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Abstract

According to spacetime state realism (SSR), the fundamental ontology of
a quantum mechanical world consists of a state-valued field evolving in 4-
dimensional spacetime. One chief advantage it claims over rival wavefunc-
tion realist views is its natural compatibility with relativistic quantum field
theory (QFT). I argue that the original density operator formulation of SSR
cannot be extended to QFTs where the local observables form type III von
Neumann algebras. Instead, I propose a new formulation of SSR in terms
of a presheaf of local statespaces dual to the net of local observables studied
by algebraic QFT.
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1 Introduction

There is growing belief that any viable solution to the measurement problem will

require treating the quantum state as a genuine physical object rather than an

indirect representational tool. This has prompted the development of numerous

wavefunction realist views, according to which, the fundamental ontology of a

quantum mechanical world consists of a C-valued field (the wavefunction) evolving

in a high-dimensional space (usually the configuration space of a non-relativistic

many-particle system). Ordinary 4-dimensional spacetime and the objects bump-

ing around inside of it are emergent structures that need to be explained in terms

of this high-dimensional alien landscape.

In their 2010 paper, “Quantum Mechanics on Spacetime I: Spacetime State

Realism” (BJPS 61, 697-727), David Wallace and Christopher Timpson develop

an altogether different kind of view which similarly aims to “take the quantum state

seriously” (p. 698).1 According to spacetime state realism (SSR), the fundamental

ontology of a quantum mechanical world consists of a state-valued field evolving in

4-dimensional spacetime. Each spacetime region is associated with a local Hilbert

space whose density operators represent the possible values of the field in that

region. Much as in classical field theories, these field values are interpreted as

characterizing the intrinsic, local properties of the region.

Unlike wavefunction realism, SSR treats spacetime as the arena in which physics

unfolds. Objects like particles and cats are still emergent entities, patterns in the

state-valued field, however the defender of SSR does not need to explain the emer-

gence of spacetime itself. This might strike us as a decisive advantage, yet Wallace

and Timpson demur. Instead, they think that the primary advantage of SSR is its

extendability to relativistic quantum field theory (QFT). SSR, they contend, has

an especially simple, elegant relativistic formulation, while there are a number of

technical and conceptual pitfalls hampering relativistic extensions of wavefunction

1See Wallace (2012), Ch. 8 for further development of the view. Arntzenius (2012), Ch. 3.13,
Lewis (2013), Baker (2016), and Ismael and Schaffer (2016) represent early critical discussions.
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realism.2

The reality is not so cut-and-dried. SSR faces its own foundational challenge in

the relativistic domain which threatens to undermine this advantage. In standard

formulations of QFT, the local states are pieces of derivative structure defined in

terms of the global state and the local observable algebras. Self-adjoint elements of

these algebras are usually interpreted as representing localized quantities like mass,

spin, and charge. From the standpoint of SSR, however, the local observables are

not part of the ontology at all. They are merely auxiliary mathematical tools.

But if this is the case, we cannot use the concept of local observables to define the

local states. Rather, we need a way to formulate QFT that treats the field of local

states as fundamental and defines all other structures in terms of it.

In other work (2006, 2012), Wallace suggests that such a state-first formulation

of QFT is possible. In this paper, I explore the viability of Wallace’s proposal

and find it wanting. His idea can only get off the ground if the local observable

algebras are type I von Neumann algebras familiar from non-relativistic quantum

theory. Unfortunately, results from constructive and algebraic QFT indicate that

in order to consistently unify relativity and quantum mechanics, the local algebras

need to be type III von Neumann algebras. Physically, this reflects the high

degree of entanglement exhibited by the QFT vacuum and similar global states.

Because these states are so highly entangled, the procedure that Wallace sketches

for decomposing the global state into a field of local states falls apart at the hinges,

leaving relativistic SSR without a coherent mathematical foundation.

Ultimately we can fix this problem, but it requires a much more radical overhaul

of standard QFT than anything Wallace and Timpson suggest. It is well-known

that every operator algebra has a dual object of sorts, its statespace, consisting

of all positive, normalized, C-valued linear functionals over the algebra. It is less

well-known how to make this duality precise — a deep reconstruction theorem due

to Alfsen, Hanche-Olsen, and Shultz (1980) proves that given a certain orientation

2See Wallace and Timpson (2010), §4 and §8, as well as Wallace (2012), p. 304-5 and 316-317
for further discussion.
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structure on the statespace, we can recover the algebra. Thus all of the physical

information contained in the collection of local observables can in principle be

encoded in the dual collection of local, oriented statespaces. To complete the

picture, we need a set of axioms for the collection of local statespaces that mirror

the usual axioms of algebraic or constructive QFT.3

The development of such axioms is an involved mathematical project that will

be the subject of future work.4 The aim of this paper is to clearly articulate

the foundational challenge SSR faces in the relativistic domain and to argue that

the new statespace formalism represents the best path forward for developing a

QFT-compatible version of the view. In the next section, I review Wallace and

Timpson’s original density operator proposal for relativistic SSR. In §3, I argue

that the type III character of local algebras in QFT poses a serious challenge for

their view. A pair of no-go lemmas shows why easy fixes will not work. In §4, I

outline my alternative proposal and sketch some ideas for statespace axioms that

mirror the Haag-Kastler axioms for algebraic QFT. Finally, in §5, I discuss how

the new statespace approach can help shed light on the metaphysics of SSR and

respond to some recent criticisms of the view that turn on misunderstandings of

the original density operator formulation. (Apart from this limited defense, the

goal is not to provide a general argument in favor of SSR, nor is it to argue that

the statespace formalism is preferable to standard algebraic QFT.)

3The idea of studying QFT via a presheaf of statespaces can be traced back to unpublished
work of John Roberts (Haag 1996, p. 326, 131-132, and 141-142). The major difference between
Roberts’s proposal and the one surveyed here is the use of the AHS-reconstruction theorem and
the central notion of an orientation of a C∗-statespace to capture dual versions of the usual
algebraic axioms. Motivated by the problem of constructing particular models of QFT, Roberts
did not seek dualized axioms. In addition, his characterization of the presheaf relies on special
properties of von Neumann algebras and thus lacks the full generality of algebraic QFT.

4Swanson and Halvorson (in preparation).
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2 Spacetime State Realism in QFT

In the original formulation of SSR, each spacetime region is associated with a local

Hilbert space whose density operators correspond to possible field values encoding

intrinsic properties of that region. Wallace and Timpson emphasize the parallels

between this picture and classical field theories like electrodynamics. The tensor

value of the electromagnetic field at a spacetime point represents certain intrinsic

properties of that point. The physics are encoded in how these values vary across

spacetime. Similarly, in SSR the field takes a particular quantum state as its

value in a region. The physics are encoded in how these field values vary across

spacetime, in the mosaic of local states.

In classical theories, specifying the field value at each point in a spacetime

region suffices to fix the field configuration in that region. Due to quantum entan-

glement, this is not true in SSR. If the field in region O1 is entangled with the field

in region O2, specifying the state of O1 and O2 will not fix the state of the joint

region O1∪O2. Consequently, in order to specify the global field configuration one

needs to provide a field value for every region, including the entirety of spacetime

itself. This is known as the non-separability of the quantum state. According to

SSR, non-separability reflects the presence of non-local relations between regions

which do not supervene on the intrinsic properties of those regions.

Wallace (2013) observes that the mathematical signature of non-separability is

the appearance of tensor product structure in quantum theory. If H1 and H2 are

the local Hilbert spaces associated with causally independent regions O1 and O2,

the statespace of the joint system O1 ∪ O2 is the tensor product H1 ⊗ H2. This

Hilbert space includes density operators that cannot be factored into products

of density operators on H1 and H2, representing entangled states across O1 and

O2. In contrast, in classical theories the statespace of a joint system is given by

a Cartesian product. As a result every state of the joint system is a product of

subsystem states.

For non-relativistic particle theories we can combine these ideas into a sim-

ple mathematical picture. Galilean spacetime is naturally foliated into spatial
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hypersurfaces of constant universal time. Given an arbitrary partition of one of

these hypersurfaces, each spatial region, ∆i, can be assigned a Hilbert space, Hi,

whose density operators represent the possible particle states in that region.5 The

Hilbert space for the entire hypersurface is given by the tensor product of these

local Hilbert spaces:

H =
⊗
i

Hi (1)

If the state of the universe at time t is ρ, the local state in region ∆i is given by

ρ(∆i) = Trj 6=i ρ (2)

the partial trace of ρ over all local Hilbert spaces except Hi. The local state is a

density operator acting on Hi.

Extending this scheme to relativistic theories appears straightforward. Wallace

and Timpson observe:

Things become simpler still when we move to full quantum field theory.

In the algebraic formulation of QFT, we associate to each spacetime

region O a C∗-algebra A(O) of operators, representing the dynami-

cal variables associated to region O. A state ρ(O) of such a region

is a positive linear functional on A(O) (often described in rather in-

strumentalist terms as giving the expectation value of each element of

A(O)) and by the Gelfand-Naimark-Segal (GNS) construction we can

associate ρ(O) with a state in a Hilbert space HO, and represent A(O)

as an algebra of operators on HO [. . . ] HO can then be taken as the

Hilbert space of the field in region O. If preferred, one can even remain

at the more abstract level, forego the representation theorems and just

take the C∗-algebraic state itself as denoting the properties of a region.

(p. 711-12)6

5Wallace and Timpson define Hi := F(Ki), where F(Ki) is the Fock space built out of copies
of the Hilbert space Ki, consisting of single-particle wavefunctions with support in region ∆i.

6The original notation has been modified for consistency with the notation of this paper.
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There is something rather odd, though, about the scattershot combination of ideas

expressed in this paragraph. Algebraic QFT presents us with a global state plus

a net of local observable algebras. By taking the restriction of the global state, ρ,

on a local algebra,

ρ(O) := ρ|A(O) (3)

we are able to define a unique local state associated with each region. The problem

is that this concept of a “local state” is defined in terms of another primitive

concept, a “local observable algebra.” But according to SSR, the observables are

not part of the ontology at all! As Wallace and Timpson explain,

To every different quantum state corresponds a different concrete way

the world is. For Everett and for some readings of dynamical-collapse

theories, the quantum state (perhaps together with some background

space or spacetime) gives the only part of the ontology. (p. 703)

This viewpoint is reinforced by Wallace’s critique of Deutsche and Hayden’s alter-

native operator-valued field ontology:

[. . . ] different states of affairs are represented by different state vectors.

From this perspective, the operators — time-dependent or not — do

not directly give the state of the system; they are simply part of the

mathematical machinery which breaks the symmetries of Hilbert space

and allows different rays in Hilbert space to represent different states

of affairs. (Wallace 2012, p. 320)

But if the local observables are just mathematical machinery, the various defini-

tional procedures Wallace and Timpson discuss become physically opaque. We

need to know what connects a particular state to a particular region. Why is ρ(O)

the local state for region O? We cannot point to the fact that ρ(O) encodes the

expectation values for the observables localized in O, since according to SSR the

observables do not correspond to anything physical. We need a way to characterize

ρ(O) and its relationship to O that is independent of the mathematical crutch of

local observables.
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Although Wallace and Timpson never directly address this issue, Wallace’s

comments elsewhere point towards a possible resolution:

In the so-called ‘algebraic’ description of QFT, an algebra of operators

is associated to each spatial region, so that the operators associated

with region O are intended to represent observables localized in O. At

least formally, we can regard this as equivalent to decomposing the

Hilbert space into quotient spaces, each one representing the quantum

state of a different spatial region [. . . ] When a QFT is specified in

this way, there is no need to say which operator at O corresponds to

which observable property of O — once the localization properties of all

the operators are known, the quantum system is sufficiently structured

to permit physics to be done, and in particular, to understand the

emergence of particles. (Wallace 2012, p. 15)

Wallace (2006) gives a clearer idea of the formal equivalence alluded to here. In

all standard formulations of QFT, we begin by assigning local operators (either

unbounded field operators or bounded observable operators) to spacetime regions.

Choosing a spacelike hypersurface and a partition, as before, Wallace argues that

there is a natural tensor product decomposition of the global Hilbert space H =⊗
Hi in which the operators localized in ∆i act trivially on all Hj with j 6= i. In

the usual picture, this justifies calling Hi the “local statespace” associated with

region ∆i. As Wallace emphasizes, however, nothing prevents us from switching

the order of definition around. Given a tensor product decomposition H =
⊗
Hi,

where Hi is the local Hilbert space associated with spatial region ∆i, we can define

operators localized in ∆i as those linear transformations on H which act trivially

on all Hj with j 6= i. This, he contends, provides a state-first formulation of QFT

equivalent to the usual, operator-first perspective.

This equivalence thesis is needed in order to make sense of Wallace and Timp-

son’s proposal for relativistic SSR. Despite the widespread use of local operators as

part of the mathematical machinery of QFT, we can do without them in principle.

All of the information encoded in the system of local field operators and observable
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algebras can be captured by tensor product decompositions of the global Hilbert

space. According to SSR, these decompositions directly encode the physical rela-

tionship between local states and regions.

As it stands, the thesis is a bit rough around the edges. Given the arbitrariness

of choosing a foliation, it would be far more elegant to have a formulation of SSR

that utilizes spatiotemporal rather than spatial regions. Not only would this render

SSR’s starting point more similar to existing axiomatic approaches, but various

no-go arguments suggest that local fields and observables in interacting QFTs are

only well-defined in 4-dimensional regions, making such a generalization apparently

necessary.7 Another complication concerns the role of the tensor product structure,

which on Wallace and Timpson’s formulation effectively does double duty. It

serves both to identify the local Hilbert spaces and to stitch them together into a

single mathematical object whose sections represent field configurations. But the

tensor product structure is ill-suited for this second role. In general, we can only

expect the joint Hilbert space associated with two regions to be given by a tensor

product if the regions are spacelike separated and thus causally independent.8

Moreover, if there are an infinite number of local Hilbert spaces, and they each have

dimension greater than two, their infinite tensor product will be nonseparable (i.e.,

the global Hilbert space will lack a countable basis). But all standard frameworks

for QFT employ separable global Hilbert spaces, so if we are looking for a similar

formulation of SSR, we can only use the tensor product structure to talk about

finite collections of spacelike separated regions.9 In order to do physics, we will

7These arguments typically rely on the singular nature of the renormalized perturbative ex-
pansion of the dressed fields in interacting QFTs (e.g., Haag 1996, p. 55-57) and are therefore
not entirely rigorous. There are some rigorous results that suggest such smearing is necessary,
but they are not conclusive. See Halvorson and Müger (2006), §6 for a survey.

8On Wallace’s picture, given a tensor product H1 ⊗ H2 associated with regions O1 and O2,
the corresponding local observables will be elements of the algebras B(H1)⊗ I and I ⊗ B(H2),
which mutually commute. In generic models of QFT, however, only the algebras of spacelike
separated regions are guaranteed to commute.

9A formalization of QFT using nonseparable Hilbert spaces and infinite tensor products might
be possible, but such a framework would be unlike anything currently on the table (at least from
a mathematical perspective). In contrast, the statespace view I develop in §4 hews closely to
standard algebraic QFT. Halvorson and Müger (2006), §6.2.2 discuss some possible physical
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need additional information about the relations between different tensor product

decompositions.

We can readily modify Wallace’s proposal to take these complications into

account while preserving the idea that we rely on tensor products to identify and

isolate subsystems. Let O′ denote the spacelike complement of region O (i.e.,

the set of points spacelike separated from all points in O). We can view O′ as

the causally independent environment associated with spatiotemporal system O.

The key idea will be to focus on the collection of all such system-environment

decompositions:

Equivalence Thesis. Given a system-environment decomposition of the global

Hilbert space,

H = HO ⊗HO′

for each region O, define the local algebra of observables associated with O as the

algebra of bounded linear operators on HO:

A(O) := B(HO)

Given this collection of system-environment decompositions, along with some suit-

able family of mappings between them, we can define a corresponding net of local

observable algebras acting on H that satisfy the Haag-Kastler axioms for algebraic

QFT. Moreover, any net satisfying the axioms arises in such a way.

To make this precise, we need to specify the relevant family of mappings encoding

relations between different system-environment decompositions. (At a minimum,

if O1 is a subregion of O2, the local Hilbert space HO1 should be identified with a

subspace of HO2 .) In addition, we might also hope to show that the reconstructed

net of observables is either unique or natural in some sense. In the end it does not

matter. The thesis cannot possibly be true in its current formulation. To see why,

we will have to delve deeper into the algebraic structure of QFT.

applications of nonseparable Hilbert spaces.
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3 Entanglement and the Type III Property

A C∗-algebra is an abstract collection of operators isomorphic to some subalge-

bra of B(H). In algebraic QFT, a theory is given by a net of local C∗-algebras,

{A(O)}, satisfying the Haag-Kastler axioms, along with a collection of physically

possible global states, {ρ}, on the quasilocal algebra, A (the norm-closed algebra

generated by all local algebras). The self-adjoint elements of the net are taken to

represent localized physical quantities, while the Haag-Kastler axioms ensure that

the assignment of quantities to regions obeys the joint requirements of relativity

and quantum mechanics.10 Via the GNS theorem, each global state determines

a unique representation of the net as bounded operators on a separable global

Hilbert space, which in turn determines an expanded net of local von Neumann

algebras, {R(O)}, and the global algebra, R, defined as the double commutant

(or equivalently the weak-closure) of {A(O)} and A respectively in the given rep-

resentation. This allows for the definition of additional representation-dependent

observables including the Hamiltonian and superselected charges.

Von Neumann algebras are special C∗-algebras that contain a complete set of

projection operators. They can be divided into three types based on the structure

of their lattice of projections. Algebraically speaking, a projection is an element

E ∈ R such that E2 = E. Geometrically speaking, projection operators corre-

spond to orthogonal projections onto closed subspaces EH ⊆ H. For our purposes

we will only need a few basic facts. Type I algebras contain minimal projections

called atoms which correspond to 1-dimensional subspaces of H and act as gener-

ators of the algebra. It is typically assumed that the local von Neumann algebras

in QFT are factors, i.e., they do not contain any central elements, which commute

with the entire algebra.11 A type I factor is always isomorphic to B(H) for some

Hilbert space H. If H is finite-dimensionsional, then the factor is type In. If H
10The standard six axioms are isotony, microcausality, covariance, vacuum, spectrum, and weak

additivity. Halvorson and Müger (2006) §2 contains a precise formulation of these axioms and a
discussion of basic structural results including the Reeh-Schlieder theorem.

11While the physical motivation for this assumption is still unclear, nothing in the present
discussion turns on it.
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is infinite-dimensional, the factor is type I∞. Non-relativistic quantum mechanics

employs type In algebras almost exclusively.

In contrast, the local von Neumann algebras in QFT are generically type III

factors. These algebras are always isomorphic to some proper subalgebra of B(H),

where H is infinite-dimensional. Type III factors lack atoms entirely and have no

pure, normal states.12 In all known rigorous models of QFT, the local algebras

assigned to compact doublecone regions are type III. Moreover, general theorems

due to Fredenhagen (1985) and Buchholz and Verch (1995) show that for QFTs

with a well-defined ultraviolet scaling limit, doublecone algebras must be type

III.13

From a physical standpoint, the type III property reflects the high degree of

entanglement displayed by the QFT vacuum and similar global states. As a conse-

quence of the Reeh-Schlieder theorem, Halvorson and Clifton (2000) prove that any

global state which is analytic for the energy is entangled across arbitrary spacelike

separated regions. Such states encompass many (if not all) physically reasonable

global states including the vacuum state as well as charged states described by

DHR/BF superselection theory. (Informally, the analyticity requirement means

that the energy cannot grow too rapidly as a function of field strength.) The

Reeh-Schlieder theorem only depends on the presence of long-range, infrared cor-

relations. In contrast, the type III property is thought to be an ultraviolet effect.

12Normal states are weak∗-continuous and give rise to countably additive probability measures.
They correspond to states which can be represented by density operators on the relevant GNS
Hilbert space.

Type II factors are also characterized by lack of atoms and pure, normal states, but they are
in many ways less pathological than type III algebras (e.g., it is possible to define a semi-finite
trace). While these algebras have interesting applications in quantum statistical mechanics, they
are of limited use in QFT.

13A doublecone is formed by the intersection of a past and future lightcone. Doublecones are
compact and causally complete (i.e., O = O′′). The algebras assigned to such regions play a
central role in defining many important models of QFT. The scaling limit assumption requires
the renormalization group flow to approach a conformal fixed point in the short-distance/high-
energy limit. Fredenhagen secures this using the compact localization properties of Wightman
field operators, while Buchholz and Verch employ the more general framework of scaling algebras.
See Halvorson and Müger (2006), §2.5 and Haag (1996), Ch. 5.6 for an overview of these results.

12



Extant proofs ruling out type I and II algebras all rely on short-distance scaling

assumptions which appear to be ineliminable.14 While we expect widespread en-

tanglement based on the Reeh-Schlieder theorem, the type III property indicates

just how bad this entanglement is. Summers and Werner (1988) use it to show that

every normal state maximally violates Bell’s inequalities across spacelike tangent

doublecones. Clifton and Halvorson (2001) deploy it to prove that no local oper-

ation can disentangle the local vacuum state from its environment. Both results

mark a significant departure from the non-relativistic norm.

The type III property poses a severe problem for the equivalence thesis. Since

the local algebras are not type I, they cannot be defined as B(HO) for some local

Hilbert space HO; they can only be concretely represented as a proper subalgebra.

By itself, however, the tensor product decomposition H = HO ⊗ HO′ does not

suffice to pick out a privileged type III subalgebra of HO. At a minimum, some

additional input besides the collection of system-environment decompositions is

needed to recover the full structure of algebraic QFT.

In fact, the problem is much worse. An immediate corollary of Summers and

Werner’s results is that in any QFT with a well-defined ultraviolet scaling limit,

the required system-environment decompositions do not exist:

No-Go Lemma 1. In any model of the Haag-Kastler axioms with a well-defined

ultraviolet scaling limit, if the local doublecone algebras R(O) are not type I, then

then there is no pair of Hilbert spaces (K1,K2) and an isomorphism V : H →
K1 ⊗K2 such that V ∗R(O)V ⊂ B(K1)⊗ I with V ∗R(O′)V ⊂ I ⊗B(K2).15

14The local algebras of unbounded spacelike wedges must be type III regardless of any ul-
traviolet scaling assumptions. This is usually proven using the technique of half-sided modular
translations (Driessler 1977, Longo 1979). The proof that doublecone algebras are also type III,
proceeds by showing that in the short distance scaling limit, the modular structure of the double-
cone algebras R(O) coincides with the modular structure of the wedge algebras R(W ), and thus
R(O) must also be type III. Since thermodynamically well-behaved QFTs are thought to satisfy
the split property, however, there will always be a type I factor N such that R(O) ⊂ N ⊂ R(W ).
Hence it appears that some assumption about the ultraviolet scaling properties of the doublecone
algebras is essential.

15Proof. This is a corollary of Summers and Werner (1988) Thm. 6.1 which shows that there
are no normal product states across tangent doublecones O1 and O2 in the situation described
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Like proofs of the type III property, this no-go lemma relies on assumptions about

the ultraviolet regime of QFT. This should give us pause. Wallace (2006, 2011)

forcefully argues that when interpreting QFT we should be cautious of drawing

metaphysical conclusions from the short-distance/high-energy aspects of the the-

ory. He contends that QFTs like the standard model are best viewed as effective

field theories, low-energy approximations of some unknown, underlying theory of

quantum gravity. Given results in modern renormalization analysis, we have good

reason to believe these approximations are largely insensitive to the details of the

exact short-distance theory. Nonetheless, we should not trust effective theories

in the ultraviolet limit where we suspect that they break down. Consequently,

Wallace and Timpson urge that for all practical purposes we can ignore the com-

plications created by non-type I algebras.16

Insofar as we are interested in the metaphysics of the actual world, I agree. Any

physical results that hinge on the ultraviolet structure of QFT should be viewed

as provisional guide, at best. But SSR has the potential to be a highly general

ontology for quantum theories of all shapes and sizes. We have many reasons

to explore the metaphysics of exact, non-approximate QFTs. For example, we

might be interested in high-level metaphysical debates about things like quantities,

by the lemma. Since R(O2) ⊂ R(O′1), there can be no normal product states across O1 and O′1
either. Two commuting von Neumann algebras acting on the same Hilbert space can be split iff
there exist normal product states across them.

If a theory satisfies Haag duality, then R(O′) = R(O)′, and a more elementary algebraic
argument argument can be given. For purposes of reductio, assume such an isomorphism exists.
Since V ∗R(O)V ⊂ B(K1)⊗ I, it follows that (B(K1)⊗ I)′ ⊂ (V ∗R(O)V )′. But (B(K1)⊗ I)′ =
I ⊗ B(K2) and (V ∗R(O)V )′ = V ∗R(O)′V , so I ⊗ B(K2) ⊂ V ∗R(O)′V . But by hypothesis
V ∗R(O′)V ⊂ I⊗B(K2), and so by Haag duality, V ∗R(O)′V = I⊗B(K2). But this is impossible.
By the Tomita-Takesaki theorem R(O) and R(O)′ must have the same type, so V ∗R(O)′V cannot
be type I, whereas I ⊗B(K2) is type I. �

16See p. 711, footnote 14 (also p. 301, footnote 13 in Wallace 2012). Note that in order for the
local algebras to be finite as they suggest, we would have to treat both the ultraviolet and infrared
cutoffs literally. If we only view the former as a real, physical cutoff (as Wallace 2011 proposes)
then the local algebras must be infinite as a consequence of the Reeh-Schlieder theorem. This
situation is of course compatible with type I∞ local algebras. The problem with extending SSR
to exact QFTs without an ultraviolet cutoff is not that the local algebras are infinite, it is that
they are not type I.
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laws, and causation that turn on possible physics, not just actual physics. More

narrowly, we might be interested in conceptual questions about the compatibility

of relativity and quantum mechanics, which will require the detailed study of both

exact and effective QFTs to fully answer. Even if the QFTs describing our world

are effective, some theorists (e.g., Rivasseau 1991) argue that exact QFTs can

provide a unifying, explanatory idealization akin to the thermodynamic limit in

statistical mechanics. In addition, both the string world-sheet formalism and the

AdS-CFT correspondence suggest that studying exact conformally invariant QFTs

may help us to better understand the metaphysics of string theory. If it turns out

that SSR is only compatible with effective QFTs, this would be an important

and interesting caveat. Moreover, the status of the type III property in effective

theories is still unresolved. We can wager that the details do not matter in the

end, but we cannot be sure at this stage. All things considered, it would be far

better to have a version of SSR that can be applied both to effective and exact

models of QFT regardless of what type the local algebras turn out to be.

If we drop the standing idea that localization information is encoded by tensor

products we might make some progress in this direction. Given a local state ρ(O),

the GNS construction generates a canonical representation of the local algebra

A(O) as bounded linear operators acting on the GNS Hilbert space Hρ(O). Wallace

and Timpson suggest that this GNS Hilbert space can serve as the local Hilbert

space of the field in region O. If we could somehow identify Hρ(O) with a proper

subspace of the global Hilbert space Hρ, we might hope to eventually recover the

net of observable algebras from the collection of local GNS subspaces.

As it turns out though, the so-called “local” GNS Hilbert space Hρ(O) does not

really deserve the title. It is actually the global Hilbert space in disguise:

No-Go Lemma 2. Given a net of C∗-algebras satisfying the Haag-Kastler ax-

ioms, let ρ denote a global state (analytic in energy) on the quasilocal algebra A

and let ρ(O) = ρ|A(O). Up to unitary equivalence, the local GNS Hilbert space

Hρ(O) is naturally isomorphic to the global GNS Hilbert space Hρ, i.e., there is a

natural family of isomorphisms mapping Hρ(O) onto Hρ, intertwining the actions
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of πρ(O)(A(O)) and πρ(A(O)).17

In general, given a C∗-subalgebra B ⊂ A and a restricted state ρ|B as inputs,

the GNS construction yields a Hilbert space Hρ|B that can be naturally identified

with a C-closed subspace of Hρ. The hitch is that if the vector implementing ρ is

cyclic for B, then this subspace is identical to Hρ. The Reeh-Schlieder theorem

guarantees that this will be the case for any global state analytic for the energy.

Thus there is no formal sense in which applying the GNS theorem to local inputs

yields a subsector of the global Hilbert space.18

If we take the message of this second lemma to heart, we should dispense not

only with tensor products, but the very idea of a local Hilbert space. There is

no obvious structure in the standard algebraic formalism that can be coherently

identified as the local Hilbert space associated with a given region of spacetime.

Perhaps there is some other clever way to work the standard formalism into align-

ment with SSR, but taken together these results strongly suggest that a different

approach is needed.

17Proof. Let ρ̂, ρ̂(O) denote the cyclic vectors representing ρ and ρ(O) in the GNS repre-
sentations (πρ,Hρ) and (πρ(O),Hρ(O)) respectively. First we show that Hρ(O) can be naturally
identified with a C-closed subspace of Hρ. Taking πρ(A(O)) as a subalgebra of B(Hρ), we con-
sider the compression map κ : πρ(A) → πρ(A)|K, for all A ∈ πρ(A(O)), where K := πρ(A(O))ρ̂
(the overline denotes the norm closure). This map is natural in the following sense: the GNS
representation is fixed (up to unitary equivalence) by ρ and A, and K is a πρ(A(O))-invariant
subspace of Hρ, thus κ is fixed (up to unitary equivalence) by ρ, A, and A(O). Since K is
πρ(A(O))-invariant, it follows that κ ◦ πρ is a representation of A(O) on K. Moreover, ρ̂ a cyclic
vector for (κ ◦ πρ,K) and ρ(O) = ρ ◦ (κ ◦ πρ). These two conditions define the local GNS rep-
resentation (πρ(O),Hρ(O)) up to unitary equivalence (Kadison and Ringrose, 1997, Prop. 4.5.3).
Thus there exists an isomorphism U from Hρ(O) onto K intertwining the actions of πρ(O)(A(O))
and πρ(A(O)).

Next, we show that in fact K = Hρ. By the Reeh-Schlieder theorem, we obtain πρ(A(O))′′ρ̂ =
Hρ. But if ρ̂ is cyclic for πρ(A(O))′′, it is separating for πρ(A(O))′′′ = πρ(A(O))′, and hence must
also be cyclic for πρ(A(O)). Therefore K = πρ(A(O))ρ̂ = Hρ. It follows that the compression κ is
the identity map, and (πρ(O)(A(O)),Hρ(O)) is unitarily equivalent to (πρ(A(O)),Hρ). Although
the isomorphism U implementing this equivalence may not be unique, it is part of a family
determined by the natural compression κ, and each such isomorphism maps Hρ(O) onto Hρ. �

18Results from the modular localization program (Brunetti et al. 2002) indicate that it is
possible to naturally assign a R-closed proper subspace of the global Hilbert space to each
spacetime region. Since these subspaces are not C-closed, however, they are not large enough to
be interpreted as local statespaces.

16



4 Statespace Axioms for QFT

In order to formalize a version of SSR compatible with type III local algebras, we

have to rethink the relationship between states and observables familiar to us from

non-relativistic quantum mechanics. Fortunately, algebraic QFT offers such a per-

spective. Rather than rays in a local Hilbert space, in algebraic QFT local states

are viewed as functionals over the local algebras. Towards the end of their discus-

sion, Wallace and Timpson suggest that we can adopt this algebraic perspective

as a foundation for SSR: “one can even remain at the more abstract level, forego

the representation theorems and just take the C∗-algebraic state itself as denoting

the properties of a region” (p. 712). The idea is never fully developed, however,

and given that the local algebraic state is defined in terms of the observables it

looks like a non-starter. What can the algebraic state possibly be besides a list of

expectation values for the local observables?

In spite of this, thinking about the local state in abstract algebraic terms

actually gives us a way to reframe SSR to accommodate the type III property.

The key is to shift attention from the local state to the collection of possible local

states. The statespace, S(A), of a C∗-algebra A, is defined as the collection of all

positive, normalized, C-valued linear functionals on A. While the statespace is not

a Hilbert space, it has a rich geometry; it is not just a bare set of functionals.

First, S(A) is a convex set. Pure states are extremal points, while each mixed

state can be written as a convex linear combination of distinct pure states,

ρ = λρ1 + (1− λ)ρ2 (4)

where λ ∈ (0, 1). Second, S(A) also has an order structure inherited from the

order structure on A: ρ1 ≥ ρ2 iff ρ1(A) − ρ2(A) ≥ 0 for all self-adjoint A ∈ A

with positive spectrum. In addition, S(A) is compact in the weak∗-topology.19

For each self-adjoint operator A ∈ A there is a weak∗-continuous affine function,

19This is defined as the coarsest topology such that every element of S(A) corresponds to a
continuous map on A.
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Â : S(A)→ R, defined by setting

Â(ρ) = ρ(A) (5)

for all ρ ∈ S(A). Kadison (1951) proves that the mapping sending A 7→ Â is an

isometric isomorphism. This fact is the foundation for the spectral calculus on A

and shows that the self-adjoint part of A is determined by the affine, order, and

topological structure of S(A). If A is a von Neumann algebra, we may also choose

to restrict attention its normal statespace, the set of all weak∗-continuous elements

of S(A). The normal statespace has similar convexity and spectral properties but

different topological features.20

An instructive, easily visualizable example is given by a 2-level quantum sys-

tem. The relevant von Neumann algebra is M2(C), the algebra of 2 × 2 matrices

with complex entries. This is a type I2 factor isomorphic to B(H2). In this case,

every state is normal, so the statespace and the normal statespace coincide. It is

affinely isomorphic to a 3-dimensional Euclidean sphere with unit radius (i.e., a

Euclidean 3-ball). Each state can be written as a positive trace-one matrix,

1

2

(
1 + x y + iz

y − iz 1− x

)
(6)

where (x, y, z) are the Cartesian coordinates of the corresponding point in sphere.21

Boundary points represent pure states and interior points represent mixed states.

If ρ is a statistical mixture of pure states ρ1 and ρ2, then ρ lies on the line segment

connecting boundary points ρ1 and ρ2. Using Kadison’s mapping, self-adjoint

20Typically, the normal statespace will not be compact in any useful topology, and the norm
topology plays a more prominent role than the weak∗-topology in many structural theorems.
Interestingly, the statespace of an arbitrary C∗-algebra, A, is affinely isomorphic to the normal
statespace of its universal enveloping von Neumann algebra, A∗∗, (Alfsen and Shultz 2001, Cor.
2.126). Viewed as such, it has additional properties (e.g., weak∗-compactness) that generic
normal statespaces lack. Hence, while a von Neumann algebra is a special case of a C∗-algebra,
a C∗-statespace is more properly viewed as a special case of a normal statespace.

21See Alfsen and Shultz (2001), Thm. 4.4.
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elements of M2(C) correspond to bounded R-valued affine maps on the ball that

attain their maximum and minimum on antipodal points.

These observations raise the following question: if we take local states rather

than observables as primitive, is it possible to reconstruct the local observables as

an algebra of functionals on the local statespace? A reconstruction theorem due

to Alfsen, Hanche-Olsen, and Shultz (1980) shows that the answer is yes.22 Geo-

metrically, the spectral information encoded by Kadison’s isomorphism appears in

the orthogonality relations between different faces of the convex set S(A). A face

is a convex subset, F ⊆ S(A), that contains any line segment in S(A) with interior

points in F . (This generalizes the concept of a face of a polygon to an arbitrary

convex set.) A face is exposed relative to some topology if the face can be isolated

by intersecting S(A) with a supporting hyperplane closed in that topology.

There is a tight structural analogy between exposed faces of S(A) and projec-

tion operators in A. In the special case of a von Neumann algebra, this analogy is

perfect: the norm-exposed faces of the normal statespace generate an orthomodu-

lar lattice which is naturally isomorphic to the lattice of projection operators. Thus

the quantum logic of projections is mirrored in the facial structure of statespace.23

In our 2-level example, the norm-exposed faces are just the boundary points of

the 3-ball. Each such point is a pure state associated with a projection opera-

tor with expectation value one in that state. Orthogonal projection operators are

associated with antipodal points.

In order to recover the full structure of the corresponding algebra, one ad-

ditional piece of geometric information is needed, a statespace orientation. The

smallest face of S(A) containing a pair of distinct pure states is affinely isomor-

phic to either a straight line or a Euclidean 3-ball. (The face is a line iff the

GNS representations of the associated states are quasiequivalent and a 3-ball iff

22Alfsen and Shultz (2001, 2003) give a comprehensive treatment of these results.
23The general case is a bit more complicated since C∗-algebras do not always possess a complete

set of projections, but the basic idea is the same. In full generality, the lattice of weak∗-semi-
exposed faces in S(A) is isomorphic to the lattice of upper semi-continuous projections in the
universal enveloping algebra A∗∗ (Alfsen and Shultz 2001, Thm. 3.61).
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the representations are disjoint.) The non-commutative operator product on A

determines an orientation for each facial 3-ball given by an equivalence class of

affine automorphisms where two automorphisms are equivalent just in case they

can be related by a rotation.24 Alfsen et al. (1980) prove the converse, showing

that a suitably continuous choice of orientation for each facial 3-ball suffices to

determine the operator product of the associated algebra.

Geometrically, choosing an orientation determines a unique correspondence

between R-valued affine functions on S(A) (i.e., self-adjoint observables) and 1-

parameter groups of affine automorphisms of S(A). From a physical standpoint,

this correspondence captures the role that observables play as infinitesimal gener-

ators of particular symmetries. The 2-level example elegantly illustrates this idea.

Each self-adjoint A ∈ M2(C) acts as a R-valued functional on the the Euclidean

3-ball, attaining a maximum and minimum value on a pair of antipodal points.

The operators iA and −iA generate infinitesimal statespace symmetries, rotations

of the 3-ball around the diameter between these points. The choice of an orienta-

tion structure determines which of these generate clockwise and counterclockwise

rotations.

The AHS-reconstruction theorem shows that it is possible to recover a local

observable algebra from its oriented statespace. This is not enough to capture

the full physics of QFT, however, since in most models the local algebras are

isomorphic. Consequently the physical differences between various models of QFT

must be encoded in the relations between local algebras rather than their internal

algebraic structure. We must find a way to recover the structure of the complete

net of observable algebras given suitable relations between their statespaces.

The eventual goal is to formulate extensionally equivalent statespace analogues

of the standard Haag-Kastler axioms. The first axiom, isotony, requires that if O1

24For each facial 3-ball, this effectively corresponds to the usual notion of orientation for a
manifold. In particular, a 3-ball always admits two possible orientations, “right” and “left”
handed. This is not true across the entire statespace. In general there will be infinitely many
suitably continuous ways to choose an orientation for each facial 3-ball corresponding to the
infinite number of Lie products compatible with the Jordan product on A.
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is a subregion of O2, the local algebra A(O1) must be a subalgebra of A(O2). This

gives the collection of local algebras the structure of a net, and allows the quasilo-

cal algebra to be defined as the colimit of this structure. Its dual, S-isotony

requires the existence of a privileged restriction mapping, ψ : S(O2) → S(O1),

between the corresponding oriented local statespaces. Formally, ψ must be an

S-homomorphism, a weak∗-continuous affine surjection which preserves comple-

mentary faces and whose inverse preserves orientation. This gives the collection of

local statespaces the structure of a presheaf, dual to the net of observable algebras,

and allows us to define the quasilocal statespace as its limit.

The translation of the remaining axioms is somewhat mathematically involved,

but the basic motivation is straightforward. S-microcausality says that the exposed

faces of spacelike separated local statespaces must be antipodal (except possibly

on their intersection) when embedded within the statespace of any enveloping re-

gion. This mirrors the idea that two algebras commute iff their associated spectral

projections do. S-covariance requires the existence of a suitably continuous rep-

resentation of the Poincaré group (or the translation subgroup) in the group of

automorphisms of the presheaf of local statespaces. This encodes the dynamics

and allows us to identify the vacuum state as a fixed point of the group action.

The S-analogue of the spectrum condition requires that the vacuum state lie in

the (exposed, split) face generated by the positive energy states (i.e., those states

whose Fourier transformations have particular spectral support properties relative

to the momentum-space forward lightcone).

Drawing upon these ideas, we can frame a revised version of Wallace’s equiva-

lence thesis:

Revised Equivalence Thesis. Given an assignment, {S(O)}, of oriented states-

paces to spacetime regions satisfying the S-axioms, we can define a dual net of

observables satisfying the Haag-Kastler axioms. Moreover, any net satisfying the

usual axioms arises in this way.

This gives us sharpened mathematical conjecture that has a fighting chance of

actually being true. The S-axioms characterize the family of mappings between

21



local statespaces missing from Wallace’s original version. Moreover, because of

the 1-1 correspondence between oriented statespaces and C∗-algebras given by the

AHS-reconstruction theorem, the revised thesis is compatible with local algebras

of any type. It stands to provide a state-first formulation of QFT that has the

same flexibility and power as algebraic QFT.

A follow-up paper, Swanson and Halvorson (in preparation), will provide a

mathematically precise formulation of the S-axioms and endeavour to prove the

revised equivalence thesis. The primary goal here has been to motivate the kind

of formal framework needed to circumvent the type III problem. Our concep-

tual understanding of QFT has been greatly enhanced by shifting to an abstract

algebraic picture on the observable side. It is only natural to suspect that the

parallel move on the state side will provide similar insight into the foundations

of relativistic SSR. To assuage the skeptical reader, we note that Shultz (1981)

proves that S-homomorphisms are dual to ∗-homomorphisms, establishing that

the AHS-reconstruction result is categorical. Thus from a purely mathematical

angle, anything we can do with C∗-algebras, we can do with oriented statespaces.

It remains to be seen if the revised equivalence thesis is similarly categorical and

what independent physical motivation can be given for the S-axioms.25

The defender of SSR thus has two options on the table. She can restrict the

scope of her thesis to effective QFTs and use Wallace and Timpson’s original pro-

posal, or she can broaden her sights and pursue the statespace approach advocated

here. The flexibility to treat non-type I local systems is a marked advantage of

the latter. In addition, the dual statespace language facilitates connections with

the extensive literature on algebraic and constructive QFT. In many instances we

25In addition, we might eventually hope to develop statespace analogues of standard quantiza-
tion techniques. As long as our methods for constructing QFTs rely on operators as tools, there
will be the worry that the statespace framework is not sufficiently independent. The relationship
between the new framework and constructive QFT is an important issue, but one beyond the
scope of this paper. Landsman (1998), Ch. 1.2-1.3 develops a geometric quantization procedure
linking the pure statespace of a type I quantum mechanical system to a classical Poisson manifold
where both are viewed as transition probability spaces. These techniques could provide a bridge
to more general statespace quantization procedures.
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can appeal to the duality between algebras and statespaces to show that a certain

construction must be possible on the statespace side, even if we do not yet know

all of the details. In the final section, we will use this technique to diffuse a number

of preliminary objections that have been levied against SSR.

5 Discussion

SSR claims that the local state encodes intrinsic properties of a region, but what

exactly are these properties? Wallace and Timpson recognize that they must

be “admittedly somewhat alien,” but urge that the situation is in principle no

different from classical field theories: “it is not as if we really have an intuitive

grasp of what an electric or a magnetic field is, other than indirectly and by

means of instrumental considerations (‘A test charge would be accelerated thus,’ for

example)” (p. 699-700). They argue that everything must ultimately be analyzed

in terms of patterns of fundamental properties of spacetime regions, and that

our epistemic grip on the properties themselves comes from two sources: (1) the

structure of the mathematical entities used to represent them, and (2) instrumental

connections between these entities and observation. As critics have noted, however,

there are serious concerns about both (1) and (2).

One prominent objection to SSR is that we do not adequately understand

the relevant instrumental connections (2). Both Lewis (2013) and Baker (2016)

worry that the view makes the relationship between fundamental quantities and

experimental predictions hopelessly obscure, if not incoherent. Lewis observes that

density operators are represented by complex matrices, “but the matrix elements

themselves determine a probability distribution over outcomes. How do the actual

outcomes give us insight into probabilistic properties?” As Baker puts it,

We derive statistical predictions from the quantum state via expecta-

tion values, but what is the meaning of an expectation value of energy,

for example, if energy is not among the fundamental quantities (which

are exhausted by the local states)? Moreover, how are we to make
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sense of a deterministic theory whose fundamental quantities appear

to be specified indirectly by way of statistical expectation values?

Baker goes on to point out that Wallace and Timpson criticize rival views on the

grounds that they posit a brute connection between operators and expectation val-

ues, rather than providing an explanation of how expectation values arise through

an analysis of the physics of measurement. But according to Baker, essentially

the same criticism applies to SSR: the fundamental quantities, the local states,

directly encode expectation values by fiat.

While these objections target (2), at their core lies a host of confusions sur-

rounding (1), most conspicuously, the idea that the local state is nothing more

than a list of expectation values. The defender of SSR should reject this idea (as

Wallace and Timpson do), but it is incredibly difficult to see how this is possible

from the perspective of the original density operator formalism.

The difficulty is brought out by a pair of puzzles about the symmetries of

Hilbert space that cast doubt on whether the field of local density operators is

sufficient to encode all of the relevant physics. Wallace (2012) observes that we

usually think of the quantum state as represented by a ray rotating in Hilbert

space. But Hilbert spaces are highly symmetrical (up to isomorphism they are only

distinguished by dimension). Each ray is just like every other, so it is not clear how

a ray can represent a structured entity like the quantum state in a region. A second,

related puzzle, originally put to me by Baker (personal communication, February

2013), turns on essentially the same technical point. All existing models of QFT

employ infinite-dimensional, separable Hilbert spaces as the global statespace, and

all such Hilbert spaces are isomorphic. Therefore by Gleason’s theorem, all models

of QFT have the same set of global density operators. These in turn determine

the local density operators. But if this is all there is to the ontology of QFT,

as SSR suggests, then it seems that SSR cannot distinguish between physically

inequivalent models of QFT, e.g., a free Klein-Gordon model and an interacting

φ4-model.

In response to the first puzzle, Wallace concludes that in addition to density
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operators we need to specify a privileged set of observables acting on the Hilbert

space. This breaks the symmetry, allowing different rays to represent distinct

physical possibilities: “Differences between states correspond to differing patterns

of assignments of numbers to operators, and those patterns can be highly struc-

tured” (p. 296). A similar response can be given to the second puzzle: although

the Klein-Gordon model and the φ4-model are implemented on isomorphic Hilbert

spaces, they carry unitarily inequivalent representations of the canonical commu-

tation relations which breaks the symmetry. The patterned assignment of numbers

to operators is different in the free and interacting theory. Yet even if we treat

the operators as merely formal tools as Wallace and Timpson urge, it remains un-

clear how we should interpret the numbers assigned to them by the states. If they

represent expectation values, then the Lewis-Baker objection seems on point —

differences between states are differences in fundamentally probabilistic properties.

If they represent something else, then what, and why are these entities directly

correlated with expectation values?

The equivalence thesis suggests a possible escape route. All of this algebraic

information can instead be encoded in the localization structure, in the tensor

product decomposition of the global Hilbert space into subsystems. A state is

not just a ray or a density operator, but rather a section of this tensor product

structure. Differences between theories boil down to differences in their subsystem

decompositions. Although patterns of expectation values can reveal the complexity

of this geometry, these patterns emerge from the localization structure, not vice

versa.

Unfortunately, in its original formulation the equivalence thesis is far too vague

to be of much practical help. As we have seen, most of the physical content is ac-

tually contained in mappings between different tensor product decompositions,

however the thesis is largely silent on what this network of mappings should look

like. It is not clear at this stage how to identify SSR field configurations as sec-

tions of some suitable bundle-like structure, nor is it clear how differences between

unitarily inequivalent QFTs can be grounded in different tensor product decom-
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positions. Here, the new statespace formulation of SSR can be of great service.

It offers a rich geometry capable in principle of encoding everything that can be

found in algebraic QFT. Three basic observations about this geometry serve to

dissolve the two symmetry puzzles and counter the Lewis-Baker objection.

First, the S-isotony and S-microcausality axioms provide a more precise char-

acterization of the localization structure in QFT than Wallace’s vague suggestions

about tensor product decompositions. The antipodality constraints imposed by S-

microcausality ensure that spacelike separated systems are suitably independent,

while the network of restriction mappings characterized by S-isotony provides

information about the relations between regions, weaving the collection of local

statespaces together into a single mathematical object whose sections represent

SSR field configurations. It also ensures that each point in the statespace associ-

ated with region O has a canonical restriction to a unique point in the statespace

of each subregion. Thus we can speak coherently of the local presheaf associated

with each region. The local state is not just a point in the convex set S(O), it

is a section of the local presheaf. Points which are intrinsically alike with respect

to the geometry of S(O) can correspond to geometrically distinct sections of the

local presheaf.

Second, by itself, this presheaf structure is insufficient to do physics. Unitarily

inequivalent QFTs like the Klein-Gordon model and φ4-model or Klein-Gordon

models with different masses can be constructed by starting with isomorphic nets

of C∗-algebras. They are differentiated by choosing inequivalent representations

of the Poincaré group acting as automorphisms of the net. In suitable positive-

energy GNS representations, privileged sets of operators are singled out as gener-

ators of the corresponding spacetime symmetries, justifying their role as energy-

momentum and angular-momentum observables. In Wallace’s picture, these ob-

servables serve a critical function, essentially labeling sectors of Hilbert space so

that otherwise identical rays can encode states with different physical content. In

our revised statespace picture, the S-covariance axiom specifies a representation

of the Poincaré transformations acting as 1-parameter groups of presheaf auto-
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morphisms. The orbits of these groups, rather than a set of energy-momentum

observables, serve to label portions of statespace so that otherwise identical sec-

tions can represent different configurations of the state-valued field.

Third, given a net of C∗-algebras equipped with a representation of the Poincaré

group, it remains possible to choose different global states and, via the GNS con-

struction, arrive at unitarily inequivalent representations of the net. Such represen-

tations can be distinguished by different global boundary conditions characterized

by different global von Neumann algebras. This scenario arises, for instance, when

describing different charge sectors in theories characterized by DHR/BF super-

selection theory. The global algebras in each sector contain non-trivial central

elements that are the spectral projections of associated charge observables. These

structural differences are mirrored in the convex geometry of the dual global states-

paces (where central projections correspond to split faces). Like algebraic QFT,

the statespace version of SSR thus gives us the flexibility to handle reducible rep-

resentations with global algebras other than B(H).

To sum up: a state is not just a ray or density operator, nor is is just a point in a

convex, oriented set. It is a section of a presheaf of such sets, carrying a privileged

representation of the Poincaré group, and thus a highly structured entity. This

geometry is dual to a net of C∗-algebras, and provided that the revised equivalence

thesis is correct, it gives us all of the necessary tools to individuate unitarily

inequivalent models of QFT. Differences between models boil down to differences

in the presheaf structure, the Poincaré representation, or the structure of the global

statespace in particular representations. These observations also serve to clarify

Wallace’s conjecture that the localization structure is sufficient to determine the

physics. If “localization structure” is interpreted to mean a presheaf of oriented

C∗-statespaces satisfying S-isotony and S-microcausality, then the conjecture is

false. In addition to knowing which states are localized in which regions, we need to

know which symmetries of the presheaf correspond to which spacetime symmetries

and which global states are physically possible.26 But SSR does not sink with

26Is this enough? That remains to be seen. If unitary equivalence is sufficient for physical
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this conjecture (whose primary purpose was to help make the equivalence thesis

plausible). Rather, we have simply gained a better understanding of the convex

geometry that characterizes the field of local states.27

By clearly separating this geometry from talk about “assignments of numbers

to operators,” the view also provides more breathing room to begin responding

to Lewis and Baker. At the fundamental level, the field dynamics are completely

deterministic. There are no primitive probabilistic properties (unless we modify the

theory in the service of a collapse interpretation). We can introduce observables as

bounded affine functions on the presheaf of local statespaces, but although their

equivalence, then it should be. Much of the algebraic QFT literature assumes that physical
differences between models supervene on the net of C∗-algebras, the Poincaré representation,
and the set of physically possible global states. Once these structures are fixed, we do not
need to be told which operators represent which physical quantities. This can be inferred from
the kinematical and dynamical properties of the model. SSR adopts the same mantra on the
statespace side. If it turns out that quantization rules or some other physical correspondence
principles are essential not just for constructing models but for endowing them with their physical
content, then more might be needed. The aim here is not the settle this question decisively, but
the put SSR on a formally coherent foundation, so that its merits and flaws can be better assessed.

A further point of clarification: if “localization structure” is instead interpreted to mean a
presheaf of statespaces dual the the net of von Neumann algebras in a particular representation,
then the status of Wallace’s localization conjecture is less clear. The global von Neumann algebra
now appears explicitly as part of the presheaf structure, and algebraic proofs of the PCT and spin-
statistics theorems indicate that we can naturally reconstruct a representation of the Poincaré
group from a net of concrete von Neumann algebras satisfying microcausality and a further
technical condition, modular covariance (Guido and Longo 1995).

It is doubtful that this move plausibly captures Wallace’s original intuition, however. Modular
covariance requires that certain algebraic invariants (the modular automorphism groups associ-
ated with wedge-localized von Neumann algebras) generate certain spacetime symmetries. Thus
we still need information relating symmetries of the net of to symmetries of spacetime, only now
this information is encoded in the algebraic properties of an enriched net of operators. Many
of these extra operators, including the modular invariants, are not observables at all. It seems
unlikely that this constraint can be plausibly interpreted as an assumption about the localization
of physical quantities.

27It might be objected that the current proposal, which posits geometric relations between
local states, is less ontologically parsimonious than the original version of SSR, which simply
posits an assignment of states to regions. It should be noted, however, that the original proposal
already posits substantial geometric relations between local states encoded in the Hilbert space
and tensor-product structure (e.g., convexity, extendability, and orthogonality relations). It is
true that additional geometric relations are needed, but without them SSR will not be capable
of adequately differentiating models of QFT.
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mathematical structure is fixed once the statespace structure is specified, their

physical interpretation is not. Which functions encode the expectation values

for which kinds of measurements must be explained. One possible strategy would

analyze measurement procedures in terms of functional patterns in the state-valued

field configuration. (The details would depend on how we choose to solve the

measurement problem.) Particular affine functions would then be identified with

equivalence classes of measurement procedures. If successful, this strategy would

in some sense vindicate the early operationalist interpretation of observables in

algebraic QFT.28 The crucial difference is that it would do so by providing a realist

explication of concepts like “measurement device” and “preparation procedure,”

concepts taken as primitive by the operationalist view. Differences between states

ultimately give rise to different patterns of expectation values, but only after a

long, complex physical explanation. The states do not encode expectation values

by fiat. In fact, it is the observables which emerge as lists of expectation values

on this view.29

Obviously, much work remains to be done in order to spell out the details

of such a story. There may be other viable strategies as well. Baker (2016) is

right to point out that “a perspicuous explanation for the expectation values is

a major missing piece in extant field interpretations” like SSR. But by recasting

the quantum state as a section of a highly structured presheaf, we can start to see

how such an explanation might be possible, as well as some of the broad contours

it could take. (For this reason, the present proposal should be of interest not just

28See Araki (1999), Ch. 1 for a summary of the central motivating ideas.
29To be clear, the view is not that physical quantities, such as energy, are equivalence classes

of measurement procedures, only that the corresponding observables are. The state-valued SSR
field is a physical field, and just like the tensor-valued electromagnetic field, facts about its
energy content will supervene on facts about the underlying field configuration. If this is right,
we should be able to identify some structural pattern in the SSR field as its energy (similar to the
definition of the electromagnetic stress energy-tensor in terms of the electromagnetic field tensor).
The energy observable, an R-valued functional over the SSR field, is interpreted operationally as a
list of expectation values associated with a suitable equivalence class of measurement procedures
that reliably track information about the energy content of the SSR-field. In short, observables
no longer directly represent physical quantities as they do on the usual interpretation of algebraic
QFT.
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to philosophers concerned with the technical foundations of QFT, but to those

interested in non-relativistic quantum theory as well.) The ultimate viability of

relativistic SSR, including its relationship to more traditional interpretations of

algebraic QFT, hinges on a proof of the revised equivalence thesis and a detailed

study of the S-axioms. Only this will reveal whether or not the state-valued field

is sufficiently structured to ground the kind of physical emergence story that SSR

wants to tell. By framing the thesis as a precise mathematical conjecture and

providing the tools to solve the type III problem, the preceding investigation gives

us the roadmap necessary to begin this project in earnest.
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