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Abstract

The paper presents an agent-based model (ABM) of scientific interac-
tion aimed at examining how different degrees of connectedness of scien-
tists impact their efficiency in knowledge acquisition. The model is built
on the basis of Zollman’s (2010) ABM by changing some of its idealizing
assumptions that concern the representation of the central notions un-
derlying the model: epistemic success of the rivaling scientific theories,
scientific interaction and the assessment in view of which scientists choose
theories to work on. Our results suggest that whether and to which ex-
tent the degree of connectedness of a scientific community impacts its
efficiency is a highly context-dependent matter since different conditions
deem strikingly different results. More generally, we argue that simplicity
of ABMs may come at a price: the requirement to run extensive robust-
ness analysis before we can specify the adequate target phenomenon of
the model.

1 Introduction

Recent studies into social aspects of scientific inquiry have been increasingly
employing agent-based models (ABMs). A number of articles presenting results
of such computer-based simulations have suggested that increased information
flow among scientists can be epistemically harmful (Zollman, 2007, 2010, Grim,
2009, Grim et al., 2013, Kummerfeld and Zollman, 2016). A specific feature
of these models is that they are highly idealized, based on simplified represen-
tation of scientific inquiry. As such, they can be characterized as ‘minimal’ or
‘toy models’ (Reutlinger, Hangleiter, and Hartmann, 2016), the virtue of which

∗The order of authors is alphabetical; both authors contributed equally to this paper. To
contact the authors, please write to dunja.seselja@rub.de.
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is their capacity to offer simple explanatory hypotheses about the causal de-
pendencies underlying represented phenomena.1 It is then not surprising that
the findings of these models have been adopted by philosophers of science and
social epistemologists (e.g. Wray, 2011, Goldman and Blanchard, 2016).

Zollman’s ABMs have in this respect been particularly influential. Never-
theless, a recent examination by Rosenstock, O’Connor, and Bruner, 2017 has
shown that Zollman’s (2007; 2010) results hold only for a small portion of the
relevant parameter space. While the authors suggest that Zollman’s findings
should be interpreted as relevant only for the context of difficult scientific in-
quiry, the precise relation between these models and the real-world phenomena
has remained an open question. In particular, it has remained unclear whether
the results of the models are robust under changes in idealizing assumptions
even if we restrict the target phenomenon to difficult inquiry.

In this paper we propose an ABM of scientific interaction, building on Zoll-
man’s (2010) model. The aim of our simulations is to address the above question
by examining whether adding certain assumptions to Zollman’s model – while
keeping it as simple as possible – affects the conclusions drawn from it. In this
way we will investigate whether these additional assumptions are ‘difference-
making’ in the sense of Strevens, 2013 and Weisberg, 2007. According to the
latter, “a minimalist model contains only those factors that make a difference to
the occurrence and essential character of the phenomenon in question” (Weis-
berg, 2007, p. 642, italics in original). Hence, if the introduction of new factors,
which are typical features of a difficult scientific inquiry, turns out to make a
difference to the results, then we can conclude that the starting model was not
adequately minimal for the given target phenomenon. Moreover, this will help
in specifying the application context to which Zollman’s results do apply, and
with respect to which his model can be considered adequately minimal.

We will start by outlining the main features of Zollman’s (2010) model (Sec-
tion 2), which represents the following scenario: a scientific community is con-
fronted with two rivaling theories, only one of which is true (or empirically
successful), though scientists do not know which one. The question the model
examines is how different degrees of connectedness among scientists impact their
efficiency in converging on the right theory. We will then turn to our adjustments
of some idealizing assumptions in this model. Our first adjustment concerns the
representation of scientists’ epistemic success in gathering evidence for a given
theory over the course of their inquiry. In contrast to Zollman’s representa-
tion of theories in terms of bandits with static probabilities of success, we will
represent them in terms of restless bandits, which are such that their probabil-
ity of success changes over time (Section 3). Next, we will introduce a critical
component to the representation of scientific interaction, assuming that critique
among scientists is epistemically beneficial (Section 4). Finally, we will intro-
duce two additional assumptions concerning theory choice: first, rational inertia
that scientists have towards their current theories (Section 5) and a threshold

1One of the most prominent examples of this kind of models is Schelling’s model of social
segregation (Schelling, 1971), which has remained influential in various domains of social
sciences (see e.g. Bruch and Atwell, 2015).
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within which rivaling theories are considered to be equally promising (Section
6). As we will argue, each of these four assumptions is either a typical feature
of scientific inquiry in general, or of difficult inquiry in particular. By chang-
ing the assumptions one after another, we will show in which way they affect
the performance of communities that are characterized by different degrees of
connectedness.2

Our results suggest that the answer to this question varies from one sce-
nario to another, depending on the conditions characterizing the given context
of difficult inquiry. In Section 7 we discuss the significance of these results.
While our model should still be understood as exploratory in nature (rather
than providing normative conclusions about actual scientific inquiry),3 it can
nevertheless contribute to the specification of the domain of phenomena that
Zollman’s model adequately captures. Section 8 concludes the paper.

2 Zollman’s (2010) model

Zollman’s ABM is designed to answer the following question: given a situation
in which a scientific community investigates multiple rivaling theories in the
given domain, which social structures do most efficiently lead the community to
a consensus on the best theory? Social structures here stand for different ways
in which information flow among the given scientists occurs, specified in terms
of the number of scientists and paths via which information is shared.

The main idea behind this ABM (based on the framework developed by
Bala and Goyal, 1998) is that the process of scientific inquiry can be tackled as
a type of bandit problem. The so-called bandit problems, usually discussed in
the context of economics and game theory, concern the following question: if a
gambler is confronted with different slot machines, at which point should she
stop testing which machine maximizes her reward, and stick with the one that
seems the best in this respect? Zollman suggests that an analogous situation
occurs in the context of scientific inquiry, where we can ask: at which point
should a scientist stop testing different hypotheses and stick with the most
promising one? The payoff of a slot machine here corresponds to the success of
applying the given hypothesis (or a method, or a theory), while the objective
probability of success (OPS) of a slot machine corresponds to the OPS of the
given hypothesis (or a method, or a theory). Hence, just like a gambler faces a

2Borg et al., 2017a,b, 2018 examine the robustness of Zollman’s results under different
modeling assumptions as well, by employing an argumentation based ABMs. While their
models do not reproduce Zollman’s results, the authors point out that they may represent
a different target phenomenon from the one captured by Zollman’s model. Kummerfeld and
Zollman, 2016 present a variant of Zollman’s (2010) model, showing that the results change
if scientists intentionally keep on experimenting with an inferior theory. Similarly to the
latter, we employ a model structurally related to Zollman’s one, but rather than focusing only
on assumptions underlying the representation of one’s research strategy, we introduce other
relevant assumptions, focusing on the context of difficult inquiry.

3As pointed out by Martini and Pinto, 2016, gaining normative insights on the basis of
simulations also requires their empirical calibration (see also Footnote 24).
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Figure 1: A cycle, a wheel and a complete graph. The nodes in each graph
represent agents, while the edges that connect the nodes represent transmission
of information between two agents.

choice between different slot machines, so does a scientist face a choice between
different hypotheses.

Adding a social dimension to this problem raises the following question: if
more than one gambler is trying to determine which bandit is the most profitable
one, how does the information flow among the gamblers influence their respective
choices? Analogously, we can ask: if more than one scientist is working in
the same domain consisting of rivaling theories, how does the information flow
among them influence their respective decisions as for which theory to pursue?

The model is designed as a computer simulation, which is round based. At
the start of a run each agent is assigned a random prior value for each of the
two rivaling theories. Each round an agent makes 1,000 pulls, each of which can
be a success or failure, where the probability of success is given by the OPS of
the respective theory. Agents then update their beliefs via Bayesian reasoning
(modeled by means of beta distributions),4 based on their own success and the
success of some other agents, namely those with whom they are connected in a
social network. Zollman investigates the efficiency of agents in converging onto
the hypothesis with the best OPS in three kinds of social networks: a cycle, a
wheel and a complete graph (see Figure 1). In the cycle, every agent exchanges
information with two of her neighbors. The wheel has the same information flow
as the cycle, except that in addition one agent exchanges information with all the
other agents. Finally, in the complete graph every agent exchanges information
with every other agent.

Zollman’s results show that agents connected in the cycle score the best,
those connected in the wheel score worse, and those connected in the complete
graph score the worst. This suggests that information flow via highly connected
groups can be epistemically harmful:

It would appear here that the amount of information distributed
is negatively impacting the ability of a social group to converge on
the correct methodology. Initially suggestive information is causing
everyone to adopt one particular methodology. (p. 28)

However, once agents are modeled as biased towards hypotheses with which

4For more details on Bayesian reasoning employed in Zollman’s model, which we have
partially retained in our own model, see Section 3.2.
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they initially start, the results become inverse.5 In other words, if agents are
modeled as more resistant to changing their beliefs in view of new information,
misleading initial results can’t infect the entire community:

. . . when our agents have very extreme priors, even rather large
amounts of information will not cause them to discard their prior
beliefs. (p. 31)

Thus, Zollman’s model suggests two ways of reducing errors in the learn-
ing process of a scientific community: either the information flow needs to be
restricted, or scientists need to be initially biased towards their pursued hy-
potheses. In the remainder of the paper we will focus on the former suggestion,
and examine under which conditions it holds once we alter some of the model’s
assumptions.6

3 Static vs. dynamic epistemic success

We will now take a closer look at four idealizing assumptions present in the
above model and motivate their replacement. We start with the assumption
that concerns the epistemic success of the given theories.

3.1 Introducing the notion of dynamic epistemic success

Zollman represents the OPS of the given theories or methodologies7 as fixed
values of 0.5 and 0.499, respectively. Note that the numerical proximity of these
values is crucial for obtaining his results (as shown by Rosenstock, O’Connor,
and Bruner, 2017). Now, in case of the classic interpretation of bandit problems,
where a gambler is facing different slot machines, it indeed makes sense to
assume that the OPS of these bandits remains stable over the course of time.
It also makes sense to assume that a gambler should prefer the 0.5 bandit, even
though its OPS is only 0.001 higher than the OPS of the other bandit: for
a gambler this difference might result in significantly higher payoffs over the
course of time.

However, when it comes to scientific inquiry, these assumptions don’t seem
very plausible. On the one hand, if the OPS of the two theories is meant to
represent how likely it is that each is successfully applied in a given domain, then
it is not clear why scientists are successful only if they converge on the 0.5 one.

5This is done by assigning more extreme distributions (i.e. drawing α/β from a larger
interval) as priors from which agents start their updates, thus allowing for a more conservative
outcome of the updating process. An interesting detail to note is that the reversal of results
is only due to the cutoff point at which Zollman chooses to end his simulation. If the model is
run sufficiently long, agents in all networks will end up on the correct theory: since extreme
priors allow for the theoretical diversity to be preserved, agents in all networks have enough
time to gather evidence and make the right choice.

6For a model that examines the impact of biases on scientific inquiry, building on Zollman’s
one, see Holman and Bruner, 2015.

7He uses the terms ‘theory’ and ‘methodology’ interchangeably. See below Section 3.2 for
a possible reason to stick with only one of these notions.
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Clearly, applying the 0.499 theory might still be fruitful in certain contexts,
and retaining it as a fruitful alternative seems to be a wise choice. On the
other hand, if one theory is meant to be superior to another to the extent that
abandoning its rival is warranted, then we would expect the difference between
the two theories to increase over the course of inquiry. More precisely, we
would expect scientists working on the objectively better theory to eventually
become successful in obtaining corroborating evidence more than 50% of the
time as they improve their methodology and therefore reduce the rate of false
negatives. Conversely, we would expect that scientists pursuing the objectively
worse theory become less and less successful in corroborating their theory, as
they reduce the rate of false positives (but see below for a discussion on other
possible dynamics).

The research on peptic ulcer disease (PUD), which Zollman, 2010 uses as a
case study motivating his model, is in fact a nice example of the above dynam-
ics. The bacterial hypothesis of PUD exhibited a low degree of success in the
1940s and it was abandoned in favor of the objectively worse acidity hypothesis.
Nevertheless, the former had its comeback with Warren and Marshall’s discov-
ery of Helicobacter pylori, bacteria that turned out to be the major cause of the
disease. Even though the two hypotheses appeared equally promising in the first
half of the twentieth century, the contemporary antibiotic treatment (based on
the bacterial hypothesis) exhibits the empirical success rates of around 90% vs.
less than 30% for the antacid treatment (Hosking et al., 1994; Moayyedi et al.,
2000), a far cry from the almost indistinguishable success rates for both theo-
ries employed in Zollman’s paper.8 Thus, instead of a static notion of epistemic
success of the given theories, a more plausible option seems a dynamic notion,
according to which scientists gradually improve their methods.

3.2 Implementation and results for the basic setup

We will model the dynamic aspect of inquiry by representing the epistemic
success of the theories in terms of restless bandits, that is, bandits whose OPS
changes over time. More precisely, we will assume that if scientists pursue a true
theory its OPS will gradually increase, while in case they pursue a false theory
its OPS will decrease. Hence, we will start from the assumption that one’s
methodology improves over time, where such improvement is truth-conducive.
In this way we will represent a gradually increasing gap between the epistemic
success of the two theories.

In order to keep things conceptually clear, we will replace the notion of OPS
with the notion of a scientist’s current probability of success (CPS), assigned

8A more charitable reading of Zollman’s scenario would be to understand it as representing
scientific inquiry within a limited time frame which is too narrow for scientists to sufficiently
improve their methodology in order to realize they have made a mistake. The success rates
of 0.5 (resp. 0.499) would in that case represent only temporary snapshot of how well the two
hypotheses perform on average (which might be static for a sufficiently short time frame). In
view of this interpretation we could ask, what would happen if we aimed to represent a larger
time span of inquiry, throughout which scientists gradually improve their methodologies –
which is precisely what our model is designed to answer.
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to each theory, representing the probability of gaining corroborating evidence
for it, given the current state of one’s inquiry. For the sake of simplicity we
will refer to the two theories as the ‘true’ and the ‘false’ one (we comment on
other possible interpretations below in this section). Each theory is assigned an
actual probability of success (APS), which represents the ideal probability of its
success: APS(True theory)=1 and APS(False theory)=0. This means that if a
scientist is pursuing the true theory, inquiry should lead her to more and more
successful applications of the given methodology. In contrast, if she is pursuing
the false one, her applications of it should become less and less successful.9

Our assumptions are motivated by cases such as the above mentioned re-
search on PUD, where successful applications of the bacterial hypothesis in-
creased, while those of the acidity hypothesis decreased. Another example fit-
ting this scenario is the continental drift debate, where the research program
built on the basis of Wegener’s hypothesis of continental drift gradually gained
success, while its rivals (the so-called contractionism and permanentism) grad-
ually became weaker (see Šešelja and Weber, 2012). Another option would
be to assume that both (or more) rivaling hypotheses gain success at differ-
ent rates. For instance, the objectively worse hypothesis may in the beginning
make greater improvements than its rival, though it is eventually surpassed by
the latter. Yet another option would be to assume that only the objectively
better theory gains success, while the objectively worse one remains the same
(i.e. to represent only the better theory in terms of a restless bandit). This
latter case might especially be applicable to the modeling of rivaling methods,
for instance in technological research, where the worse one may stagnate while
its rival shows improvement. While in Zollman’s model theories, hypotheses
and methodologies are treated interchangeably, this point raises the question
whether dynamic epistemic success has to be represented differently in each of
these cases. We will thus restrict our interpretation to theories in the sense of
research programs which can gain or loose epistemic success (as it was in the
above mentioned cases of PUD and the continental drift debate).We will say a
few more words on alternative forms of dynamics in Section 7.

We implement the above ideas as follows.10 At the start of the simulation
each theory is assigned an initial value for the current probability of success
(CPS). Like Zollman, we will take those to be 0.5 for the true theory and 0.499
for the false one, for all agents. Every x rounds (e.g. every 100 rounds), an
agent’s CPS(T) (where T stands for a theory in general) will slightly increase
in case of the true theory, and slightly decrease in case of the false one. More
precisely, the CPS assigned by an agent to the given theory after an update,
expressed in terms of the CPS of the same theory before the update will be as

9Our results would also hold under less idealized values for APS, such as, for example, 0.3
and 0.9 respectively, as long as the ratio by which CPS of each theory changes is adjusted
accordingly. Moreover, runs tend to end long before each agent’s CPS reaches the according
APS.

10The model presented in this paper is programmed in NetLogo (Wilensky, 1999). The open-
source code is available on GitHub: https://github.com/daimpi/SocNetABM/tree/RobIdeal.
Our code also includes Zollman’s (2010) ABM, as a nested variant.
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follows:
CPSafter (T ) = CPSbefore (T ) + f (d) (1)

where f (d) = d
1000 and d = APS (T ) − CPSbefore (T ).

Let’s clarify this a bit. Every x rounds, the bandit of each agent will improve
its CPS towards its APS. Such an improvement is a function of the distance d
between the CPS and the APS of the given theory (before the update). This
means that the CPS can be improved towards APS in greater steps in the
beginning of the inquiry; the closer a scientist gets to the theory’s true mean,
the smaller improvements she makes.11 How often such global improvements in
CPS occur is a parameter of the model.

It is important to mention though that even at the beginning of the inquiry
the improvements a scientist makes are very small: for example, assuming that
the improvements occur every 100 rounds, the first time an agent on the true
theory receives an improvement, her CPS will change in the following way:
CPS (True theory) = 0.5 + 0.0005 = 0.5005. Similarly, for an agent pursuing
the false theory CPS (False theory) = 0.499 − 0.000499 = 0.498501.

Just like in Zollman’s model, we represent an individual scientist’s beliefs
concerning the given theory in terms of beta distributions where the priors are
determined by each agent drawing an α and β for each theory from a continuous
uniform distribution over the interval (0, 4]. We will call the mean of the beta
distribution a scientist’s subjective probability of success (SPS) for that theory.12

An important consequence of our implementation of dynamic epistemic suc-
cess is that due to methodological improvements, all our scientists will eventually
discover which theory is objectively better (similarly to Zollman’s agents who
start with extreme priors, see Footnote 5). Hence, even if scientists prematurely
abandon the better of the two hypotheses, they will eventually get back to it.
This means that the question of the efficiency of inquiry shifts from ‘How often
are scientists successful?’ to ‘How long does it take them to get it right?’. Note
that this doesn’t mean that consensus on the false theory is not captured by the
model: the scientific community may still abandon the true theory for a large
time frame of the given run. As a result, such a community will be much slower
in switching back and converging on the true theory. Thus, instead of measuring
efficiency in terms of the percentage of successful runs (as Zollman does), we
will instead measure the efficiency in terms of time that scientists need in order
to converge on the true theory.13

11We have implemented the change in CPS of each theory in terms of diminishing marginal
returns in order to represent the idea that one’s methodological improvements result in greater
successes of finding corroborating evidence in the beginning than at a later point in inquiry.
While this is clearly an idealization, replacing it with a steady change in CPS is not likely to
have any major effects on our results since most runs end long before CPS(T) approaches the
value of APS(T).

12The mean of the beta distribution is given by the ratio of successes to pulls: SPS(T ) =
α(T )

α(T )+β(T )
=

successes(T )
successes(T )+fails(T )

=
successes(T )

pulls(T )
.

13While we could have introduced an arbitrary cutoff point which would allow for distin-
guishing successful from unsuccessful runs (as Zollman does in the case of extreme priors),
such a cutoff would be unmotivated as long as we don’t map the time in the model to the real
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A consequence of our implementation is a simulation that coheres with a
(conditional) self-corrective thesis of science, according to which scientific meth-
ods are self-corrective and truth-conducive.14 Nevertheless, we do not require a
realist interpretation of this thesis (and hence we also do not require a realist
notion of truth conduciveness). The model could equally be understood as rep-
resenting two rivaling theories within a given historical framework, where one
is more empirically successful than another, in view of the methodological stan-
dards adopted at the time. Under such interpretation, what we do assume is
that if scientists have an access to two theories, one of which is from an objective
point of view clearly more successful than the other, then even if they initially
dismiss the former, they will eventually discover they have made a mistake and
return to it. At the same time, we do not exclude a realist interpretation of
the self-corrective thesis. It is worth mentioning though that our model (just
like Zollman’s) does not represent a situation in which new theories that are
superior to their predecessors are discovered throughout the inquiry.

A consequence of replacing a static epistemic success with a dynamic one
(and keeping all the other assumptions unchanged) is that we can reproduce
Zollman’s result concerning the order of the cycle and the complete graph in
terms of their efficiency. Figure 2 represents the results for the cycle and com-
plete graph, under the assumption that scientists receive the global improvement
in CPS every 100 rounds.15 We will call this scenario our basic setup.16

Since the assumption of a dynamic epistemic success concerns the way in
which we measure efficiency, we will employ it as the basis for introducing fur-
ther adjustments to Zollman’s model. There are two reasons for this. On the
one hand, keeping two approaches to the representation of efficiency would make
our paper significantly longer. Second, in contrast to the other changes in as-
sumptions that will be introduced in the next three sections, dynamic epistemic
success isn’t a specific feature whose absence would represent a realistic context
of inquiry. As we have argued at the beginning of this section, if scientists are
considered successful in their inquiry only if they converge on one of the rivaling
theories, then it seems highly questionable to assume that these theories start

time (see also Section 7). Instead, our approach could be roughly understood as subsuming
Zollman’s original runs and examining what happens if agents begin to gradually improve
their methodologies: on the one hand, agents who would be successful in Zollman’s model
will complete the run relatively quickly in our model (they may even finish before dynamic
epistemic success kicks in for the first time). On the other hand, agents who would be un-
successful in Zollman’s model, also tend to be generally slower in our model (e.g. if they have
a consensus on the wrong theory, it may take them many rounds to converge on the better
theory).

14The self-corrected thesis has been most prominently advanced by Peirce, Popper and
Reichenbach, and more recently by Mayo, 2005; for an early criticism see Laudan, 1981.

15We let each simulation run for up to 100,000 rounds, for populations consisting of 4 to 11
scientists, and we recorded the point when agents converge on the true theory (by convergence
on a theory we mean that all agents end up on that theory, without switching back to the
rival). The same holds for the plots presented in the remainder of the paper. Each of them
shows results based on 10,000 runs for each data point.

16The order of the cycle and the complete graph remains the same if we allow for the global
improvement in CPS to occur every 10 rounds, except that both networks converge much
faster. We will get back to the issue of time and its representation in this model in Section 7.
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Figure 2: The average time agents need for successful convergence on the true
theory under the assumption that global improvement in CPS happens every
100 rounds.

with the OPS of 0.5 and 0.499 respectively, and that they do not change these
values over the course of research. Hence, examining what would happen if we
discharged this assumption, while varying others, doesn’t seem very interesting.

In the next three sections we will thus examine the impact of some addi-
tional assumptions, which represent the presence of specific features of scientific
inquiry, on the results of our basic setup.

4 Critical interaction

4.1 Introducing critique

Interaction in Zollman’s model includes critique or critical interaction neither
explicitly, nor implicitly. In particular, the model doesn’t include the assump-
tion that criticism can be epistemically beneficial in the sense of helping sci-
entists to reveal their mistakes. However, looking at actual scientific inquiry,
when scientists exchange evidence that supports one of the rivaling theories and
undermines another, we expect their opponents to engage in critical assessment
of their own results and methodology, reexamining whether they have perhaps
made a mistake. As a result, critical interaction plays an important role in dis-
closing errors that regularly appear in scientific research, namely false positives
and false negatives. More generally speaking, critique tends to be truth con-
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ducive since it allows for false beliefs to be exposed as such (Betz, 2012).17 This
means that criticism is not only normatively relevant component of scientific
interaction, but it is also descriptively adequate for many contexts of scientific
inquiry. This especially concerns times of scientific controversies when inquiry
can be difficult, and when critical exchange occurs via peer review procedure,
published articles, or discussions during scientific conferences. Hence, specifying
whether interaction represented in the model involves a critical component or
not is important for determining the context to which the results of the model
are supposed to apply.

4.2 Implementation and results

We will introduce a critical component to the representation of scientific inter-
action by assuming that:

a) criticism is truth conducive;

b) it occurs between proponents of rivaling theories.

These two assumptions cohere with the Millian view on rational scientific
inquiry, according to which critical interaction with experts whose views con-
flict with one’s own is essential for the justification of our own beliefs (see e.g.
Moffett, 2007).

We assume that criticism is triggered every time an agent pursuing Tx re-
ceives information from an agent pursuing Ty, such that Ty turns out to be
better than she has expected. More precisely, scientist S1 working on Tx is
affected by criticism whenever the success rate of the rivaling theory (reported
by scientist S2 working on Ty) from the pulls in the most recent round is higher
than the value S1 has had in her memory, i.e. in case:

S1 : SPSbefore(Ty) < SPSafter(Ty).

In other words, the receiver of information is affected by criticism every time
she corrects her belief about the rivaling theory in a positive direction.

Similarly to the implementation of dynamic epistemic success, we assume
that critical interaction allows agents to slightly improve the CPS of their current
theory towards the APS of that theory. The CPS(Tx), assigned by S1 after
criticism has been triggered, is calculated according to Equation 1. For example,
take an agent who is pursuing the true theory and currently has the following
beliefs: SPS(True theory) = 0.51 and SPS(False theory) = 0.49 Imagine now
that she receives information from an agent pursuing the false theory showing
that on her pulls in the most recent round, the false theory has manifested the
success ratio of 0.5. This could be understood as her opponent saying that he
has found a new explanation of a phenomenon which our scientist previously

17The view that criticism is epistemically beneficial goes back to John Stuart Mill, and was
later endorsed by Karl Popper and the school of critical rationalism. For an ABM of science
implementing this view in a different way than we do here see Chavalarias, 2017.
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didn’t think could be explained by the other theory. We interpret this as a
situation in which a scientist discovers that there has been an error in her overall
assessment of the given domain, which makes her reexamine and improve her
methodology.18 As a result, her next pull will be made from a slightly improved
bandit: if her CPS(True theory) was e.g. 0.5 before she has engaged in critical
interaction, it will be upgraded to 0.5 + 1−0.5

1000 = 0.5005. And conversely, if she
were on the false theory, receiving information from an opponent on the true
theory, her CPS would slightly decrease (in the same way as explicated above
with respect to the implementation of dynamic epistemic success).19

Adding this assumption to our basic setup produces the results in Figure 3.
The cycle still outperforms the complete graph. Both networks perform slightly
better than in the absence of critical interaction, which is of course not surprising
since we have assumed that critical interaction is epistemically beneficial.
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Figure 3: The average time for successful convergence under the assumption
that global improvement in CPS happens every 100 rounds, and that agents
interact critically.

18Given the simple character of the model, it is impossible to represent all the aspects of
critical exchange or of theory assessment. As a result, even though we are adding some new
assumptions to the model, we still have to employ various idealizations. For example, since
agents can pursue only one theory, we assume that in this way they are also able to point
out possible problems in their rivals’ theory. For a more complex representation of critical
interaction see Borg et al., 2017b, 2018.

19It is important to note though that the dynamics underlying critical interaction may very
well vary from one scientific domain to another, and that the way we implement it here doesn’t
necessarily hold for all contexts of scientific inquiry.

12



5 Inertia of inquiry

5.1 Introducing rational inertia

A peculiar feature of Zollman’s agents is that they are easily swayed by new
evidence. That is, they easily give up on a theory they’ve been pursuing if, for
example, the initial evidence suggests that the rival is superior. Nevertheless,
in the context of actual scientific inquiry scientists tend to retain their current
theory at least for a certain time period. More precisely, they will stick with
it unless they are convinced that it can no longer be saved from the defeating
evidence. This is not necessarily irrational behavior: if a scientist knows her
current evidence is insufficient to determine whether the theory could eventually
be accepted – as it may easily occur in times of difficult inquiry– it would be
irrational to abandon it before attempting its further development, and ratio-
nal to stick to it for a while longer (see Kelp and Douven, 2012). In addition,
changing one’s inquiry usually includes a number of costs (e.g. acquiring addi-
tional knowledge, new equipment, etc.), which is another motivation for such
inertia.20 Hence, we can assume that in some contexts of (difficult) inquiry
scientists have a rational inertia towards their current theory, and they take
some time to examine whether the theory can be improved before deciding to
abandon it.

Note that such inertia should not be confused with Zollman’s notion of
extreme priors with which scientists may initiate their inquiry. While the latter
notion does exhibit a type of inertia, this holds only for the initial phase of
research. As soon as the prior value is overcome in view of updates, agents are
no more inert towards their theories. For example, if Zollman’s agent equipped
with extreme priors starts with α = β = 3, 000 it may take many rounds before
the probability of the pursued theories is altered to the extent that she changes
her current theory. However, after this point, updates will continue in the same
way as in the case of smaller priors and no further inertia will be displayed. In
contrast, our notion concerns inertia for any new instance of inquiry, that is, a
point where an agent starts pursuing the other theory.

5.2 Implementation and results

We implement this feature in terms of a jump threshold : agents ‘jump’ to the
rivaling theory only after the latter has turned out to be better than their
current theory for a certain number of rounds according to their beliefs, where
the specific number of rounds is a parameter of the model.

Figure 4 shows the results of adding a jump threshold of 10 rounds to the
basic setup of our model. Both the cycle and the complete graph perform
similarly and although scientists take longer to switch theories, the average

20While our intention is to keep the current model simple, in a more complex model such
inertia could result from the process of optimization in which not fully myopic agents take
into account the costs of changing their inquiry.
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time they need to converge is less than in the basic setup. Moreover, we observe
that the complete graph surpasses the cycle in case of larger groups.
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Figure 4: The average time for successful convergence under the assumption
that global improvement in CPS happens every 100 rounds, and that there is a
jump threshold of 10.

Figure 5 shows what happens once we add critical interaction to this sce-
nario. As expected, both cycle and complete graph are now more efficient. It
is important to notice that even though critical interaction is per design epis-
temically beneficial, its impact on the ordering of the networks in terms of their
performance isn’t straightforward. On the one hand, agents connected in a
complete graph will be advantaged since they more often interact, and hence
they may more often critically interact. On the other hand, this advantage is
counteracted by the fact that they will faster end up pursuing only one of the
theories, in which case there can be no more critical interaction among them.21

6 Threshold within which theories are equally
promising

6.1 An inquiry that is even more difficult

As mentioned above, Zollman’s model is best described as representing the situ-
ation of a difficult inquiry (as Rosenstock, O’Connor, and Bruner, 2017 suggest)
due to the fact that the rivaling theories are very similar in terms of their OPS.

21In fact, data analysis shows that agents in the cycle e.g. in Figure 7 (see below) on average
interact critically more often than agents in the complete graph.
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Figure 5: The average time for successful convergence with global improvement
in CPS every 100 rounds, jump threshold of 10, and the assumption that agents
critically interact.

A specific feature of Zollman’s scientists is that they are able to distinguish
between the success of these theories no matter how similar they are. So even
when theories are very close to one another in terms of SPS that scientists assign
to them, they can perfectly determine which one is better. Nevertheless, there
are at least two ways in which this assumption can be challenged.

First, one way to think of difficult inquiry is as follows: if scientists are
confronted with theories that are very similar in terms of epistemic support,
it may be impossible for them to determine which one is better. For instance,
they may face difficulty of aggregating the relevant criteria of evaluation (such
as explanatory power, consistency, fruitfulness, etc.), which may impede their
ability to make an overall preference for only one theory. As a result, it may be
impossible for them to say which rival is more worthy of pursuit than another,
at least as long as they appear to be very similar.

Second, as we have already mentioned in previous sections, the process of
inquiry might reveal new evidence, in light of which one’s former conclusions
could turn out to be wrong. In view of this, rational scientists conducting a
difficult inquiry will employ a dose of caution when evaluating rivaling theories,
precisely to avoid prematurely discarding an objectively better theory. This
means that they will reject a theory not simply after they have seen it perform
worse multiple number of times (as discussed in Section 5), but only after its
rival has become sufficiently superior to it.

These two points motivate the assumption that scientists employ a threshold
which a theory has to surpass in order to count superior to its rival. Let’s see
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what happens when we add this assumption to our model. We will then examine
the effects of combining this assumption with those we have introduced in the
previous sections.

6.2 Implementation and results

In order to account for the above presented scenario, we introduce a threshold
value to the theory assessment: the rival theory counts as better only if it
surpasses one’s own theory by the margin of 0.1 (in terms of SPS that an agent
assigns to the theories). We will call this parameter theory threshold.

Figure 6 shows what happens when we add this assumption to our basic
setup. Even though the complete graph is better, both networks need a long
time to converge on the true hypothesis. Note that this result suggests that the
interpretation by Rosenstock, O’Connor, and Bruner, 2017, according to which
Zollman’s ordering of the networks holds for the context of difficult inquiry, may
not apply to all contexts of difficult inquiry. Our simulations suggest that if the
inquiry is difficult in the sense that it includes the aggregation problem (or in
view of our second motivation: if scientists require that a theory is sufficiently
inferior to its rival before they reject it), the complete network outperforms the
cycle.
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Figure 6: The average time for successful convergence with global improvement
in CPS every 100 rounds, and a theory threshold of 0.1.

If we now add critical interaction to this scenario, both networks become
much faster, though the complete graph still outperforms the cycle. The results
of these simulations are shown in Figure 7.

Finally, adding inertia to agents doesn’t change the situation much. Figure
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Figure 7: The average time for successful convergence with global improvement
in CPS every 100 rounds, a theory threshold of 0.1, and the assumption that
agents critically interact.

8 shows the results of adding a jump threshold of 10 to the previous setup. It
is interesting to notice that while adding inertia to the basic setup had a strong
impact on the results (see Figures 2 and 4) it now hardly has any. This is due
to the fact that the benefits of inertia – preventing a premature rejection of a
theory – are now covered by the theory threshold, which allows for theoretical
diversity to be retained for a large portion of a run.

7 Discussion

The above results indicate that the question whether and to which extent the
degree of connectedness impacts the efficiency of scientific inquiry is a highly
contextual issue. Figure 9 summarizes the performance of the cycle and com-
plete graph under different conditions, presented in the previous sections. On
the one hand, our results show that the complete graph may very well out-
perform the cycle even in the context of difficult inquiry (see Figure 10), and
even if we don’t assume that scientists intentionally keep on pursuing the worse
theory (as examined by Kummerfeld and Zollman, 2016).22 This is because

22Even though our assumption of rational inertia allows for the preservation of diversity
of pursued theories, its interpretation is quite different from the assumption employed by
Kummerfeld and Zollman, 2016, where the diversity is preserved by agents always pursuing
the inferior theory with a certain probability. In contrast to the latter case where each agent
pursues two theories, in the former case an agent stays on her current theory until she is
convinced that there are good reasons to abandon it.
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Figure 8: The average time for successful convergence with global improvement
in CPS every 100 rounds, a theory threshold of 0.1, a jump threshold of 10, and
the assumption that agents critically interact.

some additional factors may positively impact theoretical diversity. These are,
on the one hand, rational inertia (which can also be understood as a cautious
methodological approach or as an optimization in view of costs and benefits of
changing inquiry), and on the other hand, the interval within which theories
are considered equally promising. On the other hand, the presence of critical
interaction and rational inertia may in some contexts increase the efficiency to
a greater extent than does increasing or decreasing the degree of connectedness
(see Figure 11).

Looking at the runs where decreasing network density seems to provide
an advantage, our results confirm a conjecture by Rosenstock, O’Connor, and
Bruner, 2017 that “there are better solutions, in these cases, to the problem”
(p. 251). Figure 11 shows that in those cases having scientists with some iner-
tia yields a much higher rate of improvement than trying to limit the flow of
information among them.

Altogether, this shows not only that the results of Zollman’s (2010) may not
hold for all situations of difficult inquiry, but also that the issue of connectedness
and its impact on the efficiency of knowledge acquisition is much more context
dependent (even in the case of difficult inquiry) than this might have seemed
in view of Zollman’s results. Consequently, any application of these modeling
results to concrete cases of scientific inquiry should aim at carefully establishing
that the target domain of the given case study corresponds to the particular
context represented by the model.

However, looking at the way Zollman’s results have been used in the litera-
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Figure 9: Time for successful convergence averaged over all population sizes
presented in the previous sections. BS: basic setup (Section 3); CR: critical
interaction (Section 4); IN: inertia (Section 5). The standalone theory threshold
(TT) treatment (Section 6) has been omitted since its inclusion would require
distortive scaling due to the very high time requirements in those runs.
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Figure 10: The influence of network structure on the efficiency of inquiry ex-
pressed in relative terms for each of the presented treatments. ‘x% faster’ refers
to the given network structure needing x% less rounds than the alternative
network structure for successful convergence on average. For the meaning of
shortcuts used for the treatments see the caption below Fig. 9.
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Figure 11: The impact of changing the network structure vs. adding inertia on
the efficiency of two scenarios in which decreasing the degree of connectedness is
beneficial (see Fig. 10): the complete network in the basic setup (BS-Complete),
resp. the complete network in the setup with critical interaction (CR-Complete).
An improvement of x% means that changing the given factor results in runs that
on average need x% less rounds for successful convergence than BS-Complete,
resp. CR-Complete.

ture, we find the deployment of cautionary measures lacking. As mentioned in
Section 1, philosophers of science and epistemologists have adopted the findings
of his model (e.g. Goldman and Blanchard, 2016; Strevens, 2010; Wray, 2011).
In addition, Zollman himself (in his (2010)) has used the results of his model
to explain a concrete historical case study —the research on PUD— without
showing that the given case falls under the context represented by the model.

Our findings suggest that Zollman’s results hold only if it is neither the case
that scientists make their decisions as for what to pursue cautiously, nor is it
the case that they are confronted with the aggregation problem when making
theory choice. As soon as one of these two conditions is satisfied, our ABM
indicates that the cycle ceases to be superior to the complete graph, or it even
becomes inferior to it.23 Since each of these assumptions concerns a method
conducive to the preservation of diversity, this conclusion is not very surprising
given Zollman’s own findings. Nevertheless, the novelty of our findings lies in the
specification of certain conditions under which we may expect different degrees
of connectedness to have (or to lack) a significant impact on the efficiency of
inquiry in contrast to other related factors.

Having said that, it is important to add that even these results should be
taken with a grain of salt when it comes to any real-world applications. The

23While our results still require a proper sensitivity analysis, which may point to additional
restrictions of the application domain, it is worth mentioning that they are supported by
similar findings obtained by Borg et al., 2017b, 2018, whose models also employ the jump
threshold and the theory threshold as parameters of the models that can be interpreted along
the similar lines as we have done in this paper.
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primary challenge here is not just making sure that results are robust with
respect to idealizing assumptions of the model, but also mapping the parameters
used in the model to empirical information. For instance, the meaning of time
steps in the model (relative to the pulls made by scientists, improvements in
terms of their CPS, the time they need to converge on the right theory, etc.)
requires further analysis if we are to make claims that are of relevance for actual
scientific inquiry.24 Similarly, different cases of scientific inquiry may require
different representations of dynamic epistemic success, and our model may be
applicable only to some of them.

Concerning the latter issue, even though in this paper we have presented
results based on a specific form of dynamics underlying epistemic success of
theories, we can make a few comments on some alternative forms. For example,
if we assume that the epistemic success of the worse theory doesn’t decrease
but remains static or advances at a slower pace than the epistemic success of
the better theory, and if there is no inertia or theory threshold, we observe that
agents connected in the complete graph are more likely to converge on the wrong
theory than those connected in the cycle.25 Hence, in this scenario agents may
very well remain stuck on the worse theory for good. Adding either inertia or
theory threshold helps in avoiding the wrong convergence, but may also extend
the time of the run. Thus, whether we observe Zollman’s main result or not will
primarily depend on the relative impact of inertia and theory threshold even if
we replace the underlying dynamics of the notion of epistemic success.26 This
is another reason why mapping the parameter space in the model to the real
world is essential in obtaining information that is relevant for actual scientific
inquiry.

A more general take-home message of our findings is that simplicity of mod-
els, while possibly beneficial for their explanatory features (Batterman and Rice,
2014; Reutlinger, Hangleiter, and Hartmann, 2016), may nevertheless easily lead
to a blind spot in determining the exact target phenomenon that the model rep-
resents. It seems then that simplicity comes at a price: a requirement to run an
extensive robustness analysis in order to establish the link between the model
and its real-world target phenomenon. Without examining whether changes in
idealizing assumptions of the model lead to changes in its results it might be
impossible to say whether the model is adequately minimal with respect to the
given target phenomenon.

24Some preliminary work in this direction has been conducted in our Frey and Šešelja, 2018,
where we propose a way in which the above mentioned case study on PUD could be used to
calibrate the model presented in the current article.

25An interested reader can easily examine each of these scenarios by means of our model
(see Footnote 10 for the link to the code).

26 Similarly, we expect that introducing exploratory agents from (Kummerfeld and Zollman,
2016) would be another method of diversity preservation, which would help in avoiding the
wrong convergence in the above scenarios.
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8 Conclusion

The title of our paper is inspired by Muldoon and Weisberg, 2011 who argued
that Kitcher’s (1993) and Streven’s (2003) model of the division of cognitive
labor is not robust under changes of some of its idealizing assumptions.27 We
have presented a similar kind of investigation in the domain of ABMs of scientific
interaction. To this end, we have developed an ABM, based on Zollman’s (2010)
model aimed at examining the impact of different assumptions about scientific
inquiry on the results obtained by Zollman’s model.

Since the context of difficult inquiry has been suggested as an adequate tar-
get phenomenon represented by Zollman’s model (Rosenstock, O’Connor, and
Bruner, 2017), we have focused on four idealizing assumptions, all of which
may be relevant in the context of difficult inquiry. First, we have replaced
the assumption that the epistemic success of given theories is static with the
assumption that it is dynamic. Second, instead of assuming that all scien-
tific interaction is epistemically equal, we have introduced the assumption that
sometimes scientists criticize each other, where such interaction is epistemically
beneficial. Third, instead of representing agents as easily swayed by new evi-
dence, we have added the possibility that they have a rational inertia towards
their current theories. Finally, rather than assuming that one always has a linear
preference order over the rivaling theories, we have introduced the assumption
that there is an interval within which rivaling theories count as equally good.

Our results suggest that whether and to which extent the degree of connect-
edness impacts the performance of a scientific community is an issue contingent
on a number of factors that may be present in a given inquiry. In view of this we
have also specified the contexts of inquiry in which Zollman’s results are more
likely to hold than in others.

The upshot of our investigation was showing the significance of robustness
analysis under changes in idealizing assumptions, which has been neglected in
the literature on ABMs of scientific interaction. To this end, we have paradig-
matically focused on Zollman’s model as the most prominent ABM of scientific
interaction. Examining to which extent our changes in assumptions may affect
results of other highly idealized ABMs of scientific interaction (such as those
by Grim et al., 2013; Holman and Bruner, 2015, etc.) remains a task for future
research.

Acknowledgements We are indebted to Christian Straßer for a number of
valuable comments on the previous draft of this paper. We are also grateful to
Cailin O’Connor and the two anonymous reviewers for fruitful comments and

27An interesting detail is that Weisberg and Muldoon’s (W&M) epistemic landscape ABM
(Weisberg and Muldoon, 2009), announced in their (2011) paper, turns out not to be robust
under changes in idealizing assumptions either, as shown by Alexander, Himmelreich, and
Thompson, 2015. See also Thoma, 2015 and Pöyhönen, 2017 for additional criticism of W&M’s
model.
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Šešelja, Dunja and Erik Weber (2012). “Rationality and Irrationality in the His-
tory of Continental Drift: Was the Hypothesis of Continental Drift Worthy
of Pursuit?” In: Studies in History and Philosophy of Science 43, pp. 147–
159.

Weisberg, Michael (2007). “Three kinds of idealization”. In: The journal of Phi-
losophy 104.12, pp. 639–659.

Weisberg, Michael and Ryan Muldoon (2009). “Epistemic landscapes and the
division of cognitive labor”. In: Philosophy of science 76.2, pp. 225–252.

Wilensky, Uri (1999). “NetLogo.(http://ccl.northwestern.edu/netlogo/)”. In: Cen-
ter for Connected Learning and Computer Based Modeling, Northwestern
University.

Wray, K Brad (2011). Kuhn’s evolutionary social epistemology. Cambridge Uni-
versity Press.

Zollman, Kevin J. S. (2007). “The communication structure of epistemic com-
munities”. In: Philosophy of Science 74.5, pp. 574–587.

— (2010). “The epistemic benefit of transient diversity”. In: Erkenntnis 72.1,
pp. 17–35.

25


	Introduction
	Zollman's (zollman2010epistemic) model
	Static vs. dynamic epistemic success
	Introducing the notion of dynamic epistemic success
	Implementation and results for the basic setup

	Critical interaction
	Introducing critique
	Implementation and results

	Inertia of inquiry
	Introducing rational inertia
	Implementation and results

	Threshold within which theories are equally promising
	An inquiry that is even more difficult
	Implementation and results

	Discussion
	Conclusion

