to define explicitly a hard-to-define set of integers than merely to
prove their existence.”

To rebut the charge that SECS is ad hoc, and show that it does after
all satisfy the unity requirement, we must show that there is some degree
of conceptual commonality between comprehension schemes and separation
schemes. Let us first note that one important comprehension scheme is a
separation scheme: AY-comprehension is equivalent, over a weak base theory,
to the H(l)—separation scheme. Moreover, following Lee [2014], we can treat
the entire Big Five in a unified way by understanding them as interpolation
schemes.

9Induction axioms are one possible exception; see footnote 13 for details.
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Definition 4.1 (interpolation scheme). Let I and A be sets of Lo-formulas,
possibly with free variables. The I'-A interpolation scheme, I'-A-INT, con-
sists of the universal closures of all formulas of the form

vm(p(m) = (m))

(I-A-INT) — AXVm((p(m) = me X)A(m e X — p(m)))

where ¢ € I" and ¥ € A, and X is not free in either formula.

All of the Big Five are equivalent to interpolation schemes: RCAq is
equivalent to IIY-X9-INT; WKLy to X9-TI0-INT; ACAg to X9-Z9-INT; ATRg
to XA-IH-INT; and I13-CAg to L1-$1-INT. This should go at least some
way towards ameliorating our worry that SECS fails to satisfy the unity
condition (3), since we can now see that both comprehension schemes and
separation schemes are actually interpolation schemes.

Mere syntactic unity should not by itself convince us of the conceptual
unity of comprehension schemes and separation schemes; after all, a suffi-
ciently broad syntactically specified class of sentences will eventually contain
all statements. The notion of an interpolation scheme is, however, relatively
narrow and it is not hard to see that it is a straightforward generalisa-
tion of the concepts of separation and comprehension. The comprehension
scheme for some class of formulas ® can be derived from the ®-® inter-
polation scheme, since for any instance of comprehension we can use the
given formula in both places in the interpolation scheme and thus derive the
comprehension instance. Separation schemes, on the other hand, arise when
given some formula class A, the formula class T" consists of the negations of
the formulas in A, such as when A = %9 and T’ = I19.1°

However, even if we grant that SECS satisfies the unity condition (3),
it still fails to offer a satisfactory theory of set existence principles, since
there is a mathematically natural counterexample which shows that it does
not satisfy the comprehensiveness condition (3), namely the axiom known
as weak weak Konig’s lemma. This principle was introduced in Yu [1987],
and as the name suggests, it is a further weakening of weak Konig’s lemma,
obtained by restricting weak Konig’s lemma to trees with positive measure.

Definition 4.2 (weak weak Konig’s lemma). Weak weak Koénig’s lemma
(WWKL) is the statement that if T is a subtree of 2<N with no infinite
path, then
T |lh(o) =
lim 1o E€T (o) =n}| _

n—00 on

0.

10 A5 noted in §2, RCAg deviates somewhat from the standard template for comprehen-
sion schemes, and for this reason is not equivalent to an interpolation scheme of the type
®-O-INT where both sets of formulas are the same. By analogy with the case of RCAy,
one might expect the Al-comprehension scheme to be equivalent to II}-S1-INT, i.e. the
I1}-separation scheme. However, this is not the case, as Montalbin [2008] proved. Since
Ai-CAq is not known to be a mathematically natural subsystem of Zs, this fact does not
by itself seem to pose a particular problem for the SECS view.
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The system WWKLy is given by adjoining WWKL to the axioms of RCAq.

WWAKL, is strictly intermediate between RCAy and WKL [Yu and Simp-
son, 1990], and is equivalent over RCA( to a number of theorems from mea-
sure theory, such as a formal version of the Vitali Covering Theorem [Brown,
Giusto, and Simpson, 2002]; the countable additivity of the Lebesgue mea-
sure [Yu and Simpson, 1990]; and the monotone convergence theorem for
the Lebesgue measure on the closed unit interval. A survey of results in this
area is given in Simpson [2009, §X.1]. These equivalences show that WWKL
is mathematically natural in Simpson’s sense. By the comprehensiveness
condition (3) we should therefore expect a good account of set existence
principles to include it.

WWAKLg is not equivalent over RCAg to any subset of the arithmetical
comprehension scheme.'! Yu and Simpson [1990, §2, pp. 172-3] proved that
not every model of WWKLg is a model of WKLy. Their proof involves the
construction of what is known as a random real model, and the properties
of this model show that WWKLg is not equivalent over RCAg to any sub-
scheme of E?—separation. Since WWKL, is not a separation scheme, it is a
mathematically natural subsystem of Zs that SECS cannot accommodate.
SECS therefore fails to satisfy the comprehensiveness condition (3).

Theorem 4.3 (Yu and Simpson 1990). Weak weak Kinig’s lemma is not
equivalent over RCAq to any subscheme of the X9-separation scheme.

A virtue that it would be reasonable to expect of any account of set exis-
tence principles is the ability to incorporate the discovery of new subsystems
of second order arithmetic which turn out to be equivalent to theorems of
ordinary mathematics. Banking on SEC or its extensions amounts to a
bet that all such new systems will be comprehension schemes or separation
schemes. The discovery of WWKL and the role it plays in the reverse math-
ematics of measure theory shows that such optimism is unfounded even for
the mathematically natural systems which are already known. In the next
section I will advance an account of set existence principles which does not
suffer from this weakness.

5 Closure conditions

In a sense the term “set existence principles” is an unfortunate one, since
it implies that the relevant principles simply assert the existence of some
sets, independently of the other axioms of the theory. A better term, which
more accurately captures the nature of these axioms, is “closure conditions”.
These are not bare or unconditional statements of set existence, but con-
ditional principles. In general they hold that given the existence of a set

M This follows, for example, from the conservativity theorem of Simpson, Tanaka, and
Yamazaki [2002] mentioned in footnote 7.
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X € P(N) with certain properties, there exists another set Y € P(N) stand-
ing in some relation to X. Weak Konig’s lemma, for example, asserts that
P(N) is closed under the existence of paths through infinite subtrees of 2<.
This is a conditional set existence principle since it requires that there be
such trees in the first place. In the absence of other suitable existence ax-
ioms, weak Konig’s lemma alone would not allow us to prove the existence
of any sets at all, and is thus a set existence principle only relative to other
axioms such as recursive comprehension.

On the other hand, comprehension schemes appear at first blush to be
set existence principles tout court. Nevertheless, they too are better un-
derstood as closure conditions, because the comprehension schemes used in
reverse mathematics all admit parameters. Comparing the standard formu-
lation of recursive comprehension (in which parameters are allowed) with
the parameter-free version makes this clear. The parameter-free recursive
comprehension scheme asserts the existence of those sets definable in a A(l)
way, without reference to any other sets. But recursive comprehension with
parameters instead asserts that P(N) is closed under relative recursiveness:
if X C N exists, so does every Y <t X. While comprehension schemes do
have a different flavour to other closure conditions, they can often be char-
acterised in equivalent ways which more closely hew to the model described
above for weak Konig’s lemma. Arithmetical comprehension, for example,
is equivalent over RCAy to Konig’s lemma, the statement that every finitely
branching infinite subtree of N<N has an infinite path through it. I1}-CAq
is equivalent over RCAq to the statement that for every tree T' C N <Nif T
has a path then it has a leftmost path.

With these points in mind, I propose that the best way to understand
the concept of a set existence principle in reverse mathematics is by means
of the concept of a closure condition on the powerset of the natural numbers.
Reformulating the standard view of reverse mathematics in these terms, we
come to the view that the significance of a provable equivalence between
a theorem of ordinary mathematics 7 and a subsystem S of second order
arithmetic lies in telling us what closure conditions P(N) must satisfy in
order for 7 to be true. This is a bit of a mouthful, so we shall adopt the
following slogan as an abbreviation for the view: reversals track closure
conditions.

Views of this sort have been stated elsewhere, most notably by Feferman
[1992, p. 451] who identifies set existence principles with closure conditions
in his discussion of the mathematical existence principles justified by empir-
ical science. Indeed, already in Feferman [1964, p. 8] we find that work in
the spirit of Weyl’s predicative analysis “isolates various closure conditions
on a collection of real numbers which are necessary to obtain [results such
as the Bolzano—Weierstra$ and Heine—Borel theorems], in this case closure
under arithmetical definability.” Similar positions have also been taken in
the reverse mathematics literature, for example by Dorais, Dzhafarov, Hirst,
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Mileti, and Shafer [2016, p. 2], who write that each subsystem studied in
reverse mathematics “corresponds to a natural closure point under logical,
and more specifically, computability-theoretic, operations”, and by Chong,
Slaman, and Yang [2014, p. 864], who write that “Ultimately, we are at-
tempting to understand the relationships between closure properties of 287,
Shore [2010] also states that the Big Five correspond to recursion-theoretic
closure conditions: this is clearly something in the air. However, none of
these authors make precise what they mean by a closure condition, nor draw
out the consequences of this view, although Chong, Slaman, and Yang [2014]
consider it to have consequences for the practice of reverse mathematics, for
instance in showing that w-models have a particular importance.

In order to clarify the content of the view that reversals track closure
conditions, let us distinguish two things: a closure condition in itself, and
the different axiomatizations of that closure condition. Closure conditions
are extensional: they are conditions on the powerset which assert that it is
closed in some way, for example under arithmetical definability. Axiomati-
sations of closure conditions are intensional: one and the same closure con-
dition will admit of infinitely many different axiomatizations. For example,
the Turing jump operator gives rise to a closure condition, of which some
of the better-known axiomatizations are (modulo the base theory RCAg):
the arithmetical comprehension scheme; Konig’s lemma; and the Bolzano—
Weierstrafy theorem.

The upshot of this distinction is that by proving reversals we show that
different theorems of ordinary mathematics correspond to the same closure
conditions. The significance of reversals thus lies, at least to a substantial
extent, in placing these theorems in a hierarchy of well-understood closure
conditions of known strength. Note also that there is a duality here: an
equivalence between a theorem 7 and a system S tells us something about
7, namely its truth conditions in terms of what closure condition must hold
for it to be true, but it also tells us something about the closure condition
itself, namely how much of ordinary mathematics is true in P(N) when that
closure condition holds.

This account incorporates a substantial relativism to the base theory, in
at least two distinct ways. The first is that, as noted above, some closure
conditions such as weak Konig’s lemma are set existence principles only in
a conditional sense, and using them to prove the existence of sets relies on
them being used in conjunction with other axioms. The second is that the
equivalences which I take to show that different statements express the same
closure condition must be proved in some base theory. Typically, this will
be the usual base theory for reverse mathematics, RCAg, but in some cases
a stronger base theory is required in order to prove that two statements are
equivalent and thus express the same closure conditions.

The view that reversals track closure conditions has some marked advan-
tages over the SEC account and its variants such as SECS. Most notably, it
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can accommodate all of the counterexamples discussed so far. Weak Konig’s
lemma is a closure condition, and thus we improve on the SEC account; but
so is weak weak Konig’s lemma, and thus the new account also succeeds
where the SECS account fails. Other principles which have been studied
in reverse mathematics—arithmetical transfinite recursion, choice schemes,
and many others—can all be understood as expressing closure conditions on
P(N). Moreover, this account will also accommodate any similar principle
discovered to be equivalent to a theorem of ordinary mathematics. In order
to determine whether or not the view goes beyond this apparent improve-
ment over the SEC and SECS accounts, and provides a satisfactory account
of the significance of reversals in general, we return to the three conditions
that I argued in §3 any account of set existence principles should satisfy:
nontriviality (3), comprehensiveness (3), and unity (3).

By analysing the notion of a set existence principle in terms of closure
conditions on the powerset of the natural numbers, the account clearly offers
a unified picture of what set existence principles are. However, the notion
of a closure condition is a very general one. At first glance, the view seems
committed to the idea that every II3 sentence expresses a closure condi-
tion. By way of contrast, the specificity of the concept of a comprehension
scheme means that the SEC account strongly satisfies the unity condition.
But this very feature undermines its suitability as an analysis of the concept
of a set existence principle, since it fails to be sufficiently comprehensive, as
the existence of striking counterexamples such as weak Konig’s lemma, illus-
trates. We therefore must conclude that although the view that reversals
track closure conditions satisfies the unity condition, it only satisfies it in a
relatively weak sense. As such, it is reasonable to wonder to what degree
the view can offer a compelling explanation of the significance of reversals,
since if it is easy for an La-sentence to be considered as expressing a closure
condition, then it is unclear what light this can shed on the importance of
particular reversals. There is, however, a clear sense in which all closure
conditions are the same kind of thing: if weak Konig’s lemma and Ram-
sey’s theorem for pairs are not in exactly the same class of principles, they
certainly bear a family resemblance to one another. With this in mind I
contend that weakly satisfying the unity condition is sufficient to make the
view that reversals track closure conditions a viable account, and moreover
that weakly satisfying this condition is all one can expect of an account
of set existence principles that accommodates not only WKL and WWKL,
but also the constellation of combinatorial and model-theoretic statements
in the Reverse Mathematics Zoo.

The generality of the view also undermines, to some extent, its ability to
satisfy the nontriviality condition (3). Arithmetical statements cannot be
considered as expressing closure conditions, and thus according to the ac-
count they do not express set existence principles. Neither do T} statements,
such as those expressing that a given recursive ordinal « is wellordered.
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Nevertheless, it is hard to escape from the conclusion that at least every
H% statement should be considered a closure condition. After all, it is the
very form of these statements—which assert that for every set X C N of a
certain sort, there exists a set Y C N of a different sort—that brought us to
consider the view that reversals track closure conditions in the first place.

This point holds more generally: thus far we have only considered clo-
sure conditions with I} formulations, but not even all of the Big Five have
13 definitions. In particular, I1}-CAy is not equivalent over ATRy to any
I1} statement, although it is straightforwardly expressed as a Hil,, sentence.
There are even theorems that exceed the strength of IT}-comprehension, such
as “Every countably based MF space which is regular is homeomorphic to a
complete separable metric space”, which is equivalent to IT3-comprehension
[Mummert and Simpson, 2005]. Such theorems are not expressible as IT3
statements, so we must consider yet more complex sentences as also ex-
pressing closure conditions if we are to bring them into the account.

When we restrict our attention to the closure conditions expressed by
1} sentences, the conditions involved are arithmetical, and thus indicate
that P(N) is closed under the existence of sets which are definable with-
out quantification over the totality of sets of natural numbers. In other
words, H% closure conditions are predicative. On an intuitive level, we can
understand these predicative closure conditions as local conditions, in the
following sense. Suppose we have a class of sets C C P(N) and a closure
condition which states that for every X such that ¢(X), there exists a Y
such that ¢(X,Y), where ¢ and ¢ are arithmetical. If there is such an
X € C such that there is no corresponding Y € C, then C does not satisfy
the instance of the closure condition for X, and must be expanded to a class
C' O C such that Y € C’ for some Y such that ¢(X,Y). Satisfying the
instance of the closure condition for X thus depends only on the existence
of Y, and the arithmetical properties of X and Y. For impredicative set
existence principles such as II} or I3 comprehension, the situation is more
complex, since if a class of sets C fails to satisfy such a principle, then the
new sets that must be added to C in order to satisfy it depend not just on
the single set X, but also on the entirety of elements of the expanded class
C’ O C. Impredicative closure conditions are thus global conditions rather
than local ones. The more general, impredicative notion of closure at work
here is thus distinct from, and stronger than, that which applies in the case
where the conditions are arithmetical. Nevertheless, it is still recognisably a
notion of closure: an impredicative closure condition requires that for every
set X there exists a Y bearing some relation to X, although that relation
may be given in terms of not just arithmetical properties of X and Y, but
properties of all sets of natural numbers.

Taking these considerations to their natural conclusion, it seems that we
should grant that all IT} sentences, for n > 2, express closure conditions (for
brevity’s sake we shall sometimes refer to such sentences as IIl-, sentences
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in the remainder of this article). Sentences of lower complexity (for exam-
ple, arithmetical sentences) can be transformed into I} sentences by the
addition of dummy quantifiers. To work around this difficulty, we impose
the following constraint on the ITl., sentences which we take to express
closure conditions. For all n > 1, we say that a sentence ¢ is essentially
IT! (respectively, essentially X.1) if, over an appropriate base theory B, it is
equivalent to a sentence that is IT} (respectively, ¥1), and not equivalent to
any Y1 sentence (respectively, II1), or to any sentence of lower complexity.
The base theory B should not prove ¢, but otherwise it should be as strong
as possible.'? These requirements are intended to ensure that if a sentence
o does not express a closure condition, then a sufficiently strong base theory
is available to prove this fact. For example, consider the following sentence
P “WKL A 0 exists”. 1 is II3, but not essentially I13. While RCA, does
not prove ), neither does WKLy, since weak Konig’s lemma does not imply
the existence of the Turing jump. However, since WKLy proves the first
conjunct, it proves that 1 is equivalent to the 1 sentence “0’ exists”. 1
is thus not essentially II3, and does not express a closure condition. This
seems like the correct outcome, since 1 only asserts that 0 exists, rather
than making the more general (and essentially II3) claim that for all X, X’
exists. With the notion of essentially IT} and X} sentences in hand, we can
give a more precise account of which sentences express closure conditions,
namely all and only the essentially H£>2 sentences.

Dean and Walsh [2017, pp. 29-30] express the worry that there might
be no broader notion of set existence principle that includes both compre-
hension schemes and principles like weak Konig’s lemma and arithmetical
transfinite recursion, beyond that of accepting all I} sentences as expressing
set existence principles. As argued in §4, there is a broader notion (the SECS
view) that includes weak Konig’s lemma and arithmetical transfinite recur-
sion, but this broader notion remains vulnerable to mathematically natural
counterexamples like WWKL. In endorsing the view that all and only the
essentially H}l>2 sentences express closure conditions, I am biting this bullet
and broadly concurring with Dean and Walsh that there is no viable broader
notion of set existence principle beyond that encompassing all essentially I13
sentences (and worse, all essentially IT} sentences as well, for n > 3). Since
the essentialness restriction rules out all sentences in the class X1 UTIi, as
well as many others, the situation is not disastrous: measuring set existence
is not “just the same as sorting out the very fine-grained equivalence classes
of mutual derivability” [Dean and Walsh, 2017, p. 30], although it is not so
far away from this either.

The restriction to essentially H711>2 sentences also rules out wellordering

2The term “essentially IT, (X4) formula” is used in the literature on subsystems of sec-
ond order arithmetic to denote a different, formally specified formula class (e.g. Simpson
[2009, definition VIIL6.1, p. 348]). In this paper, however, the term “essentially II} (Z5)
sentence” will only be used in the sense of the definition just given.
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statements such as WO(w®), which seems like the correct outcome, but
other cases are less clear-cut. According to Simpson [2009, remark I1.3.11,
p. 71-2], X% induction is a set existence principle, because it is equivalent
to bounded Y¥-comprehension (i.e. comprehension for finite ¥0-definable
sets). However, since ¥.0-induction can (for any n € w) be axiomatized by
a I1} sentence, it does not express a closure condition, and hence according
to the present account it is not a set existence principle. Moreover, we can
also run Simpson’s argument in reverse: since bounded Y.!-comprehension
is equivalent to Z%—induction, it does not (contrary to appearances) express
a set existence principle after all. As induction axioms have a very different
character to the closure conditions we have been considering in the rest of
this paper, it seems reasonable to consider them as distinct kinds of axiom.
Simpson appears to classify induction axioms as set existence principles
primarily to further bolster his claim that reverse mathematics shows us
what set existence principles are necessary to proving theorems of ordinary
mathematics. In light of the necessity of axioms such as WO(w®) to proving
results like Hilbert’s basis theorem, it does not seem overly problematic to
take the line that reverse mathematics shows that not only set existence
principles, but also other kinds of axiom, are required in order to prove
theorems of ordinary mathematics. Amongst these we can include both
wellordering statements and induction axioms.!'3

A different kind of difficulty is posed by parameter-free comprehension
schemes. These assert that a certain class of definable sets exist; for example,
the parameter-free X{-comprehension scheme asserts that all sets exist that
are definable by a X{ formula without free set variables. Because of the exis-
tence of universal 2(1) sets, the parameter-free E(f—comprehension scheme can
(in the presence of recursive comprehension, with parameters) be axioma-
tized by a single ¥ formula. More generally, parameter-free comprehension
schemes are axiomatized by essentially 2711>1 sentences. They thus appear
to be set existence principles which are not closure conditions, since they
do not assert that (for example) P(N) is closed under the existence of %¢
definable sets, but merely that all sets definable by ¢ formulas without set
parameters exist.

This presents a challenge to the view defended in this section: if not all
set existence principles are closure conditions, then the claim that I have
provided an analysis of the notion of a set existence principle in terms of
closure conditions is in jeopardy. The obvious response to this worry is
that parameter-free comprehension schemes are not mathematically natural:

13 One lacuna is induction schemes where the formula class for which induction is permit-
ted is not arithmetical, such as Xi-induction. These appear to be equivalent to essentially
II} ., sentences, and thus express closure conditions. This is an unfortunate asymmetry
with the arithmetical induction scheme and its subschemes such as X9-induction. This
asymmetry can be overcome by requiring that all base theories include full induction, or
by only considering w-models as Shore [2010] does, but these approaches incur other costs.
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they are not equivalent to ordinary mathematical theorems. This is clearly
a defeasible claim—a core mathematical theorem equivalent to parameter-
free X.{-comprehension could be found tomorrow, after all—and moreover,
although parameter-free comprehension schemes are not equivalent to or-
dinary mathematical theorems as studied in reverse mathematics, they are
often equivalent to particular instances of those theorems. For instance,
the parameter-free $.0-comprehension scheme is equivalent to the restriction
of the Bolzano—Weierstraf3 theorem to a particular computable, bounded
sequence of real numbers.

This line of argument should be resisted. While in a narrow, technical
sense any derivable sentence is a theorem, in ordinary mathematical prac-
tice we do not grant this appellation so lightly. We have strong antecedent
reasons to hold that there is a difference in degree, if not in kind, between
theorems on the one hand, and mere facts on the other. The Bolzano—
Weierstraf theorem is more informative, more general, more deep, and more
useful than its instances, considered individually or even collectively: unlike
them, it is deservedly called a theorem. I do not intend to precisely ar-
ticulate the distinction between theorems and mere mathematical facts—I
simply note that it is a distinction in mathematical practice that, absent
compelling evidence to the contrary, we should treat as a substantial con-
ceptual distinction with attendant explanatory power. On the basis of this
distinction, E?—comprehension with parameters is mathematically natural,
while Y{-comprehension without parameters is not. The restriction in the
comprehensiveness constraint (3) to mathematically natural principles re-
flects the aim of the present paper, namely to determine what kinds of
theories can stand as explications of the concept of a set existence principle
as it appears in reverse mathematics, rather than in mathematics or logic
in general. With this in mind, the fact that parameter-free comprehen-
sion schemes are not equivalent to core mathematical theorems means that
they should not be considered to be counterexamples to the analysis of set
existence principles as closure conditions on P(N).

By striking a balance closer to triviality than noncomprehensiveness, the
view that reversals track closure conditions accommodates the most central
part of reverse mathematics, namely the study of mathematically natural
11} theorems. Although such a general account does not, by itself, offer sub-
stantial local explanations of the significance of particular reversals, it does
at least offer a framework within which more fine-grained theorising can be
done. The explanatory power offered by SEC can be partially recovered
by acknowledging that some closure conditions are comprehension schemes,
and that comprehension schemes are a class of principles with distinctive
qualities, such that their necessary use in the proof of an ordinary mathe-
matical theorem will allow distinctive kinds of explanation. Other classes
of principles, such as separation schemes, may also allow for explanations of
the significance of reversals to any system in that class.
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On this version of the standard view, all that can be said in general
about the significance of the equivalences to set existence principles proved
in reverse mathematics is that they show that crucial theorems in diverse
areas of ordinary mathematics require that P(N) satisfies particular closure
conditions. These closure conditions can be captured by natural axioms
with an arguably logical character. An individual reversal demonstrates the
closure condition required to support a given part of ordinary mathematics,
and in some sense picks out an intrinsic feature of a theorem, namely the
resources required to prove it, whether that be compactness or transfinite
recursion. This feature is a proof-invariant property: every proof of the
theorem in question must at some point make use of this property, although
it may appear in different guises.
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