On Generalization of Definitional Equivalence to Languages with Non-Disjoint Signatures

Koen Lefever  Gergely Székely

February 23, 2018

Abstract

For simplicity, most of the literature introduces the concept of definitional equivalence only to languages with disjoint signatures. In a recent paper, Barrett and Halvorson introduce a straightforward generalization to languages with non-disjoint signatures and they show that their generalization is not equivalent to intertranslatability in general. In this paper, we show that their generalization is not transitive and hence it is not an equivalence relation. Then we introduce the Andréka and Németi generalization as one of the many equivalent formulations for languages with disjoint signatures. We show that the Andréka–Németi generalization is the smallest equivalence relation containing the Barrett–Halvorson generalization and it is equivalent to intertranslatability even for languages with non-disjoint signatures. Finally, we investigate which definitions for definitional equivalences remain equivalent when we generalize them for theories with non-disjoint signatures.

Keywords: First-Order Logic · Definability Theory · Definitional Equivalence · Logical Translation · Logical Interpretation

1 Introduction

Definitional equivalence has been studied and used by both mathematicians and philosophers of science as a possible criterion to establish the equivalence between different theories. This concept was first introduced by Montague in (Montague 1956), but there are already some traces of the idea in (Tarski et al. 1936). Definitional equivalence has also been called logical synonymity or synonymy, e.g., in (de Bouvère 1965), (Friedman and Visser 2014) and (Visser 2015).
In philosophy of science, it was introduced by Glymour in (Glymour 1970, Glymour 1977 and Glymour 1980). Corcoran discusses in Corcoran 1980 the history of definitional equivalence. In (Andráska et al. 2002 Section 6.3) and (Madarász 2002 Section 4.3), definitional equivalence is generalized to many-sorted definability, where even new entities can be defined and not just new relations between existing entities. (Barrett and Halvorson 2016a), on which the present paper is partly a commentary, and (Barrett and Halvorson 2016b) contain more references to examples on the use of definitional equivalence in the context of philosophy of science.

We have also recently started in (Lefever and Székely 2018) to use definitional equivalence to study the exact differences and similarities between theories which are not equivalent, in that case classical and relativistic kinematics. In that paper, we showed that there exists a translation of relativistic kinematics into classical kinematics, but not the other way round. We also showed that special relativity extended with a “primitive ether” is definitionally equivalent to classical kinematics. Those theories are expressed in the same language, and hence have non-disjoint signatures.

Barrett and Halvorson generalize in (Barrett and Halvorson 2016a, Definition 2) definitional equivalence from (Hodges 1993, pp. 60-61) for languages having non-disjoint vocabularies in a straightforward way. Then they show that their generalization, which we call here definitional mergeability to avoid ambiguity, is not equivalent to intertranslatability in general but only for theories with disjoint signatures. In this paper, we show that definitional mergeability is not an equivalence relation because it is not transitive. Then we recall Andráska and Németi’s Definition 4.2 from (Andráska and Németi 2014) which is known to be equivalent to definitional mergeability for languages with disjoint signatures. Then we show that the Andráska–Németi definitional equivalence is the smallest equivalence relation containing definitional mergeability and that it is equivalent to intertranslatability even for theories with languages with non-disjoint signatures. Actually, two theories are definitional equivalent iff there is a theory that is definitionally mergeable to both of them. Moreover, one of these definitional mergers can be a renaming.

Theorem 4.2 of (Andráska and Németi 2014) claims that (i) definitional equivalence, (ii) definitional mergeability, (iii) intertranslatability and (iv) model mergeability (see Definition 13 below) are equivalent in case of disjoint signatures. Here, we show that the equivalence of (i) and (iii) and that of (ii) and (iv) hold for arbitrary languages, see Theorems 8 and 7. However, since (i) and (ii) are not equivalent by Theorems 1 and 3, no other equivalence of extends to arbit-

For a variant of this result in which we explicitly made the signatures disjoint, see (Lefever 2017).
trary languages. Finally, we introduce a modification of (iv) that is equivalent to (i) and (iii) for arbitrary languages, see Theorem 9.

2 Framework and definitions

Definition 1. A signature $\Sigma$ is a set of predicate symbols (relation symbols), function symbols, and constant symbols.

Definition 2. A first-order language $L$ is a set containing a signature, as well as the terms and formulas which can be constructed from that signature using first-order logic.

Remark 1. For every theory $T$ which might contain constants and functions, there is another theory $T'$ which is formulated in a language containing only relation symbols and connected to $T$ by all the relations investigated in this paper as candidates for definitional equivalence, see (Barrett and Halvorson 2016a, Proposition 2 and Theorem 1). Therefore, here we only consider languages containing only relation symbols.

Definition 3. A sentence is a formula without free variables.

Definition 4. A theory $T$ is a set of sentences expressed in language $L$.

Convention 1. We will use the notations $\Sigma_x$, $\Sigma'$, etc. for the signatures, and $L_x$, $L'$, etc. for the languages of respective theories $T_x$, $T'$, etc.

Definition 5. A model $\mathfrak{M} = \langle M, (R^M : R \in \Sigma) \rangle$ of signature $\Sigma$ consists of a non-empty underlying set $M$, and for all relation symbols $R$ of $\Sigma$, a relation $R^M \subseteq M^n$ with the corresponding arity.

Definition 6. Let $\mathfrak{M}$ be a model, let $M$ be the non-empty underlying set of $\mathfrak{M}$, let $\varphi$ be a formula, let $V$ be the set of variables and let $e : V \rightarrow M$ be an evaluation of variables, then we inductively define that $e$ satisfies $\varphi$ in $\mathfrak{M}$, in symbols

$$\mathfrak{M} \models \varphi[e],$$

as:

1. For predicate $R$, $\mathfrak{M} \models R(x, y, \ldots, z)[e]$ holds if

$$\langle e(x), e(y), \ldots, e(z) \rangle \in R^M.$$
2. $\mathcal{M} \models (x = y)[e]$ holds if $e(x) = e(y)$ holds,

3. $\mathcal{M} \models \neg \varphi[e]$ holds if $\mathcal{M} \models \varphi[e]$ does not hold,

4. $\mathcal{M} \models (\psi \land \theta)[e]$ holds if both $\mathcal{M} \models \psi[e]$ and $\mathcal{M} \models \theta[e]$ hold,

5. $\mathcal{M} \models (\exists y \psi)[e]$ holds if there is an element $b \in M$, such that $\mathcal{M} \models \psi[e']$ if $e'(y) = b$ and $e'(x) = e(x)$ if $x \neq y$.

Let $\bar{x}$ be the list of all free variables of $\varphi$ and let $\bar{a}$ be a list of elements of $M$ with the same number of elements as $\bar{x}$. Then $\mathcal{M} \models \varphi[\bar{a}]$ iff $\mathcal{M}$ satisfies $\varphi$ for all (or equivalently some) evaluation $e$ of variables for which $e(\bar{x}) = \bar{a}$, i.e., variables in $\bar{x}$ are mapped to elements of $M$ in $\bar{a}$ in order. In case $\varphi$ is a sentence, its truth does not depend on evaluation of variables. So that $\varphi$ is true in $\mathcal{M}$ is denoted by $\mathcal{M} \models \varphi$. For theory $T$, $\mathcal{M} \models T$ abbreviates that $\mathcal{M} \models \varphi$ for all $\varphi \in T$.

**Remark 2.** We will use $\varphi \lor \psi$ as an abbreviation for $\neg(\neg \varphi \land \neg \psi)$, $\varphi \rightarrow \psi$ for $\neg \varphi \lor \psi$, $\varphi \leftrightarrow \psi$ for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$ and $\forall x(\varphi)$ for $\neg(\exists x(\neg \varphi))$.

**Definition 7.** $\text{Mod}(T)$ is the class of models of theory $T$,

$$\text{Mod}(T) \overset{\text{def}}{=} \{ \mathcal{M} : \mathcal{M} \models T \}.$$

**Definition 8.** Two theories $T_1$ and $T_2$ are logically equivalent, in symbols

$$T_1 \equiv T_2,$$

if they have the same class of models, i.e., $\text{Mod}(T_1) = \text{Mod}(T_2)$.

**Definition 9.** Let $L \subset L^+$ be two languages. An explicit definition of an $n$-ary relation symbol $p \in L^+ \setminus L$ in terms of $L$ is a sentence of the form

$$\forall x_1 \ldots \forall x_n[p(x_1, \ldots, x_n) \leftrightarrow \varphi(x_1, \ldots, x_n)],$$

where $\varphi$ is a formula of $L$.

**Definition 10.** A definitional extension\footnote{We follow the definition from Andrêka and Németi [2014] Section 4.1, p.36}, [Hodges 1993 p.60] and [Hodges 1997 p.53]. In [Barrett and Halvorson 2016] Section 3.1, the logical equivalence relation is not part of the definition.

$$T \rightarrow T^+$$

denote that $T^+$ is a definitional extension of $T$.
We will use $\Delta_{xy}$ to denote the set of explicit definitions when the signature $\Sigma_y$ of theory $T_y$ is defined in terms of the signature $\Sigma_x$ of theory $T_x$.

**Definition 11.** Two theories $T, T'$ are definitionally equivalent, in symbols

$$T \equiv T',$$

if there is a chain $T_1, \ldots, T_n$ of theories such that $T = T_1$, $T' = T_n$, and for all $1 \leq i < n$ either $T_i \rightarrow T_{i+1}$ or $T_i \leftarrow T_{i+1}$.

**Remark 3.** If a theory is consistent, then all theories which are definitionally equivalent to that theory are also consistent since definitions cannot make consistent theories inconsistent. Similarly, if a theory is inconsistent, then all theories which are definitionally equivalent to that theory are also inconsistent.

**Definition 12.** Let $T_1$ and $T_2$ be theories of languages $L_1$ and $L_2$, respectively. $T_1$ and $T_2$ are definitionally mergeable, in symbols

$$T_1 \overset{\wedge}{\rightarrow} T_2,$$

if there is a theory $T^+$ which is a common definitional extension of $T_1$ and $T_2$, i.e., $T_1 \overset{\wedge}{\rightarrow} T^+ \overset{\wedge}{\leftarrow} T_2$.

**Remark 4.** From Definition 11 and Definition 12, it is immediately clear that being definitionally mergeable is a special case of being definitionally equivalent.

Lemma 1 below establishes that our Definition 12 of definitional mergeability is equivalent to the definition for definitional equivalence in (Barrett and Halvorson 2016, Definition 2).

**Lemma 1.** Let $T_1$ and $T_2$ be two arbitrary theories. Then $T_1 \overset{\wedge}{\rightarrow} T_2$ iff there are sets of explicit definitions $\Delta_{12}$ and $\Delta_{21}$ such that $T_1 \cup \Delta_{12} \equiv T_2 \cup \Delta_{21}$.

**Proof.** Let $T_1 \overset{\wedge}{\rightarrow} T_2$, then there exists a $T^+$ such that $T_1 \overset{\wedge}{\rightarrow} T^+ \overset{\wedge}{\leftarrow} T_2$. By the definition of definitional extension, there exist sets of explicit definitions $\Delta_{12}$ and $\Delta_{21}$ such that $T_1 \cup \Delta_{12} \equiv T^+ \overset{\wedge}{\leftarrow} T_2 \cup \Delta_{21}$, and hence by transitivity of logical equivalence $T_1 \cup \Delta_{12} \equiv T_2 \cup \Delta_{21}$.

To prove the other direction: let $T_1$ and $T_2$ be theories such that $T_1 \cup \Delta_{12} \equiv T_2 \cup \Delta_{21}$ for some sets $\Delta_{12}$ and $\Delta_{21}$ of explicit definitions. Let $T^+ = T_1 \cup T_2 \cup \Delta_{12} \cup \Delta_{21}$. Hence $T_1 \cup \Delta_{12} \equiv T^+ \overset{\wedge}{\leftarrow} T_2 \cup \Delta_{21}$ and $T_1 \overset{\wedge}{\rightarrow} T^+ \leftarrow T_2$, and therefore $T_1 \overset{\wedge}{\rightarrow} T_2$. $\square$

**Convention 2.** If theories $T_1$ and $T_2$ are definitionally mergeable and their signatures are disjoint, i.e., $\Sigma_1 \cap \Sigma_2 = \emptyset$, we write

$$T_1 \overset{\emptyset}{\rightarrow} T_2.$$
Definition 13. Theories $T_1$ and $T_2$ are model mergeable\footnote{We use the definition from \cite{Andr\'eka and Nemeti2014} p. 40, item iv), which is a variant of the definition in \cite{Henkin et al.1971} p. 56, Remark 0.1.6.} in symbols
\[
\text{Mod}(T_1) \rightarrow^\beta \text{Mod}(T_2),
\]
iff there is a bijection $\beta$ between $\text{Mod}(T_1)$ and $\text{Mod}(T_2)$ that is defined along two sets $\Delta_{12}$ and $\Delta_{21}$ of explicit definitions such that if $\mathcal{M} \in \text{Mod}(T_1)$, then
- the underlying sets of $\mathcal{M}$ and $\beta(\mathcal{M})$ are the same,
- the relations in $\beta(\mathcal{M})$ are the ones defined in $\mathcal{M}$ according to $\Delta_{12}$ and vice versa, the relations in $\mathcal{M}$ are the ones defined in $\beta(\mathcal{M})$ according to $\Delta_{21}$.

Definition 14. Let $T_1$ and $T_2$ be theories. A translation\footnote{In \cite{Andr\'eka and Nemeti2014}, \cite{Lefever2017} and \cite{Lefever and Szekely2018}, this is called an interpretation, but we again follow the terminology from \cite{Barrett and Halvorson2016}a} $tr$ of theory $T_1$ to theory $T_2$ is a map from $L_1$ to $L_2$ which
- maps every $n$-ary relation symbol $p \in L_1$ to a corresponding formula $\varphi_p \in L_2$ of $n$ with free variables, i.e., $tr(p(x_1, \ldots, x_n))$ is $\varphi_p(x_1, \ldots, x_n)$.
- preserves the equality, logical connectives, and quantifiers, i.e.,
  - $tr(x_1 = x_2)$ is $x_1 = x_2$,
  - $tr(\neg \varphi)$ is $\neg tr(\varphi)$,
  - $tr(\varphi \land \psi)$ is $tr(\varphi) \land tr(\psi)$, and
  - $tr(\exists x \varphi)$ is $\exists x (tr(\varphi))$.
- maps consequences of $T_1$ into consequences of $T_2$, i.e., $T_1 \models \varphi$ implies $T_2 \models tr(\varphi)$ for all sentence $\varphi \in L_1$.

Remark 5. From \cite{Andre\'eka et al.2005}, we know that $T$ being translatable into $T'$ and $T'$ being translatable into $T$ is not a sufficient condition for $T \equiv T'$.

Definition 15. Theories $T_1$ and $T_2$ are intertranslatable\footnote{In \cite{Henkin et al.1985} p. 167, Definition 4.3.42), definitional equivalence is defined as inter-translatability.} in symbols
\[
T_1 \iff T_2,
\]
if there are translations $tr_{12}$ of $T_1$ to $T_2$ and $tr_{21}$ of $T_2$ to $T_1$ such that
- $T_1 \models \forall x_1 \ldots \forall x_n [\varphi(x_1, \ldots, x_n) \leftrightarrow tr_{21}(tr_{12}(\varphi(x_1, \ldots, x_n)))]$
- $T_2 \models \forall x_1 \ldots \forall x_n [\psi(x_1, \ldots, x_n) \leftrightarrow tr_{21}(tr_{12}(\psi(x_1, \ldots, x_n)))].$
for every formulas \( \varphi(x_1, \ldots, x_n) \) and formula \( \psi(x_1, \ldots, x_n) \) of languages \( L_1 \) and \( L_2 \), respectively.

For a direct proof that intertranslatability is an equivalence relation, see e.g., (Lefever 2017 Theorem 1, p. 7). This fact also follows from Theorems 3 and 8 below.

**Definition 16.** The relation defined by formula \( \varphi \) in \( \mathfrak{M} \) is\(^{12}\)
\[ \|\varphi\|^{\mathfrak{M}} \overset{\text{def}}{=} \{ \bar{a} \in \mathfrak{M}^n : \mathfrak{M} \models \varphi[\bar{a}] \} . \]

**Definition 17.** For all translations \( tr_{12} : L_1 \rightarrow L_2 \) of theory \( T_1 \) to theory \( T_2 \), let \( tr_{12}^* \) be defined as the map that maps model \( \mathfrak{M} = \langle M, \ldots \rangle \) of \( T_2 \) to
\[ tr_{12}^*(\mathfrak{M}) \overset{\text{def}}{=} \langle M, \langle \|tr_{12}(p_i)\|^{\mathfrak{M}} : p_i \in \Sigma_1 \rangle \rangle , \]
that is all predicates \( p_i \) of \( \Sigma_1 \) interpreted in model \( tr_{12}(\mathfrak{M}) \) as the relation defined by formula \( tr_{12}(p_i) \).

**Lemma 2.** Let \( \mathfrak{M} \) be a model of language \( L_2 \), let \( \varphi \) be a formula of language \( L_1 \), and let \( e : V \rightarrow M \) be an evaluation of variables. If \( tr_{12} : L_1 \rightarrow L_2 \) is translation of \( T_1 \) to \( T_2 \), then
\[ tr_{12}^*(\mathfrak{M}) \models \varphi[e] \iff \mathfrak{M} \models tr_{12}(\varphi)[e] . \]

**Proof.** We are going to prove Lemma 2 by induction on the complexity of \( \varphi \). So let us first assume that \( \varphi \) is a single predicate \( p \) of language \( L_1 \).

Let \( \bar{u} \) be the \( e \)-image of the free variables of \( p \). Then \( tr_{12}^*(\mathfrak{M}) \models p[\bar{e}] \) holds exactly if \( tr_{12}^*(\mathfrak{M}) \models p[\bar{u}] \). By Definition 17 this holds iff
\[ \langle M, \langle \|tr_{12}(p_i)\|^{\mathfrak{M}} : p_i \in \Sigma_1 \rangle \rangle \models p[\bar{u}] . \]

By Definition 16 \( \|tr_{12}(p)\|^{\mathfrak{M}} = \{ \bar{u} \in \mathfrak{M}^n : \mathfrak{M} \models tr_{12}(p)[\bar{u}] \} \). So (1) is equivalent to \( \mathfrak{M} \models tr_{12}(p)[\bar{u}] \).

If \( \varphi \) is \( x = y \), then we should show that
\[ tr_{12}^*(\mathfrak{M}) \models (x = y)[e] \iff \mathfrak{M} \models tr_{12}(x = y)[e] . \]

Since translations preserve mathematical equality by Definition 14 this is equivalent to
\[ tr_{12}^*(\mathfrak{M}) \models (x = y)[e] \iff \mathfrak{M} \models (x = y)[e] , \]
which holds because the underlying sets of \( tr_{12}^*(\mathfrak{M}) \) and \( \mathfrak{M} \) are the same and both sides of the equivalence are equivalent to \( e(x) = e(y) \) by Definition 6.

Let us now prove the more complex cases by induction on the complexity of formulas.

\(^{12}\|\varphi\|^{\mathfrak{M}} \) is basically the same as the meaning of formula \( \varphi \) in model \( \mathfrak{M} \), see (Andréka et al. 2001, p. 194 Definition 34 and p. 231 Example 8).
• If \( \varphi \) is \( \neg \psi \), then we should show that

\[
tr_{12}^*(\mathcal{M}) \models \neg \psi[e] \iff \mathcal{M} \models tr_{12}(\neg \psi)[e].
\]

Since \( tr_{12} \) is a translation, it preserves (by Definition 14) the connectives, and therefore this is equivalent to

\[
tr_{12}^*(\mathcal{M}) \models \neg \psi[e] \iff \mathcal{M} \models \neg tr_{12}(\psi)[e],
\]

which holds by Definition 6 item 3 since we have

\[
tr_{12}^*(\mathcal{M}) \models \psi[e] \iff \mathcal{M} \models tr_{12}(\psi)[e]
\]

by induction.

• If \( \varphi \) is \( \psi \land \theta \), then we should show that

\[
tr_{12}^*(\mathcal{M}) \models (\psi \land \theta)[e] \iff \mathcal{M} \models tr_{12}(\psi \land \theta)[e].
\]

Since \( tr_{12} \) is a translation, it preserves (by Definition 14) the connectives, and therefore \( tr_{12}(\psi \land \theta) \) is equivalent to \( tr_{12}(\psi) \land tr_{12}(\theta) \), and hence the above is equivalent to

\[
tr_{12}^*(\mathcal{M}) \models (\psi \land \theta)[e] \iff \mathcal{M} \models (tr_{12}(\psi) \land tr_{12}(\theta))[e],
\]

which holds by Definition 6 item 4 because both

\[
tr_{12}^*(\mathcal{M}) \models \psi[e] \iff \mathcal{M} \models tr_{12}(\psi)[e]
\]

and

\[
tr_{12}^*(\mathcal{M}) \models \theta[e] \iff \mathcal{M} \models tr_{12}(\theta)[e]
\]

hold by induction.

• If \( \varphi \) is \( \exists y \psi \), then we should show that

\[
tr_{12}^*(\mathcal{M}) \models (\exists y \psi)[e] \iff \mathcal{M} \models tr_{12}(\exists y \psi)[e]
\]

holds. Since \( tr_{12} \) is a translation, it preserves (by Definition 14) the quantifiers, and hence this is equivalent to

\[
tr_{12}^*(\mathcal{M}) \models (\exists y \psi)[e] \iff \mathcal{M} \models (\exists y (tr_{12}(\psi)))[e].
\]

By Definition 6 item 5, both sides of he equivalence hold exactly if there exists an element \( b \in M \) such that

\[
tr_{12}^*(\mathcal{M}) \models \psi[e'] \iff \mathcal{M} \models tr_{12}(\psi)[e'],
\]

where \( e'(y) = b \) and \( e'(x) = e(x) \) if \( x \neq y \), which holds by induction because the underlying sets of \( tr_{12}^*(\mathcal{M}) \) and \( \mathcal{M} \) are the same. \( \square \)
Corollary 1. If $tr_{12} : L_1 \rightarrow L_2$ is a translation of $T_1$ to $T_2$, then

$$tr^*_1 : Mod(T_2) \rightarrow Mod(T_1),$$

that is, $tr^*_1$ is a map from $Mod(T_2)$ to $Mod(T_1)$.

Proof. Let $M$ be a model of $T_2$ and let $\varphi \in T_1$. We should prove that $tr^*_1 (M) = \varphi$. By Lemma 2 we have that

$$tr^*_1 (M) = \varphi \iff M = tr_{12} (\varphi).$$

Hence $tr_{12} (\varphi)$ is true in every model of $T_2$ as we wanted to prove. □

Remark 6. Note that while $tr_{12}$ is a translation of $T_1$ to $T_2$, $tr^*_1$ translates models the other way round from $Mod(T_2)$ to $Mod(T_1)$. For an example illustrating this for a translation from relativistic kinematics to classical kinematics, see [Lefever 2017, Chapter 7] or [Lefever and Székel 2018, Section 7].

Definition 18. Theories $T_1$ and $T_2$ are model intertranslatable, in symbols

$$Mod(T_1) \iff Mod(T_2),$$

iff there are translations $tr_{12} : L_1 \rightarrow L_2$ of $T_1$ to $T_2$ and $tr_{21} : L_2 \rightarrow L_1$ of $T_2$ to $T_1$, such that $tr^*_1 : Mod(T_2) \rightarrow Mod(T_1)$ and $tr^*_2 : Mod(T_1) \rightarrow Mod(T_2)$ are bijections which are inverses of each other.

Definition 19. Theories $T$ and $T'$ are disjoint renamings of each other, in symbols

$$T \emptyset \sim T',$$

if their signatures $\Sigma$ and $\Sigma'$ are disjoint, i.e., $\Sigma \cap \Sigma' = \emptyset$, and there is a renaming bijection $R^\emptyset_{\Sigma\Sigma'}$ from $\Sigma$ to $\Sigma'$ such that the arity of the relations is preserved and that the formulas in $T'$ are defined by renaming $R^\emptyset_{\Sigma\Sigma'}$ of formulas from $T$.\footnote{While bijection $R^\emptyset_{\Sigma\Sigma'}$ is defined on signatures, it can be naturally extended to the languages using those signatures. We will use the same symbol $R^\emptyset_{\Sigma\Sigma'}$ for that.}

Remark 7. Note that disjoint renaming is symmetric but neither reflexive nor transitive. Also, if $T \emptyset \sim T'$, then $T \not\emptyset \sim T'$, $T \emptyset \looparrowleft T'$, $T \emptyset \looparrowleft T'$, $T \emptyset \overset{\Delta}{=} T'$ and $T \overset{\Delta}{=} T'$.

\section{Properties}

Theorem 1. Definitional mergeability $\overset{\Delta}{=} \emptyset$ is not transitive. Hence it is not an equivalence relation.

The proof is based on [Barrett and Halvorson 2016a, Example 5]. Note that the proof relies on the signatures of theories $T_1$ and $T_2$ being non-disjoint.
**Proof.** Let $p$ and $q$ be unary predicate symbols. Consider the following theories $T_1$, $T_2$ and $T_3$:

\[
\begin{align*}
T_1 &= \{ \exists x(x = x), \forall x[p(x)] \} \\
T_2 &= \{ \exists x(x = x), \forall x[\neg p(x)] \} \\
T_3 &= \{ \exists x(x = x), \forall x[q(x)] \}
\end{align*}
\]

$T_1$ and $T_2$ are not definitionally mergeable, since they do not have a common extension as they contradict each other.  

Let us define $T_1^+$ where $q$ is defined in terms of $T_1$ as $p$ and let us define $T_3^+$ where $p$ is defined in terms of $T_3$ as $q$, i.e.,

\[
\begin{align*}
T_1^+ &= \{ \exists x(x = x), \forall x[p(x)], \forall x[q(x) \leftrightarrow p(x)] \} \\
T_3^+ &= \{ \exists x(x = x), \forall x[q(x)], \forall x[p(x) \leftrightarrow q(x)] \}.
\end{align*}
\]

Then $T_1$ and $T_3$ are definitionally mergeable because $T_1 \vdash T_1^+$, $T_3 \vdash T_3^+$, and $T_1^+ \equiv T_3^+$.

Let us now define $T_2^+$ where $q$ is defined in terms of $T_2$ as $\neg p$ and let us define $T_3^x$ where $p$ is defined in terms of $T_3$ as $\neg q$, i.e.,

\[
\begin{align*}
T_2^+ &= \{ \exists x(x = x), \forall x[\neg p(x)], \forall x[q(x) \leftrightarrow \neg p(x)] \} \\
T_3^x &= \{ \exists x(x = x), \forall x[q(x)], \forall x[p(x) \leftrightarrow \neg q(x)] \}.
\end{align*}
\]

Then $T_2$ and $T_3$ are definitionally mergeable because $T_2 \vdash T_2^+$, $T_3 \vdash T_3^x$, and $T_2^+ \equiv T_3^x$.

Therefore, being definitionally mergeable is not transitive and hence not an equivalence relation as $T_1 \nvdash T_3 \nvdash T_2$ but $T_1$ and $T_2$ are not definitionally mergeable. \hfill \Box

**Theorem 2.** If theories $T_1$, $T_2$ and $T_3$ are formulated in languages having disjoint signatures and $T_1 \nvdash T_2$, $T_2 \nvdash T_3$, then $T_1$ and $T_3$ are also mergeable, i.e.,

\[
T_1 \vdash \emptyset \nvdash T_2 \nvdash T_3 \text{ and } \Sigma_1 \cap \Sigma_3 = \emptyset \implies T_1 \nvdash \emptyset \nvdash T_3.
\]

**Proof.** Let $T_1$, $T_2$ and $T_3$ be theories such that $\Sigma_1 \cap \Sigma_3 = \emptyset$ and $T_1 \nvdash \emptyset T_2 \nvdash \emptyset T_3$.

We have from the definitions of definitional equivalence and definitional extension that there exist sets $\Delta_{12}$, $\Delta_{21}$, $\Delta_{23}$ and $\Delta_{32}$ of explicit definitions, such that

\[
T_1 \cup \Delta_{12} \equiv T_2 \cup \Delta_{21}, \text{ i.e., } Mod(T_1 \cup \Delta_{12}) = Mod(T_2 \cup \Delta_{21}), \quad (2)
\]

\[\begin{equation}
\begin{aligned}
\exists x(\varphi(x)) &\iff \exists x \left( \varphi(x) \land \neg \exists y(\varphi(y) \land x \neq y) \right).
\end{aligned}
\end{equation}\]
and
\[ T_2 \cup \Delta_{23} \equiv T_3 \cup \Delta_{32}, \text{i.e., } Mod(T_2 \cup \Delta_{23}) = Mod(T_3 \cup \Delta_{32}). \] (3)

We want to prove that \( T_1 \cup \Delta_{12} \cup \Delta_{23} \equiv T_3 \cup \Delta_{32} \cup \Delta_{21} \), i.e.,
\[ Mod(T_1 \cup \Delta_{12} \cup \Delta_{23}) = Mod(T_3 \cup \Delta_{32} \cup \Delta_{21}). \]

If one of the theories \( T_1 \), \( T_2 \) or \( T_3 \) is inconsistent, then by Remark 3 all of them are inconsistent. In that case \( T_1 \not\equiv T_3 \) is true because all statements can be proven ex falso in both theories. Let us for the rest of the proof now assume that all of them are consistent.

Let \( \mathcal{M} \in Mod(T_1 \cup \Delta_{12} \cup \Delta_{23}) \). Such \( \mathcal{M} \) exists because \( \Sigma_1 \cap \Sigma_2 = \emptyset \) and hence \( \Delta_{23} \) cannot make consistent theory \( T_1 \cup \Delta_{12} \) inconsistent.

Then \( \mathcal{M} \models T_1 \cup \Delta_{12} \cup \Delta_{23} \). Therefore \( \mathcal{M} \models T_2 \cup \Delta_{21} \) by (2) and also \( \mathcal{M} \models T_3 \cup \Delta_{32} \) because of (3) and the fact that \( \mathcal{M} \models \Delta_{23} \). Hence \( \mathcal{M} \models T_3 \cup \Delta_{32} \cup \Delta_{21} \). Consequently,
\[ Mod(T_1 \cup \Delta_{12} \cup \Delta_{23}) \subseteq Mod(T_3 \cup \Delta_{32} \cup \Delta_{21}). \]

An analogous calculation shows that
\[ Mod(T_1 \cup \Delta_{12} \cup \Delta_{23}) \supseteq Mod(T_3 \cup \Delta_{32} \cup \Delta_{21}). \]
So \( Mod(T_1 \cup \Delta_{12} \cup \Delta_{23}) = Mod(T_3 \cup \Delta_{32} \cup \Delta_{21}) \) and this is what we wanted to prove.

\[ \square \]

**Theorem 3.** Definitional equivalence \( \equiv \) is an equivalence relation.

**Proof.** To show that definitional equivalence is an equivalence relation, we need to show that it is reflexive, symmetric and transitive:

- \( \equiv \) is reflexive because for every theory \( T \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T \) since the set of explicit definitions \( \Delta \) can be the empty set, and hence \( T \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T \).

- \( \equiv \) is symmetric: if \( T \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T' \), then there exists a chain \( T \ldots T' \) of theories connected by \( \exists \), \( \preceq \) and \( \leq \). The reverse chain \( T' \ldots T \) has the same kinds of connections, and hence \( T' \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T \).

- \( \equiv \) is transitive: if \( T_1 \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_2 \) and \( T_2 \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_3 \), then there exists chains \( T_1 \ldots T_2 \) and \( T_2 \ldots T_3 \) of theories connected by \( \exists \), \( \preceq \) and \( \leq \). The concatenated chain \( T_1 \ldots T_2 \ldots T_3 \) has the same kinds of connections, and hence \( T_1 \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_3 \). \[ \square \]

**Lemma 3.** If \( T_1 \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_2 \), then there exists a chain of definitional mergers such that
\[ T_1 \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_a \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_z \not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not\not T_2. \]
Proof. The finite chain of steps given by Definition 11 for definitional equivalence can be extended by adding extra extension steps $\Downarrow$ or $\triangleleft$ wherever needed in the chain because definitional extension is reflexive since the set of explicit definitions $\Delta$ can be the empty set.

Lemma 4. Let $T_a$ and $T_b$ two theories for which $T_a \triangleleft T_b$. Then

- if $T_b \Downarrow T'_b$ and $\Sigma_a \cap \Sigma'_b = \emptyset$, then $T_a \triangleleft T'_b$,

- if $T_a \Downarrow T'_a$, $T_b \Downarrow T'_b$ and $\Sigma'_a \cap \Sigma'_b = \emptyset$, then $T_a \triangleleft T'_b$.

Proof. Since $T_a \triangleleft T_b$, there are by Lemma 1 sets $\Delta_{ab}$ and $\Delta_{ba}$ of explicite definitions such that $T_a \cup \Delta_{ab} \equiv T_b \cup \Delta_{ba}$:

$$\Delta_{ab} = \{ \forall \bar{x} [p(\bar{x}) \leftrightarrow \varphi_p(\bar{x})] : p \in \Sigma_b \text{ and } \varphi_p \in \mathcal{L}_a \},$$

i.e., $\varphi_p$ is the definition of predicate $p$ from $\Sigma_b$ in language $\mathcal{L}_a$.

$$\Delta_{ba} = \{ \forall \bar{x} [q(\bar{x}) \leftrightarrow \varphi_q(\bar{x})] : q \in \Sigma_a \text{ and } \varphi_q \in \mathcal{L}_b \},$$

i.e., $\varphi_q$ is the definition of predicate $q$ from $\Sigma_a$ in language $\mathcal{L}_b$. We can now define $\Delta_{ab'}$ and $\Delta_{b'a}$ in the following way:

$$\Delta_{ab'} \overset{\text{def}}{=} \{ \forall \bar{x} [R^\theta_{\Sigma_b \Sigma_a}(p)(\bar{x}) \leftrightarrow \varphi_p(\bar{x})] : p \in \Sigma_b \text{ and } \varphi_p \in \mathcal{L}_a \},$$

i.e., in $\Delta_{ab'}$ the renaming $R^\theta_{\Sigma_b \Sigma_a}(p)$ of predicate $p$ from $\Sigma_b$ is defined with the same formula $\varphi_p$ as $p$ was defined in $\Delta_{ab}$.

$$\Delta_{b'a} \overset{\text{def}}{=} \{ \forall \bar{x} [q(\bar{x}) \leftrightarrow R^\theta_{\Sigma_a \Sigma_b}(\varphi_q)(\bar{x})] : q \in \Sigma_a \text{ and } \varphi_q \in \mathcal{L}_b \},$$

i.e., in $\Delta_{b'a}$ predicate $q$ from $\Sigma_a$ is defined with the renaming $R^\theta_{\Sigma_a \Sigma_b}(\varphi_q)$ of the formula $\varphi_q$ that was used in $\Delta_{ba}$ to define $q$.

Then $T_a \cup \Delta_{ab'} \equiv T'_b \cup \Delta_{b'a}$, and hence we have proven that $T_a \triangleleft T'_b$.

Similarly, we can define $\Delta_{a'\theta'}$ and $\Delta_{b'\alpha'}$ as:

$$\Delta_{a'\theta'} \overset{\text{def}}{=} \{ \forall \bar{x} [R^\theta_{\Sigma_a \Sigma'_b}(p)(\bar{x}) \leftrightarrow R^\theta_{\Sigma_a \Sigma'_b}(\varphi_p)(\bar{x})] : p \in \Sigma_a \text{ and } \varphi_p \in \mathcal{L}_a \},$$

i.e., in $\Delta_{a'\theta'}$ the renaming $R^\theta_{\Sigma_a \Sigma'_b}(p)$ of predicate $p$ from $\Sigma_b$ is defined with the renaming $R^\theta_{\Sigma_a \Sigma'_b}(\varphi_p)$ of the formula $\varphi_p$ that was used in $\Delta_{ab}$ to define $p$.

$$\Delta_{b'\alpha'} \overset{\text{def}}{=} \{ \forall \bar{x} [R^\theta_{\Sigma_a \Sigma'_b}(q)(\bar{x}) \leftrightarrow R^\theta_{\Sigma_a \Sigma'_b}(\varphi_q)(\bar{x})] : q \in \Sigma_a \text{ and } \varphi_q \in \mathcal{L}_b \},$$

i.e., in $\Delta_{b'\alpha'}$ the renaming $R^\theta_{\Sigma_a \Sigma'_b}(q)$ of predicate $q$ from $\Sigma_a$ is defined with the renaming $R^\theta_{\Sigma_a \Sigma'_b}(\varphi_q)$ of the formula $\varphi_q$ that was used in $\Delta_{ba}$ to define $q$.

Then $T'_a \cup \Delta_{a'\theta'} \equiv T'_b \cup \Delta_{b'\alpha'}$, and hence we have proven that $T_a \triangleleft T'_b$. □
Theorem 4. Theories $T_1$ and $T_2$ are definitionally equivalent iff there is a theory $T'_2$ which is the disjoint renaming of $T_2$ to a signature which is also disjoint from the signature of $T_1$ such that $T'_2$ and $T_1$ are definitionally mergeable, i.e.,

$$T_1 \overset{\Delta}{=} T_2 \iff \exists T' \ [T_1 \overset{0}{\succsim} T'_2 \text{ and } T'_2 \overset{0}{\simeq} T_2].$$

Proof. Let $T_1$ and $T_2$ be definitionally equivalent theories. From Lemma 3 we know that there exists a finite chain of definitonal mergers

$$T_1 \overset{\varnothing}{\succsim} T'_a \overset{\varnothing}{\succsim} \ldots \overset{\varnothing}{\succsim} T'_z \overset{\varnothing}{\succsim} T_2.$$ 

For all $x$ in $\{a, \ldots, z, 2\}$, let $T'_x$ be a renaming of $T_x$ such that $\Sigma_1 \cap \Sigma'_x = \emptyset$ and for all $y$ in $\{a, \ldots, z, 2\}$, if $x \neq y$ then $\Sigma'_x \cap \Sigma'_y = \emptyset$.

By Lemma 4, $T'_a, \ldots, T'_z, T'_2$ is another chain of mergers from $T_1$ to $T_2$

$$T_1 \overset{\varnothing}{\succsim} T'_a \overset{\varnothing}{\succsim} \ldots \overset{\varnothing}{\succsim} T'_z \overset{\varnothing}{\succsim} T_2,$$

where all theories in the chain have signatures which are disjoint from the signatures of all the other theories in the chain, except for $T_1$ and $T_2$ which may have signatures which are non-disjoint.

By Theorem 2 the consecutive mergers from $T_1$ to $T'_2$ can be compressed into one merger. So $T_1 \overset{\varnothing}{\succsim} T'_2 \overset{\varnothing}{\simeq} T_2$ and this is what we wanted to prove.

To show the converse direction, let us assume that $T_1$ and $T_2$ are such theories that there is a disjoint renaming theory $T'_2$ of $T_2$ for which $T_1 \overset{\varnothing}{\succsim} T'_2$. As $T'_2$ is a disjoint renaming of $T_2$, we have by Remark 7 that $T'_2 \overset{\varnothing}{\succsim} T_2$. Therefore, there is a chain $T^+, T^\times$ of theories such that $T_1 \overset{\varnothing}{\succsim} T^+ \overset{\varnothing}{\succsim} T'_2 \overset{\varnothing}{\simeq} T_2$. Hence $T_1 \overset{\Delta}{=} T_2$. \qed

Corollary 2. Two theories are definitionally equivalent iff they can be connected by two definitonal mergers:

$$T_1 \overset{\Delta}{=} T_2 \iff \exists T \ [T_1 \overset{\varnothing}{\succsim} T \overset{\varnothing}{\succsim} T_2].$$

Consequently, the chain $T_1, \ldots, T_n$ in Definition 11 can always be chosen to be at most length four.

Proof. This follows immediately from Theorem 4 and Remark 7. \qed

Theorem 5. Definitional equivalence is the finest equivalence relation containing definitonal mergeability. In fact $\overset{\Delta}{=} \text{ is the transitive closure of relation } \overset{\varnothing}{\succsim}$. 

13
Proof. From Remark 4, we know that $\Delta$ is an extension of $\Re$. To prove that $\Delta$ is the transitive closure of $\Re$, it is enough to show that $T_1 \sim T_2$ holds if there is a chain $T_1', \ldots, T_n$ of theories such that $T_1 = T_1', T_2 = T_n$, and $T_i \Re T_{i+1}$ for all $1 \leq i < n$. By Theorem 4, there is a theory $T'$ such that $T_1 \Re T' \equiv T_2$. By Remark 7, $T_1 \Re T' \sim T_2$ which proves our statement. □

It is known that, for languages with disjoint signatures, being definitionally mergeable and intertranslatability are equivalent, see e.g., (Barrett and Halvorson 2016a, Theorems 1 and 2). Now we show that, for languages with disjoint signatures, definitional equivalence also coincides with these concepts, i.e.:

Theorem 6. Let $T$ and $T'$ be two theories formulated in languages with disjoint signatures. Then

$$ T \equiv T' \iff T \Re T' \iff T \equiv T'. $$

Proof. Since $T \Re T' \iff T \equiv T'$ is proven by Barrett and Halvorson 2016a, Theorems 1 and 2), we only have to prove that $T \equiv T' \iff T \Re T'$.

Let theories $T$ and $T'$ be definitionally equivalent theories with disjoint signatures $\Sigma \cap \Sigma' = \emptyset$. Since they are definitionally equivalent, there exists, by Theorem 4, a chain which consists of a single mergeability and a renaming step between $T$ and $T'$. Since $T$ and $T'$ are disjoint, and since renaming by Remark 7 is also a disjoint merger, these two steps can by Theorem 2 be reduced to one step $T \Re T'$, and this is what we wanted to prove.

The converse direction follows straightforwardly from the definitions. □

Theorem 7. Let $T_1$ and $T_2$ be arbitrary theories, then $T_1$ and $T_2$ are mergeable iff they are model mergeable, i.e.,

$$ T_1 \Re T_2 \iff \text{Mod}(T_1) \Re \text{Mod}(T_2) $$

Proof. Let $T_1$ and $T_2$ be arbitrary theories.

Let us first assume that $T_1 \Re T_2$ and prove that $\text{Mod}(T_1) \Re \text{Mod}(T_2)$. We know from Lemma 1 that there exist sets of explicit definitions $\Delta_{12}$ and $\Delta_{21}$ such that $T_1 \equiv T_2$. Therefore, by Definition $8$, $\text{Mod}(T_1 \cup \Delta_{12}) = \text{Mod}(T_2 \cup \Delta_{21})$. We construct map $\beta$ between $\text{Mod}(T_1)$ and $\text{Mod}(T_2)$ by extending models of $T_1$ with the explicit definitions in $\Delta_{12}$, which will be a model of $T_1 \cup \Delta_{12}$, and then by taking the reduct to the language of $T_2$. The inverse map $\beta^{-1}$ can be constructed in a completely analogous manner. $\beta$ is a bijection since it has an inverse defined for every model of $T_2$. Through this construction, the relations in $\beta(\text{Mod}(T_1))$...
are the ones defined in $\mathcal{M}$ according to $\Delta_{12}$ and vice versa, the relations in $\mathcal{M}$ are the ones defined in $\beta(\mathcal{M})$ according to $\Delta_{21}$, and clearly the underlying set of $\mathcal{M}$ and $\beta(\mathcal{M})$ are the same. Hence $Mod(T_1) \equiv^\beta Mod(T_2)$.

Let us now assume that $Mod(T_1) \equiv^\beta Mod(T_2)$ and prove that $T_1 \equiv^\beta T_2$. We know by Definition 13 that there is a bijection $\beta$ between $Mod(T_1)$ and $Mod(T_2)$ that is defined along two sets $\Delta_{12}$ and $\Delta_{21}$ of explicit definitions such that if $M \in Mod(T_1)$, then

- the underlying set of $M$ and $\beta(M)$ are the same,
- the relations in $\beta(M)$ are the ones defined in $M$ according to $\Delta_{12}$ and vice versa, the relations in $M$ are the ones defined in $\beta(M)$ according to $\Delta_{21}$.

Any model of both $T_1 \cup \Delta_{12}$ and $T_2 \cup \Delta_{21}$ can be obtained by listing the relations of $M$ and $\beta(M)$ together over the common underlying set $M$. Therefore, $Mod(T_1 \cup \Delta_{12}) = Mod(T_2 \cup \Delta_{21})$, and thus by Definition 8, $T_1 \equiv^\Delta T_2$. Consequently, $T_1 \equiv^\beta T_2$. $\square$

**Theorem 8.** Let $T_1$ and $T_2$ be arbitrary theories. Then $T_1 \equiv^\beta T_2$ is definitionally equivalent iff they are intertranslatable, i.e.,

$$T_1 \equiv^\Delta T_2 \iff T_1 \equiv^\beta T_2.$$ 

**Proof.** Let us first assume that $T_1 \equiv^\Delta T_2$. Let $T'$ be a disjoint renaming of $T_2$ to a signature which is also disjoint from the signature of $T_1$. By Remark 7 and the transitivity of $\equiv^\Delta$, we have $T_1 \equiv^\Delta T' \equiv^\Delta T_2$. By Theorem 6, $T_1 \equiv^\beta T' \equiv^\beta T_2$. Consequently, $T_1 \equiv^\beta T_2$ because relation $\equiv^\beta$ is transitive.

To prove the converse, let us assume that $T_1 \equiv^\beta T_2$. Let $T'$ again be a disjoint renaming of $T_2$ to a signature which is also disjoint from the signature of $T_1$. By Remark 7 and the transitivity of $\equiv^\beta$, we have $T_1 \equiv^\beta T' \equiv^\beta T_2$. By Theorem 6, $T_1 \equiv^\Delta T' \equiv^\Delta T_2$. Consequently, $T_1 \equiv^\Delta T_2$ because relation $\equiv^\Delta$ is transitive. $\square$

**Theorem 9.** Let $T_1$ and $T_2$ be arbitrary theories, then $T_1 \equiv^\beta T_2$ is intertranslatable iff their models are intertranslatable, i.e.,

$$T_1 \equiv^\beta T_2 \iff Mod(T_1) \equiv^\beta Mod(T_2).$$

**Proof.** Let $T_1$ and $T_2$ be arbitrary theories. If $T_1$ or $T_2$ is inconsistent, then they are by Remark 8 both inconsistent, $Mod(T_1)$ and $Mod(T_2)$ are empty classes, and the theorem is trivially true. Let’s now for the rest of the proof assume that both $T_1$ and $T_2$ are consistent theories and hence that both $Mod(T_1)$ and $Mod(T_2)$ are not empty.
Let us first assume that $T_1 \equiv T_2$ and prove that $\text{Mod}(T_1) \equiv \text{Mod}(T_2)$, i.e., that there exist $\text{tr}_1: \text{Mod}(T_2) \rightarrow \text{Mod}(T_1)$ and $\text{tr}_2: \text{Mod}(T_1) \rightarrow \text{Mod}(T_2)$ which are bijections and which are inverses of each other.

Let $\mathcal{M}$ be a model of $T_1$, then

$$\mathcal{M} \models \forall x_1 \ldots \forall x_n [\varphi(x_1, \ldots, x_n) \leftrightarrow \text{tr}_2(\text{tr}_1(\varphi(x_1, \ldots, x_n))].$$

By Definition 6 and Remark 2, this is equivalent to

$$\mathcal{M} \models \varphi[e] \iff \mathcal{M} \models \text{tr}_2(\text{tr}_1(\varphi)[e]$$

for all evaluations $e: V \rightarrow M$.

By applying Lemma 2 twice,

$$\mathcal{M} \models \text{tr}_2(\text{tr}_1(\varphi))[e] \iff \mathcal{M} \models \text{tr}_1(\varphi)[e] \iff \mathcal{M} \models \varphi[e].$$

Consequently,

$$\mathcal{M} \models \varphi[e] \iff \mathcal{M} \models \text{tr}_1(\text{tr}_2(\varphi)[e]) \models \varphi[e].$$

Since $M$ is the underlying set of both $\mathcal{M}$ and $\text{tr}_1(\text{tr}_2(\varphi)(\mathcal{M}))$, this implies that $\mathcal{M} = \text{tr}_1(\text{tr}_2(\varphi)(\mathcal{M}))$.

A completely analogous proof shows that $\mathcal{M} = \text{tr}_2(\text{tr}_1(\varphi)(\mathcal{M}))$ for all models of $T_2$.

Consequently, $\text{tr}_1$ and $\text{tr}_2$ are everywhere defined and they are inverses of each other because when we combine them we get the identity, and hence they are bijections, which is what we wanted to prove.

Let us now make that $\text{Mod}(T_1) \equiv \text{Mod}(T_2)$ and prove that $T_1 \equiv T_2$. By Definition 18, we know that there are bijections $\text{tr}_1$ and $\text{tr}_2$, which are inverses of each other, and thus $\mathcal{M} = \text{tr}_1(\text{tr}_2(\varphi)(\mathcal{M}))$ for all models $\mathcal{M}$ of $T_1$. Since $M$ is the underlying set of $\mathcal{M}$ and $\text{tr}_1(\text{tr}_2(\varphi)(\mathcal{M}))$, we have that

$$\mathcal{M} \models \varphi[e] \iff \mathcal{M} \models \text{tr}_1(\text{tr}_2(\varphi)[e]) \models \varphi[e].$$

From this, by applying Lemma 2 twice, we get

$$\mathcal{M} \models \varphi[e] \iff \mathcal{M} \models \text{tr}_1(\text{tr}_2(\varphi))\mathcal{M} \models \varphi[e].$$

for all evaluations $e: V \rightarrow M$. By Definition 6 and Remark 2, this is equivalent to

$$\mathcal{M} \models \forall x_1 \ldots \forall x_n [\varphi(x_1, \ldots, x_n) \leftrightarrow \text{tr}_2(\text{tr}_1(\varphi(x_1, \ldots, x_n))].$$

A completely analogous proof shows that

$$\mathcal{M} \models \forall x_1 \ldots \forall x_n [\psi(x_1, \ldots, x_n) \leftrightarrow \text{tr}_2(\text{tr}_1(\psi(x_1, \ldots, x_n))],$$

from which follows by Definition 15 that $T_1 \equiv T_2$. $\square$
Remark 8. If we use the notations of this paper, Theorem 4.2 of (Andréka and Németi 2014) claims, without proof, that (i) definitional equivalence, (ii) definitional mergeability, (iii) intertranslatability and (iv) model mergeability are equivalent in case of disjoint signatures. In this paper, we have not only proven these statements, but we also showed which parts can be generalized to arbitrary languages and which cannot. In detail:

- item (i) is equivalent to item (iii) by Theorem 6 and we have generalized this equivalence to theories in arbitrary languages by Theorem 8,
- the equivalence of items (ii) and (iv) have been generalized to theories in arbitrary languages by Theorem 7,
- items (i) and (ii) are indeed equivalent for theories with disjoint signatures by Theorem 6, however, they are not equivalent for theories with non-disjoint signatures by the counterexample in Theorem 1,
- in Definition 18, we have introduced a model theoretic counterpart of intertranslatability which, by Theorem 9, is equivalent to it even for arbitrary languages.

4 Conclusion

Since definitional mergeability is not transitive, by Theorem 1, and thus not an equivalence relation, the Barrett–Halvorson generalization is not a well-founded criterion for definitional equivalence when the signatures of theories are not disjoint. Contrary to this, the Andréka–Németi generalization of definitional equivalence is an equivalence relation, by Theorem 3. It is also equivalent to intertranslatability, by Theorem 8 and to model-intertranslatability, by Theorem 9 even for languages with non-disjoint signatures. Therefore, the Andréka–Németi generalization is more suitable to be used as the extension of definitional equivalence between theories of arbitrary languages. It is worth noting, however, that the two generalizations are really close to each other since the Andréka–Németi generalization is the transitive closure of the Barrett-Halvorson one, see Theorem 5. Moreover, they only differ in at most one disjoint renaming, see Theorems 4 and 6 and as long as we restrict ourselves to theories which all have mutually disjoint signatures, Barrett–Halvorson’s definition is transitive by Theorem 2.

Acknowledgements

The writing of the current paper was induced by questions by Marcoen Cabbolet and Sonja Smets during the public defence of (Lefever 2017). We are also
grateful to Hajnal Andréka, Mohamed Khaled, Amedé Lefever, István Németi and Jean Paul Van Bendegem for enjoyable discussions and feedback while writing this paper.

References


KOEN LEFEVER  
Centre for Logic and Philosophy of Science  
Vrije Universiteit Brussel  
koen.lefever@vub.be  
http://homepages.vub.ac.be/~kolefeve/

GERGELY SZÉKELY  
MTA Alfréd Rényi Institute for Mathematics  
szekely.bergely@renyi.mta.hu  
http://www.renyi.hu/~turms/