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Abstract

We approach the physics of minimal coupling in general relativity, demonstrating

that in certain circumstances this leads to (apparent) violations of the strong equivalence

principle, which states (roughly) that, in general relativity, the dynamical laws of special

relativity can be recovered at a point. We then assess the consequences of this result for the

dynamical perspective on relativity, finding that potential difficulties presented by such

apparent violations of the strong equivalence principle can be overcome. Next, we draw

upon our discussion of the dynamical perspective in order to make explicit two ‘miracles’

in the foundations of relativity theory. We close by arguing that the above results afford

us insights into the nature of special relativity, and its relation to general relativity.
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1 Introduction

Recently, there has arisen a heightening of interest in the physics community in the cou-

pling of Maxwell electrodynamics to Einstein gravity. For example, the minimal coupling of

electromagnetism to gravity leads to curvature terms in second (and higher) order dynamical

equations governing non-gravitational fields, written at any point;1 however, there also ex-

ist different possible coupling schemes, according to which one recovers different dynamical

equations at any point. In literature such as [25, 28], authors have attempted to elaborate the

physical and mathematical details of these different possible coupling schemes.

The purpose of this paper is to pursue a philosophical branch of enquiry into the coupling

of electromagnetism to gravity; this field provides fertile ground for foundational insights

into both special and general relativity (SR and GR, respectively). A crucial starting point in

this regard is that the existence of curvature terms in higher order dynamical equations govern-

ing non-gravitational fields, written at any point, indicates violations of the strong equivalence

principle (sometimes: Einstein equivalence principle2). In this paper, we take the basic idea of

the priciple to be that (what are typically understood to be) the dynamical laws of SR—i.e. dy-

namical laws governing matter fields in a fixed Minkowski background, featuring no curvature

terms—are recovered in GR at any point. This observation that there exist apparent violations

of the strong equivalence principle (made by Eddington as early as 1923 [18, p. 176]) re-

quires a rethinking of the foundations of GR, as this principle is still sometimes asserted to be

universally valid in texts on the subject (see e.g. [5, p. 169]).

1In this paper, we mean by ‘matter fields’, or ‘non-gravitational fields’, those for which there exists an as-
sociated stress-energy tensor, and by ‘gravitational fields’ those for which there exists no such stress-energy
tensor—this distinction is in the spirit of [35]. In the context of general relativity, this means that the metric
field is identified as a gravitational field (see [15] for a proof against the existence of a tensorial expression of
such stress-energy), whereas all other fields typically of interest (e.g. Klein-Gordon fields, electromagnetic fields,
etc.) are matter fields. There exist subtle issues regarding ‘gravitational’ stress-energy in general relativity—see
e.g. [27,33,49] for related discussion. Note also that this distinction between matter and gravitational fields may
break down in the case of other spacetime theories—for example, in Newtonian gravitation theory, it is possible
to define a stress-energy tensor associated with the potential ϕ, in spite of this field naturally being regarded as
‘gravitational’ (cf. [16]). Nevertheless, for our purposes, the above distinction will suffice.

2See e.g. [10, §IV], and [46, p. 219]. We distinguish different ways of making this principle precise in §3.2.
Despite the fact that the principle has been named after Einstein, it should be noted that Einstein himself meant
something different when he spoke of the ‘equivalence principle’. Though he subscribed both to his definition of
the equivalence principle, and to the local validity of SR, he saw the two principles as clearly distinct, as is most
clear in [20]. For details of what Einstein calls the ‘equivalence principle’, see [41]. For these reasons, we use
the ‘strong equivalence principle’ nomenclature in this paper. (For more on different versions of the equivalence
principle in general, see [36].)
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To illustrate, the details of minimal coupling raise important questions regarding the dy-

namical perspective on relativity (principally advanced in [5, 8, 9]), according to which the

metric field in GR, though ontologically distinct from matter fields, acquires its chronogeo-

metric significance via the way it couples to matter fields in accord with the strong equivalence

principle, and codifies the symmetries of local dynamical laws. The claim that there exist vio-

lations of the strong equivalence principle raises questions over whether this account can still

go through. Though the subtleties presented by violations of this principle require us to make

slight modifications to the dynamical view in the context of GR, we argue that the problems

for the dynamical perspective presented by such cases can be overcome.

Having appreciated the details of such cases, other foundational results follow. In par-

ticular, consideration of how the dynamical perspective should be understood in GR in light

of these results leads us to identify two crucial foundational aspects—or ‘miracles’—in the

context of GR.3 In turn, this leads to an understanding of the relation of SR to GR which ex-

tends the previous notion that dynamical laws in a Minkowski background being recovered in

GR at any point characterises this relation—instead, we suggest a liberalised notion of what

constitutes a ‘special relativistic’ theory, according to which the sole defining characteristic of

such theories is the Poincaré invariance of dynamical laws governing matter fields.4

The structure of this paper is as follows. In §2, we discuss electromagnetism both in fixed

Minkowski spacetime, and in dynamical, generically curved spacetime—the latter theory con-

structed on the basis of minimal coupling. In §3, we consider the ramifications of the minimal

coupling of electromagnetism to gravity for our understanding of the strong equivalence prin-

ciple. In §4, we expound potential problems for the dynamical perspective which arise from

this work, showing that ultimately such worries can be overcome. In §5, we highlight two

‘miracles’ in the foundations of GR. In §6, we raise concerns about the ‘geometrical’ alter-

native to the dynamical approach in the context of GR. In §7, we make some remarks on the

nature of SR and its relation to GR. We close in §8 with conclusions and outlook.
3By ‘miracle’, we mean something surprising or puzzling, the explanation of which remains outstanding.

Another example of such a ‘miracle’ in physics would be the proportionality of gravitational and inertial masses
in Newtonian mechanics. Just as, in that case, one has to move to a successor theory (namely, GR) to account for
such a ‘miracle’ (cf. [53]), in our view accounting for the two ‘miracles of GR’ which we specify in this paper
will require recourse to considerations from physical theories external to GR. Cf. footnote 46.

4The distinction between ‘dynamical laws in a Minkowski background’ and ‘Poincaré-invariant dynamical
laws’ will be made clear in the body of this paper.
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2 Electromagnetism

2.1 Minkowski Spacetime

Consider Maxwell electrodynamics in a flat, static Minkowski background. In that situation,

the metric field ηab is a fixed field in the sense of [45, p. 13] (i.e. ηab is identically the same in

all kinematically possible models), and the Maxwell equations can be written:5

F ab
;b = Ja, (2.1)

F[ab;c] = 0, (2.2)

where covariant derivatives are here taken with respect to the torsion-free derivative operator

compatible with ηab (see e.g. [38, p. 49]); Fab = −Fba is the Faraday tensor; and we define

F ab := ηacηbdFcd, (2.3)

with ηab the inverse of ηab. (2.1) can be derived from a variational principle: the standard

Lagrangian density for a sourced Maxwell field is given by

LEM = −1

4
FabF

ab − AaJa, (2.4)

where Aa is the electromagnetic vector potential; Aa := ηabA
b; and Ja is a source term.

5Throughout this paper, abstract (i.e. coordinate-independent) indices are written in Latin script beginning
a, b, c, . . .; indices in a coordinate basis are written in Greek script; 3-vector indices in a coordinate basis are
written in Latin script beginning i, j, k, . . .; semicolons indicate covariant derivatives; commas indicate par-
tial derivatives; and the Einstein summation convention is used. Round brackets around indices denote sym-
metrisation over those indices; square brackets around indices denote antisymmetrisation. In addition, we set
ε0 = µ0 = c = GN = 1.
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Recalling that Fab can be written as

Fab = 2A[a;b], (2.5)

and then applying Hamilton’s principle with respect to arbitrary variations in theAa, we obtain

(2.1). (2.2) follows from (2.5).6 The stress-energy tensor for the electromagnetic field is7

T ab = F acF b
c −

1

4
ηabFcdF

cd. (2.6)

Finally, Fab satisfies a wave equation, which can be derived by manipulation of (2.1) and (2.2):

F c
ab;c = 2J[a;b]. (2.7)

2.2 Dynamical Spacetime

In GR, the metric field gab is not fixed in all kinematically possible models, and moreover is

dynamically coupled to the matter fields via Einstein’s equation. Additionally, one need not

restrict ab initio the allowed form of the dynamical equations for matter fields (e.g., arbitrary

contractions of the matter fields and the curvature tensorRa
bcd associated with the torsion free,

metric-compatible derivative operator ∇a are permitted). However, that being said, one often

restricts to dynamical equations for non-gravitational fields which are minimally coupled. The

prescription for constructing such minimally coupled equations is the following:

Minimally coupled dynamical equations for matter fields in GR are constructed

from dynamical equations for matter fields featuring coupling to a fixed Minkowski

metric field ηab and no curvature terms, by replacing all instances of ηab with a

6If the derivative operator in (2.1) and (2.2) is not assumed to be metric-compatible, then a metric field is only
required to write down (2.1), and not (2.2). Cf. appendix A.

7Recall that the stress-energy tensor is defined through T ab = 2√
g
δS
δgab

, where g is the metric determinant,
and S is the action to which the matter Lagrangian—here LEM—is associated.
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generic Lorentzian metric field gab, and replacing all instances of the torsion-free

derivative operator compatible with ηab with the torsion-free derivative operator

compatible with gab.

In the case of electromagnetism in the GR context, if one couples the Fab to gab via

F ab
;b = Ja, (2.8)

F[ab;c] = 0, (2.9)

and

Gab := Rab − 1

2
gabR = 8πT ab, (2.10)

then one obtains Maxwell electrodynamics minimally coupled to Einstein gravity. Here, T ab is

the stress-energy tensor of Fab; gab is the inverse of gab; indices are lowered with respect to gab
and raised with respect to gab; the derivative operator is torsion-free and metric-compatible;

and the Ricci tensor Rab := Rc
acb and Ricci scalar R := gabRab are those associated to that

derivative operator. (2.8) and (2.9) are Maxwell’s equations in this (dynamical and generically

curved) spacetime; and (2.10) is Einstein’s equation. In this case, T ab on the right hand side

of (2.10) reads8

T ab = F acF b
c −

1

4
gabFcdF

cd. (2.11)

In this minimally-coupled Maxwell-Einstein system, the wave equation for Fab becomes,

8More generally, T ab is the stress-energy tensor associated to all matter fields in the theory.
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after using (2.8), (2.9), and Ricci-like identities,9

F c
ab;c = 2

(
F e

[bRa]e −RabcdF
cd + J[a;b]

)
. (2.12)

In (2.7), the two curvature terms on the right hand side of (2.12) were not present, as the metric

field was fixed to be ηab—a fortiori flat—in all kinematically possible models. Dropping this

assumption leads to the generalised form (2.12).

There is an important feature of second-order equations such as (2.12), valid in minimally-

coupled Maxwell-Einstein dynamics. To see this, first recall that in a coordinate basis {eµ},
the connection components Γµνρ associated to a derivative operator∇a are defined by∇ρeν =

Γµνρeµ. Then, where M is the spacetime manifold, at any p ∈M we can choose normal coor-

dinates, such that Γµ(νρ) (p) = 0 in those coordinates; for a torsion-free derivative operator, we

can in fact choose normal coordinates such that Γµνρ (p) = 0. (Note that the connection com-

ponents away from p will in general not vanish.) If the unique torsion-free, metric compatible

derivative operator is used, then in normal coordinates we also have gµν,ρ (p) = 0, and we

may find a subclass of normal coordinates at p such that gµν (p) = diag (−1, 1, 1, 1).10 Since

gµν (p) takes this diagonal form—preserved under Poincaré transformations—one might write

gµν (p) = ηµν (cf. e.g. [40, p. 1055]). This notwithstanding, however, any claim to the effect

that the metric field ‘reduces’ to the Minkowski metric at p in normal coordinates should be

met with suspicion—for in general, second (and higher) order derivatives of the metric field

do not vanish at p, in these coordinates. This point will be of importance in what follows.

In normal coordinates at p, connection components vanish—and elements of the class of

frames in which such is the case, and in which gµν (p) = diag (−1, 1, 1, 1), are related to

one another by Poincaré transformations. Moreover, first order, minimally coupled dynamical

equations such as (2.8) and (2.9) do not feature curvature terms at p. In this way, first order,

minimally coupled dynamical equations recover their ‘Minkowski background’ form at p.

However, this is only generically true of first order equations; equations that are second or

9I.e. identities of the form (∇c∇d −∇d∇c)T a1...akb1...bl = Ra1ecdT
e...ak

b1...bl
+· · ·+RakecdT

a1...e
b1...bl

−
Reb1cdT

a1...ak
e...bl

− · · · −ReblcdT
a1...ak

b1...e
.

10We say here ‘a subclass’, for the conditions on normal coordiantes at p are preserved under all affine
transformations, whereas the condition gµν (p) = diag (−1, 1, 1, 1) is preserved only under a subclass of such
transformations—viz., Poincaré transformations. In the remainder of this paper, we invariably focus upon those
normal coordinates in which this diagonalisation condition holds, without explicit qualification.
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higher order may contain curvature pieces and higher order covariant derivatives—consider,

for example, (2.12) versus (2.7). Since curvature is represented by the Riemann tensor, this

object cannot be made to vanish at p. This implies that in GR it is not always the case that

laws recover their original ‘Minkowski background’ forms at a point. Another way to see this

is to note that by expanding out the curvature and covariant derivative terms in such equations,

we obtain terms containing derivatives of connection coefficients, which in general cannot be

made to vanish at p in normal coordinates.11

3 Minimal Coupling and the Equivalence Principle

3.1 Local Dynamical Equations

What should one make of the observation that minimal coupling yields second order equations

such as (2.12) containing curvature terms which do not vanish at a point? To answer this

question, it is useful to distinguish two forms that the dynamical laws for non-gravitational

fields might take in normal coordinates at any given point p ∈M in GR: (a) Poincaré invariant,

with no terms containing the Riemann tensor or its contractions; or (b) Poincaré invariant

simpliciter. In §2, we saw that minimal coupling yields violations of the claim that, at any

p ∈ M , dynamical laws take a Poincaré invariant form with no terms featuring the Riemann

tensor or its contractions (i.e., form (a)). However, this does not necessarily imply violations

of the analogous claim regarding such laws taking, at any p ∈ M , a Poincaré invariant form

simpliciter (i.e., form (b)).

One important point to make regarding minimal coupling is the following: although a

certain form of dynamical law (i.e. those laws featuring coupling to a fixed Minkowski metric

field, and containing no curvature terms) is used to determine the class of minimally coupled

dynamical laws for non-gravitational fields in GR, there exists no a priori restriction on the

form that these general relativistic, minimally coupled equations take locally, at any p ∈M—

in particular, there exists no restriction that we recover locally the dynamical laws from which

11Cf. [10, §IV]. The present discussion goes further than that paper in several respects—for example, in
explicitly delineating precisifications of the strong equivalence principle which are in tension with the above
results.
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we began. That said, it is straightforward to show that such minimally coupled dynamical

equations in GR take a Poincaré invariant form—but not necessarily a form in which terms

containing the Riemann tensor or its contractions vanish—at any p ∈ M .12 In this way,

one can consider (minimal) coupling to matter to restrict the local symmetry group of the

dynamical equations of GR to the Poincaré group.

Some further words on the ambiguity of the application of minimal coupling are in order.

Clearly, the minimal coupling prescription presented in §2.2 does not specify the dynamical

equations to which the procedure is to be applied. Though in §2.2, the procedure was applied

to (2.1) and (2.2), yielding (respectively) (2.8) and (2.9), which in turn were used to construct

(2.12), it is not the case that, were the minimal coupling procedure applied directly to (2.7),

(2.12) would have been obtained. Thus, there is a sense in which the minimal coupling pre-

scription is ambiguous.13 This is in line with Goenner’s observation that “such a procedure is

unique only for first-order partial differential equations” [24, p. 866].

A related point here is the following. One might think that it is no surprise that equations

such as (2.12) do not reduce to (2.7) (i.e., to a Poincaré invariant form, with no curvature

terms) in normal coordinates at any p ∈ M , for (2.12) was not obtained directly via minimal

coupling. This thought, however, is ultimately by-the-by, for even if minimal coupling were

applied directly to (2.7), to obtain

F c
ab;c = 2J[a;b], (3.1)

where now index contraction is taken with respect to a generic Lorentzian gab satisfying (2.10),

and the unique torsion free derivative operator∇a compatible with gab is used, (3.1) would still

not take at any p ∈ M and in normal coordinates a Poincaré invariant form with no curvature

terms—the reason being that, in a coordinate basis, (3.1) features derivatives of connection

components, which cannot be made to vanish in normal coordinates.

12Cf. appendix A. The work presented in that appendix also brings out when such local dynamical equations
are invariant under a broader symmetry group than the Poincaré group. The reader’s attention should also be
drawn to §6 and appendix B, in which cases are presented in which dynamical equations for matter fields take
a yet simpler form (in the sense that further terms in these equations vanish) in a class of frames related by a
subgroup of the Poincaré group.

13For discussion related to this point, see [40, §16.3].
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3.2 The Strong Equivalence Principle

The work presented in §2 has important ramifications for the strong equivalence principle. We

here introduce two distinct formulations of this principle, which we call EP1 and EP2:14

EP1: The dynamical equations for non-gravitational fields reduce to a Poincaré invariant

form, with no terms featuring the Riemann tensor or its contractions, at any p ∈M .

EP2: The dynamical equations for non-gravitational fields reduce to a Poincaré invariant form

at any p ∈M .

The results of §2 indicate that EP1 is incompatible with minimal coupling for higher-

order dynamical equations like (2.12). Claims to the contrary can, however, be found in the

foundational literature; consider for example the following quote, given at [5, pp. 170-171]:

[Minimal coupling involves the] claim that the matter fields do not couple to the

Riemann curvature tensor or its contractions. Recall that in SR, inertial frames are

global, which implies that the curvature vanishes everywhere, and hence trivially

makes no appearance in the laws of physical interactions. This feature is now

absorbed into GR in the requisite local context.

Since terms featuring in (2.12) contain the Riemann tensor, these cannot be made to van-

ish at a point; this is in manifest contradiction with the above quote. In fact, second order

equations such as (2.12) constitute a straightforward counterexample to any claims to the ef-

fect that EP1 may universally be regarded as holding when dynamical equations for matter

fields are constructed via minimal coupling. Note, however, that insofar as curvature terms

may be ignored at p ∈M , EP1 may be regarded as holding at p. Whether this is the case will

principally depend upon the strength of curvature effects relative to the experimental apparata

available; if one’s experimental apparata are insensitive to such effects, then the principle may

be regarded as holding approximately at p for the matter field measured by those apparata—see

below for further discussion. By contrast to EP1, note that curvature couplings in higher-order
14Sometimes, EP1 and EP2 are referred to as ‘pointy’ versions of the strong equivalence principle—for dis-

cussion, see [23, 31, 42].
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minimally coupled dynamical equations for matter fields do pose problems for the validity of

EP2 in the context of matter fields obeying such dynamical equations—indeed, the results of

§A demonstrate that there exists no tension between EP2 and minimal coupling.

Recall now the discussion of the strong equivalence principle at [5, p. 169]:15

There exists in a neighbourhood of each event preferred coordinates, called lo-

cally inertial at that event. For each fundamental non-gravitational interaction,

to the extent that tidal gravitational forces can be ignored, the laws governing

the interaction find their simplest form in these coordinates. This is their special

relativistic form, independent of spacetime location.

To understand this quote, it is useful to extend EP1 and EP2 to the neighbourhood of any

p ∈M :

EP1': The dynamical equations for non-gravitational fields reduce to a Poincaré invariant

form, with no terms featuring the Riemann tensor or its contractions, in a neighbourhood

of any p ∈M .

EP2': The dynamical equations for non-gravitational fields reduce to a Poincaré invariant

form in a neighbourhood of any p ∈M .

As with EP1, whether EP1' holds approximately will principally depend upon the strength

of curvature effects relative to the experimental apparatus available. (Arguably, however, such

assumptions are more plausible in the context of EP1' than of EP1, since experimental ap-

parata always occupy some extended region of spacetime.)16 In this case, however, the size

of the neighbourhood is also relevant: in a larger neighbourhood of p, one is more likely to

be able to detect curvature effects with one’s experimental apparatus—in which case, EP1'
will not hold as an approximate principle. To illustrate, consider Pound-Rebka experiments

to detect gravitational redshift.17 The fact that these experimental apparata are not sensitive

to curvature effects in their neighbourhood means that EP1' can be regarded as holding in
15Other similar presentations of the strong equivalence principle can be found in e.g. [31, §3.4] and [32, p. 874].
16In this regard, cf. [43, §1.9], and discussion at [5, p. 170] and [32, p. 875].
17For the original Pound-Rebka paper, see [47].
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that neighbourhood for the fields that those apparata measure; in light of this, a flat spacetime

account of the Pound-Rebka results can be offered. For further details, see [10, §III]. (Though

EP2' is principally introduced by analogy with EP2, it is important to note that, like EP1', this

principle also holds only approximately in a neighbourhood for minimally coupled dynami-

cal equations—for it relies upon the metric field gab to which the matter fields couple being

approximately Minkowskian in a neighbourhood.)

Clearly, it is important that one be precise about what is meant by ‘tidal gravitational

forces’ in quotations such as that above. In the context of dynamical equations for non-

gravitational fields in the neighbourhood of some p ∈ M , we understand ‘terms representing

tidal forces’ to mean terms in those equations featuring the Riemann tensor or its contractions.

As a result, in contexts in which terms representing tidal forces can be ignored, EP1' and EP2'
hold.

4 The Dynamical Perspective

With this understanding of the limitations to the holding of EP1 in hand, we now consider

potential ramifications of this result for positions in the foundations of relativity theory. To

that end, we assess in this section the consequences of the above work for the dynamical

perspective on relativity, as presented in [5,8,9]. We argue that difficulties raised by violations

of EP1 do not present damning problems for this view in the context of GR.

4.1 Explanation and Codification

To begin our discussion, we must clarify what is meant by the dynamical perspective on

relativity. We first focus specifically on the case of SR, and distinguish two positions on the

nature of the Minkowski metric field:

(A) The Minkowski metric field is an ontologically distinct and primitive entity; its presence

can explain certain facts about the dynamical laws governing matter fields (namely, the

fact that these laws are Poincaré invariant).
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(B) The Minkowski metric field is not an ontologically distinct and primitive entity; rather, it

is a codification of certain facts about the dynamical laws governing matter fields (namely,

the fact that these laws are Poincaré invariant).

To endorse (B) is to endorse the dynamical perspective on relativity; the orthodox line is

(A).18 In advocacy of the (A)-view, Maudlin writes:19

If we accept that in a vacuum there is no physical structure, except for the struc-

ture of space-time itself, then the behaviour of light in a vacuum implies that the

geometry of spacetime alone determines the trajectory of the light rays. That is,

given any point in the space-time p, the structure of space-time ought to fix where

light emitted from that p (in any possible direction) will go. [39, p. 68] (Emphasis

in original.)

... the Minkowski geometry takes exactly the same form described in [any] Lorentz

coordinate system (by the symmetry of Minkowski spacetime), and the laws of

physics take exactly the same coordinate-based form when stated in a coordinate-

based language in any Lorentz coordinate system (because the laws can only ad-

vert to the Minkowski geometry, and it has the same coordinate-based descrip-

tion).20 [39, pp. 117-118]

By contrast, the (B)-view (principally advocated by Brown and Pooley—see [5, 8, 9]) is ex-
18Acuña [1] has recently argued that the debate between (A) and (B) is misguided. In particular, he argues that

neither Minkowski spacetime nor Poincaré invariance is to be taken as explanatory and/or ontologically primary
over the respective other, but that the connection between the two is one of bidirectional analyticity: Spacetime is
Minkowskian just in case the laws of physics are Poincaré invariant. We concede that this is a defensible position
(at least prima facie), even though Acuña does not show that it is superior to either (A) or (B). Moreover, his
position does not have a natural extension to GR; in the following, we shall discuss such an extension of (B).

19We take Maudlin’s speaking of Minkowski spacetime in vacuo to indicate his commitment to the view that
the metric field of SR is primitive, and ontologically autonomous of matter fields. Other advocates of the (A)-
view arguably include e.g. Friedman [22]. A related view is that of Janssen [2,30], according to whom one makes
a ‘common origin inference’ from the Poincaré invariance of the dynamical laws to Minkowski spacetime—
understood as an expression of the universal Poincaré invariance of all dynamical laws. On this position, the
Minkowski metric field is not necessarily an ontologically autonomous entity. For further discussion as to how
Janssen’s views align with the (A)- and (B)-views, see [1, 48].

20In this connection, note also that Einstein, after developing GR, came to view the structure of Minkowski
spacetime in SR as affording an explanation of the inertial motion of force-free bodies, and thus as violating the
action-reaction principle. For a critical analysis of this development in Einstein’s thinking, see [7].
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pressed in passages such as the following:21

The appropriate structure is Minkowski geometry precisely because the laws of

the non-gravitational interactions are Lorentz covariant. [5, p. 133]

The relative merits of (A) and (B) in the context of SR have been widely discussed, and

will not be repeated here. Instead, we observe how the debate between these two camps

changes on moving to GR. The first key difference in the case of GR is that the advocate of

(B) concedes that the metric field in this context is an autonomous agent, ontologically distinct

from the matter fields of the theory.22 Hence, for the extensions to GR of both (A) and (B),

the metric field is not reducible to properties of the matter fields.

Though advocates of (A) and (B) agree on the ontological autonomy of the metric field

in GR, they may disagree on its relation to chronogeometry. For the latter, the dynamics of

the metric field tell us that it is ‘just another field’: “Nothing in the form of the equations

per se indicates that gab is the metric of space-time, rather than a (0, 2) symmetric tensor

which is assumed to be non-singular” [5, p. 160].23 How, then, does the metric field attain

its chronogeometric significance in GR? For the proponent of (B), the metric field “earns its

spurs by way of the strong equivalence principle” [5, p. 151]. The reasoning here can be stated

explicitly as follows:

1. In the neighbourhood of any p ∈M , assuming that one’s experimental apparata are such

that terms featuring the Riemann tensor or its contractions can be ignored, we recover

EP1', for the fields measured by those apparata.24

21Note that what Brown calls ‘Lorentz covariance’ here is what we call ‘Poincaré invariance’ above. Re-
lated to this, it is worth noting that arguably the essence of SR is more closely tied to Lorentz- than Poincaré-
invariance, for both pre-relativistic and relativistic dynamical laws governing matter fields are locally invariant
under translations—it is only the linear part of the class of affine transformations under which such laws are
invariant that changed on the transition to relativistic physics.

22To claim that the metric field is reducible to the matter fields in GR is to endorse a certain form of relationism
about the metric field; there are profound difficulties with implementing this programme in GR. An obvious
illustration of this difficulty can be found in the existence of vacuum solutions in the theory.

23Notation in this quotation has been modified for consistency with the present paper. For discussion of
coordinate-dependent versus -independent approaches in the foundations of spacetime theories, see [52].

24Note that this invocation of approximation means that, strictly speaking, we are dealing with the approximate
chronogeometric significance of the metric field in GR. Our thanks to an anonymous referee for pushing us on
this point.
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2. In addition, in such a scenario the dynamical metric field of GR manifests Poincaré

symmetries—for in this case, higher derivatives of the metric field can be regarded as

vanishing.25

3. The symmetries of the dynamical laws governing non-gravitational fields in the appro-

priate local neighbourhood of p therefore coincide with the symmetries of the dynamical

metric field in this neighbourhood.26

4. As a result, inertially moving, stable physical rods and clocks survey this primordial

metric field, and so afford it its chronogeometric significance, in the neighbourhood of

p.27

In summary, the point may be put as follows:

It is because of minimal coupling and local Lorentz covariance that rods and

clocks, built out of the matter fields which display that symmetry, behave as if

they were reading aspects of the metric field and in so doing confer on [the met-

ric] field a geometrical meaning. [5, p. 176]

It is worth making some comments on the (B)-view. First, the advocate of this approach

errs insofar as she universally endorses EP1 in conjunction with minimal coupling, for we

have seen cases in which the minimal coupling prescription applied to certain dynamical laws
25By imposing the condition that terms representing tidal forces may be ignored, derivatives of the metric field

may be ignored, so this field may indeed be treated as the Minkowski metric field in the relevant local vicinity
of p. Note that thus far we have understood ‘symmetries’ to mean dynamical symmetries—i.e. transformations
upon dynamical equations which leave their form invariant. When speaking of the (local) symmetries of the
metric field, we are concerned with spacetime symmetries, which Pooley defines as “groups of transformations
that preserve spatiotemporal structure (as encoded in coordinate systems)” [44, §3.1]. (Clearly, the advocate of
the dynamical approach may resist the ab initio identification of the metric field with ‘spacetime’; this, however,
does not affect the above presentation of the dynamical view.)

26On this point, an anonymous referee has raised the question, “Since this notion of symmetry coincidence is
symmetrical, why not say that the metric field surveys rods and clocks?” Our response is that the asymmetry is
broken through the fact that stable rods and clocks can be built from matter fields (though cf. footnote 27), which
then read off intervals as given by the metric field—but it is not (it appears) the case that stable rods and clocks
can be built from the metric field, which then survey matter fields in the theory. We concede, however, that this
latter possibility is of interest, and deserves further exploration.

27Note that the local coincidence of metric and dynamical symmetries, as delivered by the strong equivalence
principle, is only a necessary condition for the metric field to have chronogeometric significance tout court.
For example, as flagged above, the existence of stable rods and clocks built from matter fields is an additional,
non-trivial assumption.
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implies the negation of EP1 (cf. §3). This tension is not necessarily problematic, however,

for what is sufficient for the (B)-view to go through in the general relativistic context (for

the reasons detailed above) is that, in an appropriate neighbourhood of any p ∈ M , terms

featuring the Riemann tensor or its contractions may be ignored—so that EP1' holds in this

neighbourhood.28

What is a plausible (A)-type counterpart to the (B)-view in the context of GR? We take

this to be the following: the metric field has a primitive connection to spacetime geometry,

and in the regime in which terms featuring the Riemann tensor or its contractions may be

ignored, the dynamical laws governing non-gravitational fields in a suitable neighbourhood of

any point p ∈ M are constrained to be invariant with respect to the local symmetries of this

field in the same manner as for the (A)-story in the context of SR. Hence, the existence of the

Lorentzian metric field explains the form of the local dynamical laws in the theory.29

4.2 The Equivalence Principle and the Dynamical Perspective

Henceforth, we take (A) and (B) to refer to the above formulations of these views in the

context of GR. How, then, do these fare in light of §3? As we have seen, the advocate of

the (B)-view makes an inconsistent move insofar as she assumes the universal validity of

EP1 alongside minimal coupling. There is, however, a straightforward fix available: she may

simply maintain that, to the extent that terms featuring the Riemann tensor or its contractions

may be ignored, EP1' holds, and the metric field takes the form of the Minkowski metric in

the relevant neighbourhood. These latter results suffice for the coherence of the dynamical

approach in the context of GR.

The Poincaré invariance of local dynamical laws written in normal coordinates at any

p ∈ M merits further discussion. In particular, one might worry that there exists a tension

between (I) the fact that such laws are invariant under translations, and (II) the fact that these

laws generically do not hold at some other q ∈M in the neighbourhood of p (now setting aside

28Strictly, the story told by the advocate of the dynamical perspective regarding the chronogeometricity of the
metric field can go through at a point p ∈ M , so long as tidal forces may be ignored at that point (so that EP1
holds approximately at that point). However, since (as discussed above) experimental apparata always occupy
some extended region of spacetime, it is more natural to focus upon a neighbourhood of any p ∈M , and thereby
upon the approximate validity of EP1' for the fields measured by those apparata.

29We raise in §6 some worries regarding this account.
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the dropping of terms representing ‘tidal forces’). To see this, suppose that one takes an active

interpretation of such translations. In that case, one appears to find that the dynamical laws

at p invariably also hold at q—a contradiction. Tension here can be resolved in the following

way: one should not take an active interpretation of such translations upon the dynamical

equations at p.30 The reason for this is that, in writing the minimally coupled dynamical

equations of GR at p in normal coordinates, information encoded in connection coefficients

is not retained.31 An actively-interpreted translation upon these equations at p would tell us

that connection coefficients also vanish at q, in the same coordinate system—but we have

prior knowledge that this is not the case. Hence, one should not interpret actively translations

performed upon such dynamical equations, once written in normal coordinates at any p ∈
M .32

5 Two Miracles of General Relativity

In response to claims to the effect that metric structure explains the symmetries of the equa-

tions governing non-gravitational fields, and in particular the fact that they are all Poincaré

invariant, the advocate of (B) may reply that such an explanation is “question begging” [5,

p. 139]. Regardless of which side one endorses in this debate, however, the fact that all such

dynamical equations manifest the same symmetries is at least an a priori mystery; one might

call it the first miracle of relativity (MR1):

MR1: All non-gravitational interactions are locally governed by Poincaré invariant dynamical

laws.
30Here, there are parallels with merely formal symmetries in the case of quantum mechanics, which admit of

no active interpretation—see [6, §3.1].
31Note that this is due to the mathematical fact that connection components vanish at p in normal coordinates;

no approximations are invoked in this discussion.
32This point is worth stressing, in order to avoid certain confusions. A metric field’s being Minkowskian is a

global rather than a local property of a manifold, for by definition all Minkowski metric fields are geodesically
complete (cf. footnote 45). Thus, geometrically speaking, it is not clear how one can define ‘local’ Poincaré
transformations, as discussed above—since from this point of view, such transformations are usually understood
to be the isometries generated by the Killing vector fields on Minkowski spacetime. The resolution is to view
the Poincaré transformations discussed above as passive only—their action is not on spacetime points at all, but
rather on the chart space, i.e. the codomain of the coordinate charts. Very many thanks to an anonymous referee
for helping us to clarify considerably these matters.
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MR1 holds in SR: it tells us that the dynamical laws governing all matter fields are

Poincaré invariant; the advocate of the dynamical view (B) takes this to be a brute fact; the

advocate of the geometrical view (A) attempts to rationalise this by appeal to Minkowski

spacetime.33 The fact that MR1 holds has been discussed in [2, 5], and coheres well with the

later thinking of Einstein: “The content of the restricted relativity theory can accordingly be

summarized in one sentence: all natural laws must be so conditioned that they are covariant

with respect to Lorentz transformations” [21, p. 329]. MR1 still obtains in the neighbourhood

of any p ∈M in GR. In addition to MR1, however, the work of §4 makes plausible that there

exists in the GR context a second miracle of relativity (MR2):

MR2: The Poincaré symmetries of the dynamical laws governing non-gravitational fields

in the neighbourhood of any point p ∈ M coincide—in the regime in which terms

featuring the Riemann tensor or its contractions may be ignored—with the symmetries

of the dynamical metric field in that neighbourhood.34

In GR, there exists an ontologically autonomous (‘primordial’) metric field, and this leads

to MR2: why is it—assuming that terms representing tidal forces can be ignored—that the

symmetries of the dynamical laws governing non-gravitational fields in a suitable neighbour-

hood of any p ∈ M coincide with those of the primordial metric field in that neighbourhood?

Again, the advocate of the dynamical view (B) may postulate this as a brute fact. By contrast,

the advocate of the geometrical view (A) may attempt to argue that the ontologically primitive

metric field explains the form of the dynamical laws governing matter fields; however, as in

SR, she faces an outstanding burden to delineate how this is supposed to work.35

One thing that the advocate of (A) may say here is the following: Minimally coupled
33On MR1, David Wallace has posed to us the following question: “Why should one think it a miracle that

the intersection of the symmetry group of all the dynamical laws governing matter fields is the intersection of
the symmetry group of all the dynamical laws governing matter fields?” To this, we respond as follows: the
larger this intersection, the bigger the miracle. The fact that this intersection (and indeed also the union of the
symmetry group of all dynamical laws governing matter fields) is the Poincaré group certainly qualifies, in our
view, as ‘miraculous’, in the sense of footnote 3.

34Another way to put MR2 would be the following: the signature of the metric field which codifies the local
symmetries of the dynamical laws governing matter fields (cf. [11, §5]) coincides with the signature of the
dynamical metric field appearing in Einstein’s equation.

35Even supposing that an explanation can be found for MR2, there exist further questions in this vicinity. For
example, why (with the programme of Callender in mind—cf. [12]) should the lobes of the lightcone structure
designated as timelike by (a) the primordial metric field, and (b) the metric field which codifies the symmetries
of the local dynamical laws, coincide? Our thanks to an anonymous referee for useful comments on this point.
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dynamical laws in GR feature the metric field gab; as we have seen, the presence of (or rather,

the coupling to) this metric constrains the local form in the neighbourhood of any p ∈ M of

the dynamical laws of those fields to which it couples. Consequently, the symmetries of the

local dynamical laws must coincide with the symmetries of the metric field. This argument

misses the point, however, for the very issue in question is why the dynamical laws governing

matter fields take such a form—rather than another, with different local symmetry properties.

In other words: why this particular coupling? This is the essence of MR2, which remains

untouched by such arguments.

If one could argue that what had previously been regarded as the ontologically independent

metric field of GR was in fact reducible to a codification of symmetries of the dynamical

equations of matter fields (as with the (B)-story in SR), then this would provide an explanation

for MR2. Indeed, one might think there are hints that this can be achieved: vacuum GR is

essentially an affine theory, in the sense that the field equation of vacuum GR, Rab = 0, only

require an affine connection to be defined, as the Riemann and the Ricci tensor can be defined

in terms of the connection only, without any need to refer to a metric tensor. On the other

hand, we do need a metric tensor to define the Ricci scalar that, together with the Ricci tensor,

makes up the Einstein tensor that forms the left-hand side of the full Einstein equations.36

Hence, one can go a long way in GR without defining a metric field—but as soon as one seeks

to treat gravitational fields in the presence of matter, one must introduce a metric field.37

Note, however, that with only affine structure at one’s disposal, there is no way to distin-

guish between four-dimensional space and four-dimensional spacetime. The reason is that one

needs conformal or metric structure to distinguish between spatial and temporal dimensions,

manifested in the signature of the metric (or of the conformal equivalence class of metrics).

Thus, the claim that vacuum GR is essentially an affine theory needs to be taken with a grain of

salt: we still need to obtain a metric or an equivalence class of metrics to make it a spacetime

theory. Consequently, one must take even vacuum GR, understood as a theory of spacetime,

to require metric structure, thereby raising potential obstacles for this move to explain MR2.38

36The reason is that while the Ricci scalar can be obtained by contracting the one upper and one of the three
lower indices of the Riemann tensor, in order to obtain the Ricci scalar we first need to raise one index of the
Ricci tensor using the metric. This also means that we cannot define the standard Einstein-Hilbert Lagrangian
without a metric.

37This coheres with the results of [35], that in order to define the stress-energy tensor of generic material
systems, a metric tensor must be in place. We now find that both sides of the full Einstein equations require a
metric in order to be well-defined.

38For presentations of GR in which affine structure is introduced before metric structure, see [38, 40, 51]—
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Alternatively, one might seek to account for MR2 by appeal to a particular form of the

relativity principle, which states that the laws of physics take the same form in all inertial

frames of reference. Recall that normal coordinates at any p ∈ M are such that gµν,ρ (p) = 0,

and one may impose the further restriction that gµν (p) = diag (−1, 1, 1, 1). It is plausible to

regard such frames as inertial, since connection coefficients vanish therein; this means—via

the geodesic equation—that motions of test bodies take their simplest form in such frames,

insofar as they follow Newtonian inertial trajectories. Now consider a case in which non-

gravitational fields governed by Galilean-invariant dynamical laws are coupled—via their as-

sociated stress-energy tensor—to Einstein’s equation in which the curvature tensor is associ-

ated (via the unique torsion free, metric-compatible connection) to a Lorentzian metric field,

gab. Suppose, for a given p ∈ M , that there exists a normal coordinate system in which the

Galilean-invariant dynamical laws take their simplest form. Now transform to a new coordi-

nate system, via a Lorentz boost. Though this new coordinate system is still normal—and so

still inertial—the Galilean-invariant laws do not take the same form in this frame. Thus, this

form of the relativity principle is violated. If one holds this principle to be sacrosanct, then

one may, therefore, be able to account for MR2. Note, however, that this again merely pushes

the problem back, for one may ask: why such a relativity principle?

6 The Geometrical Perspective

The situation presented thus far stands as follows. (I): Minimal coupling implies EP2, but

does not in general imply EP1 (pace e.g. [5, ch. 9]). (II): When terms featuring the Riemann

tensor or its contractions in local dynamical equations for non-gravitational fields can be ig-

nored, EP1' holds in an appropriate neighbourhood of any p ∈ M . (III): Though philosoph-

ical positions such as the (B)-view are presented as being interwoven with claims regarding

the compatibility of the universal validity of EP1 and minimal coupling (see e.g. [5, ch. 9]),

such claims may be excised from the position—for which suffices the approximate validity

of EP1'. (IV): Some justification for restricting the allowed class of dynamical equations for

non-gravitational fields in GR, or of the relativity principle, would suffice as an account of

MR1 and MR2.

though note that, in such sources, this order of presentation is often chosen for pedagogical reasons, rather than
to explore the extent to which it is possible to do GR with only affine structure, as is our concern here.
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By analogy with the case of SR, the advocate of the (A)-view is likely to claim that the

sheer fact that non-gravitational fields are situated in a spacetime manifesting (under the ap-

propriate conditions, i.e. when terms featuring the Riemann tensor or its contractions may be

ignored) local Poincaré invariance in the neighbourhood of any p ∈M explains the local sym-

metries of their associated dynamical laws for matter—and thereby explains MR1 and MR2.

In our view, however, this is not correct. In this section, we present two interestingly distinct

problem cases, in which the reasoning central to the (A)-view appears insufficient to account

for the dynamical behaviour of matter fields. These two cases are the Jacobson-Mattingly

theory on the one hand, and certain bimetric theories on the other.39

In the former (presented in e.g. [14, 29]40), the action for a coupled Einstein-Maxwell

system is augmented with an additional term (via a Lagrange multiplier field λ), imposing

(as a field equation, via variation with respect to λ) that the vector potential Aa be locally

timelike:41

SJM [gab, A
a, λ] =

∫
d4x
√
−g
(
R− 1

4
F abFab + λ

(
gabA

aAb − 1
))

. (6.1)

The imposition of this Lagrange multiplier term results in a violation of the relativity

principle—though in a subtly different form to that presented in §5. The form of the relativity

principle that is violated by the Jacobson-Mattingly theory is the following: dynamical laws

for non-gravitational fields take their simplest form in all inertial frames. (Here, the ‘simplest’

form of a dynamical equation is to be understood as the form in which the greatest number

of terms vanish—cf. appendix B.) The reason that this version of the relativity principle is

violated is that the Lagrange multiplier term in (6.1) picks out a preferred (timelike) direction

in the neighbourhood of any p ∈ M ; dynamical equations written in the subclass of inertial

39On our appeal to these theories, an anonymous referee has raised the following objection: why is the fact that
the (A)-view fails in such counterfactual scenarios, in which e.g. the Jacobson-Mattingly theory holds, of any
relevance? The reason is that the (A)-view postulates a strong modal constraint: all matter fields must be such
that they ‘advert’ to all and only the designated metric structure, in the sense that the dynamical laws governing
matter fields manifest (locally) the symmetries of that metric structure. Scenarios such as those discussed in this
section demonstrate that this need not be the case. Now, we leave open the possibility that there exist viable
refinements of the (A)-view, which do not postulate such strong modal constraints—indeed, such possibilities are
discussed in [48]. In such cases, we concede that the force of the above cases may be mitigated. However, such
developments of the (A)-view are not our concern in this paper.

40In fact, the version of the Jacobson-Mattingly theory discussed in this paper is a special case of that presented
in [14, 29].

41The first term is the Einstein-Hilbert action; Fab is the Faraday tensor associated to Aa (see §2).
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frames aligned with that direction admit of further simplification, in the sense that further

terms vanish in those frames.42 This notwithstanding, however, the form of the relativity

principle presented in §5 is still satisfied, for the dynamical equations of this theory still take

the same Poincaré-invariant form in all inertial frames.

Note that the dynamical equations of the Jacobson-Mattingly theory could be constructed

via minimal coupling;43 this means that minimal coupling may lead to violations of certain

forms of the relativity principle. In any case, however, the important point to make from the

perspective of this section is that, in the Jacobson-Mattingly theory, the dynamical behaviour

of non-gravitational fields does not reflect the local (Poincaré) symmetries of the metric field—

taken to represent spacetime. The advocate of the (A)-view faces an outstanding burden to

account for such cases.

Turn now to our second example: Bekenstein’s bimetric TeVeS (‘Tensor-Vector-Scalar’)

theory, presented in [3, 4]. As discussed in [5, §9.5.2], in this theory the metric field which is

surveyed by rods and clocks, the conformal structure of which is traced by light rays, and the

geodesics of which correspond to the motion of free bodies, is not the ‘fundamental’ metric

field gab, but rather a less ‘fundamental’ metric field g̃ab, constructed from the other matter

fields in the theory [5, p. 174]. Thus, one might claim that the TeVeS theory presents another

case in which the local symmetries of the dynamical laws do not mirror the local (Poincaré)

symmetries of the ‘background’ metric field—a necessary condition for the (A)-view to go

through.

Still, in this case, both gab and g̃ab are Lorentzian metric fields; moreover, the matter fields

in this theory obey (in the relevant regime) locally Poincaré invariant dynamical laws. Thus,

one might think that MR2 is satisfied in this case, and thus that the example does not raise

problems for the (A)-view. What is going on here? In fact, TeVeS points to an interesting am-

42For an illustration of how this term leads to the breaking of local Lorentz invariance—and so violations of this
form of the relativity principle—see the discussion of a somewhat simpler (but analogous) theory in appendix
B. We do not discuss that simpler theory in the body of this paper, for it is a theory set in fixed spacetime—
whereas our concern in the above is (in part) to focus upon theories with dynamical metric structure, which
manifest (violations of) MR2. Nevertheless, it is worth noting that the theory presented in appendix B also raises
questions regarding the kind of explanation for the dynamical behaviour of matter proffered by advocates of the
geometrical approach. As a second point on the Jacobson-Mattingly theory, the Lagrange multiplier term in the
Jacobson-Mattingly action also leads to a violation of gauge invariance—cf. [29, p. 3].

43For example, the dynamical equation gabAaAb = 1 in the Jacobson-Mattingly theory could be constructed
by applying the minimal coupling scheme to the associated dynamical equation ηabAaAb = 1.
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biguity in MR2. If this principle states that the local symmetry group of the dynamical laws

governing matter fields is the same (in the relevant regime) as the local symmetry group of the

metric field (in the sense given above), then it is indeed satisfied in TeVeS. Note, however,

that in TeVeS it is the metric field g̃ab, and not the metric field gab, which has chronogeometric

significance—it is this field which takes a diagonal form in the frames in which the dynamical

equations governing matter fields take their simplest form. If one reads MR2 as demanding

this stronger condition (i.e., if one takes a strong reading of the word ‘coincides’ in MR2), then

TeVeS violates this principle for the ‘fundamental’ metric field gab, for the local symmetries

of gab do not coincide in this strong sense with those of the dynamical laws governing matter

fields. Since it is this stronger reading of MR2 which is relevant to a field’s having chrono-

geometric significance, it is this reading which we prefer—in which case, TeVeS does pose

a problem for the (A)-view, for it demonstrates that this local symmetry coincidence between

the gab field and the dynamical equations governing matter fields does not hold of necessity.

7 Special Relativity

With all the above in mind, we now reflect on the nature of SR, and its relation to GR. Results

such as (2.12) indicate that Poincaré invariance of dynamical laws in a spacetime theory is

insufficient for that theory to be ‘special relativistic’, as such laws may still contain curva-

ture pieces and derivatives of connection coefficients. Hence, some further criterion is needed

to fully characterise ‘special relativistic’ theories. This criterion is that the inertial frames

be global. To make sense of this, take the definition of an inertial frame presented in the

previous section. As we have observed, Γµνρ (p) = 0 in normal coordinates at p (if the metric-

compatible derivative operator is torsion-free), so this result holds in a local inertial frame.

However, this is only generically true at p: at neighbouring points the connection coefficients

may be non-zero, i.e. partial derivatives of the connection components may be non-zero in nor-

mal coordinates at p; this leads to the possibility of curvature terms in higher order equations

in local inertial frames.

What happens, however, if we now specify that the inertial frames are global? In that

case, connection components vanish globally in normal coordinates, so it follows that par-
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tial derivatives of the connection coefficients also vanish in these frames.44 Hence, the Rie-

mann curvature also vanishes globally. In such a case, higher order dynamical equations for

non-gravitational fields in GR at any point p ∈ M and written in normal coordinates take

a Poincaré invariant form with no curvature terms, rather than merely a Poincaré invariant

form simpliciter. Moreover, this result holds at every point in spacetime. Without specifying

that the inertial frames are global, we do not recover such dynamical equations, either glob-

ally or (in general) locally. Hence, one might argue that ‘special relativistic’ theories are best

characterised through two criteria:

1. The dynamical laws governing matter fields are Poincaré invariant.

2. The inertial frames are global.

Deciding whether to characterise such theories via (1) and (2) together, or just via (1), is

a cost-benefit analysis. In the former case, we retain the notion that SR concerns Poincaré

invariant dynamical laws governing matter fields in a fixed Minkowski spacetime.45 However,

in following this route we can no longer maintain that SR is in general recovered at a point in

GR (although we can argue that it is approximately recovered, in the regime in which EP1'
holds). By contrast, in the latter case we can maintain that SR is locally recovered in GR.

However, one has to greatly expand one’s conception of the scope of SR to include the study

of the dynamics of matter fields in generically non-flat spacetimes.

Though it might seem that the ‘safe’ option here is to endorse the former of the two ap-

proaches, on which ‘special relativistic’ theories are characterised by both (1) and (2) (espe-

cially as (2) is, arguably, an essential conceptual assumption of SR—recall that one of Ein-

stein’s great insights on his quest towards GR was precisely the rejection of (2)), it is at least

worth countenancing the latter, more general account, according to which a theory’s being

‘special relativistic’ is tied to the Poincaré invariance of its dynamical laws alone, and no fur-

ther a priori restriction is made on the content of these laws. On this view, the assumption of

44Note that we are not interested in the possibility of defining globally an arbitrary frame, but with the pos-
sibility that a given, globally-defined frame satisfies globally the condition of inertiality. Many thanks to an
anonymous reviewer for helpful discussion on this point.

45Or at least, we almost do: an anonymous referee has pointed out that, in order to obtain Minkowski space-
time proper, we must specify that the manifold under consideration be diffeomorphic to R4, and geodesically
complete.
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a fixed, background Minkowski spacetime is supererogatory to the core of SR. Indeed, if one

does choose to characterise special relativistic theories through (1) alone, then, given certain

restrictions on the form of dynamical laws for matter fields (e.g., that they be constructed via

minimal coupling), GR itself is a locally special relativistic theory.

8 Conclusions and Outlook

There exist circumstances in GR in which minimal coupling leads to violations of EP1. In

this paper, we have argued that this is unproblematic for advocates of the dynamical approach,

for the relevant necessary condition for this view to account in the context of GR for the

chronogeometricity of the dynamical metric field is, rather, the approximate validity of EP1',
which obtains in the regime in which terms featuring the Riemann tensor or its contractions

in dynamical equations for non-gravitational fields may be ignored. As a result, this position

remains a live option for accounting for chronogeometricity in GR, when dynamical equations

for non-gravitational fields are selected in accordance with minimal coupling.

Exploring the above themes led us to identify MR2: that, when terms representing tidal

forces may be ignored, the symmetries of the dynamical laws for non-gravitational fields in

the neighbourhood of any point p ∈M coincide with the symmetries of the primordial metric

field in that neighbourhood. It appears, much as with MR1, that—absent some deeper story—

this must simply be treated as a brute fact in GR. Though an explanation of minimal coupling,

or certain forms of the relativity principle, would suffice to account for MR1 and MR2, no

such explanation appears to be forthcoming.46 Though the advocate of the (A)-view might

claim to be able to account for both of these ‘miracles’, we have presented two cases which

call into question such assertions.

Finally, we have reflected on the nature of SR. While one might choose to characterise

‘special relativistic’ theories via two conditions—(i) that dynamical laws are Poincaré invari-

ant, and (ii) that inertial frames are global—in this paper we have raised the possibility that

such theories may be characterised solely by (i). Deciding which of these options is to be

preferred is a nuanced business, worthy of future philosophical attention.

46At least within the domain of GR—it is possible that such an explanation can be found in e.g. perturbative
string theory. See [50] for an exploration of this possibility.
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A Minimal Coupling and Poincaré Invariance

The goal of this appendix is to demonstrate that minimally coupled dynamical equations in

GR manifest local Poincaré invariance, when written in normal coordinates at any p ∈ M .

As a corollary, we derive some interesting results regarding when such equations exhibit a

broader symmetry group. To begin, consider any minimally coupled dynamical equation in

GR. In normal coordinates at some p ∈M , this equation may schematically be written

O1,1 · · ·O1,n1 + . . .+Om,1 · · ·Om,nm = 0. (A.1)

Here, m indexes the term; nm indexes the object in the m-th term.47 For such minimally cou-

pled dynamical equations in normal coordinates, the set of relevant objectsOi featuring in such

equations consists of (a) tensors; (b) partial derivatives of tensors; and (c) partial derivatives of

connection components.48 Given this, we now investigate the class of transformations under

which (A.1) is invariant.49 Applying an arbitrary coordinate transformation to (A.1), we write

each Oi in the new, primed basis. Accordingly, our investigation reduces to an exploration of

47Indices in (A.1) are neither abstract nor coordinate indices, in the sense of the rest of this paper.
48We do not include connection components in this enumeration, since these vanish in normal coordinates.
49A note on nomenclature. Consider an affine coordinate transformation xµ

′
= Mµ′

µx
µ + aµ

′
.

If an (r, s) tensor field Tµ1...µr
ν1...νs transforms under this coordinate change as Tµ1...µr

ν1...νs →
Mµ1

µ′
1
. . .Mµr

µ′
r
M

ν′
1
ν1 . . .M

ν′
s
νs T

µ′
1...µ

′
r

ν′
1...ν

′
s

, then we say that it is covariant with this coordinate trans-
formation. If, on the other hand, a dynamical equation retains the same form in either of the two coordinate
systems under consideration, then we say that it is invariant under the coordinate change.
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the individual transformation properties of each the Oi in such minimally coupled equations,

in normal coordinates. There are three cases to consider: (a)-(c). Suppose first (a): that Oi is

a tensor. Then, trivially, Oi transforms as a tensor under arbitrary coordinate transformations.

So now suppose (b): that the Oi in question consists of a finite number of partial derivatives

of a tensor. We claim that such an object transforms tensorially when the transformation in

question is affine—i.e. when the transformation reads

xµ → xµ
′
= Mµ′

µx
µ + aµ

′
, (A.2)

where the matrix elements Mµ′
µ and vector components aµ′ are constant—in which case we

have

∂xµ
′

∂xµ
= Mµ′

µ . (A.3)

To show this, proceed by induction. Base case: Oi contains no partial derivatives of a tensor,

so is just a tensor (Oi = T µ1...µrν1...νs ). Then Oi transforms tensorially under all coordinate

transformations, a fortiori affine transformations. Inductive hypothesis: If Oi consists of n

partial derivatives of a tensor, Oi = ∂
(n)
σn · · · ∂

(1)
σ1 T

µ1...µr
ν1...νs

, then ∂(n−1)σ(n−1) · · · ∂
(1)
σ1 T

µ1...µr
ν1...νs

transforms tensorially under affine coordinate transformations. Inductive step: For a given

tensor T µ1...µrν1...νs , if n partial derivatives of that tensor transforms tensorially under affine

transformations, then show: so too does O′i = ∂
(n+1)
σn+1 Oi. Proof: By the inductive hypothesis,

Oi = ∂
(n)
σn · · · ∂

(1)
σ1 T

µ1...µr
ν1...νs

transforms tensorially under an affine coordinate transforma-

tion:

Oi = ∂(n)σn · · · ∂
(1)
σ1
T µ1...µrν1...νs

→Mσ′n
σn · · ·M

σ′1
σ1
Mµ1

µ′1
· · ·Mµr

µ′r
Mν′1

ν1
· · ·Mν′s

νs ∂
(n)
σ′n
· · · ∂(1)σ′1

T
µ′1...µ

′
r

ν′1...ν
′
s
, (A.4)

where the Mµ
µ′ are as per (A.2). Given this, O′i transforms as
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O′i →M
σ′n+1

σn+1 ∂
(n+1)

σ′n+1

{
Mσ′n

σn · · ·M
σ′1
σ1
Mµ1

µ′1
· · ·Mµr

µ′r
·

Mν′1
ν1
· · ·Mν′s

νs ∂
(n)
σ′n
· · · ∂(1)σ′1

T
µ′1...µ

′
r

ν′1...ν
′
s

}
. (A.5)

Distributing the partial derivative using the product rule, all terms of the form ∂
(n+1)
σn+1 M

λ′

λ

vanish, leaving

O′i →M
σ′n+1

σn+1M
σ′n
σn · · ·M

σ′1
σ1
Mµ1

µ′1
· · ·Mµr

µ′r
·

Mν′1
ν1
· · ·Mν′s

νs ∂
(n+1)

σ′n+1
∂
(n)
σ′n
· · · ∂(1)σ′1

T
µ′1...µ

′
r

ν′1...ν
′
s
. (A.6)

Hence, if the object Oi consisting of n partial derivatives of a tensor T µ1...µrν1...νs is invari-

ant under affine coordinate transformations, then so too is the object O′i consisting of (n+ 1)

partial derivatives of that same tensor. Thus, all partial derivatives of tensors appearing in min-

imally coupled dynamical equations at p ∈ M transform tensorially under affine coordinate

transformations.

Finally, consider (c). The claim now is that all partial derivatives of connection com-

ponents transform tensorially under affine coordinate transformations. To prove this, again

proceed by induction. Base case: Oi = ∂σΓµνλ, i.e. Oi consists of one partial derivative of a

connection component. Transforming to a new coordinate basis and then expanding in terms

of the old basis, we have
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∂ρ′Γ
κ′

σ′ν′ =
∂xρ

∂xρ′
∂

∂xρ

(
∂xσ

∂xσ′
∂xν

∂xν′
Γκσν

∂xκ
′

∂xκ
+
∂xκ

′

∂xκ
∂2xκ

∂xσ′∂xν′

)
=

∂2xσ

∂xρ′∂xσ′
∂xν

∂xν′
Γκσν

∂xκ
′

∂xκ
+
∂xσ

∂xσ′
∂2xν

∂xρ′∂xν′
Γκσν

∂xκ
′

∂xκ

+
∂xρ

∂xρ′
∂xσ

∂xσ′
∂xν

∂xν′
∂

∂xρ
Γκσν

∂xκ
′

∂xκ
+
∂xρ

∂xρ′
∂xσ

∂xσ′
∂xν

∂xν′
Γκσν

∂2xκ
′

∂xρ∂xκ

+
∂xρ

∂xρ′
∂2xκ

′

∂xρ∂xκ
∂2xκ

∂xσ′xν′
+
∂xρ

∂xρ′
∂xκ

′

∂xκ
∂

∂xρ
∂2xκ

∂xσ′∂xν′
. (A.7)

Five of the six terms in (A.7) contain second partial derivative pieces, which vanish when the

coordinate transformation is affine. So, under an affine coordinate transformation, this object

transforms as a tensor. Inductive hypothesis: IfOi consists of n partial derivatives of a connec-

tion component, Oi = ∂
(n)
σn · · · ∂

(1)
σ1 Γµνλ, then ∂(n−1)σ(n−1) · · · ∂

(1)
σ1 Γµνλ transforms tensorially under

affine coordinate transformations. Inductive step: If Oi consists of n partial derivatives of a

connection component and transforms tensorially under affine transformations, then show: so

too does O′i = ∂
(n+1)
σn+1 Oi. Proof: mutatis mutandis as for the inductive step of (b). Thus,

all partial derivatives of connection components appearing in minimally coupled dynamical

equations at p ∈M transform tensorially under affine coordinate transformations.

We have found that each of the Oi featuring in any minimally coupled dynamical equa-

tion in GR, written in normal coordinates at a point p ∈ M , is covariant—i.e., transforms

tensorially—under affine coordinate transformations. However, we have yet to show that all

such equations are invariant—i.e. take the same form—under affine coordinate transforma-

tions. In fact, this is in general not the case: and whether equations of the form (A.1) are so

invariant, or rather are invariant under a restricted class of affine transformations (most rele-

vantly the Poincaré group) depends upon context. To see this, first consider (2.9). Written in

normal coordinates at some p ∈M , the equation reads

F[µν,λ] = 0. (A.8)

Transforming to a new coordinate basis under an affine transformation, (A.8) reads, using the
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above results,

Mµ′

µM
ν′

νM
λ′

λF[µ′ν′,λ′] = 0. (A.9)

At this stage, however, assuming that the transformation matrices are invertible, we may sim-

ply operate on (A.9) with the relevant matrix inverses, yielding

F[µ′ν′,λ′] = 0. (A.10)

Hence, (2.9) written in normal coordinates at any p ∈ M is invariant under all affine trans-

formations with invertible linear transformation matrices. Now, however, consider (2.8). In

normal coordinates at some p ∈M , this reads

F µν
,ν = Jµ. (A.11)

Transforming to a new coordinate basis under an affine transformation, (A.11) becomes

Mµ
µ′M

ν
ν′M

λ′

ν F µ′ν′

,λ′ = Mµ
µ′M

ν
ν′M

σ
λ′ ηνσF

µ′ν′,λ′ = Mµ
µ′ J

µ′ . (A.12)

While the Mµ
µ′ matrices can be cancelled (via multiplication by the relevant inverse matrices)

in (A.12), in order for this equation to be invariant under the affine coordinate transformation

in question, we require the further condition that

Mν
ν′M

σ
λ′ ηνσ = ην′λ′ . (A.13)

From this, we see that (2.8), written at some p ∈ M in normal coordinates, is invariant only

under the more restricted class of Poincaré transformations—since (A.13) is the definition of

a Lorentz rotation. In general, whether the minimally coupled dynamical equations of matter

fields in GR, written at a point in normal coordinates, are invariant under all affine transfor-
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mations (with invertible linear transformation matrices), or only the Poincaré transformations,

depends upon whether the metric field is used to contract indices between the Oi. To sum-

marise:

• Objects of the form (a)-(c) transform tensorially under affine transformations; since the

dynamical equations of GR obtained via minimal coupling, written at a point in normal

coordinates, contain only objects of the form (a)-(c), all objects in such equations are

covariant under affine transformations.

• Due to the potential contraction of indices in some terms of such equations with respect

to the metric, we sometimes require further conditions on the affine transformations in

question for that equation to be invariant thereunder. Where the metric is the Minkowski

metric, this condition is that the transformations be Poincaré transformations.

The latter point is important. To illustrate, consider (2.1). We do not know under which

affine transformations this equation is invariant until we specify the metric field with respect to

which index contraction takes place. If this is the Minkowski metric, then such transformations

are the Poincaré transformations, by the above reasoning. If, however, this is some other

metric, then the affine transformations under which such objects are invariant will differ.50

B Lorentz Symmetry Breaking

Following [13, pp. 1231ff.], consider the Lagrangian for electrodynamics set in a fixed Minkowski

spacetime as per §2.1, but now augmented with a Chern-Simons term,51

LCFJ = LEM −
1

2
paAbF̃

ab. (B.1)

50Cf. [26,54]. As noted in [25,28], the specific spacetime metric implicit in one’s theory of electrodynamics is
specified by the so-called constitutive relations; for a certain simple form of the constitutive relations involving
the Hodge dual operator, this is the Minkowski metric.

51For background on Chern-Simons theory, see e.g. [17]. Another theory which could be used to illustrate the
same point is SR with a homogeneous dust field, the four-velocity field of which generates a timelike geodesic
congruence. Our thanks to an anonymous reviewer for this point.

32



Here, F̃ ab := 1
2
εabcdFcd is the dual electromagnetic tensor. This modification couples electro-

magnetism to an (as yet unspecified) vector field, pa.52 At the level of kinematically possible

models, pa is specified to be spacelike, so that papa ≡ m2 > 0. Varying the action associated

to (B.1), one obtains a generalisation of (2.1),

F ab
;b = Ja + pbF̃

ba; (B.2)

by contrast, (2.2) still holds. (Note that pa := ηabp
b.) Given that pa is spacelike, one can select

a frame in which p0 = 0, in which case (B.2) reduces to

F νµ
;µ = Jν + piF̃

iν . (B.3)

Together, (B.3) and (2.2)53 are the simplest forms of the dynamical equations for this theory.

The question, then, is: under which coordinate transformations are the forms of these equations

preserved? Recalling from appendix A that (2.1) is invariant under Poincaré transformations,

while (2.2) is invariant under all affine transformations with invertible linear transformation

matrix, it is clear that the forms of (B.3) and (2.2) will together be invariant under the subgroup

of Poincaré transformations that preserve the condition p0 = 0. Our task now, then, is to

identify this class of transformations.

By acting upon pa with an arbitrary transformation matrix, one finds that the coordinate

transformations which preserve p0 = 0 are the Galilean transformations.54 Thus, the class

of transformations which preserve (B.3) and (2.2) together consists of the intersection of the

Poincaré and Galilean transformations—these are the translations and spatial rotations. Thus,

in this modified theory of electrodynamics, the presence of the pa vector field ‘breaks’ Lorentz

52As with the Minkowski metric field ηab in the version of electromagnetism introduced in §2.1, the vector
field pa may be understood to be a fixed field, in the sense of [45, p. 13].

53The latter written in a coordinate basis.
54To see this, first act with a generic linear transformation matrix Mµ

ν (associated to an affine coordinate
transformation x′µ = Mµ

ν x
ν + aµ—here we have moved the primes from indices to the new coordinates,

i.e. have written x′µ rather than xµ
′
, for clarity of exposition) upon pµ (this geometrical object now being written

in some coordinate basis), subject to the condition that the temporal component also vanishes in the new coordi-
nate system, i.e. p′0 = 0. Doing so, one finds that the time-space component M0

i of the transformation matrix
vanishes. Given this, it follows that x′0 =M0

0x
0 + a0 and x′i =M i

0x
0 +M i

j x
j + ai; these are precisely the

Galilean transformations.
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symmetry, reducing the class of transformations under which the dynamical equations of the

theory hold in their simplest form from the Poincaré transformations to the translations and

spatial rotations. This is reconcilable with the Poincaré invariance of (B.2) and (2.2) together,

since in this case these do not constitute the simplest forms of the dynamical equations of the

theory. A similar result holds for the local dynamical equations at any p ∈ M for the general

relativistic Jacobson-Mattingly theory [14, 29], discussed in §6.
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